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Abstract. Using the classification by Dotti and Fino [3] we show the existence
of an HKT metric on a neighbourhood of the centre of any 8-dimensional nilpotent
Lie group G with invariant hypercomplex structure. This metric exists globally if the
hypercomplex structure is abelian, and in these cases we construct an HKT structure
on a neighbourhood of the zero section of the cotangent bundle T∗G extending the
HKT metric on G.
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1. Introduction. The two-dimensional sigma models studied by physicists force
the Riemannian structure of the target space to be compatible with different kinds
of quaternionic structures. In the presence of Wess Zumino terms and certain
supersymmetries, the target space carries an HKT structure (see, for example, [9]).
We begin by recalling some of the facts about these geometries.

A manifold M is hypercomplex if there exists three complex structures I , J and
K satisfying the relations of the quaternions I2 = J2 = K2 = IJK = −1. A Riemannian
manifold (M, g) is called hyperhermitian if it admits a hypercomplex structure such
that g is hermitian with respect to I , J and K .

An affine connection ∇ on a hyperhermitian manifold M is called hyperkähler
with torsion if it satisfies ∇g = 0, ∇I = ∇J = ∇K = 0 and the torsion tensor
c(X, Y, Z) = g(T(X, Y ), Z) is totally skew. (Here T is the torsion of ∇.) A manifold is
called hyperkähler with torsion (or short HKT) if it is hyperhermitian and possesses a
hyperkähler with torsion connection. It is well known (see [7]) that any hypercomplex
manifold locally admits a compatible HKT metric.

If there exists a hyperkähler with torsion connection on a hyperhermitian manifold,
it is unique; see [7]. Hyperkähler manifolds with torsion are in general not hyperkähler
as the Kähler forms corresponding to I , J and K need not be closed. The hyperkähler
case corresponds to the case of vanishing torsion and the connection is then the Levi–
Civita connection.
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In this paper we shall construct hyperkähler structures with torsion on some
nilpotent Lie groups. The first result deals with those 8-dimensional cases where
the Lie group admits an invariant hypercomplex structure; in particular, we use the
classification by Dotti and Fino [3] of 8-dimensional nilpotent Lie groups with invariant
hypercomplex structure. Dotti and Fino [4] have constructed invariant HKT structures
on 8-dimensional 2-step nilpotent Lie groups; in particular, they have shown that all
invariant HKT structures must have abelian hypercomplex structures. Allowing the
metric to be non-invariant, we shall prove the following result.

THEOREM A. Let G be any 8-dimensional nilpotent Lie group with invariant
hypercomplex structure. Then G admits a compatible HKT structure on a neighbourhood
of its centre.

Boyom [2] has described a Lie group structure on T∗G using the group structure
on G and a flat torsion-free affine connection on G. Using this construction when G
has an abelian hypercomplex structure we may try to extend the then globally defined
HKT metric on G to (a neighbourhood of the zero section of) T∗G. More precisely,
we shall prove the following theorem.

THEOREM B. For any 8-dimensional nilpotent Lie group G with invariant abelian
hypercomplex structure there exists an HKT metric on a neighbourhood of the zero
section of the cotangent bundle T∗G extending the invariant HKT metric on G.

This result can be compared to the following theorems on hypercomplex and
hyperkähler extensions on (co)tangent bundles.

(i) Let X be a complex manifold equipped with an affine torsion-free connection
whose curvature is of type (1, 1). Then there exists a hypercomplex structure in a
neighbourhood of the zero section of the tangent bundle TX such that the Obata
connection restricts to the given connection on the zero section. See [6].

(ii) Let X be any real-analytic Kähler manifold. There exists a hyperkähler metric
on a neighbourhood of the zero section of the cotangent bundle T∗X that restricts to
the given metric on the zero section. See [5].

The result of Theorem B may be regarded as part of the more general extension
problem: describe which hermitian manifolds X possess an HKT structure in a
neighbourhood of the zero section in T∗X .

2. The HKT equation. We shall use the following result which allows us to decide
whether a hyperhermitian manifold is HKT.

PROPOSITION 1. (See Proposition 2 in [7].) Let M be a hyperhermitian manifold and
F1, F2, F3 the Kähler forms with respect to I, J and K, respectively. Then the metric is
HKT if and only if ∂I (F2 + iF3) = 0, where ∂I + ∂̄I = d is the decomposition of the exterior
derivative into types with respect to the complex structure I.

Proof. See [7] �
The 2-form F2 + iF3 is of type (2, 0). Hence the condition ∂I (F2 + iF3) = 0 is equi-

valent to the vanishing of the (3, 0)-part of d(F2 + iF3). In the hyperkähler case, since
F2 and F3 are then closed, this condition is satisfied. However, the twistor theory for
hyperkähler manifolds uses the fact that ∂̄I (F2 + iF3) = 0 as the starting point to encode
the hyperkähler metric in holomorphic form. Hence the condition of Proposition 1
indicates that the twistor theory for HKT manifolds will have non-holomorphic
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features and will thus be less promising a tool in the construction of HKT structures.
For more on the twistor theory see [8]. Since the hypercomplex and hyperkähler
extension theorems in [6] and [5] have been proved using twistor theory, their proofs
cannot be easily adapted to the case of HKT extensions of hermitian manifolds.

3. Hypercomplex structures on 8n-dimensional nilpotent Lie algebras. Let G be
an 8n-dimensional 2-step nilpotent Lie group with π1G = 0 and centre C of dimension
at least 4n. Then we can find invariant 1-forms e1, . . . , e8n on G such that dek = 0
for 1 ≤ k ≤ 4n and de4n+j ∈ �2〈e1, . . . , e4n〉 for 1 ≤ j ≤ 4n. See [10]. Alternatively,
[ei, ej] ∈ 〈e4n+1, . . . e8n〉, for all i, j ∈ {1, . . . , 4n}, and [e4n+i, ek] = 0, for i = 1, . . . , 4n and
k = 1, . . . , 8n.

We define an invariant almost hypercomplex structure on G by setting Ie2i−1 = e2i

for 1 ≤ i ≤ 4n and Jej = (−1)j+1e2n+j for 1 ≤ j ≤ 2n and 4n + 1 ≤ j ≤ 6n and K = IJ. In
general, the almost complex structures I , J and K may not be integrable.

We now restrict our attention to dimension 8. According to Theorem 2.2 in
[3], any 8-dimensional nilpotent Lie group with invariant hypercomplex structure is
2-step nilpotent. It is also clear from the classification in [3] that we can find invariant
forms e1, . . . , e8 satisfying the conditions mentioned above such that the complex
structures I , J and K are defined as above. Furthermore, in all but one case the centre
will be spanned by e5, . . . , e8 (where e1, . . . , e8 are the invariant vector fields dual to
e1, . . . , e8). In the exceptional case, the centre is spanned by e4, e5, . . . , e8.

EXAMPLE 1. The cotangent bundle T∗(H3 × �) has the algebra dei = 0 for
i = 1, . . . , 5 and de6 = 2e1 ∧ e2, de7 = 2e1 ∧ e3 and de8 = 2e1 ∧ e4.

The fact that this algebra does indeed describe the cotangent bundle, i. e. is defined
on g∗ ⊕ g where G = H3 × �, can be seen as follows.

Let X1, X2 and X3 be left-invariant vector fields generating the Lie algebra of
the three-dimensional Heisenberg group H3 and let X4 generate the Lie algebra of �.
Then all Lie brackets [Xi, Xj] vanish except [X1, X2] = X3. We define a flat torsion-
free affine connection ∇ on G = H3 × � by ∇X1 X2 = X3, ∇X1 X1 = −X4 and all other
∇Xi Xj = 0. Setting IX1 = X2 and IX3 = X4 defines a left-invariant complex structure
on G; the connection ∇ satisfies ∇I = 0. Using the process described in Section 5
below, we can use this connection to define a Lie group structure on T∗G. If we define
a basis X1, . . . , X8 of g∗ ⊕ g by Xi = (0, Xi), X4+i = (pi, 0), i = 1, . . . , 4, (where p1 . . . , p4

is the dual basis to X1, . . . , X4), the Lie algebra can be described by [X1, X2] = X3,
[X1, X7] = −X6 and [X1, X8] = X5. If p1, . . . , p8 is the dual basis to X1, . . . , X8, then
letting e1 = 2p1, e2 = 2p2, e3 = 2p8, e4 = 2e7, e5 = 2p5, e6 = −2p3, e7 = −2p5 and e8 = 2p6

defines the algebra above.

4. Solving the HKT equation in the 8-dimensional case. In this section we shall
prove Theorem A. We use the invariant hypercomplex structure on G discussed in
Section 3. Our strategy to find an HKT metric on G is to perturb the standard metric
g0 given in terms of the invariant forms as g0 = ∑n

j=1(ej)2.
Let wj = e2j−1 + ie2j, j = 1, . . . , 4, be the (1, 0) forms with respect to I and define

holomorphic functions zj = x2j −1 + ix2j, j = 1, 2, where dxj = ej for j = 1, . . . , 4. We
can always find x1, . . . , x4 since de1 = de2 = de3 = de4 = 0 and π1G = 0.
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If F0
2 = g0(J·, ·) and F0

3 = g0(K·, ·), then F0
2 + iF0

3 = w1 ∧w2 + w3 ∧ w4, so that

d
(
F0

2 + iF0
3

)3,0 = (dw3)2,0 ∧w4 − w3 ∧ (dw4)2,0,

where αp,0 denotes the (p, 0)-part with respect to I of the p -form α. Since
de5, . . . , de8 ∈�2〈e1, . . . e4〉, we have dw3, dw4 ∈ �2〈w1, w̄1, w2, w̄2〉 and thus

(dw3)2,0 = A1w1 ∧w2 and (dw4)2,0 = A2w1 ∧w2,

where the coefficients A1 and A2 are constant, since all forms are G-invariant.
We introduce mixed terms into the metric such that g = g0 + ∑4

j =1 λjgj (with real
coefficient functions λj, j = 1, . . . , 4) remains hyperhermitian. Hence

g1 = e1e5 + e2e6 + e3e7 + e4e8,

g2 = e1e6 − e2e5 − e3e8 + e4e7,

g3 = e1e7 + e2e8 − e3e5 − e4e6,

g4 = e1e8 − e2e7 + e3e6 − e4e5.

Let αj = gj (J·,·) and βj = gj (K·,·), j = 1, . . . , 4. Then

α1 + iβ1 = w1 ∧w4 − w2 ∧w3,

α2 + iβ2 = iw1 ∧w4 + iw2 ∧ w3,

α3 + iβ3 = −w1 ∧ w3 − w2 ∧ w4,

α4 + iβ4 = −iw1 ∧w3 + iw2 ∧w4.

Choose λ1 − iλ2 = −A2z1 and λ3 − iλ4 = A1z1. We have

d(F2 + iF3)3,0 = d
(
F0

2 + iF0
3

)3,0 +
4∑

j =1

d(λj (αj + iβj))3,0

= A1w1 ∧w2 ∧ w4 − A2w1 ∧w2 ∧ w3 − d(−A2z1)1,0 ∧w2 ∧ w3

− d(A1z1)1,0 ∧w2 ∧w4 = 0,

since d(αj + iβj)3,0 = 0 and d(λ1 + iλ2)1,0 = d(λ3 + iλ4)1,0 = 0. Hence g satisfies the HKT
equation.

We recall from the previous section that the centre C corresponds to
x1 = x2 = x3 = x4 = 0 or x1 = x2 = x3 = 0 in the exceptional case respectively. Hence
g|C = g0|C , but g0 is clearly positive definite and thus g is positive definite in a
neighbourhood of C in G concluding the proof of Theorem A.

REMARK 1. If the hypercomplex structure is abelian, i. e. for any (1, 0)-form α

the exterior derivative dα is of type (1, 1), the constants A1 and A2 vanish. Hence the
standard metric g0 is HKT and thus there exists a global HKT metric on G. This is
also true in dimension 8n for arbitrary n.

EXAMPLE 2. We continue Example 1. For the cotangent bundle T∗(H3 × �) we have
A1 = 0 and A2 = 1, because dw3 = d(e5 + ie6) = i

2 (w1 + w̄1) ∧ (w̄1 − w1) = iw1 ∧ w̄1 and
dw4 = d(e7 + ie8) = (w1 + ∧w̄1) ∧ w2.

The case of T∗(H3 × �) can also be regarded as an example of an HKT extension
to the cotangent bundle of the hermitian metric g = p2

1 + p2
2 + p2

3 + p2
4 on H3 × �. To
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adopt this point of view we have to choose the solution λ1 + iλ2 = 0 and λ3 + iλ4 = z2

of the HKT equation. The metric g will then be positive definite in a neighbourhood
of the zero section of T∗(H3 × �).

5. Lifting the algebra to the cotangent bundle. If G is a Lie group possessing a flat
torsion-free affine connection ∇ we can define a Lie algebra structure on g∗ ⊕ g (and
thus a Lie group structure on T∗G) as follows; (cf. [2]). If (α, X), (β, Y ) ∈ g∗ ⊕ g, then
we define

[(α, X), (β, Y )] = (α ◦ ∇Y − β ◦ ∇X , [X, Y ]).

LEMMA 1. (Barberis [1].) If G is 2-step nilpotent and carries an invariant
hypercomplex structure which preserves the centre, then the Obata connection ∇ on
G is flat.

Proof. The Obata connection can be expressed in terms of Lie brackets and the
complex structures I , J and K (see, for example, [1]) as

∇X Y = 1
2

[X, Y ] + 1
12

(I([JX, KY ] + [JY, KX]) + J([KX, IY] + [KY, IX])

+ K([IX, JY] + [IY, JX])) + 1
6

(I [IX, Y ] + [IY, X ])

+ J([JX, Y ] + [JY, X ]) + K([KX, Y ] + [KY, X ])), (1)

but then ∇X∇Y Z = 0 and ∇[X,Y ]Z = 0. Hence the Obata connection is flat. �
We can therefore use the Obata connection (which is always torsion-free) to define

a Lie group structure on T∗G, where G is any nilpotent 8-dimensional Lie group with
invariant hypercomplex structure preserving the centre. From the classification [3] we
know that we only have to exclude one exceptional group and in all other cases the
centre will be 4-dimensional. The invariant hypercomplex structure on G lifts to an
integrable hypercomplex structure on T∗G.

We now describe the resulting algebra structure on g∗ ⊕ g in more detail. Let
e1, . . . , e8 be a basis of invariant vector fields on G such that the centre is 〈e5, . . . , e8〉. If
e1, . . . , e8 are the dual forms then de1 = de2 = de3 = de4 = 0 and de5, de6, de7, de8 ∈ �2

〈e1, . . . , e4〉. For j = 1, . . . , 4 define

fj = (e4+j, 0), f4+j = (0, ej), f8+j = (ej, 0), f12+j = (0, e4+j).

Then f1, . . . , f16 define a basis of invariant vector fields on T∗G.
For any (α, X ) ∈ g∗ ⊕ g and 1 ≤ j ≤ 4

[(α, X), (ej, 0)] = (−ej ◦∇X , 0) = 0,

since ∇X Y ∈ 〈e5, . . . e8〉 for any Y ∈ g using the formula (1) for the Obata connection
in terms of Lie brackets and the fact that any Lie bracket lies in the centre of g which is
preserved by the hypercomplex structure. Hence f9, . . . , f12 are in the centre of g∗ ⊕ g.
Also

[(α, X), (0, e4+j)] =
(
α ◦∇e4+j , 0

) = 0,
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since [X, e4+j] = 0 as e4+j is in the centre of g and thus also ∇e4+j = 0 using formula (1) for
the Obata connection in terms of Lie brackets; hence f13, . . . f16 are also in the centre.

The Lie group T∗G is 2-step nilpotent because any Lie bracket [fp, fq] lies
in the centre. This is obvious if p ≥ 9 or q ≥ 9 (as the bracket then vanishes)
or if 5 ≤ p, q ≤ 8 (since [ep − 4, eq − 4] is in the centre of g). If 1 ≤ p, q ≤ 4, then
[fp, fq] = [(e4+p, 0), (e4+q, 0)] = 0. If 1 ≤ p ≤ 4 and 5 ≤ q ≤ 8, then

[fp, fq] = (
e4+p ◦ ∇eq−4 , 0

) ∈ 〈(e1, 0), . . . , (e4, 0)〉 = 〈f9, . . . , f12〉,
since ∇ep el = 0 for l = 5, . . . , 8. Thus, for any 1 ≤ l ≤ 4,

df 8+l ∈ 〈f j ∧ f 4+k; 1 ≤ j , k ≤ 4〉 and df 12+l ∈ 〈f 4+j ∧ f 4+k; 1 ≤ j , k ≤ 4〉
and also df j = 0, for j = 1, . . . , 8.

Note that the basis of invariant 1-forms f 1, . . . , f 16 is actually of the type described
in Section 3.

6. An HKT metric on the cotangent bundle. If the invariant hypercomplex
structure on an 8-dimensional nilpotent Lie group G is abelian, the standard metric
g0 is a global HKT metric on G and we will extend it to a neighbourhood of the zero
section of the cotangent bundle and thus prove Theorem B.

Examining the classification of such Lie groups by Dotti–Fino [3], we notice
that there are only three examples with abelian hypercomplex structure, namely the
following trivial extensions of Heisenberg groups: HR

5 × �3, H�
3 × � and H�

1 × �.
All three cases will be solved using the following ansatz for a hyperhermitian metric

on T∗G:

g = g0 +
8∑

l=0

µlhl, (2)

where g0 = ∑16
j=1(f j)2, h0 = ∑4

j=1(f j)2 and, for j = 1, . . . , 4,

hj = f 1f 4+j + f 2If 4+j + f 3Jf 4+j + f 4Kf 4+j,

h4+j = f 5f 8+j + f 6If 8+j + f 7Jf 8+j + f 8Kf 8+j.

Let the corresponding Kähler forms be αl = hl(J·, ·) and βl = hl(K·, ·), l = 0, . . . , 8, and
let vp = f 2p−1 + if 2p, p = 1, . . . , 8, be a basis of (1, 0)-forms with respect to I on T∗G.
Then

α0 + iβ0 = v1 ∧ v2 + v3 ∧ v4,

α1 + iβ1 = v1 ∧ v4 − v2 ∧ v3,

α2 + iβ2 = iv1 ∧ v4 + iv2 ∧ v3,

α3 + iβ3 = −v1 ∧ v3 − v2 ∧ v4,

α4 + iβ4 = −iv1 ∧ v3 + iv2 ∧ v4,

α5 + iβ5 = v3 ∧ v6 − v4 ∧ v5,

α6 + iβ6 = iv3 ∧ v6 + iv4 ∧ v5,

α7 + iβ7 = −v3 ∧ v5 − v4 ∧ v6,

α8 + iβ8 = −iv3 ∧ v5 + iv4 ∧ v6.
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In order to produce an HKT metric we need to choose µ0, . . . , µ8 such that

d(F2 + iF3)3,0 = d
(
F0

2 + iF0
3

)3,0 +
8∑

j=0

d(µj (αj + iβj)3,0 = 0,

where F0
2 + iF0

3 = g0(J·,·) + ig0(K·,·).
We introduce holomorphic functions q1, . . . , q4 by requiring dqj = vj, for

j = 1, . . . , 4. This choice is possible since dv1 = · · · = dv4 = 0 and π1(T∗G) = π1G = 0.

Case 1. HR

5 × �3. The algebra on HR

5 × �3 is given by

dei = 0, for i = 1, . . . 7,

de8 = e1 ∧ e4 − e2 ∧ e3.

Let e1, . . . , e8 be the dual basis. Using formula 1 we compute the Obata connection as

∇e1 e1 = −∇e1 e2 =−∇e3 e3 = −1
2

e5.

All other ∇ei ej can be obtained from these using ∇I = ∇J = ∇K = 0. Using the notation
from Section 5 we get

df i = 0, for i = 1, . . . , 8, 13, 14, 15,

df 9 = 1
2

(f 1 ∧ f 5 + f 2 ∧ f 6 + f 3 ∧ f 7 − f 4 ∧ f 8),

df 10 = 1
2

(−f 1 ∧ f 6 + f 2 ∧ f 5 + f 3 ∧ f 8 + f 4 ∧ f 7),

df 11 = 1
2

(−f 1 ∧ f 7 − f 2 ∧ f 8 + f 3 ∧ f 5 − f 4 ∧ f 6),

df 12 = 1
2

(f 1 ∧ f 8 − f 2 ∧ f 7 + f 3 ∧ f 6 + f 4 ∧ f 5),

df 16 = f 5 ∧ f 8 − f 6 ∧ f 7,

and therefore

dvi = 0 for i = 1, . . . , 4 and (dv7)2,0 = (dv8)2,0 = 0,

(dv5)2,0 = 1
2
v2 ∧ v4 and (dv6)2,0 = 1

2
v2 ∧ v3.

Choose µ0 = 0 and

µ1 + iµ2 = 1
4

(−q2q̄4 + q̄2q̄4 + q̄1q3),

µ3 + iµ4 = 1
4

(q2q̄3 − q̄2q̄3 − q̄1q4),

µ5 + iµ6 = 0,

µ7 + iµ8 = 1
2

(−q2 + q̄2).
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Then the ansatz (2) satisfies the HKT equation for T∗(HR

5 × �3).

Case 2. H�
3 × �. The algebra on H�

3 × � is given by

dei = 0, for i = 1, . . . 6,

de7 = e1 ∧ e3 + e2 ∧ e4,

de8 = e1 ∧ e4 − e2 ∧ e3.

Note that we use the abelian hypercomplex structure here. There is also a non-
abelian complex structure on H�

3 by regarding this group as the complexification of HR

3 .
The Obata connection is given by

∇e1 e1 =−∇e2 e2 = −e5 and ∇e3 e3 = ∇e4 e4 = 0.

We obtain

df i = 0, for i = 1, . . . , 8, 13, 14,

df 9 = f 1 ∧ f 5 + f 2 ∧ f 6,

df 10 = −f 1 ∧ f 6 + f 2 ∧ f 5,

df 11 = f 3 ∧ f 5 − f 4 ∧ f 6,

df 12 = f 3 ∧ f 6 + f 4 ∧ f 5,

df 15 = f 5 ∧ f 7 + f 6 ∧ f 8,

df 16 = f 5 ∧ f 8 − f 6 ∧ f 7.

Therefore dvi = 0, for i = 1, . . . , 4, and (dv7)2,0 = (dv8)2,0 = 0. Also

(dv5)2,0 = 0 and (dv6)2,0 = v2 ∧ v3.

Choose µ0 = −q̄3q3 and

µ1 + iµ2 = −1
2

(q2q̄4 + q̄1q3),

µ3 + iµ4 = 1
2

(q2q̄3 + q̄1q4),

µ5 + iµ6 = 0,

µ7 + iµ8 = −q2.

Then the ansatz (2) satisfies the HKT equation for T∗(H�
3 × �).

Case 3. H�
1 × �. The algebra on H�

1 × � is given by

dei = 0, for i = 1, . . . 5,

de6 = e1 ∧ e2 − e3 ∧ e4,

de7 = e1 ∧ e3 + e2 ∧ e4,

de8 = e1 ∧ e4 − e2 ∧ e3.

The Obata connection is given by ∇e1 e1 = −3e5/2 and ∇e2 e2 =∇e3 e3 = e5/2.
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We obtain

df i = 0, for i = 1, . . . , 8, 13,

df 9 = 1
2

(3f 1 ∧ f 5 + f 2 ∧ f 6 + f 3 ∧ f 7 + f 4 ∧ f 8),

df 10 = 1
2

(−f 1 ∧ f 6 + 3f 2 ∧ f 5 − f 3 ∧ f 8 + f 4 ∧ f 7),

df 11 = 1
2

(−f 1 ∧ f 7 + f 2 ∧ f 8 + 3f 3 ∧ f 5 − f 4 ∧ f 6),

df 12 = 1
2

(−f 1 ∧ f 8 − f 2 ∧ f 7 + f 3 ∧ f 6 + 3f 4 ∧ f 5),

df 14 = f 5 ∧ f 6 − f 7 ∧ f 8,

df 15 = f 5 ∧ f 7 + f 6 ∧ f 8,

df 16 = f 5 ∧ f 8 − f 6 ∧ f 7,

and therefore dvi = 0, for i = 1, . . . , 4, and (dv7)2,0 = (dv8)2,0 = 0. Also (dv5)2,0 =
1
2v1 ∧ v3 and (dv6)2,0 =− 1

2v1 ∧ v4 + v2 ∧ v3.
Choose µ0 =− 3

2 q̄3q3 and

µ1 + iµ2 = 1
2

(q1q3 − q2q̄4) − q̄1q3,

µ3 + iµ4 = 1
2

(q2q̄3 + q̄1q4),

µ5 + iµ6 = 1
2

(q̄1 − q1),

µ7 + iµ8 = −q2.

Then the ansatz (2) satisfies the HKT equation for T∗(H�
1 × �).

In all three cases g restricts to g0 on the zero section G in T∗G. Hence we actually
obtain a positive definite metric in a neighbourhood of the zero section.
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