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Abstract

We study the problem of pseudostate and static output feedback stabilization for singular
fractional-order linear systems with fractional order α when 0 < α < 1. All the results
are given by linear matrix inequalities. First, a new sufficient and necessary condition
for the admissibility of singular fractional-order systems is presented. Then based on
the admissible result, not only are sufficient conditions for designing pseudostate and
static output feedback controllers obtained, but also sufficient and necessary conditions
are presented by using different methods that guarantee the admissibility of the closed-
loop systems. Finally, the effectiveness of the proposed approach is demonstrated by
numerical simulations and a real-world example.
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1. Introduction

Although the study of fractional-order calculus (FOC) dates back to 300 years ago,
it has attracted very little attention in the fields of engineering and technology for a
long time. With the fast development of modern science and technology, especially of
computers, it is now recognized that the theory of FOC provides a new theoretical basis
and mathematical tool for the development of many subjects [2, 6, 13]. The nature
of fractional-order operators is heredity; they are particularly suitable for describing
physical processes with memory characteristics and some historical dependencies.
In practical systems, many research objects such as viscoelastic systems, electrode
systems, Isabel hurricane images and so on [6, 13], have these characteristics.
The most typical example is that of heat conduction through a wall or a sphere
which has been shown analytically to be of a fractional order of 0.5 [2]. Recently,
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applications of FOC in the field of control have attracted the increasing interest
of many researchers [15, 17]. There have been many important results involving
fractional-order systems (FOSs), such as system modelling [16], controllability and
observability [4], stability analysis [3, 9] and controller synthesis [5, 10, 19, 25].

Singular systems [22], also known as differential-algebraic systems, semistate
systems, descriptor systems, or generalized state-space systems, have been widely
studied in the past few years. Practically, many physical systems can be better
described by singular systems than by regular systems, for example power grid
systems, the Leontief economic model and the Hopfield neural network model. Various
stability and robust stabilization problems for integer-order singular systems [21, 27]
have been investigated. In fact, if each circuit contains at least one mesh consisting
of a branch with only an ideal supercapacitor and voltage source or at least one
node with a supercoil, then it is a fractional singular system [8]. Therefore, it is
of significant interest to study singular fractional-order systems (SFOSs). Recently,
many authors have presented a series of results for stability and stabilization of SFOSs
with order between zero and two by linear matrix inequality (LMI) methods [14, 23].
As is well known, admissibility analysis is an important property in singular control
theory when stability analysis is referred to, but only a few papers give the relevant
results for SFOSs. First the admissibility conditions [20] of SFOSs with an order
0 < α < 2 were proposed, and then Yu et al. [24] and Zhang et al. [26] discussed
some admissibility and stabilization problems of SFOSs. However, these admissibility
criteria are complicated, and they are not convenient for controller design.

In addition, the stability domain of FOSs is different when the order belongs to
the intervals (1, 2) and (0, 1). Since the former is convex, the latter is non-convex and
thus is not an LMI region, which increases the difficulty of studying relative control
problems in the interval (0, 1). Recently, Ji and Qiu [7] and Marir et al. [11, 12]
have investigated admissibility conditions and stabilization problems for SFOSs with
an order between zero and two, but the obtained stabilization conditions were not
strict LMIs, and they involved some limited matrix variables, which may lead to an
increase in system conservatism. This motivates us to study much better stability and
stabilization conditions for SFOSs in (0, 1), which can make the resulting controllers
less conservative and more suitable to practical applications. Related controller design
problems are also discussed in this paper. The organization of this paper is as follows.
In Section 2, a description of the model and some preliminaries are introduced. In
Section 3, a new sufficient and necessary condition of admissibility for SFOSs is
given. In Section 4, different sufficient conditions for designing feedback controllers
are obtained in terms of LMIs, including some sufficient and necessary criteria. Finally,
two examples are given to validate the effectiveness of the proposed results. The paper
concludes with a brief discussion in Section 5.

2. Preliminaries

In this section, we introduce some notation, definitions and lemmas, which will be
used later in the paper.
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Let X ≥ 0 (X > 0) denote the semipositive definite (positive definite) matrix, and let
0 and I stand for the zero matrix and identity matrix, respectively, with appropriate
dimensions. The sets of integers, real numbers, positive real numbers and complex
numbers are denoted by Z, R,R+ and C, respectively. The symbols Rn, Cn, Rm×n

and Cn×n denote, respectively, the n-dimensional Euclidean space, the n-dimensional
complex number space, the set of all m × n real matrices and the set of all n × n
complex matrices. For any complex matrix X, X? denotes its conjugate transpose,
X̄ represents its conjugate, <(X) denotes its real part, =(X) denotes the imaginary
part and sym(X) represents X + XT . The symbol > denotes the transposed elements
in the symmetric positions of a matrix, and diag{. . .} stands for a block diagonal
matrix. In addition, |arg(λ)| represents the absolute value of principal value of any
complex number λ, satisfying 0 ≤ |arg(λ)| ≤ π and arg(λ) , −π. The symbol i denotes
the imaginary unit satisfying i2 = −1.

Oldham and Spanier [15] and Podlubny [17] defined the Caputo fractional integral

Iα f (s) =
1

Γ(α)

∫ s

0
(s − τ)α−1 f (τ) dτ s > 0,

where f (s) is any continuously differentiable function, α ∈ R+ is the order of fractional
integration and

Γ(α) =

∫ ∞

0
e−zzα−1 dz.

The Caputo fractional derivative with the order α ∈ R+ is defined by

Dα f (s) =
1

Γ(m − α)

∫ s

0
(s − τ)m−α−1 f (m)(τ) dτ,

where m − 1 < α ≤ m, m ∈ Z.
Consider the singular fractional-order pseudostate system described by the form{

EDαx(t) = Ax(t) + Bu(t)
y(t) = Cx(t), (2.1)

where 0 < α < 1 is the noninteger order, x(t) ∈ Rn is the pseudostate vector, u(t) ∈ Rm

is the control input and y(t) ∈ Rp is the system measured output. The matrix E ∈ Rn×n

is a singular matrix with rank(E) = ne < n, and A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are
constant matrices. Dα denotes the Caputo derivative operator.

The nominal unforced SFOS of (2.1) can be written as

EDαx(t) = Ax(t). (2.2)

The following definitions are similar to integer-order singular systems.

Definition 2.1 [24]. The finite roots of |λE − A| = 0 in SFOS (2.2) are called finite
dynamic modes of the pair (E, A).

https://doi.org/10.1017/S1446181118000202 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000202


[4] Stabilization of singular fractional-order systems 233

Definition 2.2 [7, 24]. For SFOS (2.2):

(i) the pair (E, A) is called regular if there exists a constant scalar s ∈ C such that
|sαE − A| , 0;

(ii) the pair (E,A) is called impulse free if deg(det(λE − A)) = rank(E), where λ ∈ C;
(iii) the pair (E, A) is called asymptotically stable if all the finite dynamic modes

satisfy |arg(λ)| > απ/2; and
(iv) the pair (E, A) is called admissible if it is regular, impulse free and

asymptotically stable.

Without loss of generality, we choose nonsingular matrices M and N satisfying

MEN =

[
Ine 0
0 0

]
, MAN =

[
A11 A12
A21 A22

]
, x(t) = N

[
x1(t)
x2(t)

]
. (2.3)

Then SFOS (2.2) can be transformed into{
Dαx1(t) = A11x1(t) + A12x2(t)

0 = A21x1(t) + A22x2(t), (2.4)

where x1(t) ∈ Rne , x2(t) ∈ Rn−ne .

Remark 2.3. In (2.3), let Ẽ = MEN and Ã = MAN. Then

det(λẼ − Ã) = det(M) det(N) det(λE − A)

for any λ ∈ C. According to Definitions 2.1 and 2.2, system (2.2) and system (2.4)
have the same regularity, nonimpulsiveness and stability. From the second equation of
(2.4), the unique solution of state x2(t) can be obtained when matrix A22 is nonsingular.
Similar to the integer-order singular systems in [5], and from Definition 2.2, system
(2.2) is impulse free if and only if matrix A22 is nonsingular. From Definition 2.2, it
can also be deduced that system (2.2) being impulse free implies that system is regular.

Remark 2.4. When t = 0, x(0) is the initial value of system (2.2), from (2.3), N−1x(0) =

[xT
1 (0) xT

2 (0)]T . However, x2(0) should satisfy (2.4). In order to guarantee the
compatibility of the initial value, the initial condition is given as Ex(0) = x0. In other
words, if (E, A) is impulse free, then x2(0) can be obtained by x2(0) = −A22

−1A21x1(0)
when x1(0) is given.

Lemma 2.5 [7]. SFOS (2.2) is regular if and only if there exists two nonsingular
matrices Q and P such that

QEP = diag(In1 ,N), QAP = diag(A1, In2 ),

where n1 + n2 = n, A ∈ Rn1×n1 , N ∈ Rn2×n2 is nilpotent.

Remark 2.6. According to Lemma 2.5, system (2.2) is impulse free if and only if
N = 0.
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Lemma 2.7 [1]. For matrices W, P, R and A with appropriate dimensions and a scalar
β, the following propositions are equivalent.

(i)
[

W >
βPT + RA −βR − βRT

]
< 0.

(ii) W < 0,W + PA + AT PT < 0.

Lemma 2.8 [3]. Let A ∈ Rn×n, 0 < α < 1. FOS Dαx(t) = Ax(t) is asymptotically stable
if and only if there exist X = X? ∈ Cn×n, X > 0 such that

(rX + r̄X̄)T AT + A(rX + r̄X̄) < 0,

where r = ei(1−α)π/2.

In this paper, a new admissibility condition for SFOSs with the order belonging to
(0, 1) is obtained. Based on this, the corresponding feedback controllers are designed
in terms of LMIs to guarantee the admissibility of the resulting closed-loop systems.

3. Main results

3.1. Admissibility condition

Theorem 3.1. SFOS (2.2) is admissible, if and only if there exist matrices X = X? ∈

Cn×n, X > 0 and Q ∈ R(n−ne)×n such that

(PET + S Q)T AT + A(PET + S Q) < 0, (3.1)

where r = ei(1−α)π/2, P = rX + r̄X̄ ∈ Rn×n and S ∈ Rn×(n−ne) is an arbitrary full column
rank matrix that satisfies ES = 0.

Proof. (Sufficient) Assume that there exist matrices X = X? > 0 and Q such that
inequality (3.1) holds. First, we show that the pair (E, A) is regular and impulse free.
From (2.3) and (2.4), it is equivalent to proving that A22 is nonsingular. Set

N−1PN−T =

[
P1 P2
P3 P4

]
, N−1S =

[
S 1
S 2

]
, QMT =

[
Q1 Q2

]
. (3.2)

Since ES = 0, we obtain S 1 = 0 and that S 2 ∈ R(n−ne)×(n−ne) is of full rank. Then, pre-
and post-multiplying (3.1) by M and MT yields

sym{MANN−1PN−T NT ET MT + MANN−1S QMT } < 0. (3.3)

Substituting (2.3) and (3.2) in (3.3) gives[
~ ~
~ A22S 2Q2 + Q2

T S 2
T A22

T

]
< 0, (3.4)

where ~ represents the unrelated matrix block in the discussion. From (3.4),

A22S 2Q2 + Q2
T S 2

T A22
T < 0.
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Obviously, A22 is nonsingular. Otherwise, if A22 is singular, then there exists a vector
ξ ∈ Rn−ne (ξ , 0) such that AT

22ξ = 0 and ξT (A22S 2Q2 + Q2
T S 2

T A22
T )ξ = 0, which

conflicts with A22S 2Q2 + Q2
T S 2

T A22
T < 0. Thus the pair (E,A) is regular and impulse

free.
Next, we show that the pair (E,A) is stable. Let λ be any finite eigenvalue of the pair

(ET , AT ) and ν be the corresponding eigenvector, that is, λETν = ATν, λ̄ν?E = ν?A.
From (3.1) and ES = 0,

ν?(PET + S Q)T ATν + ν?A(PET + S Q)ν < 0,

that is

ν?E(λPT + λ̄P)ETν < 0.

Since

λPT + λ̄P = λ(rX + r̄X̄)T + λ̄(rX + r̄X̄)
= 2<(λr)X̄ + 2<(λr̄)X
= 2[<(λr) +<(λr̄)]<(X) − 2[<(λr) −<(λr̄)]=(X)i,

and from X = X? > 0, we have<(X) =<(X)T > 0 and =(X) = −=(X)T . Furthermore,
ν?=(X)ν = 0 for any vector ν ∈ Cn. Therefore,

ν?E(λPT + λ̄P)ETν = 2[<(λr) +<(λr̄)]ν?E<(X)ETν < 0,

which implies that <(λr) +<(λr̄) < 0. Then it follows that <(λr) < 0 or <(λr̄) < 0,
that is, λ ∈ {λ ∈ C :<(λei(1−α)π/2) < 0} ∪ {λ ∈ C | <(λe−i(1−α)π/2) < 0}. According to
Kaczorek [8] and Xu [20], all the finite eigenvalues of the pair (ET , AT ) lie in
{λ ∈ C | |arg(λ)| > απ/2}. Then the SFOS (2.2) is stable.

(Necessary) The proof is similar to a result of Yin et al. [12, Theorem 2], so we
omit it here. �

Remark 3.2. In Theorem 3.1, if E = I, then SFOS (2.2) reduces to a regular fractional-
order system; obviously if S = 0, then Theorem 3.1 becomes the sufficient and
necessary stability condition as in [3, 5]. If the order α = 1, then system (2.2) reduces to
an integer-order singular system. From Theorem 3.1, system Eẋ = Ax(t) is admissible
if and only if there exist P > 0 and Q such that (PET + S Q)T AT + A(PET + S Q) < 0,
which is the same as the result Xu and Lam [22]. Therefore, SFOSs are extensions
of integer-order singular systems, that is, the admissibility condition given in [22] is a
special case of the Theorem 3.1.

Remark 3.3. Marir et al. [11] investigated the admissibility conditions for SFOSs with
fractional order between one and two, while the fractional order that we study in this
paper belongs to (0, 1). The two issues are entirely different in nature and independent
of each other. Therefore, Theorem 2 in [11] cannot solve the problems of this paper.
In addition, when the fractional order belongs to (0, 1) or (1, 2), the corresponding
stability domain is different. The former is nonconvex while the latter is convex. So it
is found that a stability domain between zero and one makes it more difficult to study
stability and stabilization problems.
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Remark 3.4. Compared with the admissible condition given in [24], Theorem 3.1 is
relatively simple in form, and the number of variables are reduced. Moreover, the
inequality dimension of Theorem 3.1 is n × n, which is less than that in [24]. So
Theorem 3.1 significantly reduces the computational burden in the data analysis phase,
and improves the practicality. In addition, Wei et al. [18] gave another admissibility
condition for SFOSs; when the order α = 1, their result [18] is not available, while it
is a special case of the result given in Theorem 3.1.

From Definition 2.2, it can be verified that the admissibility of the pair (E, A) is
equivalent to the admissibility of the pair (ET, AT ). Then we obtain the following
corollary.

Corollary 3.5. SFOS (2.2) is admissible if and only if there exist matrices X = X? ∈

Cn×n, X > 0 and Q ∈ R(n−ne)×n such that

(PE + S Q)T A + AT (PE + S Q) < 0,

where r = ei(1−α)π/2, P = rX + r̄X̄ ∈ Rn×n and S ∈ Rn×(n−ne) is an arbitrary full column
rank matrix that satisfies ET S = 0.

3.2. Stabilization problems Consider SFOS (2.1) with the following pseudostate
feedback controller

u(t) = Kx(t), K ∈ Rm×n,

and output feedback controller

u(t) = Ly(t), L ∈ Rm×p.

Applying the above two controllers, respectively, to system (2.1), the closed-loop
system can be obtained as

EDαx(t) = (A + BK)x(t) (3.5)

and

EDαx(t) = (A + BLC)x(t). (3.6)

In the following section, stabilization conditions for SFOS (2.1) are investigated by
LMIs.

3.2.1 Pseudostate feedback control design.

Theorem 3.6. The singular fractional-order closed-loop control system (3.5) with the
fractional-order 0 < α < 1 is admissible if, for a given scalar β > 0, there exist matrices
X = X? ∈ Cn×n, X > 0, Q ∈ R(n−ne)×n and K̃ ∈ Rm×n such that[

sym{ΠT AT + EK̃T BT } BK̃ + βQT S T

> −βP − βPT

]
< 0, (3.7)

where Π = PET + S Q, P = rX + r̄X̄ ∈ Rn×n, r = ei(1−α)π/2, S ∈ Rn×(n−ne) is an arbitrary
full column rank matrix and satisfies ES = 0. Moreover, the pseudostate feedback gain
matrix is given by

K = K̃(rX + r̄X̄)−1.
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Proof. From Theorem 3.1, the closed-loop system (3.5) is admissible if there exist
matrices X = X? > 0 and Q ∈ R(n−ne)×n such that

(PET + S Q)T (A + BK)T + (A + BK)(PET + S Q) < 0,

which is equivalent to

sym {(PET + S Q)T AT + BKPET + BKS Q} < 0, (3.8)

where P = rX + r̄X̄. According to Kaczorek [8, Theorem 17], the real matrix P is
nonsingular; based on the result of Lemma 2.7, if the matrix inequality[

sym {ΠT AT + BKPET } βQT S T + BKP
> −βP − βPT

]
< 0 (3.9)

is established, then (3.8) holds. By setting K̃ = KP, (3.9) can be rewritten as (3.7).
From (3.7), it follows that P is nonsingular, so K = K̃P−1. This completes the proof. �

Remark 3.7. In the work of Ji and Qiu [7], state feedback analysis based on the
admissible condition of Yu et al. [24] is proposed by giving a limit on the input matrix
B and assuming that two real symmetric positive definite matrices are equal and two
skew-symmetric matrices are null, which greatly increases the conservatism compared
with our result in Theorem 3.6.

Theorem 3.8. A singular fractional-order closed-loop control system (3.5) with the
order 0 < α < 1 is admissible, if and only if there exist matrices X = X? ∈ Cn×n, X > 0,
Q ∈ R(n−ne)×n and K̃ ∈ Rm×n such that (PET + S Q) is nonsingular and

sym{(PET + S Q)T AT + BK̃} < 0, (3.10)

where P = rX + r̄X̄ ∈ Rn×n, r = ei(1−α)π/2, S ∈ Rn×(n−ne) is an arbitrary full column rank
matrix and satisfies ES = 0. Moreover, the pseudostate feedback gain matrix is

K = K̃(PET + S Q)−1.

Proof. This can be directly obtained from Theorem 3.6. �

Remark 3.9. In Theorem 3.8, if PET + S Q is singular, by using the singular value
decomposition of the matrix E,

E = U
[
Σ 0
0 0

]
VT ,

where Σ is a nonsingular matrix and U,V are orthogonal matrices. Let X = X1 + X2i,
r = r1 + r2i. We have X1 = X1

T ∈ Rn×n, X1 > 0, X2 = −X2
T , r1, r2 > 0. Let

VT X1V =

[
X11 X12

X12
T X13

]
, VT X2V =

[
X21 X22
−X22

T X23

]
,

where X11 > 0, X13 > 0, X21, X23 are skew-symmetric matrices. Let

QU =
[
Q1 Q2

]
, VT S =

[
S T

1 S T
2

]T
,
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and from ES = 0 it follows that

VT S =

[
0

S 2

]
, S 2 ∈ R(n−ne)×(n−ne), rank(S 2) = n − ne.

Then

PET + S Q = V
[

P1Σ 0
P2Σ + S 2Q1 S 2Q2

]
UT , (3.11)

where P1 = 2r1X11 − 2r2X21 and P2 = 2r1X12
T + 2r2X22

T . Moreover, P1 is non-
singular. Otherwise, if P1 is singular, then there exists a vector ξ ∈ Rn×n(ξ , 0) such
that P1ξ = 0 and ξT P1ξ = 0. However, for any x ∈ Rn×n(x , 0),

xT P1x = xT (2r1X11 − 2r2X21)x
= 2r1xT X11x − 2r2xT X21x
= 2r1xT X11x > 0,

which conflicts with the above hypothesis. Thus, from (3.11), if Q2 is nonsingular,
then PET + S Q is nonsingular. However, if Q2 is singular, let

Q̄ =
[
0 Q̄2

]
UT ,

where Q̄2 is nonsingular. Choose a sufficiently small constant ε that is not the
eigenvalue of the matrix −Q2Q̄−1

2 and let

Q̂ = Q + εQ̄ =
[
Q1 Q2 + εQ̄2

]
UT .

Then

PET + S Q̂ = V
[

P1Σ 0
P3Σ + S 2Q1 S 2(Q2 + εQ̄2)

]
UT ,

where Q2 + εQ̄2 is nonsingular. Thus, it follows that PET + S Q̂ is nonsingular.
From (3.10),

sym{(PET + S Q̂)T AT + BK̃} = sym{(PET + S Q)T AT + BK̃} + ε sym{(S Q̄)T AT } < 0,

and the gain matrix of the controller is given by K = K̃(PET + S Q̂)−1. In conclusion,
if PET + S Q is singular, we can choose a sufficiently small constant ε that is not
the eigenvalue of matrix −Q2Q̄−1

2 such that PET + S (Q + εQ̄) is nonsingular and
satisfies (3.10).

Remark 3.10. In this case, although there is a limitation that the matrix PET +

S Q is nonsingular, the sufficient and necessary condition provided by the LMI in
Theorem 3.8 does not increase the conservatism since, if PET + S Q is singular, it
can be modified as nonsingular based on Remark 3.9. Further, Examples 4.2 and 4.4
also verify that the conservatism does not increase. In addition, when the order α = 1,
Theorem 3.8 becomes the stabilization result of an integer-order singular system [22].
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Theorem 3.11. A singular fractional-order closed-loop control system (3.5) with the
order 0 < α < 1 is admissible if and only if there exist matrices X = X? ∈ Cn×n, X > 0,
Q ∈ R(n−ne)×n and γ1 > 0 such that

sym{AT (PE + S Q)} −
1
γ1

FT F < 0,

where

F = BT (PE + S Q),

P = rX + r̄X̄ ∈ Rn×n, r = ei(1−α)π/2 and S ∈ Rn×(n−ne) is an arbitrary full column rank
matrix that satisfies ET S = 0. Moreover, the pseudostate feedback gain matrix is

K = −
1
γ1

BT (PE + S Q).

Proof. The proof is similar to that of [12, Theorem 3]. �

3.2.2 Output feedback control design.

Theorem 3.12. The singular fractional-order closed-loop control system (3.6) with the
order 0 < α < 1 is admissible if, for given a scalar β, there exist matrices X = X? ∈

Cn×n, X > 0, Q ∈ R(n−ne)×n, R ∈ Rp×p and H ∈ Rm×p such that[
sym{ΠT AT + BHC} βΠTCT − βCT RT + BH

> −βR − βRT

]
< 0, (3.12)

where Π = PET + S Q, P = rX + r̄X̄ ∈ Rn×n, r = ei(1−α)π/2 and S ∈ Rn×(n−ne) is an
arbitrary full column rank matrix that satisfies ES = 0. Moreover, the stabilizing
output feedback controller is given by

L = HR−1. (3.13)

Proof. From (3.12), it follows that −βR − βRT < 0, which yields that R is nonsingular,
and along with (3.13), we have H = LR. Substituting this into inequality (3.12) we
obtain [

sym{ΠT AT + BLRC} βΠTCT − βCT RT + BLR
> −βR − βRT

]
< 0,

which, by Lemma 2.7, implies that

sym{(PET + S Q)T AT + BLRC} + sym{BLC(PET + S Q) − BLRC} < 0,

that is,

sym{(A + BLC)(PET + S Q)} < 0.

Thus, from Theorem 3.1, the closed-loop system (3.6) is admissible. �
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Remark 3.13. In Theorem 3.12, there is no limitation that the input matrix BT is of
full row rank, which is different from the condition given by Ji and Qiu [7]. So the
condition in Theorem 3.12 is less conservative.

Theorem 3.14. A singular fractional-order closed-loop control system (3.6) with the
order 0 < α < 1 is admissible if and only if there exist matrices X = X? ∈ Cn×n, X > 0,
Q ∈ R(n−ne)×n and γ2 > 0 such that

sym{AT (PE + S Q)} −
1
γ2

FT F < 0,

where F = BT (PE + S Q), P = rX + r̄X̄ ∈ Rn×n, r = ei(1−α)π/2 and S ∈ Rn×(n−ne) is an
arbitrary full column rank matrix that satisfies ET S = 0. Moreover, the pseudostate
feedback gain matrix is given by

K = −
1
γ2

BT (PE + S Q)V1

[
Σ−1 0
0 0

]
U1
−1,

where U1 and V1 are orthogonal matrices and Σ is nonsingular matrix; these are
obtained by using the singular value decomposition of the matrix C,

C = U1

[
Σ 0
0 0

]
V1

T .

Proof. The proof process is similar to that of [12, Theorem 2]. �

Remark 3.15. Although Marir et al. [11, 12] gave sufficient and necessary conditions
to investigate output feedback and observer-based control, the results were represented
by the quadratic matrix inequalities, not LMIs, which made them more difficult to
solve. Moreover, if we use a method similar to that of Mrir et al. [12], the sufficient
and necessary conditions in the form of the quadratic matrix inequalities can also be
obtained from Theorems 3.11 and 3.14. Compared with Theorems 3.6 and 3.12, the
conditions (3.7) and (3.12) are only sufficient, but they are all strict LMIs, and can be
solved directly by Matlab. Obviously, Theorems 3.6 and 3.12 are easier to solve than
Theorems 3.11 and 3.14. In addition, in Theorem 3.12, a sufficient and necessary
condition in the form of an LMI is also presented, which is convenient for being
utilised in practice with the help of Matlab.

4. Examples

In this section, four numerical examples are presented to show the validity of the
results obtained. Example 4.1 serves to illustrate the effectiveness of our proposed
admissibility condition. In Example 4.2, we cite an example of Ji and Qiu [7,
Example 17] to make a comparison with our results for demonstrating the superiority
in the aspect of designing feedback controllers. When the system is not regular or
impulse free and unstable, Example 4.3 shows that it is also solvable by applying our
results. Finally, we give an electrical circuit which is a singular fractional-order linear
system; we note that studying the topics in this paper is of significant use in practical
systems.
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Figure 1. Time responses of the system.

Example 4.1. Consider an SFOS (2.2) with α = 0.6 and

E =

 1 −0.5 1
1 −0.5 1
−1 −0.5 −1

 , A =

−4 1 −3
0 −2 4
5 2 0

 .
We choose S = [1, 0,−1]T to satisfy ES = 0. By solving the LMI in Theorem 3.1, a
feasible solution is obtained as

X =

 0.5967 0.1821 + 0.0436i −0.4602 − 0.0106i
0.1821 − 0.0436i 0.8943 0.1821 − 0.0436i
−0.4602 + 0.0106i 0.1821 + 0.0436i 0.5967

 ,
Q =

[
−0.1292 0.2531 0.7994

]
.

Therefore, from Theorem 3.1, this system is admissible. The time responses of the
system with the initial condition Ex(0) = [−5.6 − 5.6 14]T are shown in Figure 1.

Example 4.2. Consider an SFOS (2.1) with coefficients α = 0.5 and

E =

[
1 3
3 9

]
, A =

[
2 0
1 3

]
, B =

[
2
3

]
.

This example was presented by Marir et al. [12]. The finite dynamic mode of the pair
(E, A) is 0.3333, which concludes that the corresponding system is not asymptotically
stable. The time responses of the system with u(t) = 0 are shown in Figure 2, when the
initial condition Ex(0) = [0.6 1.9]T is satisfied. In this example, a pseudostate feedback
controller is designed to satisfy the admissibility of the closed-loop system (3.5).
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Figure 2. State trajectories of the open-loop system with u(t) = 0.

Let S =
[
3 −1

]T and β = 2.5. Solving the LMI (3.7) in Theorem 3.6 yields

X =

[
0.2412 −0.0459 − 0.0603i

−0.0459 + 0.0603i 0.0296

]
,

Q =
[
−0.0834 −0.0112

]
, K̃ =

[
0.1171 −0.1772

]
.

The pseudostate feedback controller is given by

K1 =
[
−0.4832 −1.3695

]
.

Moreover, we know that Theorem 3.8 is a sufficient and necessary condition to
guarantee that the closed-loop system is admissible. Thus, solving LMI (3.10), the
corresponding feedback gain matrix is presented as

K2 =
[
−1.2520 −3.6237

]
.

Comparing the above two gain matrices with that given by Marir et al. [12], we
find that the nonsingular limitation of matrix PET + S Q in Theorem 3.8 does not have
much influence on the conservatism. Therefore, Theorems 3.6 and 3.8 are valid.

Consider the output matrix of system (2.1),

C =

[
1 2
3 6

]
,

which was given by Ji and Qiu [7, Example 17]. Next, to design an output feedback
law for this system, suppose that β = 0.1. Solving LMI (3.12) yields

X =

[
1.1033 −0.2883 − 0.0010i

−0.2883 + 0.0010i 0.3346

]
,

R =

[
2.8265 −0.5163
−0.5163 1.4496

]
, and H =

[
−0.1783 −0.5348

]
.
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Figure 3. State trajectories of the closed-loop system with u(t) = K1 x(t).

From (3.13), the static output feedback gain matrix is

L =
[
−0.1395 −0.4186

]
.

Obviously, this result is more optimized than that given by Yu et al. [24] since the
magnitude of the obtained output feedback gain matrix is reduced too much. Thus,
for SFOSs, condition (3.12) in Theorem 3.12 is more effective than the result of Ji
and Qiu [7]. The simulation results of state trajectories of the closed-loop system are
shown in Figures 3 and 4, respectively.

Example 4.3. One SFOS is considered; the coefficients of the system (2.1) are given
by α = 0.3 and

E =

−10.5 −7 7
−18 7.5 5.5
7.5 −4 −2

 , A =

31.5 0 −14
15 13 −11
−4.5 −6 4

 , B =

2.1 −0.3
2.3 0.2
1.5 1.3

 ,
and C = [5.3 −2 −2.8]. Using Definition 2.2, we verify that this system is not
regular or impulse free and unstable. Taking S = [0.8 0.6 1.8]T and β = 1.5, we
find that the LMI in (3.7) is feasible, and a set of solution is obtained as

X = 104 ×

 1.0128 0.7570 − 0.0004i 2.0557 + 0.0001i
0.7570 + 0.0004i 0.5661 1.5435 − 0.0002i
2.0557 − 0.0001i 1.5435 + 0.0002i 4.7776

 ,
Q = 107 ×

[
−1.2125 −1.4563 −1.2337

]
,

K̃ = 107 ×

[
0.7338 0.5504 1.6530
0.2925 0.2192 0.6547

]
.
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Figure 4. State trajectories of the closed-loop system with u(t) = Ly(t).

By Theorem 3.6, we obtain a pseudostate feedback gain matrix

K =

[
−28.1285 308.5294 293.4556
320.4891 −318.7349 116.0456

]
.

Similarly, taking β = 0.05 and using Theorem 3.12 to solve LMI (3.12), the static
output feedback control law is obtained as

L =

[
−0.0022
0.0039

]
.

Example 4.4. As in Kaczorek’s work [8], consider the following electrical circuit
in Figure 5, where R1, R2, R3 are resistances, L1, L2, L3 are inductances and e1, e2

represent source voltages. By Kirchhoff’s laws, we have the following equations.

e1 = R1I1 + L1
dαI1

dtα
+ R3I3 + L3

dαI3

dtα
,

e2 = R2I2 + L2
dαI2

dtα
+ R3I3 + L3

dαI3

dtα
,

I1 + I2 − I3 = 0.

(4.1)

Equations (4.1) can be written in the formL1 0 L3
0 L2 L3
0 0 0

 dα

dtα

I1
I2
I3

 =

−R1 0 −R3
0 −R2 −R3
1 1 1


I1
I2
I3

 +

1 0
0 1
0 0


[
e1
e2

]
.
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Figure 5. Electrical circuit of Example 4.4.

Then a singular fractional-order linear system is given by

EDαx(t) = Ax(t) + Bu(t),

where

E =

L1 0 L3
0 L2 L3
0 0 0

 , A =

−R1 0 −R3
0 −R2 −R3
1 1 1

 ,
B =

1 0
0 1
0 0

 , x =

I1
I2
I3

 , u =

[
e1
e2

]
.

Let α = 0.3, L1 = 5, L2 = 10, L3 = 2, R1 = 1, R2 = 1, R3 = 2; we find that this system
is unstable. Let S = [2 1 − 5]T and β = 1.5. Solving LMI (3.7) and LMI (3.10) in
Theorems 3.6 and 3.8, respectively, we obtain the pseudostate feedback controllers

K1 =

[
−6.8748 −7.1414 0.5150
−4.7797 −3.5045 2.6598

]
, K2 =

[
1.7384 2.0133 6.8024
1.0051 3.9202 9.7610

]
.

If we suppose that output matrix C = [6.3 − 2 − 2], then, using Theorem 3.12 and
solving LMI (3.12), we obtain an output feedback controller

L =

[
−2.0171
−1.3117

]
.

Setting the initial condition Ex(0) = [−1.57 − 2.930]T , Figure 6 gives the state
trajectory of the open-loop system, while Figures 7 and 8 give simulations for the
state trajectories of the closed-loop system.
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Figure 6. State trajectories of the open-loop system with u(t) = 0.

Figure 7. State trajectories of the closed-loop system with u(t) = K1 x(t).

5. Conclusion

In this paper, stabilization problems have been studied, based on a new admissible
condition for singular fractional-order control systems with the order 0 < α < 1.
We present sufficient and necessary conditions that guarantee that the closed-loop
systems are admissible. Finally, the validity of our approach is illustrated by
numerical simulations to make comparisons with some existing results. In the future,
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Figure 8. State trajectories of the closed-loop system with u(t) = Ly(t).

observer-based control designs for singular fractional-order nonlinear uncertain
systems can be investigated.
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