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Abstract. Given afiniteset 4 of integral vectors and a parameter vector, Gel'fand, Kapranov, and
Zelevinskii defined a system of differential equations, called an A-hypergeometric (or a GKZ
hypergeometric) system. Classifying the parameters according to the D-isomorphism classes
of their corresponding A-hypergeometric systems is one of the most fundamental problems
in the theory. In this paper we give a combinatorial answer for the problem under the assumption
that the finite set A4 lies in a hyperplane off the origin, and illustrate it in two particularly simple
cases: the normal case and the monomial curve case.
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1. Introduction

Given a finite set A4 of integral vectors and a parameter vector, Gel’fand, Kapranov,
and Zelevinskii defined a system of differential equations, called an
A-hypergeometric (or a GKZ hypergeometric) system ([5]). Many authors studied
D-invariants of the A-hypergeometric systems: In the Cohen—Macaulay case,
Gel’fand, Kapranov, and Zelevinskii determined the characteristic cycles ([6])
and proved the irreducibility of the monodromy representations for nonresonant
parameters ([4]); Adolphson proved the rank of an 4-hypergeometric system equals
the volume of the convex hull of 4 in the semi-nonresonant case ([1]); the author,
Sturmfels, and Takayama scrutinized the ranks in [13]; Cattani, D’Andrea, and
Dickenstein determined rational solutions and algebraic solutions in the monomial
curve case ([2]), and recently Cattani, Dickenstein, and Sturmfels in [3] considered
when an A-hypergeometric system has a rational solution other than Laurent
polynomial solutions.

The purpose of this paper is to classify A-hypergeometric systems with respect to
D-isomorphisms. This is one of the most fundamental problems in the theory. Under
the assumption that the finite set A4 lies in a hyperplane off the origin, we shall give a
combinatorial answer for this problem, and illustrate it in two particularly simple
cases: the normal case and the monomial curve case.

Throughout the paper, we consider the finite set 4 fixed. In Section 2, we define a
finite set E.(f) associated to a parameter f§ and a face t of the cone generated
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by A. Then our main theorem (Theorem 2.1) states that two A-hypergeometric sys-
tems corresponding to parameters f and ' are D-isomorphic if and only if E.(f)
equals E.(B) for all faces 7. In Section 2, we prove the only-if-part of the theorem
and state some basic properties of the set E (f).

Sections 3 and 4 are devoted to the study of the algebra of contiguity operators,
called the symmetry algebra. In Section 3, we summarize some known facts about
the symmetry algebra. We introduce the b-ideals in Section 4 and prove their
elements correspond to contiguity operators. Furthermore we describe each b-ideal
in terms of the standard pairs of a certain monomial ideal. Using this description,
we give the proof of the if-part of our main theorem at the end of Section 4.

In Sections 5 and 6, we illustrate our main theorem in the normal case and the
monomial curve case respectively, since the theorem reduces to relatively simple
forms in both cases.

2. Main Theorem

We work over a field k of characteristic zero. Let 4 = (ay, ..., a,) = (a;) be a
d x n-matrix of rank 4 with coefficients in Z. We assume that all a; belong to
one hyperplane off the origin in Q. We denote by I, the toric ideal in
k[d] = k[0, ..., 3], that is

Iy =(0"—08"|Au= Av, u,v € N") C k[9].

For a column vector f = (B, ..., B,) € k%, let H,(p) denote the left ideal of the Weyl
algebra
D:k(xl,...,xn,al,...,an)

generated by I4 and Z};l a0 —B; (i=1,...,d) where 0; = x;0;. The quotient
M4(p) = D/H,4(p) is called the A-hypergeometric system with parameter p.

We denote the set {aj,...,a,} by 4 as well. Let t be a face of the cone
n
QzOA:{ZCjaﬂQ;‘GQ;o} 2.1
J=1

We denote by Z(A N 1) the Z-submodule of Z¢ generated by A4 N7, and by k(4 N 1)
the  k-subspace of kY generated by ANt. We agree that
k(ANt)=Z(AN7)={0}whent={0}. Let N={0,1,2,...}, and let N4 denote
the monoid generated by 4. For a parameter f§ € k¢, we consider the following set:

EB):={Aek(AN1)/Z(ANT)|f— /e NA+Z(ANT)). (2.2)

The following is the main theorem in this paper.

THEOREM 2.1. The A-hypergeometric systems M 4(B) and M 4(B') are isomorphic
as D-modules if and only if E.(f) = E.(f') for all faces t of the cone Q  (A.
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Before the proof, we recall the formal series solutions ¢, defined in[13]. For v € k",
its negative support nsupp(v) is the set of indices i with v; € Z_y. When nsupp(v) is
minimal with respect to inclusions among nsupp(v + u) with u € Z" and Au =0,
v is said to have minimal negative support. For v with minimal negative support,
we define a formal series

b= LR (2.3)

e v +ul,
Here
N, ={ueZ"| Au = 0, nsupp(v) = nsupp(v + u) },

and wuy,u_ eN" satisfy w=wu, —u_ with disjoint supports, and
Wl = [T vy = D~ (v —w; + 1) for w e N". Proposition 3.4.13 of [13] states
that the series ¢, is a formal solution of M 4(A4v).

Proof. Here we prove the only-if-part of the theorem. The proof of the if-part will
be given at the end of Section 4.

We suppose that A € E.(f) \ E.(B') for some face 7, and we shall prove M 4(f) and
M 4(B") are not isomorphic.

Represent /4 as ), .. /ja;. Consider the direct product

a;jeT

Rr./l = 1_[ kX/Jru.
ueZ", u;eN(a;¢ 1)

Here we put /; = 0 for a; ¢ 7. Note that R ; has a natural D-module structure. There
exists u € Z" with u; € N (a;¢ 7) such that f = A(/ 4 u) and / + u has minimal nega-
tive support. Then the series ¢,,, € R, is a formal solution of M 4(f), and hence
Homp(M4(B), R.;) #0. On the other hand, Homp(M,(B), R,;) =0 since
A( +u) # ' for any u € Z" with u; € N (a;¢ 7). Therefore M 4(ff) and M 4(f') are
not isomorphic. O

In the remainder of this section, we collect some properties of the sets E.(ff). We
call a face of Q - (A4 of dimension d — 1, a facet. Recall that for a facet ¢ the linear
form F, satisfying the following conditions is unique and called the primitive integral
support function:

(1) Fy(ZA4) =1Z,
(2) Fs(a)=0forallj=1,...,n,
(3) Fs(aj) =0 for all g; € 0.

PROPOSITION 2.2

(1)  Each Eq_ ,4(B) consists of one element. The equality Eq _ ,4(B) = Eq 2OA(B’) means
B—pB e ZA.

(2) Epoy(p)={0} or & Egoy(p) ={0} if and only if f € NA

(3) For a facet o, E;(f) # 0 if and only if F,(f) € F,(NA).
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(4) For faces © C o, there exists a natural map from E.(f) to E;(p). In particular, if
E(B) # 9. then E5(f) # 9.
(5) For any y € NA, there exists a natural inclusion from E () to E.(f + y).
Proof. All statements follow directly from the definition of E.(f). O

PROPOSITION 2.3.
(1) Forall p ekd =k,

|E:(P)I < [(QUAND))NZA:Z(ANT)], 24

where the right hand side is the index of Z(A N 1) in (Q(4A N 1)) N ZA.

(2) Assume (QUANT))NZA=Z(ANx). If B— B € ZA, and if neither E.(B) nor
E(f) is empty, then E.(f) = E-(f).

Proof.

(1) Let 2, A €E(B). Then i—1 e(k(AN1)NZA By Cramer’s formula,
(K(A N 1) NZA = (Q(ANT)) N ZA.

(2) Let E.(B) ={41}), E(B)={/}. Since B — f' € ZA, there exist y, ¥’ € NA such
that p+y=p+y. Then {A}=EQPB+)=E@P +))={(1} by
Proposition 2.2 (5). O

EXAMPLE 2.4. Let

There are four facets:

o12:=Q50a1 + Q5 a2, (2.5
0231 =Q > om+ Q5 a3, (2.6)
0341 = Q5043+ Q> gda, (2.7)
o141 = Qs a1 + Q5 gas, (2.8)
and four one-dimensional faces: Q 5 ¢ai, ..., Q - ga4. For all faces 7 but 614, the indi-

ces [(Q(A Nt))NZA : Z(A N 1) are one. Hence for f € NA, E.(f) = {0} for all faces
T # o14. The quotient (Q(A Na14)) NZA/Z(A N 014) has two elements and can be
represented by O and ‘(1,1,0). Since a»—'(1,1,0)=a3—a4, and
as —'(1,1,0) = a; — a1, we obtain E,; (@) = E,,,(a3) ={0,'(1,1,0)}. Proposition
2.2 (5) implies that for f € N4, E,,(f) = {0} if and only if f € Na; 4+ Naa, otherwise
E,, () ={0,/(1,1,0)}. Therefore NA4 splits into two isomorphism classes in this
case.
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Recall that a parameter [ is said to be  nonresonant (respectively
semi-nonresonant) if f¢ZA +k(A N o) (respectively f¢(ZANQ < g4) +k(A4 N o))
for any facet o, or equivalently, if F,(f)¢ Z (respectively F,(f/)¢ N ) for any facet
¢. Hence nonresonance implies semi-nonresonance.

PROPOSITION 2.5. If B is semi-nonresonant, then E.(f§) = @ for all proper faces t of

Q. 4.
Proof. Semi-nonresonace clearly implies E;(ff) = @ for all facets o. Proposition
2.2 (4) finishes the proof. ]

COROLLARY 2.6 Let B and B be semi-nonresonant. Then M 4(B) and M 4(B') are
isomorphic if and only if B — B € ZA.

Recall that all elements of A lie on one hyperplane H off the origin. We normalize
the volume of a polytope on H so that a simplex whose vertices affinely span the
lattice H N ZA has volume one.

PROPOSITION 2.7. If a parameter 5 satisfies
E.(p) =9 forall proper faces t, (2.9)

then

() forany y € NA, M 4(p — y) is isomorphic to M 4(f3),
(2) the rank of M 4(B) equals the volume of the convex hull of A.

Proof. (1) By Proposition 2.2 (5), E.(f — y) = @ for all proper faces 7. Hence by
Proposition 2.2 (1), we deduce the statement from Theorem 2.1.

The proof of (2) is the same as that of Theorem 4.5.2 of [13] (p. 185). O

3. Symmetry Algebra

We consider the algebra of contiguity operators, called the symmetry algebra. It
controls isomorphisms among A-hypergeometric systems with different parameters.
We have investigated the symmetry algebra of normal A-hypergeometric systems in
[11]. The proofs of some results in [11] remain valid without the normality condition.
In this section, we summarize such results.

Let

S:={PeD|I,PC DI,
Then S is an associative algebra and SN DI 4= DI, 1s a two-sided ideal. We call

S = S’/DI 4 the symmetry algebra of A-hypergeometric systems. The symmetry
algebra S is nothing but the associative algebra Endp(D/DIy).
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In what follows, we denote simply by P, the element of D/DI, represented by
P e D. For y € NA, all 9" with Au = y represent the same element in D/DI,. Hence
we sometimes denote it by 9%.

PROPOSITION 3.1.
(1) d,...,0, €8.
(2 Yija0eSforali=1,....d
(3) The morphism from the polynomial ring K[s] =K[s1, ..., sqs] to S mapping s; to
Yo aily (i=1,....d) is injective.
Proof. See Lemma 1.1 in [11] for (1) and (2), and Corollary 1.3 in [11] for (3). (]

We consider that Z7, to which the vectors a, . . ., a, belong, is the character group
of the algebraic torus 7' = {(¢1,...,ts) | 1, ..., ts € K*}. Let N be the dual group of
Z¢, and s,...,s; the basis of k®z N dual to the standard basis of
k? = k ®z Z¢. Under the identification of k ® N with the Lie algebra of 7' ([8]),
each s; equals 7;0/0t;. Let H denote another algebraic torus

n
Gz e @) [/ =1 foralluez"  with Au=0{.
j=1

Then the character group and the Lie algebra of H coincide with ZA and
Y, k(3 7, a;0;) respectively. The injective morphism in Proposition 3.1 (3) is
induced from the differential of the morphism:

T>t—0",....,t") e H. (3.10)

We thus consider K[ s ] as a subspace of S and, accordingly, as a subspace of D/DI,.
For each y € ZA, we define the weight space S, with weight y by

S, :={PeS|[s, Pl=x)P (YseN)}L
Here the bracket [P, Q] means PQ — QP.
Remark 3.2. Note that the multiplication by P € S, from the right defines a
D-homomorphism from M,(f+ ) to Mu(f). Hence P(yp) is a solution of

M 4(B + ) for any solution y; of M 4(f). In this sense, the operator P is a contiguity
operator shifting parameters by y.

THEOREM 3.2
(1) The symmetry algebra S has no zero-divisors.
(2) The symmetry algebra S has the following weight space decomposition:

s=&ps, (3.11)

J€LA

(3) The weight space Sy equals the polynomial ring K[ s]
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(4) For each y € NA, the weight space S_, equals K[ s]0.
Proof. See Lemma 1.4, and Propositions 2.3, 2.4, 2.9 in [11]. O
The following proposition will be used in the next section.

PROPOSITION 3.4 (Proposition 2.6 in [11]). The natural morphism

D/DI —Kk(x, 8 )/k(x, 0% )1,

is injective where K(x, 0% ) is the algebra generated by D and elements d;', ..., 9!
with relations [ x;, aj—l] = 5,_78]72 (,j=1,...,n).
4. b-ldeals

We have seen in Theorem 3.3 that the symmetry algebra S has a weight
decomposition with respect to ZA, and that each S, for —y € NA4 is a free k[s]-module
of rank one with basis 97%. Next we wish to compute the weight space S, for arbitrary
1. Suppose that £ € S, and y = y, — x_ with x,, y_ € NA. Then the operator E9*+
belongs to S_, . Hence by Theorem 3.3 (4), there exists a polynomial b € k[s] such
that E9%+ = bd*-. Such polynomials » form an ideal of k[s] as we vary E € S,.
We shall define the b-ideal B, below to be such an ideal.
Fix any y € ZA, and define an ideal I, of k[d] by

I =14+ M, (4.12)
where
M, :=(8"|Au e y+NA4). (4.13)

Define the ideal B, of b-polynomials by
B, :=Kk[s]N DI,. (4.14)

PROPOSITION 4.1. Let y =y, — x_ withy,, x_ € NA. Given b € B,, there exists a
unique operator E € S, such that bd’- = Eo%+. The operator E is independent of the
expression Y =y, — x_.

Moreover any operator in S, can be obtained in this way.

Proof. Since bd*- € DI, o~ C DI4+ Do*+, there exists an operator E € D such
that b9“- = E9’+. The uniqueness, the independence, and the fact that E € S, follow
from the equality E = b3* in k(x, ) and Proposition 3.4.

Let EeS, and y=y, —y_ with x,,y. €e NA. Then Eo~+eS_, . By
Theorem 3.3 (4), there exists a polynomial » € k[s] such that Ed*+ = b3*-. Then
b € DI, and thus b € B,. O
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We have the following algorithm for the operator E € S, corresponding to b € B,,
which generalizes Algorithm 3.4 in [12].

ALGORITHM 4.2. Let y = Au— Av and u,v € N".
Input: a polynomial b € B,.
Output: an operator E € S, with Ed" = bo".

() Fori=1,...,n compute a Grobner basis G; of I, with respect to any reverse
lexicographic term order with lowest variable 9;.
(2) Expand b(z/- @by, ..., 32 aq0,)d" in Q(x,9) into a Q-linear combination of
n

monomials x
(3) i:=1, E := the output of Step 2.

While i < n, do

(a) Reduce E modulo G; in Q(x, d).
(b) The output of Step 3-(a) has ;" as a right factor. Divide it by 3.
(¢) i:=i+1, E:= the output of Step 3 — (b).

The proof of the correctness is completely analogous to that of Algorithm 3.4 in
[12].

We thus reduce the study of S, to that of B, and for the study of B, = k[s] N DI,
we study k[0] N DI, first. Since M, is the largest monomial ideal in 7,, we have
by Lemma 4.4.4 in [13],

PROPOSITION 4.3.
k[0]N DI, = M, (4.15)
where ﬁz is the distraction of M, i.e., ]\71 =k[0INnDM,.

For the study of M, .» we recall the standard pairs of a monomial ideal. Let M be a
monomial ideal of k[d]. Then a pair (u, t) with u € N" and T C {1,...,n}is called a
standard pair of M if it satisfies the following conditions:

(1) wu; =0forallj e 7. (We abbreviate this tou € N™, where ¢ stands for the operation
of taking the complement.)

(2) There exists no v € N* such that 0“*" € M.

(3) For each j¢ 1, there exists v € NV such that 8“*" € M.

For algorithms of obtaining the set of standard pairs, see [7] and Algorithm 3.2.5
in [13]. Let S(M,) denote the set of standard pairs of M,. By Corollary 3.2.3 in
[13], the distraction M, is described as follows:

M,= () (0i—wli¢r). (4.16)
(u,1)eS(M )
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LEMMA 4.4. Fix any ye€ZA. Let (u,t) be a standard pair of M,. Then
AQ% = Zjer Q. ya;j is a proper face of Q - oA, and moreover t = {i|a; € AQ",  }.

Proof. Suppose that 4Q",  is not contained in any facet of Q - (4. Then there
exists y € AN" := Zjef Na; such that Fy(y)>0 for all facets o. Then
F;(Au + my) > 0 for m > 0 and all facets . By Lemma 1 in the appendix of [14],
Au+ my € y + NA for m > 0. This contradicts the assumption that (i, 7) is a stan-
dard pair of M,.

Next we claim (AQ’; 0) N(AQ") = {0}, which implies the lemma. Suppose
(AQT; 0) N (AQ") # {0}. Let v € N™ be a nonzero element satisfying 4v € AZ*. Then
there exists w € N* such that Aw € Av+ AN'. Since A(u+ mw)¢ y + NA for any
meN, (Au+ ANV)YN(y+NA) =@ for v ={i|v; #0}. This contradicts the
assumption that (u, 7) is a standard pair of M, again. O

Thanks to Lemma 4.4, we regard the set 7 of a standard pair (u, t) as a proper face

AQ" of Q- A.

For an ideal I of k[s], we denote by V(I) the zero set of I. Proposition 4.3 and
equation (4.16) give the following prime decomposition of B, and irreducible
decomposition of the zero set V(B,).

THEOREM 4.5.
M

B, = ﬂ (F, — Fy;(Au) | o facet D t). (4.17)
(u,1)eS(M)

2

ViB)= |J Mu+kAni). (4.18)
(u,1)eS(M,)

Proof. Using (4.16), we only need to show
K[s]N(0; —uili¢T) = (Fs — Fo(Au) |6 D 7). (4.19)
First we have
V(K[sIN(O; —u;|i¢g 1) = Au+k(AN1) = V({F, — F;(Au)| o D 1)). (4.20)
Hence

K[s] N (0; —u;i |i¢ 1) D (Fy — Fo(Au)| 0 D 1)
= I(V({F; = Fs(Au)| 0 > 1))
= I(V(K[s] N (0; — u; | i¢ 1)), (4.21)

where [ stands for the operation of taking the defining ideal. On the other hand,
J C I(V(J)) is automatic for any ideal J. We therefore obtain (4.19). O
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PROPOSITION 4.6.
)

V(Byy) CV(B)UWV(By)+ 1)  fory, ) € ZA. (4.22)
)
V(Byy) = V(B)U(V(B,)+7)  for 7.7 € NA. (4.23)
Proof.
(1) Given p, € B, and p, € B, let P, € S, and P, € S, be the corresponding

operators as in Proposition 4.1. Then

P,P, 33 = P,p,(s)d"- o*+
= (s — y)P,d" 3
= Py (s = ()9 0. (4.24)
Hence p,(s — 2)p,(s) € B+

(2) Given py4y € Byyy, let P,y €S, be the corresponding operator as in
Proposition 4.1. Then

_ VR
Py = Pyyyd" - 0

Hence p,1,(s) € B,.
Furthermore

Pty (8 + 0 = 91y (5) = F Py 0 9.
Hence p,4,(s + ) = 0*P,,0", which impies p,.,(s + 1) € By. O

PROPOSITION 4.7. Let y € ZA. Given p, € B, and p_, € B_,, let P, € S, and
P_, € S_, be the corresponding operators as in Proposition 4.1. Then

P_y Py = py(s+ 1)p—4(s). (4.25)
Proof.

P_,P,o" = P_yp,(s)9"
= p,(s + )P, 0"
= py(s + 0P ()" (4.26)

Recall that the symmetry algebra S has no zero-divisors (Theorem 3.3). Divide
equation (4.26) by 9%+ to obtain the conclusion. O
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For y € ZA, define an ideal B_,, by

B_,, = (p,(s+ X)p—z(s) |p, € B,,p—, € B_,). (4.27)

Then the following proposition is immediate from the definition of B_, ,.

PROPOSITION 4.8.
)

V(B-y,) = (V(By) — 1) U V(B-)). (4.28)

(2)
V(By,) = V(B,—) — 1. (4.29)

THEOREM 4.9. Lety € ZA. Assume ¢ V(B_, ). Then two A-hypergeometric sys-
tems M 4(p) and M 4(B + y) are isomorphic.

Proof. First note that f¢ V(B_,,) is equivalent to f+ y¢ V(B,—,) by
Proposition 4.8. Take polynomials p,e B, and p_, e B_, such that
p,(B+p-,(p)#0. Let P, €S, and P_, € S_, be the corresponding operators
to p, and p_, as in Proposition 4.1. Then by Proposition 4.7, we have the following

equalities:
P_yPy = py(s+ 1)p-y(5), (4.30)
PyP_y = p_y(s — 10)py(). (4.31)

The multiplications by P_,, P, respectively induce homomorphisms:

S Ma(B)— M4(B + ), (4.32)
g M+ 1)— Ma(p). (4.33)
Then

gof =p,(B+ 0p—(Bidr,p (4.34)

and
S og=p(B+ 1) — 00, B+ Didr,p+) (4.35)
= p— (B, (B + 2)idrs yp+7)- (4.36)
Hence f and g are isomorphisms. O

Now we are ready to prove the if-part of our main theorem.

Proof of the if-part of Theorem 2.1.

We suppose that E.(f) = E.(f) for all faces. Let y := ' — . We claim ¢ V(B_,).
Assume the contrary. Then by Theorem 4.5, there exists a standard pair
(u,7) € S(M_,) such that f — Au € k(4 N 7). The equality E.(f) = E:(f’) implies that
there exists v € N” such that f — f’ = A(u — v) + N(4 N 7). Hence the intersection of
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Au + N(4 N 1) with (B — B') + N4 is not empty. This contradicts the fact that (u, ) is
standard. We have thus proved ¢ V(B_,). By symmetry we have ' ¢ V(B,), which is
equivalent to f¢ V(B,) —y. Hence B¢ V(B_,, by Proposition 4.8. From
Theorem 4.9 we conclude M 4(B) is isomorphic to M 4(f). O

As a corollary of the proof of the if-part of Theorem 2.1, we obtain the following.

COROLLARY 4.10. If M 4(B) and M 4(B') are isomorphic, then there exists an
operator P € Sy_p such that the multiplication by P from the right induces an
isomorphism from M4(f) to M 4(p).

5. Normal Case

In this section, we consider the normal case:

NA=ZANQ A. (5.37)

Many important examples are known to be normal, such as the Aomoto-Gel’fand
systems, the A-hypergeometric systems corresponding to the univariate
hypergeometric functions ,.F,, to Lauricella functions, etc. (see [9], [10]). It will
turn out below that the parameter space can be classified in terms of the primitive
integral support functions F, in the normal case.

LEMMA 5.1. Assume A to be normal. Then we have the following.
(D) QA NT)NZA equals Z(A N 7) for all faces .

(2) F;(NA) =N for all facets o.

(3) Fora face 7,

NA+Z(ANTD) =ZAN () (NA+KAN0). (5.38)

o facet Ot

Proof.

() Let y€(@QANt)NZA. Add a vector y e N(AN7T) to y so that
1+ 1 €Qso(4N7). By normality, we see that y+ ' € N(4N1). Hence
belongs to Z(A N 7).

(2) Lety € ZA satisty F;(y) = 1 For any facet ¢’ # g, there exists ¢; € ¢ \ ¢’. Hence
there exists ¥’ € N(4 N ) such that F(y + 3') = 0 for all facets ¢’. By normality,
1+ 1 € NA. Since F,(x + x') = 1, we obtain F,(NA4) = N.

(3) Let y € ZA satisfy F,(y) = 0 for all facets containing 7. For a facet ¢ not con-
taining the face 7, there exists a; € 1\ o. Hence there exists a vector
% € N(4 N1) such that F;(y+ ') = 0 for all facets ¢ of the cone Q- (4. By
normality, y + ' € N4, and thus y e N(A\ A N1)+ Z(4N7). O
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THEOREM 5.2. Assume A to be normal. Let f, f € k?. Then M 4(B) is isomorphic to
M4(B) if and only if B— B € ZA and
{0 facet | F,(B) € N} = {0 facet | F,(§') € N}. (5.39)

Proof. By Proposition 2.2 (3), the only-if-part follows from Theorem 2.1.

Next we prove the if-part. Suppose f — ' € ZA and (5.39). By Lemma 5.1 (1), (2),
and Propositions 2.2, 2.3, we obtain E,(f) = E,(f) for all facets. By Lemma 5.1 (3),
the if-part follows from Theorem 2.1 O

EXAMPLE 5.3. Let

1 00 1
A=10 1 0 1].
0 01 -1

Let f € ZA = Z“. Then by Theorem 5.2, the A-hypergeometric system M 4(f) is
isomorphic to

M 4('(0,0,0)) if Br1=20,p,20p+p520p,+p320,
M4((=1,0,1))  if B <0,6,=20,B+B3=0,p+p5>0,
M40, -1,1))  if B =0,8,<0,8+B3=0,p+p5>0,
M4(0,1,=1))  if B1=0,6,=0,B+B3<0,p+p5>0,
M4((1,0,=1))  if B =0,8,=20,8+B3=0,p,+p;5<0,
My((=1,-1,1) if By <0,6,<0,B+B3=0,p+p;=0,
M4((=1,0,0) if B <0,5,=20,5+5<0,+p3=0,
M4(0,-1,0)) if By 20,8, <0, +B320,8,+p;5<0,
M4((0,0,=1)) if p1=0,6,=0,8+pB3<0,p+p;5<0,
My((=2,-1,1) if By <0,8,<0,8+B3<0,B,+p5=0,

My((=1,=-2,1)) if By <0, <0,8+p3>0,8+p;5 <0,
M4((=1,0,=1) if By <0,6,=0,8+B5<0,B+p;5 <0,
M40, -1, =1)) if By 20,8, <0, +p3<0,B,+p5<0,
My((=1,-1,0) if By <0, <0, +p3<0,6,+p5<0.

6. Monomial Curve Case

In this section, we consider the case d = 2, called the monomial curve case. Let

1 11 --. 1 1
4= <0 o i z'n)

with 0 <i <i3< -+ < I, relatively prime integers. In this case, there are only two
facets: o1 =Q-(/(1,0) and 62 = Q- ((1,i,). Their primitive integral support
functions are Fy,(s) = 52 and Fy,(s) = ins1 — $2.
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We denote by £(A4) the set of holes, i.e.,
E(A): = ((NA+ Za)N(NA + Za,)) \ N4 (6.40)
={Bl Eq.,4(B) = {0}, E;(B) = {0},
Es,(B) = {0}, Eg)(B) =¥} (6.41)

The rank of M 4(f)isd ord + 1, and it equals d + 1 if and only if § € £(A) (see [2],
[13]).

In the monomial curve case, the assumption of Proposition 2.3 (2) is clearly
satisfied:
LEMMA 6.1. For any face t,
ZAN(kANT)=2Z(AN7). (6.42)
COROLLARY 6.2.
E(A) ={p € ZA| F;(p) € F5,(NA), Fo,(p) € F5,(NA)} \ NA. (6.43)

Proof. This is immediate from Lemma 6.1 O
Theorem 2.1 reads as follows in the monomial curve case.

THEOREM 6.3. Let f, f € k“.

(1) Suppose B¢ E(A). Then M 4(B') is isomorphic to M 4(B) if and only if f — B’ € Z.4,
B ¢ E(A), and 6,1 Fo(B) € Fy(NA) = (07| Fo(B) € Fr(NA)).

(2) Suppose B € E(A). Then M 4(B) is isomorphic to M 4(B) if and only if B € E(A).

Proof. (2) directly follows from Theorem 2.1.

The only-if-part of (1) follows from Theorem 2.1 by Proposition 2.2 (3). Next
suppose that B—p €ZA, PB,B¢EA), and that {o;|F,(B) € F,(NA)}
={0;| F,(f) € F,,(NA)}. Then by Lemma 6.1, Proposition 2.2 (3), and
Proposition 2.3 (2), we have E,(B) = E, () for i=1,2. Moreover we know
E(B), E)(f) =¥ from Proposition 2.2 (2). Hence M4(f) and M,(f) are
isomorphic by Theorem 2.1. O

EXAMPLE 6.4. Example 4.2.2 in [13]) Let
11 1 11
A= (o 2 47 9)'
Then
F, (NA)=1{0,2,4,6,7,8,9,...}, (6.44)

and

F;,(NA) ={0,2,4,5,6,7,8,9,...1}, (6.45)
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Parameters in ZA = Z> are decomposed into five parts according to the
isomorphism classes of their corresponding A-hypergeometric systems:

(1) N4,
2 {'(Br. B | By € F5(NA), 9By — Pr & Fo,(NA) },
B) {'(B1. B | B¢ F5(NA). 9By — B € Fo,(NA) },

@) {"(B1, B2) | B2 & F5,(NA), OBy — B¢ Fir(NA) },
B5) &) =1{(2,10),%2,12),%(3, 19)} : the set of holes.

7. Final Remark

Thanks to Theorem 2.1, all D-invariants of A-hypergeometric systems can be
described in terms of E.(f); the characteristic cycles (in particular, the rank), the
monodromy representations, etc. One of the most recent results is given by Tsushima
([15]) on Laurent polynomial solutions. He has proved that the vector space of
Laurent polynomial solutions of M 4(f) has a basis consisting of canonical series
whose negative supports correspond to faces t of Q504 such that
dimt = [{a;|a; € T}|, and that 0 € E.(f) but 0¢ E.(f) for any proper face 7’ of
7. In particular, the dimension of the vector space of Laurent polynomial solutions
equals the cardinality of the set of such faces. This is a generalization of the cor-
responding result by Cattani, D’Andrea and Dickenstein ([2]) in the monomial curve
case.
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