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THE CLASS A+
1(g) AND THE ONE-SIDED

REVERSE HÖLDER INEQUALITY

DAVID CRUZ-URIBE, SFO

ABSTRACT. We give a direct proof that w is an A+
1

(g) weight if and only if w satisfies
a one-sided, weighted reverse Hölder inequality.

1. Introduction. Given a function f and a non-negative, locally integrable weight
g on R, define the one-sided, weighted maximal function of f , M+

g f , to be

M+
g f (x) ≥ sup

tÙ0

1
g(It)

Z
It

jf jg dx,

where It ≥ [x, x+ t]. Similarly, we can define the backwards, one-sided maximal operator
M�

g . If g ≥ 1, this is the maximal operator as originally defined by Hardy and Littlewood
[4]. Weighted norm inequalities for M+

g were first studied by Sawyer [8] (in the case
g ≥ 1) and by Mart́ın-Reyes, Ortega Salvador and de la Torre [6]. They showed that for
1 Ú p Ú 1, M+

g is a bounded operator from Lp(w) into itself if and only if w is in A+
p(g):

there exists a constant C such that Z
I�

w dx
! Z

I+

�w
g

�1�p0

g dx
!p�1

� C
 Z

I
g dx

!p

,

where I ≥ [a, b] is any interval, I� ≥ [a, c], and I+ ≥ [c, b] for any a Ú c Ú b. These
classes are analogous to the (Ap) classes which govern the weighted norm inequalities
for the (two-sided) Hardy-Littlewood maximal operator.

More recently Mart́ın-Reyes [5] gave simpler proofs of the weighted norm inequalities
for M+

g ; and Mart́ın-Reyes, Pick and de la Torre [7] showed that A+
1(g), the union of all

the A+
p(g) classes, has many properties similar to those of (A1). In both papers a central

step is to show that functions in A+
1(g) satisfy what they called a weak reverse Hölder

inequality: there exists é Ù 0 such that for any interval I ≥ [a, b],

(1)
Z

I

�w
g

�1+é
g dx � C

Z
I
w dx Ð

 
M�

g

�w
g
üI

�
(b)
!é

.

This inequality is less versatile than a reverse Hölder inequality, and the proofs which use
it are correspondingly more difficult. In particular, the proof given by Mart́ın-Reyes [5]

Received by the editors December 6, 1995.
AMS subject classification: Primary: 42B25.
Key words and phrases: one-sided maximal operator, one-sided (A1), one-sided reverse Hölder inequality.
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that w 2 A+
p (g) implies w 2 A+

p�è(g) for some è Ù 0 uses the weighted norm inequalities
for M+

g . Mart́ın-Reyes posed the problem of finding a proof of this result which only used
the intrinsic properties of the class A+

p(g).
In [3] Cruz-Uribe, Neugebauer and Olesen showed that in the case g ≥ 1, inequality

(1) is equivalent to a one-sided reverse Hölder inequality:

1
jI�j

Z
I�

w1+é dx � C
 

1
jIj

Z
I
w dx

!1+é

,

where I ≥ [a, b] is any interval and I� ≥ [a, c], where 2jI�j ≥ jIj. Using this they gave a
direct proof that w 2 A+

p implies that w 2 A+
p�è. The purpose of this paper is to generalize

their result to arbitrary g and to give a proof which avoids inequality (1). To be precise,
we will prove the following theorem.

THEOREM 1.1. Given a weight g, the following are equivalent:
(1) w 2 A+

1(g);
(2) For some s Ù 1, w 2 RH+

s (g): there exists a constant C Ù 0 such that

1
g(I�)

Z
I�

�w
g

�s
g dx � C

 
1

g(I)

Z
I
w dx

!s

,

where I ≥ [a, b] is any interval and I� ≥ [a, c] is such that 2g(I�) ≥ g(I).

To prove Theorem 1.1 it will suffice to show that if w 2 A+
1(g) then w 2 RH+

s (g) for
some s Ù 1. The converse is straightforward: if w 2 RH+

s (g) then g 2 A�s0 (w), and if
g 2 A�1(w) then w 2 A+

1(g). The first implication follows from the definitions if I� and
I+ are such that g(I�) ≥ g(I+). (I want to thank A. de la Torre for this observation.) That
this is true for arbitrary I� and I+ follows for g ≥ 1 from Lemma 6.4 in [3], and the proof
of this lemma extends with slight modification to arbitrary g. The second implication is
from [7].

The proof that w is in RH+
s (g) is similar to the proof of inequality (1) in [6] or [5], each

of which in turn follows the proof of the reverse Hölder inequality given by Coifman and
C. Fefferman [2]. It depends on a sharp covering lemma for intervals on the real line. The
proof itself is in Section 3 below; in Section 2 we gather some preliminary results.

Finally, note that the one-sided reverse Hölder inequality and the proof that if w 2

A+
1(g) then w 2 RH+

s (g) simplifies the proof of the main result in [7] (by eliminating the
weak reverse Hölder inequality), and the proof that if w 2 A+

p(g) then w 2 A+
p�è(g) given

in [3] extends to arbitrary g without change.

2. Preliminary Results.
Throughout this paper all functions are assumed to be locally integrable and the weight

g is assumed to be positive. The letter C denotes a positive constant whose value may
change at each appearance, and for p Ù 1, p0 ≥ pÛ(p � 1) is the conjugate exponent of
p. Given a Borel set E and a function f , let jEj denote the Lebesgue measure of E and
f (E) ≥

R
E f dx.

We will need the following property of A+
1(g) weights proved by Mart́ın-Reyes, Pick

and de la Torre [7].
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LEMMA 2.1. If w 2 A+
1(g) then for every ã, 0 Ú ã Ú 1, there exists a å Ù 0 such

that, given t Ù 0 and an interval I ≥ [a, b] on which w(Ix) ½ tg(Ix) for all Ix ≥ [a, x],
x 2 I, then

g
�n

x 2 I : w(x) Ù åtg(x)
o�
Ù ãg(I).

We will also need the following covering lemma due to Jesus Aldaz; the proof is in
Bliedtner and Loeb [1].

LEMMA 2.2. If ñ is a finite Borel measure on R, and if I is an arbitrary collection
of non-degenerate intervals, then for each é Ù 0 there exists a finite subcollection, Ié, of
disjoint intervals in I such that

ñ
�[

I2I
I
�
� (2 + é)

X
Ik2Ié

ñ(Ik).

Finally, we will need the following decomposition of finite intervals which can be
thought of as a weighted Whitney decomposition. It was first used in a slightly different
form in [5]; it appeared in this notation (for g ≥ 1) in [3].

DEFINITION 2.3. Given a weight g and an interval I ≥ [a, b], form the “plus/minus”
decomposition of I with respect to g as follows: let x0 ≥ a, and for k Ù 0 let xk be
the point such that g([xk�1, b]) ≥ 2g([xk�1, xk]). Then for k ½ 1 define the intervals
Jk ≥ [xk�1, xk+1], J�k ≥ [xk�1, xk] and J+

k ≥ [xk, xk+1].
It is immediate from this definition that for all k, g(J�k ) ≥ 2g(J+

k ), I is the union of the
J�k ’s, and the Jk’s have finite overlap.

3. Proof of Theorem 1.1. We first prove that if w 2 A+
1(g) then there exist positive

constants å and C such that

(2) w
�n

x 2 I� : w(x) Ù tg(x)
o�
� Ctg

�n
x 2 I : w(x) Ù åtg(x)

o�
,

for all t Ù t0 ≥ 3w(I)Ûg(I), where I ≥ [a, b] is any interval and I� ≥ [a, c] is such
that g(I�) ≥ 2

3 g(I). To show this, fix I ≥ [a, b] and t Ù t0. Let O(t) ≥ fx 2 I� :
w(x) Ù tg(x)g. By the Lebesgue differentiation theorem, for almost every x 2 O(t), if
Ih ≥ [x, x + h], h Ù 0, then

w(x)
g(x)

≥ lim
h!0

1
g(Ih)

Z
Ih

�w
g

�
g dx.

Therefore, there exists h0 Ù 0 such that if 0 Ú h � h0 then

w(Ih)
g(Ih)

Ù t.
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On the other hand, fix h such that x + h ≥ b. Then

w(Ih)
g(Ih)

� 3
w(I)
g(I)

≥ t0 Ú t.

Since this ratio is continuous in h, by the intermediate value theorem there exists
h1 Ù h0 such that Ih1 ² I, w(Ih1 )Ûg(Ih1 ) ≥ t, and w(Ih)Ûg(Ih) ½ t for all 0 Ú h Ú h1.
Let Ix ≥ Ih1 . Then, up to a set of measure zero, O(t) is contained in the union of the Ix’s.
Therefore, by Lemma 2.2 there exists a finite, disjoint subcollection fIjg of the Ix’s such
that

w
�
O(t)

�
� w

�[
Ix

�
� 3

X
j

w(Ij).

By our construction of the Ix’s and by Lemma 2.1, there exist positive constantsã and
å such that

3
X

j
w(Ij) ≥ 3t

X
j

g(Ij)

�
3t
ã

X
j

g
�n

x 2 Ij : w(x) Ù åtg(x)
o�

� Ctg
�n

x 2 I : w(x) Ù åtg(x)
o�

.

Inequality (2) follows at once.
Now fix an interval I and form the plus/minus decomposition of I with respect to g

described in Definition 2.3. For each k, since g(J�k ) ≥ 2
3 g(Jk), inequality (2) holds for

the interval Jk ≥ J�k [ J+
k :

w
�n

x 2 J�k : w(x) Ù tg(x)
o�
� Ctg

�n
x 2 Jk : w(x) Ù åtg(x)

o�
,

for t Ù tk ≥ 3w(Jk)Ûg(Jk). Multiply this inequality by té�1 (é Ù 0 to be fixed below) and
integrate from tk to infinity. This givesZ 1

tk
té�1w

�n
x 2 J�k : w(x) Ù tg(x)

o�
dt � C

Z 1

0
tég
�n

x 2 Jk : w(x) Ù åtg(x)
o�

dt

�
D

1 + é

Z
Jk

�w
g

�1+é
g dx.

The constant D depends only on the constants from Lemma 2.1. By Fubini’s theorem,
the left-hand side is equal to

Z
fx2J�

k
:w(x)Ùtkg(x)g

Z w(x)Ûg(x)

tk
té�1 dt w(x) dx

≥
Z
fx2J�

k
:w(x)Ùtkg(x)g

w(x) Ð
1
é

" 
w(x)
g(x)

!é
� ték

#
dx

½
1
é

Z
J�

k

�w
g

�1+é
g dx �

ték
é

Z
J�

k

w dx.

Therefore, for all k we have the inequality

1
é

Z
J�k

�w
g

�1+é
g dx�

D
1 + é

Z
Jk

�w
g

�1+é
g dx �

ték
é

Z
J�k

w dx,

https://doi.org/10.4153/CMB-1997-020-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-020-1


THE CLASS A+
1

(g) 173

which in turn implies that

g(Jk)é
Z

J�
k

�w
g

�1+é
g dx �

éDg(Jk)é

1 + é

Z
Jk

�w
g

�1+é
g dx � 3é

 Z
Jk

w dx
!1+é

.

Now take the sum of these inequalities over all k Ù 0. Since the Jk’s have finite overlap,
the right-hand side becomes

3é
X

k

 Z
Jk

w dx
!1+é

� 3é
 X

k

Z
Jk

w dx
!1+é

� C
 Z

I
w dx

!1+é

.

Since Jk ≥ J�k [ J+
k , the left-hand side becomes

X
k

"�
1 �

éD
1 + é

�
g(Jk)é

Z
J�

k

�w
g

�1+é
g dx �

éD
1 + é

g(Jk)é
Z

J+
k

�w
g

�1+é
g dx

#
.

Since J+
k ≥ J�k+1, this will be a telescoping series in which all terms but the first cancel

one another if there exists é Ù 0 such that�
1 �

éD
1 + é

�
g(Jk+1)é ≥

éD
1 + é

g(Jk)é.

Since g(Jk) ≥ 2g(Jk+1), this is equivalent to

1
2é

�
1 �

éD
1 + é

�
≥

éD
1 + é

.

This is clearly true for some é Ù 0. Therefore, for this value of é the series is equal to�
1 �

éD
1 + é

�
g(J1)é

Z
J�1

�w
g

�1+é
g dx.

Since J�1 ≥ I� and g(J1) ≥ 3
4 g(I), it follows that w 2 RH+

s (g) for s ≥ 1 + é.
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