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Abstract. Asymptotic triangulations can be viewed as limits of triangulations
under the action of the mapping class group. In the case of the annulus, such
triangulations have been introduced in K. Baur and G. Dupont (Compactifying
exchange graphs: Annuli and tubes, Ann. Comb. 3(18) (2014), 797–839). We construct
an alternative method of obtaining these asymptotic triangulations using Coxeter
transformations. This provides us with an algebraic and combinatorial framework for
studying these limits via the associated quivers.

2010 Mathematics Subject Classification. 16G20, 20F55, 13F60.

1. Introduction. Asymptotic triangulations were introduced by Baur and Dupont
in [2], with respect to unpunctured marked surfaces. These asymptotic triangulations
can be mutated as usual triangulations, and they provide a natural way to
compactify the usual exchange graph of the triangulations of an annulus. Asymptotic
triangulations are defined by the presence of strictly asymptotic arcs. There are two
types of asymptotic arcs: Prüfer and adic. The names of these arcs come from the
Prüfer and adic modules. These are infinite-dimensional modules in the representation
theory of finite-dimensional algebras.

We can associate a quiver to a triangulation. This quiver can be mutated as defined
by Fomin and Zelevinsky [5]. Quivers can be associated to asymptotic triangulations
in the same way as for finite triangulations. However, these quivers may have loops
and two-cycles, and therefore cannot be mutated in the usual manner. This paper
provides a way to mutate these associated cyclic quivers using quivers with potentials,
and presents an alternative quiver model.

Asymptotic triangulations can be reached from finite triangulations through the
Dehn twist. The Dehn twist is a topological move that can be visualized in the
triangulation. In this paper, we introduce an equivalent, combinatorial move, namely
the Coxeter transformation, which can be visualized on the quiver.

Coxeter transformation are important in the study of representations of algebras,
quivers, partially ordered sets, and lattices. In this paper, we describe how Coxeter
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transformations act on triangulations, and quivers associated to triangulations. First,
we briefly introduce Coxeter transformations.

Let � be an oriented graph with vertex set �0, |�0| = n, and edge set �1. An arrow
α ∈ �1, α : i → j, starts at s(α) = i, and terminates at t(α) = j.

To �, we can associate its Euler form, a bilinear form on �n:

〈−,−〉 : �n × �n −→ � with 〈x, y〉 =
∑
i∈�0

xiyi −
∑
α∈�1

xs(α)yt(α).

We obtain the following symmetric bilinear form on �n:

(x, y) = 〈x, y〉 + 〈y, x〉.
If � has no loops, we can define the reflection map with respect to a vertex i:

σi : �n −→ �n with σi(x) = x − 2(x, ei)
(ei, ei)

ei,

where ei is the ith coordinate vector. The σi are automorphisms of �n of order two that
preserve the bilinear form (−,−).

A vertex i of � is called a source (resp. sink) if there is no arrow in � ending (resp.
starting) at i. If i is a source or a sink, the graph σi� is obtained from � by reversing
all arrows which start or end at i.

DEFINITION 1.1. An ordering i1, . . . , in of the vertices of � is called source-
admissible if for each p the vertex ip is a source for σip−1 . . . σi1�.

In this case, we have that

σinσin−1 . . . σi2σi1� = �.

Now if � is an acyclic graph, and i1, . . . , in is an admissible ordering of its vertices,
then the automorphism

c : �n −→ �n with c(x) = σin . . . σi1 (x)

is called a Coxeter transformation.
For oriented trees, there always exists an admissible ordering i. To every such

sequence, we assign a Coxeter transformation depending on the order of the vertices
in i:

c = σinσin−1 . . . σi2σi1 .

For every orientation of a given simply laced Dynkin diagram, every admissible
ordering gives rise to the same Coxeter transformation [7]. If the underlying graph
is not a tree, we need to consider the orientations of the arrows in the graph before we
can assign a Coxeter transformation to the graph.

In this paper, we will focus on triangulations of annuli. It is known that such
triangulations give rise to cluster algebras of extended Dynkin type Ãn. We introduce
triangulations and quivers in Section 2, and define asymptotic triangulations and
their associated quivers in Section 3. In Sections 4–6, we discuss sequences of flips in
triangulations that correspond to Coxeter transformations on the associated quiver,
and we describe what happens in the limit of these transformations. Appendix A gives
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γ

η

Figure 1. (Colour online) Two arcs γ , η of a marked surface S.

an alternative way to perform quiver mutation for quivers associated to asymptotic
triangulations by using potentials, and Appendix B introduces an alternative cluster
structure on asymptotic triangulations, and gives a geometric interpretation of these
structures.

2. Definitions and notation.

2.1. Triangulations. Let S be a connected, oriented Riemann surface with
boundary, and let M be a finite set of marked points in the closure of S. We assume that
M is non-empty, and there is at least one marked point on each boundary component.
We choose a counter-clockwise orientation of S and label the marked points on each
boundary component in a counter-clockwise order.

DEFINITION 2.1. An arc γ of a marked surface S is a curve whose endpoints are
marked points of S, and which does not intersect itself in the interior of S. The interior
of the arc is disjoint from the boundary of S and it does not cut out an unpunctured
monogon or digon.

We consider arcs in (S, M) up to isotopy. We write γ = [i, j] to denote the arc
with endpoints i, j ∈ M. Note that depending on the surface, there may be multiple
(non-isotopic) arcs with the same endpoints. See Figure 1 for an example of two arcs
in a marked surface.

DEFINITION 2.2. An ideal triangulation T of a surface S is a maximal collection of
pairwise non-intersecting arcs of S.

Throughout this paper, all triangulations will be ideal. The arcs of a triangulation
T cut S into (ideal) triangles. Triangles are three-sided regions, and self-folded triangles
(interior triangles that contain exactly two arcs) may occur.

DEFINITION 2.3. A flip μ of an arc in a triangulation is a move that replaces an
arc of any given quadrilateral with the other arc in the quadrilateral (cf. Figure 3). We
sometimes use μk to indicate a flip at the arc dk.

Given a marked surface (S, M), there may exist many different triangulations of
S (cf. Figure 2). By a theorem of [6], any two triangulations of a surface S are related
by a sequence of flips. For an example, see Figure 4.

For the rest of this paper, we will be considering triangulations of the annulus (a
region bounded by two concentric circles).

https://doi.org/10.1017/S0017089516000574 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000574


66 HANNAH VOGEL

1

2

3

4

5

6

1

2

3

4

5

6

Figure 2. Two triangulations of the hexagon P6.
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Figure 3. Flip of the arc γ .
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Figure 4. Sequence of flips.

DEFINITION 2.4. Cp,q denotes the annulus with p > 0 points marked on the outer
boundary component ∂, and q > 0 marked points on the inner boundary component
∂ ′. Without loss of generality, we assume that p ≥ q.

DEFINITION 2.5. An arc in Cp,q is called peripheral if its two endpoints lie on the
same boundary component. It is called bridging otherwise.

DEFINITION 2.6. Let T be a triangulation of Cp,q. A peripheral arc γ ∈ T is called
bounding (with respect to T) if the flip μγ of arc γ is a bridging arc.

Figure 5 shows an example of a triangulated annulus.
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0∂

0∂

1∂

1∂

Figure 5. (Colour online) A triangulation of C2,2. The bridging arcs are marked in
blue and the peripheral arc is marked in red.
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0∂ 1∂ 0∂

Figure 6. (Colour online) A triangulation of C2,2 represented as a cylinder.

It is usually more convenient to work with an opened-up picture of the annulus. We
can identify the annulus with a cylinder of height 1, where the bottom boundary of the
cylinder corresponds to the outer boundary of the annulus, and the upper boundary
of the cylinder corresponds to the inner boundary of the annulus. See Figure 6 for an
example of a triangulation of C2,2 drawn as a cylinder Cyl2,2.

The following result appears in [2, Lemma 1.7]. For convenience, we include a
proof below.

LEMMA 2.7. A triangulation T of the annulus contains at least two bridging arcs.

Proof. Let T be a triangulation of Cp,q. Then there is at least one point on
each boundary component which does not have a peripheral arc lying above it. The
triangulation T requires at least two bridging arcs connecting these two points. Two
examples are drawn below: The leftmost figure depicts a triangulation of the annulus
that has two bridging arcs [i∂ , j∂ ′ ], and the rightmost figure shows an example where
the blue arc [i∂ , j∂ ′ ] spirals once around the centre of the annulus, and is drawn as
leaving the frame on the right and entering back in on the left. Each frame contains
two bridging arcs.

i∂ i∂

j∂

i∂ i∂

j∂ j∂

�
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2∂ 1∂ 0∂ −1∂ −2∂ −3∂ −4∂

−3∂ −2∂ −1∂ 0∂ 1∂ 2∂ 3∂ 4∂ 5∂ 6∂

Figure 7. Universal cover of the annulus C3,2.
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Figure 8. (Colour online) Triangulation T and associated quiver QT .

2.2. Universal cover of the annulus. It is convenient to work with the universal
cover of the annulus. For an explicit construction, see [3].

We tile an infinite strip with rectangles (which we call frames), and in each rectangle
we mark q points at the top border, and p points at the bottom border, where the points
are placed equidistant from each other. We consider each frame to be a copy of Cp,q

drawn as a cylinder. We keep the orientation of the annulus, so the marked points are
labelled left to right on the lower boundary, and right to left on the upper boundary.
We choose an initial frame, label the bottom and top left-most points by 0∂ and 0∂ ′ ,
respectively. We label the rest of the points (increasing or decreasing by increments of
1) following the orientation of the boundaries, as illustrated in Figure 7.

2.3. Quivers. A quiver Q = (Q0, Q1) is an oriented graph. Q0 denotes the set of
vertices of Q, and Q1 denotes the set of arrows between vertices. The right-hand side
of Figure 8 gives an example of a quiver. Given a triangulation T of a surface S, we
can associate a quiver to T .

DEFINITION 2.8. The quiver QT associated to a triangulation T is obtained as
follows:

(1) The vertices of QT correspond to the arcs in T , with vertex i corresponding to the
arc di.

(2) There is an arrow from i to j in QT if di and dj in T bound a common triangle, and
dj is a clockwise rotation of di.

For two arcs to bound a common triangle, they must have a common endpoint. Let
di = [a, b] and dj = [b, c] be two arcs in a triangulation T of S. Then dj is a clockwise
rotation of di if the endpoint of di at the marked point a can be rotated clockwise to
the marked point c of S such that the new arc d ′

i = [b, c] is isotopic to dj. An example
of a quiver associated to a triangulation is illustrated in Figure 8.
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Recall that we can perform flips of arcs in a triangulation. On the level of quivers,
there exists a procedure called mutation of vertices.

DEFINITION 2.9. Let Q be a quiver without loops or two-cycles. The mutation of a
vertex k ∈ Q0 is defined as follows:

(1) For all paths of the form i
a−→ k

b−→ j, where a, b denote the multiplicity of the

arrows, add arrow i
ab−→ j to Q.

(2) Reverse all arrows incident with k.
(3) Cancel a maximal number of two cycles created in (1).

Mutation of a vertex k will be denoted by σk.

EXAMPLE 2.10. Let Q be the following quiver, and consider mutation at vertex 3.
The blue arrow 4 → 2 is the arrow added in step (1) of Definition 2.9, since there is a
path 4 → 3 → 2. We then reverse the arrows incident to the vertex 3 (Definition 2.9,
step (2)). We cancel out the newly arising two-cycle (Definition 2.9, step (3)):

1

2

3

4

(1)−→ 1

2

3

4

(2)−→

1

2

3

4

(3)−→ 1

2

3

4

σ3Q
=⇒

1

2

3

4

The flips of arcs in a triangulation T and mutations of the associated quiver QT

correspond to each other.

3. Asymptotic triangulations. In this section, we recall asymptotic triangulations,
which are defined by the presence of strictly asymptotic arcs, and were first defined
by Baur and Dupont in [2], where they view asymptotic triangulations as limits
of triangulations under the action of the mapping class group. We will first define
strictly asymptotic arcs, asymptotic triangulations, and flips of asymptotic arcs. To
any asymptotic triangulation, we can associate a quiver as in Definition 2.8. Such a
quiver may have loops and two-cycles, and hence classical quiver mutation cannot
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z

0∂0∂

Figure 9. (Colour online) Adic arc π0∂
in red, Prüfer arc π0∂′ in blue.

∂
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0∂ (q − 1)∂ · · · · · · 1∂ 0∂

0∂ 1∂ · · · · · · (p − 1)∂
0∂

α0∂

π0∂

Figure 10. Asymptotic arcs in Cp,q.

be applied. In Section 3.1, we introduce a modified version of quivers of asymptotic
triangulations in order to deal with this issue.

We denote by z a non-contractible closed curve in the annulus.

DEFINITION 3.1. Let m be a marked point of Cp,q. Let πm be the isotopy class of
the arc starting at m and spiraling positively around the annulus. We call πm the Prüfer
arc at m. Similarly, let αm be the isotopy class of the arc starting at m and spiraling
negatively around the annulus. We call αm the adic arc at m (cf. Figures 9 and 10).

We call πm and αm strictly asymptotic arcs. We define the set of asymptotic arcs to
be the union of the finite arcs and the strictly asymptotic arcs in a triangulation. Two
arcs of Cp,q are compatible if they do not intersect.
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iβ mβ jβ iβ mβ jβ

Figure 11. Flips of asymptotic arcs.

mβ iβ mβ mβ iβ mβ

Figure 12. Flips of asymptotic arcs with one strictly asymptotic in
the partial triangulation.

γ γ1 γ2

Figure 13. Bounding arcs γ, γ1, γ2.

DEFINITION 3.2. An asymptotic triangulation of the annulus is a maximal collection
of pairwise distinct and compatible asymptotic arcs, and contains strictly asymptotic
arcs.

Figure 9 shows two asymptotic arcs in the annulus, spiraling around z, and Figure
10 shows examples of asymptotic arcs drawn in the cylinder Cylp,q.

DEFINITION 3.3. Let β ∈ {∂, ∂ ′} be a boundary component. We say that an
asymptotic arc is based at β if it is either a peripheral arc with both endpoints on
β, or it is a strictly asymptotic arc with its unique endpoint on β. A partial asymptotic
triangulation Tβ is the collection of arcs of an asymptotic triangulation based on the
boundary component β.

The following result is from [2] (see paper for proof).

LEMMA 3.4. Let T be an asymptotic triangulation of Cp,q. Then T contains at least
two strictly asymptotic arcs, and there are two partial asymptotic triangulations T∂ , T∂ ′

based at ∂, ∂ ′, respectively, such that T = T∂ 	 T∂ ′ .

Flips of asymptotic arcs are defined in the same way as flips of finite arcs, except
we may consider quadrilaterals formed with strictly asymptotic arcs (cf. Figure 11).
When there is only one strictly asymptotic arc in the partial asymptotic triangulation
of a boundary component, based at a marked point m, then μπm = αm, and μαm = πm

(Figure 12). This is because the strictly asymptotic arc αm (πm) is the only arc compatible
with T \ {πm} (T \ {αm}).

We can extend Definition 2.6 to the context of asymptotic arcs.

DEFINITION 3.5. A bounding arc γ is a finite arc in an asymptotic triangulation
such that the flipped arc μγ is a strictly asymptotic arc.

Figure 13 shows three examples of bounding arcs. Bounding arcs are the finite
arcs “closest” to the asymptotic arcs in a triangulation. We call them bounding arcs
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because they separate all other non-bounding finite arcs from the strictly asymptotic
arcs in the asymptotic triangulation.

Now just as in the finite case, given an asymptotic triangulation T , we can associate
a quiver to T (cf. Definition 2.8).

3.1. Quivers of asymptotic triangulations. It is easy to see that the quiver
associated to an asymptotic triangulation always has two connected components. It
contains a quiver Q∂ corresponding to the triangulation based on the outer boundary
T∂ , and the quiver Q∂ ′ corresponding to the triangulation based on the inner boundary
T∂ ′ , and QT = Q∂ 	 Q∂ ′ .

Quiver mutation as in Definition 2.9 only works for loop-free quivers without two-
cycles. If we associate quivers to asymptotic triangulations as in Definition 2.8 then
loops and two-cycles may appear. In order to define quiver mutation in this set-up, we
need to modify the definition of a quiver associated to an asymptotic triangulation.

Recall that a frame of Tβ is one lift of Tβ in the universal cover. We start by
choosing a frame of Tβ for β ∈ {∂, ∂ ′} with two copies of a strictly asymptotic arc as
the end arcs of the frame. If we need to specify, we refer to this as a di frame, with di

the framing arc, and denote it by Tβ(di).

di di

In the frame of Tβ , each arc gives rise to a vertex in Qβ , and in particular, each
copy of di gives rise to separate vertex in Qβ . We denote the quiver corresponding to
Tβ(di) by Qβ(i).

ii

We call these two i vertices framing vertices. These framing vertices do not get
mutated during the quiver mutation. However, we don’t consider them to be frozen
because we allow arrows between framing vertices. If we want to mutate these vertices,
we need to switch from our quiver Qβ(i) to a new quiver Qβ (j), for dj another strictly
asymptotic arc in Tβ . The corresponding operation in our triangulation is switching
frames in the universal cover. We can go between a frame Tβ(di) and another frame
Tβ(dj) by shifting in one direction in our universal cover until we reach another strictly
asymptotic arc dj, which we now choose to be our framing arc. If there is no other
strictly asymptotic arc in Tβ , then we cannot switch frames, and therefore we cannot
mutate the vertex i ∈ Qβ(i). Recall from Figure 12 that when we only have one strictly
asymptotic arc γ , then a flip will only reverse the orientation of γ without affecting
the quiver. Since σγ Qβ = Qβ for γ the only strictly asymptotic arc in Tβ , we can use
this definition of quiver mutation for a framing quiver.

If there is another strictly asymptotic arc in the associated triangulation Tβ(di),
then we can mutate our frozen vertices by modifying our quiver Qβ(i). Let dj be another
strictly asymptotic arc in Tβ . Then we can move between Qβ(i) and Qβ(j) by identifying
the i vertices in Qβ(i), and then break the quiver at vertex j so that our quiver now has
two j vertices. All arrows remain the same.
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EXAMPLE 3.6. Let T be the following asymptotic triangulation of C2,2:

∂

∂

0∂ 1∂ 0∂

0∂ 1∂ 0∂

d1 d1d2

d3 d3d4

Then the quivers Q∂ ′ and Q∂ are

1 2 1

3 4 3

Q∂ :

Q∂ :

Now we can perform the classical quiver mutation as per Definition 2.9.

EXAMPLE 3.7.
Let T∂ be the following asymptotic triangulation based on boundary component

∂, and let Q∂ be the quiver associated to T∂ . Consider what happens when we flip the
arc d2 in T .

∂
0∂ 1∂ 2∂ 0∂

d1 d2 d3 d1

T∂ :

μ2−→
∂

0∂ 1∂ 2∂ 0∂

d1 d2
d3 d1

Then the corresponding quiver mutation is

1 2 3 1

σ2−→
1 2 3 1

And we have the quiver σ2Q. Note that if we were to identify the framing
vertices, we would have a two-cycle between 1 � 3 that would be cancelled using
the classical definition of quiver mutation. However, by drawing the quiver with two
framing vertices, we keep these arrows and our quiver is the quiver associated to
μ2T .

Now consider the flip μ3 and the corresponding quiver mutation σ3. We denote
by σ̃i the premutation at vertex i, that is, the process of applying the first two steps of
quiver mutation at vertex i (before cancelling two-cycles):
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∂
0∂ 1∂ 2∂ 0∂

d1 d2
d3 d1

μ3−→
∂

0∂ 1∂ 2∂ 0∂

d1

d2

d3 d1

1 2 3 1
σ̃3−→

1 2 3 1

σ3−→
1 2 3 1

Our resulting quiver is σ3σ2Q.
If we flip d ′

3 in T , we get the previous triangulation back. The quiver mutation
rules should also give us the previous quiver σ2Q back.

1 2 3 1

σ̃3−→

1 2 3 1

σ3−→
1 2 3 = 3 1

PROPOSITION 3.8. Flips of arcs in a frame Tβ(di) correspond to mutations of vertices
in the associated framing quiver Qβ(i).

Proof. Let Tβ(di) be a di-frame of Tβ , and let Qβ(i) be the quiver associated to
Tβ(di). Without loss of generality, we relabel the marked points of the frame from
0, . . . , p − 1, p,

0 p − 1 p

and give a name to the “point” where the two strictly asymptotic arcs meet.

p + 1

0 p − 1 p

Then this is equivalent to a triangulated polygon on p + 2 vertices with p − 1 arcs.
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z

0∂ 0∂
D+

z−→

z

0∂ 0∂

Figure 14. Dehn twist around closed curve z.

p + 1

p0

1 p − 1

. . .

di di

Now it is known that flips of arcs in a triangulation of an unpunctured polygon
correspond to mutation of vertices of the associated quiver. Therefore, any sequence of
flips of arcs in Tβ(di) does the same thing as the corresponding sequence of mutations
of vertices in the associated quiver Qβ(i). �

An alternative way to mutate quivers associated to asymptotic triangulations is by
using quivers with potentials (cf. Appendix A).

4. Dehn twist. In the previous section, we defined asymptotic triangulations.
In this section, we describe the process of going from a finite triangulation to an
asymptotic triangulation. This process constitutes applying the Dehn twist infinitely
many times to a triangulation. Applying the Dehn twist infinitely many times causes
some arcs of the triangulation to become identified, while breaking other arcs into
two parts so that we are left with two triangulations – one based at each boundary
component of our annulus.

Let z be a non-contractible closed curve in Cp,q. Consider the homeomorphism
of Cp,q obtained by cutting Cp,q along z and gluing it back after rotating the inner
boundary by 2π . This homeomorphism is called a Dehn twist. We have chosen a
counter-clockwise orientation of our surface, so when applying a positive Dehn twist,
we rotate the inner boundary ∂ ′ of the annulus clockwise by 2π (Figure 14). A negative
Dehn twist would be a rotation of ∂ ′ by 2π in the counter-clockwise direction.

The Dehn twist results in a lengthening or shortening of bridging arcs.

NOTATION 4.1. D+
z denotes the positive Dehn twist with respect to z, and D−

z denotes
the negative Dehn twist with respect to z.

Dn
z is the nth Dehn twist (the Dehn twist applied n times). We define

D+∞
z = lim

n→∞ Dn
z,
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and

D−∞
z = lim

n→−∞ Dn
z .

We use the construction of [2] to get to the limit of the Dehn twist. In particular,
we have the following cases. Recall that πi denotes the Prüfer arc based at marked
point i, and αi denotes the adic arc based at marked point i. Let γ = [i, j] be an arc in
a triangulation T of Cp,q. If i and j lie on different boundary components, then

D+∞
z · γ = {πi, πj}, (1)

and

D−∞
z · γ = {αi, αj}. (2)

If i and j lie on the same boundary component, then D±∞
z · γ = γ .

Given a triangulation T of the annulus Cp,q, we define

D+∞
z (T) =

⋃
γ∈T

D+∞
z · γ and D−∞

z (T) =
⋃
γ∈T

D−∞
z · γ.

Note that since T contains at least two bridging arcs (Proposition 2.7), D±∞
z (T) is

always asymptotic.

EXAMPLE 4.2. Consider the following triangulation T of Cp,q. Each application of
the Dehn twist lengthens the bridging arcs of T . After infinitely many Dehn twists,
the bridging arcs have infinite length and “break” into Prüfer arcs stemming from
both boundary components.

T Dz(T ) D2
z(T ) D+∞

z (T )

From now on, we will only consider the positive Dehn twist D+
z , but everything

can be defined analogously for D−
z .

Notice that in equations (1) and (2), our arc γ gives rise to two new arcs in the limit.
However, we do not end up with twice as many arcs in the asymptotic triangulation.
This is because all bridging arcs originating at the same boundary vertex become
identified in the limit: Consider two bridging arcs d[i,j], d[i,k] in T where i lies on ∂ and
j, k lie on ∂ ′ (possibly, j = k). Then D+

z · d[i,j] = {πi, πj} and D+
z · d[i,j] = {πi, πk}. So two

of the vertices arising from D+
z · d[i,j] and D+

z · d[i,k] in QT are one vertex πi in Q∂ . This is
illustrated in Figures 15 and 16. A finite triangulation of an annulus Cp,q has p + q arcs.
The number of asymptotic arcs of an asymptotic triangulation is also p + q, which we
can see by the decomposition T = T∂ 	 T∂ ′ where |T∂ | = p, |T∂ ′ | = q.

5. Coxeter transformations. The Dehn twist provides us with a topological way
of obtaining asymptotic triangulations. In this section, we describe a combinatorial
method of obtaining asymptotic triangulations. This Coxeter transformation is done
by applying a sequence of flips to the arcs of the triangulation. On the level of
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∂

∂

j∂

i∂

d[i∂ ,j
∂

]

∂

∂

πj
∂

πi∂

j∂

i∂

Figure 15. Bridging arc becoming two asymptotic arcs.

∂

∂

j∂

i∂

k∂

d[i∂ ,k
∂

] d[i∂ ,j
∂

]

∂

∂

πj
∂

πi∂

πk
∂

j∂

i∂

k∂

Figure 16. Two bridging arcs becoming one asymptotic arc.

quivers, we perform the sequence of corresponding mutations. The benefit of having a
combinatorial method to describe this process is that we can now study other variables
and systems associated to the surface. For example, we can look at root systems and
(cluster) variables associated to arcs of the triangulation, and we expect this to provide
a way to define cluster structures on asymptotic triangulations.

5.1. Quivers. Given a source i of a quiver Q, the quiver σiQ is obtained by
reversing all arrows in Q which start or end at i.

Recall from Definition 1.1, that an ordering i1, . . . , in of the vertices of Q is (source-)
admissible if for each p the vertex ip is a source in the quiver σip−1 . . . σi1 Q.

The following lemma is a well-known result from graph theory. For a proof, see
[7, Lemma 3.1.1].

LEMMA 5.1. There exists an admissible ordering of the vertices of Q if and only if
there are no oriented cycles in Q.

DEFINITION 5.2. If i = i1, . . . , in is an admissible ordering on a quiver Q, then the
Coxeter transformation of Q is

coxi(Q) = σin . . . σi1 Q.

Recall from Section 1 that coxi(Q) ∼= Q, and note that coxi(Q) is independent of
the chosen admissible ordering i. Thus, we will drop the index and just write cox(Q).
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∂

∂

1∂ 3∂ 2∂ 1∂

1∂ 2∂ 3∂ 1∂

∂

∂

1∂ 3∂ 2∂ 1∂

1∂ 2∂ 3∂ 1∂

∂

∂

1∂ 3∂ 2∂ 1∂

1∂ 2∂ 3∂ 1∂

Figure 17. (Colour online) Flipping the peripheral arcs of a triangulation T .

As described in Definition 2.8, we have quivers associated to triangulations. We
consider what happens to an associated triangulation when we mutate the arcs of the
triangulation and the vertices of the associated quiver concurrently.

Let T be a triangulation of Cp,q. Cycles in QT occur when there are peripheral
arcs in T . If there are any peripheral arcs in T , we can flip them until we obtain a
triangulation T̃ consisting only of bridging arcs. For an example, see Figure 17.

We call such a triangulation T̃ a bridging triangulation.

DEFINITION 5.3. Let T̃ be a bridging triangulation. Let QT̃ be the associated
quiver, and i = i1 . . . in an admissible ordering of the vertices of QT̃ . Then the Coxeter
transformation of T̃ is

coxi(T̃) = μdin
. . . μdi1

T̃ .

LEMMA 5.4. Let T̃ be a bridging triangulation and i = i1 . . . in an admissible ordering
of QT̃ . Then coxi(T̃) moves endpoints of all arcs by −1 on both ∂ and ∂ ′.

Proof. Let T̃ be a bridging triangulation, and i1 . . . in an admissible ordering of
the vertices of the associated quiver QT̃ . Then for every p = 2, . . . , n, vertex ip is a
source in the quiver σip−1 . . . σi1 Q, and the corresponding arc dip = [j∂ , k∂ ′ ] lies in such
a quadrilateral in T̃ :

k∂ (k − 1)∂

(j − 1)∂ j∂

dip

The flip corresponding to the mutation σip is μdip
. It replaces dip in μip−1 · · ·μi1 (T)

with the other diagonal d ′
ip = [(j − 1)∂ , (k − 1)∂ ′ ] in the quadrilateral. This holds for

all 1 ≤ p ≤ n. Thus, we have that the map coxi(T̃) sends [j∂ , k∂ ′ ] to [(j − 1)∂ , (k − 1)∂ ′ ].
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So the Coxeter transformation moves the endpoints of every arc in T̃ by −1 on each
boundary component. �

The following corollary is a direct consequence of Lemma 5.4.

COROLLARY 5.5. Let T̃ be a bridging triangulation with admissible ordering ı. Then
coxi(T̃) is independent of the choice of i.

We will thus simply write cox(T̃) for the Coxeter transformation of a bridging
triangulation T̃ .

EXAMPLE 5.6. Let T be the following triangulation of C3,3 drawn in black, with
labelled arcs. For convenience and clarity, we draw in a second copy of T in gray.

∂

∂

1∂ 0∂ −1∂ −2∂ −3∂ −4∂ −5∂ −6∂ −7∂

−1∂ 0∂ 1∂ 2∂ 3∂ 4∂ 5∂ 6∂ 7∂

d1 d2

d3 d4 d5

d6 d1 d2

d3 d4 d5

d6 d1

The associated quiver QT :

1

6 5

4

32

We use this quiver to obtain an admissible ordering of the vertices (and therefore
also of arcs). Going from sources to sinks, we have an ordering i = 2, 3, 1, 6, 4, 5. So
we will perform flips in the order μ5μ4μ6μ1μ3μ2T :

As shown in Lemma 5.4, this Coxeter transformation shifts the endpoints of each
arc in the triangulation by −1 on each boundary component. The same effect can
be achieved by rotating the outer boundary component clockwise by 2π

p , and the

inner boundary component counter-clockwise by 2π
q . In the example, d1 = [0∂ , 0∂ ′ ] →

[−1∂ ,−1∂ ′ ]. Applying the Coxeter transformation p times would result in moving the
endpoints on ∂ a full turn in the clockwise direction. Similarly, applying the Coxeter
transformation q times would result in moving the endpoints on ∂ ′ a full turn around
in the counter-clockwise direction.

In the example above, p = q = 3, so applying the Coxeter transformation two more
times (cox2(cox(T)) = cox3(T)) to Figure 18 would result in Figure 19.
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∂

∂

1∂ 0∂ −1∂ −2∂ −3∂ −4∂ −5∂ −6∂ −7∂

−1∂ 0∂ 1∂ 2∂ 3∂ 4∂ 5∂ 6∂ 7∂

d1

d2

d3

d4 d5

d6 d1

d2

d3

d4 d5

d6 d1

∂

∂

1∂ 0∂ −1∂ −2∂ −3∂ −4∂ −5∂ −6∂ −7∂

−1∂ 0∂ 1∂ 2∂ 3∂ 4∂ 5∂ 6∂ 7∂

d1

d2 d3

d4

d5

d6 d1

d2 d3

d4

d5

d6 d1

∂

∂

1∂ 0∂ −1∂ −2∂ −3∂ −4∂ −5∂ −6∂ −7∂

−1∂ 0∂ 1∂ 2∂ 3∂ 4∂ 5∂ 6∂ 7∂

d1

d2

d3

d4

d5

d6

d1

d2

d3

d4

d5

d6

d1

Figure 18. (Colour online) cox(T) = μ5μ4μ6μ1μ3μ2T .

We can extend the definition of the Coxeter transformation to arbitrary
triangulations of Cp,q by first flipping all peripheral arcs to reach a bridging
triangulation. Let T be a triangulation with k ≥ 1 peripheral arcs. Then there exists a
finite sequence of flips μα := μα1 , . . . , μαk , where αi is a peripheral arc, for every i, and
αp is a bounding arc in the triangulation μαp−1 · · · μα1 T . Note that this sequence is not
necessarily unique, since we may have more than one bounding arc in our triangulation
at any given time. Other sequences of flips (flipping non-bounding arcs, for example)
may also result in a bridging triangulation, but flipping only bounding arcs will give
us a minimal sequence of flips. However, our resulting triangulation is independent of
the order in which we choose to mutate the bounding arcs.
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∂

∂

1∂ 0∂ −1∂ −2∂ −3∂ −4∂ −5∂ −6∂ −7∂

−1∂ 0∂ 1∂ 2∂ 3∂ 4∂ 5∂ 6∂ 7∂

d1 d2

d3

d4

d5 d6

d1 d2

d3

d4

d5 d6

d1

∂

∂

1∂ 0∂ −1∂ −2∂ −3∂ −4∂ −5∂ −6∂ −7∂

−1∂ 0∂ 1∂ 2∂ 3∂ 4∂ 5∂ 6∂ 7∂

d1 d2

d3 d4

d5

d6

d1 d2

d3 d4

d5

d6

d1

∂

∂

1∂ 0∂ −1∂ −2∂ −3∂ −4∂ −5∂ −6∂ −7∂

−1∂ 0∂ 1∂ 2∂ 3∂ 4∂ 5∂ 6∂ 7∂

d1 d2

d3 d4 d5

d6 d1 d2

d3 d4 d5

d6 d1

Figure 18. (Colour online) Continued.

∂

∂

3∂ 2∂ 1∂ 0∂ −1∂ −2∂ −3∂ −4∂ −5∂ −6∂

−3∂ −2∂ −1∂ 0∂ 1∂ 2∂ 3∂ 4∂ 5∂ 6∂

d1 d2

d3 d4 d5

d6 d1

Figure 19. cox3(T).
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PROPOSITION 5.7. Using the same notation as above, the bridging triangulation T̃ =
μαT is uniquely determined (unique up to labelling of arcs).

Proof. Let T be a triangulation of Cp,q. We know by Lemma 2.7 that T contains
at least two bridging arcs. We claim that T̃ is determined by the bridging arcs in T .
Every bridging arc is an edge of two triangles in T where in both triangles one of the
other two edges is also a bridging arc. Without loss of generality, let di = [i∂ , k∂ ′ ] and
dj = [j∂ , k∂ ′ ] be two bridging arcs in T such that di and dj are two sides of a triangle
in T , and i < j. We consider the triangulation restricted to the polygon Pk where
the boundary of Pk is made up of the arcs of [i∂ , k∂ ′ ] and [j∂ , k∂ ′ ], and the boundary
segment [i∂ , j∂ ] of Cp,q. Then we can find a finite sequence of flips μαk such that after
performing this sequence, all arcs in Pk have an endpoint at k∂ ′ (note that if there
are no internal arcs in Pk, then we have the empty sequence). Such a sequence exists
because any two triangulations of a surface S are related through a sequence of flips.
Then we have a fan of bridging arcs [(i + 1)∂ , k∂ ′ ] · · · [(j − 1)∂ , k∂ ′ ] in our triangulation
μαk T stemming from k∂ ′ . We do this for every such triangle where two sides are
bridging arcs of T . Our bridging triangulation T̃ = μαT is then comprised of fans of
bridging arc originating at the endpoints where two bridging arcs of T meet.

∂

∂

k∂

i∂ j∂

di

dj

∂

∂

k∂

i∂ j∂

di

dj

�

DEFINITION 5.8. Let T be a triangulation with peripheral arcs, and {μαi}i∈I a finite
sequence of flips, αi peripheral, so that T̃ = μαT consists only of bridging arcs. Then
the Coxeter transformation of T is

cox(T) = (μα)−1 cox(μαT).

THEOREM 5.9. Let T be a triangulation of Cp,q.

(1) We have μD+
z (T) = D+

z (μT) for every arc flip μ. Let T̃ = μαT be a bridging
triangulation of Cp,q, and let m = lcm(p, q). Then there exist r, s ∈ � such that
pr = m and qs = m. We have the following commutativity relations:

(2) coxm(T̃) = Dr+s
z (T̃),

(3) Dr+s
z (T) = coxm(T).

Proof.

(1) Dehn twists do not change relative positions of arcs in a triangulation, so the arcs
involved in a quadrilateral still form a quadrilateral after applying the Dehn twist.
Thus, the following diagram commutes for every arc flip μ:
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Dz(T )

Dz(μT )

μT μDz(T )

(2) One iteration of cox(T̃) moves an arc [i∂ , j∂ ′ ] → [(i − 1)∂ , (j − 1)∂ ′ ]. Since pr =
m = qs, coxm(T̃) : [i∂ , j∂ ′ ] → [(i − m)∂ , (j − m)∂ ′ ] = [(i − pr)∂ , (j − qs)∂ ′ ]. So T̃ has
shifted endpoints of arcs r frames in the negative direction on boundary ∂, and
s frames in the negative direction on ∂ ′. In total, the triangulation now stretches
r + s frames, and thus coxm(T̃) = Dr+s

z (T̃).
(3) We will use parts (1) and (2) to prove (3).

Dr+s
z (T) = μ−1

α μαDr+s
z (T)

(1)= μ−1
α Dr+s

z (μαT)
(2)= μ−1

α coxm(μαT) = coxm(T).

�
We define Cox := coxm, where m = lcm(p, q). The endpoints of the arcs of a

triangulation T of Cp,q are invariant under Cox(T).
These commutativity relations provide us with a dictionary to go between the

topological and algebraic framework. This becomes useful when considering what
happens to the quivers (or root systems) under the Dehn twist, and to see what
happens to a triangulation when applying a Coxeter transformation. The Coxeter
transformation for triangulations of the annulus can be defined for planar surfaces with
several boundary components. This comes down to choose appropriate “boundaries”
∂1, ∂2.

5.2. Coxeter transformations of surfaces with several boundary components. Let
(S, M) be a marked planar surface with several boundary components, such that each
boundary component has at least one marked point, and let T̃ = T be a bridging
triangulation of S, i.e. a triangulation where the endpoints of each arc lie on different
boundary components. We choose a simple, non-contractible loop z in S. The interior
of the loop z is to the right of z when moving along z in the clockwise direction. The
exterior is then to the left of z. We use the following notation:
� Let D(z) = {di1 , . . . , did } denote the set of arcs of T that intersect z.
� Let V1(z) be the set of marked points in the interior of z such that every marked

point in V1 is the endpoint of at least one di ∈ D(z).
� Let V2(z) be the set of marked points in the exterior of z such that every marked

point in V2 is the endpoint of at least one di ∈ D(z).
Then there exists a minimal cycle c1 (not necessarily unique), formed by arcs in T

and boundary segments of S (arcs may appear more than once in the cycle), connecting
all m ∈ V1. We set ∂1 = c1. There also exists a minimal cycle c2 (not necessarily unique),
formed by arcs in T and boundary segments of S (arcs may appear more than once in
the cycle), connecting all m ∈ V2. We set ∂2 = c2.
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We can then consider T restricted to the region between ∂1 and ∂2. This is an
annulus triangulated by D(z), and we can apply the machinery from Section 5.1 to T .

EXAMPLE 5.10. Consider the surface S with four boundary components, drawn
below.

z

1∂

2∂

3∂1∂ 2∂

∂

1∂

∂

1∂

∂
d1

d2

d3 d4
d5

d6

d7

d8d9

d10

d11

d12

d13

We want to perform a Coxeter transformation with respect to (the closed curve) z
as chosen. We have

D(z) = {d1, d2, d3, d4, d8, d9, d10, d12, d13},
V1(z) = {1∂ ′ , 2∂ ′ , 1∂ ′′ },
V2(z) = {1∂ , 2∂ , 1∂ ′′′ , 3∂}.

We now find minimal cycles c1 and c2. The cycle c1 is marked in orange, and it
is 1∂ ′ → 2∂ ′ → 1∂ ′′ → 1∂ ′′ → 2∂ ′ → 1∂ ′ . Note that 1∂ ′′ is repeated twice in a row.
This is because the boundary component ∂ ′′ cannot be contracted to a single point.
This cycle now becomes our boundary ∂1. The cycle c2 is marked in green, and it is
1∂ → 2∂ → 1∂ ′′′ → 3∂ → 1∂ . This cycle now becomes our boundary ∂2. We can then
represent the part of the triangulation between c1 and c2 as a cylinder Cyl4,5:

∂1

∂2

1∂ 2∂ 1∂ 1∂ 2∂ 1∂

1∂ 2∂ 1∂ 3∂ 1∂

d1

d2

d3 d4

d12

d13

d8 d9

d10

d1

From here, we perform a Coxeter transformation in the usual manner. We consider
the associated quiver to find an admissible ordering, and then perform a sequence of
flips.

We can now reach the asymptotic triangulations using limits of Coxeter
transformations. This is discussed in Section 6.

6. Limits. In this section, we aim to show that the Coxeter transformation and
the Dehn twist behave the same way in the limit. This allows us to use whichever
process of obtaining an asymptotic triangulation that is the most useful in our setting.

Recall from Definition 5.8 that if T is a triangulation with peripheral arcs, and
{μαi}i∈I is a finite sequence of flips with αi peripheral, so that T̃ = μαT consists only
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of bridging arcs, then the Coxeter transformation of T is

cox(T) = (μα)−1 cox(μαT).

Using the commutativity relations from Theorem 5.9, we have that Cox(T̃) =
coxm(T̃) = Dr+s

z (T̃) for r, s ∈ � where pr = qs = m = lcm(p, q). We have the following
proposition.

PROPOSITION 6.1. Let T be a bridging triangulation of Cp,q. Then

lim
n→∞ Coxn(T) = D+∞

z (T).

The proof follows from the definitions of Cox and D+∞
z , cf. Section 4.

If T is a bridging triangulation, we define

Cox+∞(T) = lim
n→∞ Coxn(T).

By Proposition 6.1, Cox+∞(T) is an asymptotic triangulation of Cp,q.

6.1. Quivers. As described in Section 1, a Coxeter transformation on a quiver is
a sequence of reflections from sources to sinks. We have already defined the limits of
the Dehn twist and Coxeter transformation on a bridging triangulation T . Now we
want to see what happens to the quiver QT under these transformations.

The mapping class group of a surface S is the group of orientation-preserving
homeomorphisms S → S whose restriction to ∂S is the identity, up to isotopy among
homeomorphisms of the same kind. The mapping class group of the annulus is
MCG(Cp,q) � 〈Dz〉 � �. It is well known that a quiver is fixed under the action of the
mapping class group on Cp,q. However, the quiver behaves differently in the limit. We
saw that the quiver QD+∞

z (T) becomes disconnected. We now give an algorithm to obtain
the quiver QCox+∞(T) directly from QT without passing through the triangulations
involved.

Let Q = QT be a quiver associated to a bridging triangulation T . Take two copies
of Q, draw them as planar graphs (as un-oriented cycles) with the vertices of each
quiver labelled in a clockwise manner. Consider a maximal counter-clockwise path
P in Q. For there to be such a path P = i → · · · → j in Q, the corresponding arcs
di, . . . , dj ∈ T must share an endpoint on ∂. In the limit Cox+∞(T), the arcs involved
collapse to a single Prüfer arc based on ∂ (cf. Figure 20). We also consider maximal
clockwise paths in QT .

Algorithm 1 Constructing Q∂ , Q∂ ′ from Q.
1: Replace every maximal counter-clockwise path P = i → · · · → j in Q by a single

vertex wi,j. Denote the resulting quiver by Q∂ .
2: Replace every maximal clockwise path P = r → · · · → s in Q by a single vertex

ur,s. Denote the resulting quiver by Q∂ ′ .

By construction, Q∂ only has arrows forming a clockwise cycle, and Q∂ ′ only
has arrows forming a counter-clockwise cycle. Note that because the quiver does not
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∂

∂

di

dj

k∂

ds
dr

t∂

∂

∂

πt
∂

πk∂

t∂

k∂

Figure 20. Coxeter transformation on a quiver.

differentiate between Prüfer and adic arcs (see Figure 21 for an illustration), we can
get the quiver for all asymptotic triangulations via this algorithm.

PROPOSITION 6.2. Let T be a bridging triangulation of Cp,q, QT its associated quiver,
and Q∂ , Q∂ ′ as constructed above. Then

QD+∞
z (T)

∼= Q∂ 	 Q∂ ′ .

Proof. The quivers Q∂ and Q∂ ′ are constructed as above from a bridging
triangulation of Cp,q. Thus, the quiver Q∂ will be a clockwise cycle on p vertices
and the quiver Q∂ ′ will be a counter-clockwise cycle on q vertices. Since T is a bridging
triangulation, D+∞

z (T) will have p Prüfer arcs stemming from the outer boundary ∂,
and q Prüfer arcs stemming from the inner boundary ∂ ′. So QD+∞

z (T) has two connected
components, one of which is a clockwise cycle on p vertices, and one component is a
counter-clockwise cycle on q vertices. This is exactly Q∂ and Q∂ ′ , and so we have the
isomorphism QD+∞

z (T)
∼= Q∂ 	 Q∂ ′ . �

COROLLARY 6.3. Let T be a triangulation, and QT its associated quiver. Then
QD+∞(T)

∼= QD−∞(T).

Proof. Consider the two triangulations D+∞
z (T) and D−∞

z (T) obtained from a
triangulation T . All the strictly asymptotic arcs of D+∞(T) are Prüfer arcs, and all the
strictly asymptotic arcs of D−∞(T) are adic arcs. Now consider the associated quivers.
Recall that every arc in a triangulation corresponds to a vertex in the quiver, and there
is an arrow between two vertices i → j in the quiver if the corresponding arc di can
be rotated clockwise to become an arc isotopic to the corresponding arc dj. Strictly
asymptotic arcs have one endpoint a marked point on the boundary of Cp,q, and the
other endpoint spirals infinitely around z. Thus, for a strictly asymptotic arc dj to be a
clockwise rotation of di, the endpoint of di that is rotated is the one on the boundary.
All arrows will go from left to right between strictly asymptotic arcs on the upper
boundary, and all arrows between strictly asymptotic arcs will go from right to left on
the lower boundary (cf. Figure 21), independent of whether the arcs spiral positively
or negatively around z. Peripheral arcs are unaffected by the Dehn twist, and therefore
the internal triangles of T stay fixed, and the cycles in the quivers corresponding to the
internal triangles will be the same for both QD+∞

z
(T) and QD−∞

z (T). �
To see an example of how these paths of arcs contract in the triangulation, see

Figure 20. The following example shows how we contract the paths in Q to get two
quivers Q∂ , Q∂ ′ .
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D+∞
z (T ) D−∞

z (T )

Figure 21. (Colour online) QD+∞(T) and QD−∞(T).

EXAMPLE 6.4. Consider a frame of the following (bridging) triangulation T and
two copies of the associated quiver QT :

∂

∂

0∂ 2∂ 1∂ 0∂

0∂ 1∂ 2∂ 0∂

d1 d2

d3

d4

d5 d6

d1

Q1 :

1

6 5

4

32
Q2 :

1

6 5

4

32

As described, we consider all maximal clockwise paths in Q1, and all maximal
counter-clockwise paths in Q2 and contract them to a single vertex:

Q1 :

1

6 5

4

32
Q2 :

1

6 5

4

32

Q∂ :

0∂ = 1

u4,6

u2,3 Q∂ :

w2,6

5 = 1∂

w4,3
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We can check that this is indeed the quiver of the asymptotic triangulation D+∞
z (T).

∂

∂

0∂ 2∂ 1∂ 0∂

0∂ 1∂ 2∂ 0∂

π0∂
π1∂

π2∂
π0∂

π0
∂

π2
∂

π1
∂

π0
∂

THEOREM 6.5. Let T be a bridging triangulation, and QT the associated quiver. Then

QCox+∞(T)
∼= QD+∞

z (T)
∼= QD−∞

z (T).

Proof. We have that Cox+∞(T) = D+∞
z (T) as triangulations, and thus QCox+∞(T)

∼=
QD+∞

z (T). The second isomorphism is the result from Corollary 6.1. �
We have described an algorithm for obtaining a quiver from a bridging asymptotic

triangulation. A natural question to ask is whether the algorithm can be used on a
quiver when we don’t know the associated triangulation. To do this, we need to work
with the shape Qb, where Qb is the full subquiver obtained by removing arrows that
belong only to internal triangles of QT . We have the alternate algorithm as follows:

Algorithm 2 Constructing Q∂ , Q∂ ′ from Qb.
1: Draw two copies Q1, Q2 of QT .
2: Do 1 & 2 as in Algorithm 1 to paths in Qb ∩ Q1 and Qb ∩ Q2, respectively.
3: Draw result, killing all subgraphs that share an edge with the contracted path P in

Step 2 above.

EXAMPLE 6.6. Consider the quiver QT and the full subquiver Qb of QT .

QT :

2

1

3

4

5

6

7

Qb :

2

1

3

4

5

We first draw two copies Q1 and Q2 of QT :

Q1 :

2

1

3

4

5

6

7

Q2 :

2

1

3

4

5

6

7
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Then we apply Algorithm 1 to Q1 ∩ Qb and Q2 ∩ Qb and kill subgraphs:

Q1 :

2

1

3

4

5

6

7

Q2

2

1

3

4

5

6

7

The resulting quivers are

Q∂ :

u1,4

u3,2

6

Q∂ :

w1,2

7

5

w3,4

An example of a triangulation associated to this quiver is

∂

∂

0∂ 2∂ 1∂ 0∂

0∂ 1∂ 2∂ 3∂ 0∂

d1

d2

d3

d7
d4

d6

d5

d1

It is possible to distinguish the vertices that correspond to bridging (resp. strictly
asymptotic) arcs in the associated triangulation from those that correspond to
peripheral arcs. Vertices that correspond to bridging (strictly asymptotic) arcs form an
unoriented (clockwise-oriented) cycle C in the quiver. This cycle actually gives us the
full subquiver Qb. Vertices that correspond to peripheral arcs lie in counter-clockwise
oriented cycles in the quiver, and these counter-clockwise oriented cycle shares an
edge with C, that is, an edge between two vertices corresponding to bridging (strictly
asymptotic) arcs. Bastian, in [1], denotes these vertices by zα, and describes the quivers
Qα that branch off from C.

Using the full subquiver allows us to construct an “asymptotic quiver” without
knowing the triangulation. There are restrictions on the types of quivers for which
these algorithms work. The quivers need to be associated to a triangulation of a
surface described in this paper.

A. Quivers with potentials. In this appendix, we describe an alternate way of
performing quiver mutation by using quivers with potentials. The authors Derksen,
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Weymann, and Zelevinsky developed a mutation theory of quivers in [4] using
potentials, which lifts quiver mutation from the combinatorial level to the algebraic
level. This provides a representation-theoretic interpretation of quiver mutation and
ultimately leads to the notion of mutation of representations of quivers with potentials.
For the convenience of the reader, we will recall the necessary background needed (cf.
[4]). The definitions and notation in this appendix are taken from [8] and [4].

Let Q be a quiver. For each vertex i ∈ Q0, we have the path of length 0, denoted
by ei. Al denotes the �-vector space with basis the set of paths of length l ≥ 0. We use
the notation R = A0 and A = A1. Note that R is the vector space with basis the set of
length-0 paths (dim R = |Q0|), and A is the vector space with basis the set of arrows
of Q. If we define eiej = δijei, then R becomes a commutative �-algebra. If we define
eiα = δi,h(α)α and αei = δi,t(α)α, then Al>0 becomes an R-R-bimodule for every l > 0.

DEFINITION A.1. The path algebra of Q is the �-vector space

R〈Q〉 =
∞⊕

l=0

Al.

The path algebra can also be defined as the (graded) tensor algebra, and for each
i, j ∈ Q0, the component R〈Q〉i,j = eiR〈Q〉ej is called the space of paths from j to i.

DEFINITION A.2. The complete path algebra of Q is the �-vector space R〈〈Q〉〉
consisting of all possibly infinite linear combinations of paths in Q, that is

R〈〈Q〉〉 =
∞∏

l=0

Al.

R〈Q〉 has multiplication induced by concatenation of paths and this multiplication
extends naturally to R〈〈Q〉〉. R〈Q〉 is a dense subalgebra of R〈〈Q〉〉 under the m-adic
topology for m the two-sided ideal of R〈〈Q〉〉 generated by the arrows of Q. The
fundamental system of open neighbourhoods of this topology around 0 is given by the
powers of the ideal m.

A.1 Quiver mutation. For a quiver Q, an l-cycle in Q is a path α1α2 . . . αl with
l > 0 such that h(α1) = t(αl). If α1α2 . . . αl is an l-cycle in Q, then so is αiαi+1 . . . αi−2αi−1

for i = 2, . . . , l (reducing indices mod l). We say that αiαi+1 . . . αi−1 can be obtained
from α1α2 . . . αl by rotation.

DEFINITION A.3. Let Q be a quiver. An element W of R〈〈Q〉〉 is called a potential if it
is a possibly infinite linear combination of cycles of Q such that no two cycles appearing
in W with non-zero coefficients can be obtained from each other by rotation. If W is
a potential on Q, we say that the pair (Q, W ) is a quiver with potential, or a QP.

DEFINITION A.4. Let Q, Q′ be quivers with the same vertex set Q0 = Q′
0.

(1) Two potentials W and W ′ on Q are cyclically equivalent if W − W ′ lies in the
closure of the vector subspace of R〈〈Q〉〉 spanned by all the elements of the form
α1 . . . αl − α2 . . . αlα1 with α1 . . . αl a cycle of positive length.
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(2) We say that two QPs (Q, W ) and (Q′, W ′) are right-equivalent if there exists a
�-algebra isomorphism φ : R〈〈Q〉〉 → R〈〈Q′〉〉 satisfying φ(ei) = ei ∀i ∈ Q0 = Q′

0
and such that φ(W ) is cyclically equivalent to W ′.

(3) For each arrow α ∈ Q1 and each cycle α1 . . . αl in Q, we define the cyclic derivative

∂α(α1 . . . αl) =
l∑

k=1

δα,αkαk+1 · · · αl α1 · · ·αk−1

and extend ∂α by linearity and continuity so that ∂α(W ) is defined for every potential
W .

(4) The Jacobian ideal J(W ) is the topological closure of the two-sided ideal of R〈〈Q〉〉
generated by {∂α(W )|α ∈ Q1}, and the Jacobian algebra P(Q, W ) is the quotient
algebra R〈〈Q〉〉/J(W ).

(5) A QP is trivial if W ∈ A2 and {∂α(W )|α ∈ Q1} spans A as a �-vector space.
(6) A QP is reduced if the degree-2 component of W is 0, that is, if the expression of

W involves no two-cycles.
(7) The direct sum Q ⊕ Q′ is the quiver whose vertex set is Q0 = Q′

0 and whose arrow
set is the disjoint union Q1 	 Q′

1.
(8) The direct sum of two QPs (Q, W ) and (Q′, W ′) is the QP (Q, W ) ⊕ (Q′, W ′) =

(Q ⊕ Q′, W + W ′).

The following proposition then follows.

PROPOSITION A.5. If ϕ : R〈〈Q〉〉 → R〈〈Q′〉〉 is a right-equivalence between (Q, W )
and (Q′, S′), then ϕ sends J(W ) onto J(W ′) and therefore induces an algebra isomorphism
P(Q, W ) → P(Q′, W ′).

THEOREM A.6 (Splitting theorem [4]). For every QP (Q, W ), there exist a trivial
QP (Qtriv, Wtriv) and a reduced QP (Qred , Wred ) such that (Q, W ) is right-equivalent
to the direct sum (Qtriv, Wtriv) ⊕ (Qred , Wred ). The right-equivalence class of each of the
QPs (Qtriv, Wtriv) and (Qred , Wred ) is determined by the right-equivalence class of (Q, W ).

We will now discuss mutations of quivers with potentials. Let (Q, W ) be a QP on
the vertex set Q0, and let i ∈ Q0. We have no restrictions on Q, so it is possible that Q
has a loop or two-cycle incident to i. We can replace W with a cyclically equivalent
potential, where none of the cyclic paths of length greater than 1 in the expression of
W begin at i. We can now define the potential [W ] on Q as the potential obtained from
W by replacing every length-2 path αβ passing through i with the arrow [αβ]. We also
define i(Q) = ∑

β∗α∗[αβ], where the sum runs over all length-2 paths αβ through i.
Now we set μ̃i(W ) = [W ] + i(Q), which is a potential on μ̃i(Q), the quiver obtained
by applying the first two steps of quiver mutation as in Definition 2.9.

DEFINITION A.7. The mutation μi(Q, W ) of (Q, W ) with respect to i is defined as
the reduced part of the QP μ̃i(Q, W ) = (μ̃i(Q), μ̃i(W )).

It’s important to note that the underlying quiver of a mutated QP is not necessarily
two-acyclic. The potential determines whether or not we keep two-cycles.

A.2 Potential of a triangulation. If we have two triangulations related by a flip,
we know that the associated quivers are related by the corresponding quiver mutation.
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We want to lift this to the level of QPs, and see if the associated QPs are also related
by a QP-mutation.

Let T be a triangulation of a marked surface (S, M), possible with punctures.
Then the associated quiver has two types of oriented cycles: cycles arising from
internal triangles of T , and simple cycles (cycles without repeated arrows) surrounding
punctures. As before, we only consider cyclic equivalence classes of cycles.

In this generality (i.e. allowing punctures), Labardini–Fragoso [8] provides the
following definition of a potential associated to a triangulation.

DEFINITION A.8. Let T be a triangulation of a marked surface (S, M). The potential
WT associated to T is the potential on QT that results from adding all the three-cycles
that arise from internal triangles of T , and all the simple cycles that surround the
punctures of (S, M).

In our situation with asymptotic triangulations of the annulus, we have no
punctures, so the definition of a potential looks as follows:

WT = � internal 3-cycles.

Note that cycles between strictly asymptotic arcs do not appear in the potential.

EXAMPLE A.9. Let T be the following triangulation of the punctured disk D4:

Then the potential WT is WT = αγβ + αβρ.

THEOREM A.10 ([8]). Let T and T ′ be two triangulations of a marked surface (S, M).
If T ′ is obtained from T by flipping an arc di, then the QPs (QT ′ , WT ′ ) is obtained from
the QP (QT , WT ) via the QP mutation μi.

A.3 QPs of asymptotic triangulations. Let T = T∂ 	 T∂ ′ be an asymptotic
triangulation. We now look at QPs and QP-mutation of the associated quiver
QT = Q∂ 	 Q∂ ′ .

Consider a partial asymptotic triangulation Tβ of Cp,q and its associated quiver
Qβ . Following Definition A.8, the potential Wβ = WTβ

associated to Tβ results from
adding all the three-cycles in the quiver Qβ .

As stated earlier, the two-cyclicity of a quiver relies heavily on the potential. When
we work with the triangulation and quiver side-by-side, it’s easy to determine the
potential. However, if we’re given a quiver QT , we want to be able to perform QP
mutation without seeing what happens in T . We can consider two types of quivers that
we associate to T . The first is as described in Section 3.1 with framing vertices. There
we can start with any framing quiver associated to an asymptotic triangulation, read
off the potential directly from the quiver, and perform the QP mutation.
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Here we describe how to define mutation on the “classical” quiver (as in Definition
2.8) via QPs. Let T = T∂ 	 T∂ ′ be an asymptotic triangulation. As mentioned earlier,
the quiver QT = Q∂ 	 Q∂ ′ may contain two-cycles or loops. Furthermore, both Q∂

and Q∂ ′ contain a negatively oriented cycle around the meridian z. In particular, if all
arcs are strictly asymptotic, the quiver Q∂ and Q∂ ′ are both simple cycles α1 . . . αp and
αp+1 . . . αp+q. This is the type of quiver where framing vertices are identified. In this
quiver model, we need to start with a strictly asymptotic triangulation (all arcs of the
triangulation Tβ are strictly asymptotic), and because we have no internal triangles in
Tβ our potential Wβ = 0. We make this specification because our quiver may show
three-cycles that arise from going around the meridian, and we do not want this to be
included in our potential. By starting with a potential Wβ = 0, we can now work with
quiver and QP mutation, and we will be able to keep certain loops and two-cycles in
Qβ , while eliminating others.

EXAMPLE A.11. Consider the potential W = 0 on the quiver

If we perform the premutation μ̃2 on (Q, W ), we get (Q̃, W̃ ) where Q̃ is the arrow
span of the quiver

and W̃ = c∗b∗[bc]. Then μ̃2(Q, W ) = μ2(Q̃, W̃ ) = (Q′, W ′). Now if we want to mutate
at vertex 3, we perform the same steps. First, we have the premutation μ̃3 on (Q′, W ′):

and our potential is

W̃ ′ = c∗[b∗[bc]] + [bc]∗b[b∗[bc]] + a∗[bc]∗[[bc]a] = (c∗ + [bc]∗b)[b∗[bc]] + a∗[bc]∗[[bc]a].

Now we can check that (c∗ + [bc]∗b) is right-equivalent to an arrow D : 2′ → 1, which
gives the potential

W̃ ′ = D[b∗[bc]] + a∗[bc]∗[[bc]a],

and our Jacobian algebra is P(Q̃′, W̃ ′) = R〈〈Q̃′〉〉/J(W̃ ′), where our Jacobian ideal
J(W̃ ′) gives us the relations D = 0 and [b∗[bc]] = 0, along with other relations. Thus,
our mutated potential μ3(Q̃′, W̃ ′) = (Q′′, W ′′) where Q′′ is the arrow span of the quiver:
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B. Cluster structure on asymptotic triangulations.

The aim of this short addendum is to introduce an alternative cluster structure on
asymptotic triangulations and provide a geometric interpretation.

B.1 Double cover and double quiver. As it is shown in Section 3, the most natural
way to build a quiver from an asymptotic triangulation (i.e. adjacency quiver) leads to
loops and two-cycles. To avoid this, consider a double cover C̃p,0 of the annulus Cp,0.
An asymptotic triangulation T on Cp,0 induces an asymptotic triangulation T̃ on C̃p,0,
and the signed adjacency quiver Q(T̃) of T̃ is free of loops and two-cycles, so one can
mutate it applying usual rules.

A flip of an arc di ∈ T lifts as a composition of two commuting flips of arcs d1
i

and d2
i in T̃ , so, it has the same effect as a composition of two commuting mutations

of Q(T̃).

B.2 Variables. To the arcs d1, . . . dn of T , we assign independent variables
x1, . . . , xn. Lifting this to the double cover results in pairs of identical variables x1

i , x2
i .

To mutate the variables, we use the usual exchange relations provided by the quiver
Q(T̃). Since the initial quiver Q(T̃) is symmetric (with symmetrically assigned initial
variables) and each mutation is a composition of the symmetric commuting mutations,
the symmetric structure on Q(T̃) is preserved under mutations. We can also consider
an exchange graph � of (Q(T̃), {x1, . . . , xn}) consisting of seeds obtained by composite
mutations preserving the initial symmetry.

B.3 Geometric interpretation of variables. Consider the annulus Cp,q as a surface
with hyperbolic metric. While applying Dehn twists in a closed curve z, we can
renormalize the metric on D∞

z (Cp,q) so that the limit of the length of z is equal to
0. Then we can consider D∞

z (Cp,q) as a disjoint union of two hyperbolic punctured
discs Cp and Cq. Hence, we are able to measure lambda lengths of the curves of
the asymptotic triangulation (including strictly asymptotic arcs). Combinatorially,
z becomes a puncture, Prüfer arcs are tagged plane, adic arcs are tagged notched. See
Figure 22 for an example of an exchange graph and corresponding lambda lengths on
C2 obtained in this way.

Now, assign to x1, . . . , xn the values equal to the lambda lengths of the lifts of
the arcs d1, . . . , dn on the double cover of D∞

z (Cp,q). Then the cluster variables in the
exchange graph � will model the lambda lengths of arcs of asymptotic triangulations
of D∞

z (Cp,q). More precisely, assuming (without loss of generality) that the initial
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Figure 22. (Colour online) Lambda lengths of the curves on a connected component
of D∞

z (C2,q).
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a

a

a

b

b

b

b
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b

b
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b

b
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(x1, x2) = (x, y) (x1, x2) = (2y
x , y)

(x1, x2) = (2y
x , 2(a+b)

x )

(x1, x2) = ( (a+b)2

y , 2(a+b)
x )(x1, x2) = ( (a+b)2

y , x(a+b)
y )

(x1, x2) = (x, x(a+b)
y )

Figure 23. (Colour online) Exchange graph � and cluster variables for a connected
component of D̃∞

z (C2,q).

asymptotic triangulation T contained no adic arcs, the lambda lengths of finite arcs
and Prüfer arcs will be exactly equal to the values of the corresponding cluster variables,
and the lambda lengths of the adic arcs will be halves of the corresponding variables
(this is caused by the fact that the length of the corresponding horosphere around the
limit of z is doubled in the cover D̃∞

z (Cp,q) of D∞
z (Cp,q)). See Figure 23 for an example.

B.4 From annulus to general hyperbolic surface. The same procedure as described
above for an annulus can be done for any triangulated hyperbolic surface S: One can
choose any simple closed curve z ⊂ S and apply a sequence of Dehn twists in z, so that
z becomes shorter and shorter in a renormalized metric and turns into a cusp in the
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limit. A triangulation T of S turns into an asymptotic triangulation of D∞
z (S). If in

addition there exists a double cover of S such that the curve z is covered by one (twice
longer) curve, then we can build the quiver of the asymptotic triangulation and realize
corresponding variables as lambda lengths.
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