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Abstract

Due to their periodic nature, metasurfaces used to perform anomalous reflection raise para-
sitic harmonic reflections. We show a classical synthesis example of such a structure and high-
light its limitations. Floquet analysis and its associated simulation environment are exploited
to understand the origin of these parasitic reflections and to mitigate them. The proposed
method is based on the optimization of the metasurface periodic pattern: the supercell. A pre-
dictive method is built to calculate radar cross-section patterns from supercell Floquet simu-
lation, avoiding dealing with heavy simulations. The proposed model, the optimization
outputs, and the general results are exposed in details. Different cases are also discussed to
prove the repeatability of the proposed method. An earlier version of this paper was presented
at the European Microwave Conference and was published in its proceedings.

Introduction

Metasurfaces [1, 2] have made possible a great quantity of electromagnetic wavefront manipu-
lation types over the last decade [3]. In the field of radar, they spread their capabilities over
various applications such as camouflaging techniques or radar cross-section (RCS) reduction
[4, 5], backscattering enhancement [6], or anomalous reflection [7, 8].

Historically, a very simple optical physics principle gave rise to phase gradient metasurfaces
[9]. The introduced generalized Snell’s law allowed the design of anomalous reflectors of great
simplicity, regarding either the underlying physics or the realization process. However, the
inherent translation invariances of these structures raise spurious diffraction modes, which
forced the community to find a more elaborated physical framework by incorporating
Floquet theory to it. Periodic structures are very common in various physical domains,
such as condensed matter physics where the Floquet–Bloch theory is already a very usual
tool [10]. Applied to electromagnetic control, several research domains have emerged such
as glide symmetric structures [11], or metagratings [12, 13] where the objective is to channel
the power from one Floquet mode into an other.

In the domain of anomalous reflection metasurfaces, it has been shown that it is difficult or
even impossible to produce efficient passive reflective surfaces without considering non-local
designs or polarization conversions [14, 15].

In this context, we propose an efficient optimization approach to shape the bistatic RCS of
anomalous reflection metasurfaces. It relies on the method presented in [16] which merges
gradient metasurface approach and Floquet analysis. We build a fast predictive tool and use
it in an optimization routine to design anomalous reflection metasurfaces with mitigated
spurious diffraction modes.

The paper is organized as follows: section “Classical synthesis and its limitations” discusses
the classical synthesis procedure and its limitations that are overcome by the use of Floquet
analysis as presented in section “Floquet analysis.” An optimization process, taking advantage
of the introduced considerations, is described in section “Metasurface optimization.” The
application of the method is discussed and illustrated through specific study cases presented
in section “Further examples.”

Classical synthesis and its limitations

Anomalous reflection configuration

The chosen anomalous reflection configuration is the one depicted in Fig. 1.
A plane wave coming from the direction θi impinges on a surface lying in a Oxy plane and

is converted into an other plane wave reflected in the direction θr. Both waves are transverse
magnetic polarized (TM, H⊥Oyz). The anomalous reflection is made possible by the presence
of a linearly varying reflection phase distribution along uy at the reflecting surface [9].
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A solution to synthesize such a phase gradient is to discretize it
by using reflective cells. The discretization choice here is such that
each gradient spatial period Dy is covered with a same periodically
distributed supercell, composed itself of three cells of size d. The
phase law can be written in three equivalent ways to express the
useful dimensions:

sin (ur)− sin (ui) = 1
k
dw
dy

= 1
k
2p
Dy

= l

3d
(1)

where k and λ are the wave number and wavelength at a given fre-
quency f, θi the direction of the incoming plane wave, and θr the
direction of the reflected one. For f = 8 GHz, θi = 0°, and the
anomalous reflection angle being set, for our example, to θr =
60°, the two other dimensions are deduced: Dy≈ 43.3 mm and
d≈ 14.43 mm.

Phase law synthesis

To produce the desired phase law, H shape patch cells studied in
[17] are used. The cells consist of a perfect electric conductor

(PEC) patch on top of a dielectric substrate of relative permittivity
er = 2.17, backed by a PEC plane. Figure 2 presents the geomet-
rical parameters of the cells as well as a phase response as a func-
tion of one parameter: the patch length L.

The three cells constituting the supercell must produce regu-
larly spaced phase responses to create the linear phase variation.
The needed geometrical parameters for each cell p∈ {1, 2, 3},
highlighted on the trace of Fig. 2 by crosses, are listed in
Table 1, as well as their phase response.

The supercell is then replicated nine times in the uy direction
to produce an approximate array length of 10 λ. The array is stud-
ied in full-wave simulation using HFSS with absorbing boundary
conditions along uy and a perfect magnetic conductor along ux to
ensure infinite periodicity along the ux direction of TM polariza-
tion. The radiated fields are used to calculate a bistatic RCS pat-
tern [18] that is shown in Fig. 3 in solid line.

The structure mainly radiates in the desired direction θ = 60°,
but also shows noticeable radiation levels in two other main direc-
tions : θ = 0° and θ = −60°.

Limitations of the approach

During the synthesis procedure the surface is considered as an
array of cells only characterized by their reflection coefficients
Gp = ejwp , in such a way they are hosting a source field

Es,p = E0uyGp = E0uye
jwp (2)

E0 being a unitary amplitude and wp taking only the three possible
values presented in subsection “Phase law synthesis” with wp = wp+3.
This source field can be converted into current densities and used in
radiating integrals [19] to calculate the field created by a vacuum-
surrounded aperture hosting this source field. The obtained field
is summed over all the 27 contributing cells to obtain a bistatic
RCS diagram that is compared to the simulated one in Fig. 3.

This basic synthesis approach does not take into account the
two parasitic radiation directions as only the main lobe at θr =
60° is predicted by the analytical model. It is worth mentioning
that, despite the simplicity of this approach, the main lobe level
is well estimated by the analytical model, with only 0.4 dB differ-
ence with respect to the full-wave HFSS simulation.

Floquet analysis

Expected behavior

The periodicity of the array, obtained by the replication of the
supercell, is the cause of the parasitic reflections. To understand
this phenomenon, we study the structure with the help of
Floquet analysis. The total three main radiation directions are pre-
dicted by Floquet analysis [20]. They correspond to every m that

Fig. 1. Anomalous reflection of a TM plane wave occurring in the Oyz plane, with an
ideal or a discretized linear phase gradient lying in the Oxy plane.

Fig. 2. Variation of the phase response of the H cell versus L in infinite periodic envir-
onment for l = 3 mm. Fixed parameters are h = 1.6 mm, d = 14.43 mm, and W = 2 mm.

Table 1. Geometrical parameters of the initial supercell

p lp (mm) Lp (mm) wp (◦)

1 3 9.881 120

2 3 11.075 0

3 3 11.619 −120
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provides real solutions to the equation

k2zm = k2 − k2ym (3)

where

kym = ky0 + 2mp

Dy
(4)

with ky0 and kym the components along uy of the k0 and km wave
vectors respectively. The first one is associated to the fundamental
Floquet mode and the second one is associated to one harmonic
Floquet mode. In the considered case, as the incoming and
reflected waves propagate in the same medium, k0 = km = k.
Writing down ky0 = ksin (θ0) and kym = ksin (θm) in (4) leads to

sin (um)− sin (u0) = 1
k
2p
Dy

(5)

which is the generalized reflection law, written in (1), where θm is
the intended reflection direction after an illumination in the θ0

direction. Performing anomalous reflection, with the help of the
generalized reflection law, while setting the structure periodicity
equal to the gradient periodicity is strictly equivalent to satisfy
the m = 1 Floquet mode propagation condition. We also verify
that in our case the modes m =−1 and m = 0 are propagative
and correspond to the directions of the parasitic radiations
observed in the previous section.

Usage of the Floquet-type simulation

In the light of the previous analysis, the anomalous reflection
structure can be seen as a reflecting surface that has a conversion
capability between the different propagative modes. To under-
stand its behavior, the supercell can be simulated in a Floquet
environment, as depicted in Fig. 4.

The supercell is infinitely replicated by the mean of master/
slave pairs defined along the ux and uy directions. This allows to
define a Floquet port that can be used to excite the structure.

Simulating such a structure gives access to a multimode coup-
ling matrix whose elements are the Sm,n complex parameters
defined as

Em = Sm,nEn (6)

where Em is the complex field amplitude in a m reflected mode
while the structure is studied under a n exciting mode of field
amplitude En. The parameters of interest in our example are the
Sm,0 because they correspond to an excitation with the n = 0
mode, which corresponds to an incidence of θ = 0°.

The Sm,0 parameters of the simulated supercell used to create
the initial array are reported in Table 2. The S−1,0 parameter is

Fig. 3. Bistatic RCS for θi = 0° of the initial surface compared to the analytical one used to design the surface.

Fig. 4. The supercell in Floquet-type simulation.

Table 2. Sm,0 parameters of the initial supercell

m Sm,0 |Sm,0| (dB)

−1 0.265− 0.221j −9.24

0 −0.058− 0.140j −16.41

1 0.874 + 0.264j −0.79
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highlighted as it will be useful to be compared in the coming
study of section “Metasurface optimization.”

It can already be noticed that the weights in decibels attributed
to each mode roughly follow the same hierarchy than the corre-
sponding lobe levels observed on the RCS diagram.

Incorporation of Sm,0 parameters in the model

As described in subsection “Limitations of the approach,” a
radiated field can be obtained considering source fields on the
surface. This time, the surface is not seen as an array of cells
any more, but in its entirety, hosting three different source fields
for the three possible values of m

Es,m = E0uySm,0e
−jk sin (um)y (7)

Each source field is of unitary amplitude E0 with a weighting Sm,0,
obtained from Table 2, and a phase variation corresponding to the
considered Floquet mode. Source fields are again converted into
current densities and used in radiation integrals. The three
radiated fields are summed and give the bistatic RCS shown in
Fig. 5 in dashed line.

The new source fields correctly reproduce the behavior of the
simulated surface. Each main lobe level is well predicted, while the
nine-supercell array is finite along uy, in contrast with
Floquet-type simulation. This conclusion gives credit toward a
representation of the surface with using only the S parameters
associated to the supercell, thus avoiding the burdensome simula-
tion type required to solve the whole structure. Taking advantage
of this situation, we propose to perform S parameter optimiza-
tions, obtained with effortless simulations, that are expected to
have a quantitative repercussion on the bistatic RCS of the com-
plete structure.

Metasurface optimization

Process

The geometrical parameters of the cells (lp, Lp) are chosen to
be the optimization input variables and the objective is to
minimize the level of the S−1,0 parameter. This definition is arbi-
trary and suits a particular application, the method is not
restricted to it and can be used for other specifications. One
may want to work for example with any S−n,n parameter,
corresponding to backscattering that is of specific interest for
numerous RCS applications. Indices m and n can also be larger
than 1, if the supercell length is set accordingly. Our proposed
approach can theoretically be extended to the optimization of
such supercells with more higher-order Floquet modes. The for-
malism using S parameters remains basically the same and so
does the power-transfer mechanism between propagative modes.
Of course, the optimization problem gets more complex and
more degrees of freedom might be needed to solve it. The cost
function to be minimized is then

fc(lp, Lp) = −(|S1,0| − |S−1,0|) (8)

The aim is then to increase the difference between the lobe
levels associated to the modes m =−1 and m = 1, avoiding the
solutions where both of them are low, and without having a par-
ticular interest in handling the mode m = 0.

Starting a gradient type optimization process from the first
supercell dimensions as an initial guess, the solution is expected
to be close to the initial one, as it is already shaped from the
phase gradient. In the same spirit, the cells used in the array are
obviously in a different environment than the infinite periodic
one used to obtain their phase response. The proposed optimization

Fig. 5. Bistatic RCS for θi = 0° of the initial surface compared to the analytical one using Sm,0 simulation parameters.

Table 3. Sm,0 parameters of the optimized supercell

m Sm,0 |Sm,0| (dB)

−1 −0.153− 0.050j −15.89

0 −0.084− 0.085j −18.45

1 0.685− 0.683j −0.29

Table 4. Geometrical parameters of the optimized supercell

p lp (mm) Lp (mm) wp (◦)

1 4.418 9.372 66.3

2 3.224 11.119 −73.86

3 3.132 12.189 −165.26
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process can thus be seen as a way to better take into account the
neighborhood of each cell, as the whole supercell is simulated.

Finally, based on our observations, we experience that some
parameters are more sensitive than others. For example, as the
L dimension is oriented along E, it shows a greater influence on
S parameters than l. Hence, the critical dimension L can be first
used in a rough analysis and l can be used afterwards for a fine
tuning. A similar reasoning process can be applied to deal with
sensitive cells, that are close to resonance, before others.

Results

Carrying the optimization process previously described leads to
optimized S parameters presented in Table 3 and associated to
the optimized dimensions presented in Table 4. New phase
responses can be obtained by simulating the optimized cells (con-
stituing the optimized supercell) in an infinite periodic environ-
ment, they are also presented in Table 4.

The |S−1,0| level drops by a significant amount, while the two
others are maintained. This already announces a more efficient

Fig. 6. Evolution of phase responses of the cells after an optimization process. The
three new phase variations with L are computed the same way than the already pre-
sented one (in black), each one for the three optimized values of l.

Fig. 7. Bistatic RCS for θi = 0° of the optimized surface compared to the one of the initial surface. Both of them are obtained using their Sm,0 associated simulation
parameters.

Fig. 8. Bistatic RCS for θi = 0° of the optimized surface compared to the one of the initial surface, in rigorous simulation and by using S parameters.
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mode conversion capability of the surface, for our specific appli-
cation. It can also be seen that the new phase responses drifts out
from the resonance region, where it is expected that they are more
stable once in an array. This phenomena is illustrated in Fig. 6
where it can be seen that new phase responses now escape the
w = 0° region where the slope is greater. These geometrical varia-
tions are also very small, barely more than half a millimeter in
most cases. This observation brings more confidence in the choice

of the initial simple phase gradient, so it only needs a small
adjustment to perform well.

New Es,m can now be computed using the optimized Sm,0 para-
meters and then be used to calculate the expected RCS of the opti-
mized array. This RCS is plotted in Fig. 7 where the initial
calculated RCS is reminded.

It must still be verified that the new array has the expected
behavior with a rigorous simulation. The optimized geometry is
put in the same full-wave environment than the initial one so
they can be compared. Figure 8 shows the performances of the
initial and optimized array as well as their predicted behavior
by the use of S parameters. The global comparison is a way to
check that the method is predictive as expected.

Indeed, the model correctly predicts both the initial and opti-
mized structure behaviors. A 7.5 dB decrease of the parasitic lobe
level is obtained while maintaining other radiation directions at a
similar level.

Further examples

This section presents the optimization results of two others
anomalously reflecting surface, where the initial l values are cho-
sen to be 8 and 12 millimeters.

Case of l = 8mm

Since the complete procedure has already been discussed, we pro-
pose here to only give concluding results and to comment them.
Tables 5 and 6 give the geometrical variations and Sm,0 parameter
evolutions through the optimization process. Figure 9 shows the
global bistatic RCS comparisons.

The |S−1,0| level drastically decreases, but one should carefully
keep in mind that the initial level was lower compared to the pre-
vious case. In contrast, the |S0,0| level raises as the optimization
process does not handle it. Geometrical variations of the supercell
are smaller than in the first l = 3mm case and so it is for phase
response evolution. The largest geometrical variation for this
case is 4% of the initial cell size and is in contrast about 32%
for the first presented case. The optimized array performance is
greatly improved, by an attenuation of 15 dB on the parasitic
lobe level. Nevertheless, the model is less quantitative in this
region where the RCS quantities are very low on the decibel scale.

Table 5. Evolution of the supercell dimensions during the optimization process

p lp (mm) Lp (mm) wp (◦)

Initial supercell

1 8 6.43 120

2 8 7.04 0

3 8 7.30 −120

Optimized supercell

1 8.313 6.342 116.80

2 7.978 7.083 −17.94

3 7.999 7.258 −105.42

Case l = 8mm.

Table 6. Evolution of the supercell Sm,0 parameters during the optimization
process

m Sm,0 |Sm,0| (dB)

Initial supercell

−1 −0.070− 0.132j −16.52

0 −0.026 + 0.019j −29.81

1 0.970− 0.004j −0.26

Optimized supercell

−1 0.009 + 0.001j −40.50

0 0.065− 0.136j −16.42

1 0.967− 0.047j −0.28

Case l = 8mm.

Fig. 9. Bistatic RCS for θi = 0° of the optimized surface compared to the one of the initial surface, in rigorous simulation and by using S parameters. Case l = 8 mm.
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Case of l = 12mm

In the same way, concluding results for another case where the
starting l value for optimization is 12 mm can be found in
Tables 7 and 8 and in Fig. 10.

The |S−1,0| value drops by a great amount as well and the
expected RCS diagram shows very low lobe levels for the θ =
−60° direction. Even if the bistatic RCS diagram shows a 10 dB
reduction performance in the θ =−60° direction, the model is
less accurate in this angular region, where RCS values are lower.
Cell geometry variations are even smaller in this case, actually
going under manufacturing precision. Still corroborating the via-
bility of the used technique, this last example could however be
unrealistic for practical implementation.

Global results commentary

The three pairs of presented structures exhibit a radiation peak
around the −45° area. They also share a lot of their properties,
such as array lengths, substrate thickness, cells, and patch shapes
for example. It surely goes beyond the scope of the model pre-
sented in this publication, but exploring the shared properties
of the surfaces should lead to discriminate the origin of this par-
ticular radiation.

All the presented structures use the same patch geometry and
same degrees of freedom for optimization, but converge to

different optimal values. This obviously proves that at least two
of them are not global optimums. This is not a surprising conclu-
sion since they all use an initial guess from which it is intended to
not deviate too much. This is a way to keep the computing
resources needed for optimization very low.

Figure 11 compares phase variations of the cells used in the
three initial cases, with respect to L. Globally, the absolute value
of the slope at resonance grows as l increases. This gives an
explanation about the smaller geometrical variations observed
through the three cases, as l is larger for each case.

The case for which l = 3mm shows a smoothly varying phase
response with L, but the phase range being in greater L region the
resulting cells are wider and then closer to their neighbor in array
environment. This could expose them more to coupling effects. In
a complementary way, the case for which l = 12 mm shows really
sensitive phase response regarding L but giving huddled and then
isolated cells once in an array. The Floquet-type simulation takes
into account the coupling effects between cells in a supercell and
between supercells in infinite array. Nevertheless, we may expect
slight deviations in the case of a realistic finite array as we have
here. The case for which l = 8mm then results in a good trade-off
for supercell stability. It is actually the case where the optimized
array shows the best performance in attenuating the level of the
S−1,0 corresponding lobe.

Fig. 10. Bistatic RCS for θi = 0° of the optimized surface compared to the one of the initial surface, in rigorous simulation and by using S parameters. Case l = 12 mm.

Table 8. Evolution of the supercell Sm,0 parameters during the optimization
process

m Sm,0 |Sm,0| (dB)

Initial supercell

−1 −0.116− 0.129j −15.24

0 −0.060 + 0.086j −19.58

1 0.948− 0.032j −0.46

Optimized supercell

−1 −0.002− 0.004j −46.73

0 0.059− 0.085j −19.7

1 0.958− 0.023j −0.37

Case l = 12mm.

Table 7. Evolution of the supercell dimensions during the optimization process

p lp (mm) Lp (mm) wp (◦)

Initial supercell

1 12 4.78 120

2 12 5.05 0

3 12 5.17 120

Optimized supercell

1 11.942 4.828 116.66

2 12.027 5.05 −16.02

3 12.052 5.119 −101.62

Case l = 12mm.

Matthieu Elineau et al.972

https://doi.org/10.1017/S1759078722001398 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078722001398


Finally, applying the process to several cases showed the
robustness of the proposed method while giving some synthesis
advices for this kind of structures.

Conclusion

In this publication we proposed a method that takes advantage of
translation invariance usually found in metasurfaces, by using
results of Floquet analysis and simulation. After showing the lim-
itations of the classical approach we chose to exploit Sm,n simula-
tion parameters to better represent the physical behavior of the
structure. After being incorporated in an analytical model, these
parameters were manipulated in an optimization process. One
first optimization process proved the efficiency of the method
and two other cases showed that the method is repeatable, and
quantitative with respect to the predicted RCS levels, especially
in regions with large RCS returns. In all cases, the proposed opti-
mization method drastically reduced the targeted parasitic radi-
ation. The last discussions also raised some advices, limitations,
and tracks for the synthesis of this kind of structure. As the
method was tested in simulation environments, future work will
focus on experimental validations. In particular, the predicted
RCS gains will be verified in the context of a practical implemen-
tation with limited manufacturing precision.
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