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On loop near-rings

D. Ramakotaiah and C. Santhakumari
A new class of algebraic systems known as loop near-rings are

introduced,which includes near-rings and consequently rings.

Different types of radicals are introduced in a loop near-ring N J

which coincide with the Jacobson radical when N happens to be a

ring, and several characterizations of these radicals are obtained.

Introduction

The notion of a loop near-ring arises out of an axiomatization of the

algebraic systems of mappings of the additive loop G into G which fix

the identity of G . Every near-domain (additively non-associative near-

field) in the sense of Pi I z [3 , Definition 8.1*1] is a loop near-ring. We

introduce a right quasi-regular element in a different way from the usual

tradition, and this seems to define three types of right quasi-regular

elements as there are three types of modular maximal right ideals.

This paper is divided into four sections. In §1, loop near-rings,

loop near-ring loops are introduced and examples of such systems are

presented. Right ideals, ideals, and modular right ideals are introduced

in §2, and a characterization of the unique maximal ideal contained in a

modular right ideal is obtained. In §3, #-loops of type V ,

(/-primitive ideals, ^-primitive loop near-rings, (/-modular right ideals

for V = 0, 1, 2 , and various radicals are introduced and we characterize

the ideals Jy(N) in terms of the largest ideals of N contained in

l/-modular right ideals in N for 1/ = 0, 1, 2 . In §4, we introduce the

notion of "right quasi-regular element of type 1/ " for 1/ = 0, 1, 2 ,

which generalizes the notion of a right quasi-regular element as introduced
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in [4]. if N happens to be a ring all these three notions coincide with

the notion of a right quasi-regular element as introduced in ring theory.

Characterization of the radicals in terms of quasi-regular elements is

obtained.

1. F u n d a m e n t a l d e f i n i t i o n s and simple c o n s e q u e n c e s

For definitions of loops, subloops, normal subloops, see [Z]. We

begin this section with the following:

DEFINITION 1.1. A system N = (N, + , •, 0) is called a loop near-

ring if the following conditions are satisfied:

(i) (N, + , 0) is a loop which we denote by N ;

(ii) (#, •) is a semigroup;

(iii) a'(b+c) = a'b + a'c for all a, b, c in N ;

(iv) 0'a = 0 for all a in N, where 0 is the identity of

the loop N

For any a belonging to an additive loop, we shall denote the unique

right and left additive inverses of a by a and ay respectively.

Using Definition 1.1 (iii), it is easy to verify that a'O = 0 ,

(amb) = a'b , (a'b)- = a'by for all a, b in N .

Throughout this paper N always stands for a loop near-ring. We

abbreviate (N, +, •, 0) by N . The identity element of N will be

denoted by 0 . Multiplication in most cases will be indicated by

justaposition; so we write rm instead of n'm .

EXAMPLE 1.2. if Q is an additive loop, then the set of all

mappings of G into itself fixing the identity of G has the structure c

a loop near-ring under addition and composition of mappings [2, p. 68].

EXAMPLE 1.3. Every near-domain (additively non-associative near-

field) [3, Definition 8.1+1] is a loop near-ring.

EXAMPLE 1.4. Let (G, +, o) be an additive loop, where 0̂  is the

identity element of G . Define ab = b for all 0 ̂  a and b in G ;

define 0i> = 0 . Then (<?, +, 0) is a loop near-ring.

Of course every near-ring is a loop near-ring.
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. Subloop near-rings, isomorphisms, and homomorphisms of loop near-

rings are defined in the usual way. Left (right) identities, left (right)

invertible elements, and nilpotent elements are defined as in near-rings.

We introduce the notion of iV-loops, il/-loop homomorphisms in the

usual way.

DEFINITION 1.5. An additive loop (G, +, ~0) is called an tf-loop

provided there exists a mapping (g, n) -»• gn of G x N •*• G such that

(i) g(n+m) = gn + gm ,

(ii) g(nm) = (gn)m for all g d G , n, m € N .

Clearly N+ is an W-loop. If 0 is the identity of the loop G ,

gO = 0" and On = (00)n = o'(On) = 00 = o" for all n (. N . Further

= gny and

We abbreviate (G, +, 0) by G . The identity element of an tf-loop

G will be denoted by 0 .

EXAMPLE 1.6. If G is an additive loop and N is the loop near-

ring of all mappings of G into itself fixing the identity element, then

G has the structure of an tf-loop.

If G is an tf-loop and A and K are subsets of G and N

respectively, then the set Uk I <5 € A, k € K} will be denoted by A# .

DEFINITION 1.7. A subloop A of an tf-loop G is called an

tf-subloop of G if Aff c A .

The tf-subloops in N are called tf-loop modules of N .

DEFINITION 1.8. Suppose G and G' are tf-loops. A mapping

/ : G •* G1 is called an tf-loop homomorphism provided

(1) f(x+y) = /(*) + f(y) for all x, y in G ,

(2) f{xn) = f(x)n for all x in G and n in A? .

An A?-loop homomorphism f of G into G' is called an tf-loop

isomorphism if / is a bijection of G into ff' .

EXAMPLE 1.9. Let G be an JV-loop and let g € G . Then the

mapping n •* gn is an iV-loop homomorphism of A7 into G .

DEFINITION 1.10. The kernel of an A'-loon homomornhism of an #-loop
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G i s called an tf-loop kernel of G .

We now obtain necessary and sufficient conditions for a nonempty-

subset of an tf-loop G to be an tf-loop kernel of G .

THEOREM 1.11. A nonempty subset K of an N-loop G is an N-loop

kernel of G if and only if

(i) (K, +) is a normal subloop of G ,

(ii) (g+k)n + gn Z K fop all g I G , k ( K , and n (. N .

Proof. Let <(> : G •*• G' be an A?-loop homomorphism and l e t

K = ker(<J>) . Then K i s a normal subloop of G [ 2 , p . 6 0 ] . Let g € G ,

k £ K , and n € N . Consider

= <b(g)n + <t>(g)np = (\>(g)0 = o"' ,

where o'' is the identity of G' . Therefore (g+k)n + gn (. K for all

g (. G , k € K , and n € N . Therefore K satisfies conditions (i) and

(ii). Conversely let G be an iV-loop and K be a nonempty subset of

G , satisfying (i) and (ii). We wish to show that G\K has the structure

of an W-ioop. For g + K , g' + K in G\K , define

(g+K) + (g'+K) = (g+g') + K . Then it can be shown that G\K has the

structure of a loop [2, p. 6l]. Put (g+K)n = gn + K . Suppose

g + K = g' + K t g Z g' + K . Then g = g' + k , where & € K . Now

^n = (g'+k)n . Therefore gn + g'n^ = (g'+k)n + g'np € K . Hence,

[gn+g'n ) + K = (g'w+^'nj + # . Since cancellation laws hold good in a

loop and since G\K is a loop we have (gn+K) = g'n + K . Hence the map

(g+K, n) -* (g+K)n of G\K x N + G\K is well defined. Let g+K € G\K and

n, m € N . Then

(g+/0(n+m) = g(n+m) + K = (gn+gm) + K = (gn+K) + (gm+K) = (<7+#)w + (g+K)m

and

(g+K)nm = g(nm) + K = (gn)m + K = (gn+K)m =

Therefore C|# has the structure of an #-loop. Now the mapping

(j) : x -*• x+K is an #-loop homomorphism of G onto G\K , x € ker(<J>) if

and only if (j)(x) = (J (where () is the identity of G\K ), and ~§(x) = (J
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i f and only i f x + K = K , and x + K = K i f and only i f x € K . Hence

K = ker(<f>) . Hence K i s an tf-loop k e r n e l of an #- loop G .

In a s i m i l a r way i t can be shown t h a t a nonempty subset K of G i s

an iV-loop ke rne l of G , i f and only i f (K, +) i s a normal subloop of

(G, + ) and gn^ + (g+k)n € K for a l l g d G , k d K , and n € ff .

The factor loop of an tf-loop G by an iV-loop kernel K of G is

denoted by G - K .

REMARK 1.12. By Theorem 1.11, i t can be easily shown that every

tf-loop kernel of G i s an iV-subloop of G .

We now have the following:

THEOREM 1.13. Let h : G •*• G' be an N-loop epimorphism. Then h

induces a one-to-one correspondence between the N-subloops (N-loop

kernels) of G containing ker(Tz) and the N-subloops (N-loop kernels)

of G' by K (c G) + h(K) .

Proof. If K i s a subloop (normal subloop) of G then h(K) i s a

subloop (normal subloop) of G' . Conversely i f K' i s a subloop (normal

subloop) of G' then h~ {K') i s a subloop (normal subloop) of G [2,

iv , Lemma 1.6]. The res t of the proof would follow in the usual way and

hence is omitted.

THEOREM 1.14. The intersection of any family of N-loop kernels of

an N-loop G is an N-loop kernel of G .

Proof. Let {K
a}a(A

 b e a family of tf-loop kernels of an tf-loop

G . Bv [2 , iv , Theorem 1.2]. OK i s an N-loov kernel of G .
a

LEMMA 1.15. The set S of all N-loop kernels of an N-loop G

form a commutative semigroup under addition.

Proof. Let A and B be iV-loop k e r n e l s of an il?-loop G :

A + B = {a+b | a € A, b € B} . Now A and B a r e normal subloops of G

(Theorem l . l l ) . Since the s e t of a l l normal subloops of an a d d i t i v e loop

form a commutative semigroup under a d d i t i o n [ 2 , i v , Theorem l . U ] , A+B

i s a normal subloop of G and A + B = B + A ; fu r the r

(A+B) + C = A + (B+C) for a l l A, B, C (. S . We wish t o show t h a t
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(g+(a+b))n + gn € A + B for a l l g € G , n € N , and a+b € A+B . Since

B i s a normal subloop of G , g + (a+B) = (g+a) + B . But

g + (a+b) € g + {a+B) . Hence g + (a+b) = (g+a) + b' , where b' € B .

Since B i s an il/-loop kernel of ff and b' € B ,

} + B = B = o + B = { (0+a )n+(g"W}« r } + B .

S i n c e G - B i s a l o o p , ((<7+a)+Z>')n + B = (^+a )n + B . Now

B = { ((^+a)+fc')n+ffn
rl

 + s = {^G+a^+gnJ + B = a'

where a' = (g+a)n + gn € A , since a £ A and .4 i s an il/-loop kernel

of (3 . Therefore {g+(a+b))n + gn € A + B . Hence A+B is an iV-loop

kernel of G . Therefore the set of a l l iV-loop kernels of an ff-loop G

i s a commutative semigroup under addition.

LEMMA 1.16. If G is an N-loop, then for every g € G ,

gN = {gn | n € N} -is an N-subloop of G .

Proof. Let gn, gn' € gN . Then gn + gn ' = g(n+n') € gN and

gO = 0 € gN . Since gn, gn' Z G and G i s a loop, there exist unique

elements x, y € G such tha t gn = gn' + x = y + gn' . Further there

exist unique elements m, m' £ N such that n = n' + m = m' + n'. Hence

gn = gn' + gm = gm' + gn' . Since x and y are unique, gm = x and

gm' = y . Therefore x, y € gN . Hence gN i s a subloop of G .

2 . M o d u l a r r i g h t i d e a l s

In this section we introduce the notion of a modular right ideal in a

loop near-ring and obtain a characterization of the unique maximal ideal

contained in a modular right ideal.

DEFINITION 2.1. By a right ideal of a loop near-ring N we mean an

tf-loop kernel of N as an tf-loop.

In view of Theorem 1.11, a nonempty subset L of a loop near-ring N

is a right ideal of N if and only if (L, +) is a normal subloop of N

and (x+n)m + nm € £ for all x € L , n, m € N . Further, if I is a

right ideal of N , then LN c L .

Nil and nilpotent right ideals in N are defined in the usual way.
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DEFINITION 2 .2 . A r i g h t i d e a l L of N i s c a l l e d an i d e a l of N

if HL cL .

REMARK 2.3. If P i s an ideal of N then N\P i s a loop near-ring

in which {a+P){b+P) = ab + P for a l l a + P , 2> + P in tf|P .

LEMMA 2.4. 1 / L and Q are tuo ideals of N , then L + Q is an

ideal of N .

Proof. Let L and Q be two ideals of N . By Lemma 1.15, L + Q

is a right ideal of N . Let x+y € L+Q . For every n Z N ,

n ( x + y ) = n x + n y £ L + Q , H e n c e L + Q i s a n i d e a l o f N .

We now introduce the notion of a modular r ight ideal in a loop near-

ring.

DEFINITION 2.5. A right ideal £ of If i s said to be a modular

right ideal of N i f there exists an element e € N such that

n + en € L for a l l n € N . e i s said to be a lef t ident i ty modulo L .

LEMMA 2.6. A right ideal L of N is a modular right ideal if and

only if there exists an element e in N such that en- + n £ L for all

n 6 N .

The proof of this lemma is easy and will be omitted.

LEMMA 2.7. If L is a proper modular right ideal with e as a left

identity modulo L then e | £ .

Proof. Suppose e € L . Then en € L for all n 6 N . Since e is

a left identity modulo L , n + en € L for all n € N . Then

[n+en ) + L = L = O + L = [en+en } + L .

Since N - L is a loop, n + L = en + L . Since en d L , en + L = L .

Therefore n + L = L . Hence n € L . Then L = N , a contradiction.

Therefore e \ L .

LEMMA 2.8. iSVery proper modular right ideal can be extended to a

maximal modular right ideal.

The proof of this lemma would follow in the usual way.

We now characterize the unique maximal ideal contained in a modular

right ideal. For this we require the following notation.
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Let £ be a modular right ideal of N . We denote the set

{a € S | Na c £} by (L -. N) .

THEOREM 2.9. If L is a modular right ideal of N then (L : N)

is an ideal in N and it is the largest ideal contained in L .

We break this theorem into several lemmas and prove one after the

other.

LEMMA 2.9.1. If L is a modular right ideal of N , then

(L : N) c L .

Proof. Let a € (£ : N) and let e be a left identity modulo L .

Since a £ (£ : N) , Na c L . Then ea € L . Since e is a left

identity modulo L , a + ea € £ for all a (. N . Then

[a+ea ) + L = L = [ea+ea ) + L .

Since N - L is a loop, a + L = ea + L . Since ea € L , ea + L = L .

Hence a + L = L . Therefore a t L . Hence (L : N) c L .

LEMMA 2.9.2. (L : N) is a subloop of N+ .

Proof. Clearly 0 € (L : N) . Let n, n1 € (£ : ff) . Since

(L : N) c_L , n, n' £ L . Now for each m £ N, m{n+n') = mn + im' £ L and

hence n + n' t (L : N) . Since L is a subloop of N+ , there exist

unique elements a, a' in £ such that n' = n + a = a' + n . Then for

any m € N , rm' == mn + ma = ma' + rm . Since L is a normal subloop of

N and since mn, mn' € £ , we have

L = L + mn' = L + (rnn+ma) = (L+mn) + ma = £ + ma .

Then ma (. L for all m Z N . Hence a € (£ : tf) . Further

L = m ' + £ = (ma'+rnn) + L = ma' + (mn+L) = ma' + L .

Hence ma' Z L for all m i N . Therefore a' € ( £ : # ) . Hence (£ : tf)

is a subloop of N

LEMMA 2.9.3. (L : /I/) is a wormaZ subloop of tf+ .

Proof. By Lemma 2.9.2, (£ : A') is a subloop of N+ . Let

a € (L : N) and n d N . We wish to show that w + (£ : N) = (L : N) + n .

Since a £ (£ : N) , a 6 £ , and since £ is a normal subloop of N ,

n + £ = £ + n . But w+a € n+L . Hence n + a = fc + w , where b € £ .
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Then for any r £ N , rn + ra = rb + rn . Since £ is a normal subloop

of N+ and since ra £ £ , (rn+ra) + £ = rn + {ra+L) = rn + L . Hence

(rb+rn) + L = rn + L . Since N - £ is a loop, rb + L = L . Hence

rb € £ for all r € N . Therefore b £ (L : N) . Hence n + a = b + n

where b £ (L : N) . Therefore n + (L : N) cz (L : N) + n . By a similar

argument it can be shown that (L : N) + n c_ n + (L : N) . Therefore

n + (£ : N) = (L : N) + n . Let n, m € iV and a € (L : N) . We wish to

show that (n+m) + (L : N) = n + [m+{L : N)) . Since a € ( £ : # ) ,

a € L , and since £ is a normal subloop of # , (n+m) + L = n + (m+£)

for all n, m £ N . Now (n+m) + a € (n+m) + L . Hence

(n+m) + a = n + (m+fc) where b (• L . We show that b £ (L : N) . For

every r € iV , ((j^n+rm)+raj + £ = (r>n+(:m+rii)J + £ . Since £ is a

normal subloop of N and since ra € £ ,

a) + £ = (rn+rm) + (ra+£) = (rn+rm) + £ .

Therefore

[rn+(rm+rb)) + £ = ((m+rm)+ra) + £ = (rn+rm) + £ .

Since N - £ is a loop, (rro+rfc) + £ = rm + £ . Hence rb + L = L .

Then rb (. £ for all r> € tf . Hence b € (£ : N) . Therefore

(n+m) + (L : N) en + [m+(L : N)) . The other inclusion is also true.

Hence (n+m) + (L : N) = n + (m+(£ : N)) . By a similar argument it can be

shown that (£ : N) + (m+n) = ((£ : N)+m) + n for all m, n € N . There-

fore (£ : N) is a normal subloop of N .

LEMMA 2.9.4. (£ : ff) i s an ideal of N .

Proof. (£ : N) is a normal subloop of N by Lemma 2.9.3. Let

a £ (L : N) , n, n' £ N . Now for every m € A' ,

m{(a+n)n'+nn'} = (ma+mw)n' + (rnn)n' € £ ,

since ma € £ and £ is a right ideal of N . Therefore

(a+nW + nn'r Z (£ : ilO . Let a € (£ : N) and n € N ; then

= (Nn)a c_ Na <£ L . Therefore na € (£ : iV) for all n £ N . Hence

(£ : N) is an ideal of N .

LEMMA 2.9.5. (£ : ii?) is t^e largest ideal of N contained in L .

Proof. Let P be an ideal of N contained in £ . Let p £ P .

Then Np <=_P c_L . Hence p £ (L : N) . Therefore P c (L : N) . Hence
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( i : N) i s the largest ideal of N contained in L .

Proof of Theorem 2.9. The proof of th i s theorem follows from Lemmas

2.9 .1 to 2 .9 .5 .

3 . A c h a r a c t e r i z a t i o n of t h e i d e a l s J

Let G be an #-loop. If A is a nonempty subset of G then the

set 4(A) = in € N \ gn = ~0 for all g € A} is called the annihilating

set of A in N .

LEMMA 3.1. If G is an N-loop and g € G , then

A(g) = {n € N \ gn = 0} is an N-Zoop kernel of N .

Proof. The mapping f : n -»• gn is an ff-loop homomorphism of N

into G and hence ker(/) = A(g) is a right ideal of N .

We remark that if G is an W-loop, then A{G) = ("I A{g) is an
glG

ideal in N and A(G) is called the annihilating ideal of G in N .

We introduce various types of N-loops as in near-rings. Let G be

an tf-loop not equal to {o} .

DEFINITION 3.2. An element g € G is called an ^-generator of G

if gN = G .

DEFINITION 3.3. G is said to be a faithful #-loop if A(G) = (0) .

DEFINITION 3.4. G is said to be an irreducible A?-loop provided G

has no nontrivial #-loop kernels.

DEFINITION 3.5. An ZV-loop G is said to be a minimal /V-loop

provided G has only the trivial #-subloops (0) and G .

DEFINITION 3.6. An irreducible tf-loop G with a generator g is

called an iV-loop of type 0 .

DEFINITION 3.7. An tf-loop of type 0 is called an tf-loop of type

1 if for each g € G either gN = (0) or gN = G .

DEFINITION 3.8. An fl-loop G is said to be an tf-loop of type 2

if G is minimal and GN + (0) .

LEMMA 3.9. If G is a faithful N-loop then N is isomorphic to a

loop near-ring of zero fixing mappings of G into itself, and we can
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identify n € N with the mapping G ->• G : g •* gn .

The proof i s easy and wi l l be omitted.

LEMMA 3.10. Let G be a faithful N-loop with an N-generator g .

Then N is a near-ring if and only if G is a group.

Proof. Suppose N i s a n e a r - r i n g . I t i s enough t o show t h a t ' + '

i n G i s a s s o c i a t i v e . Now G = gN . Let x, y, z € G . Then x = gn. ,

H = 9^0 ' z ~ y*"*, ' w h e r e "-,1 i j ' "o ^ " • Since N i s associat ive,

x + (y+z) = gn1 + [gn^gn^ = 0 («.,_+(n2+«3)) ^ ^ ^

= [gn^+gn^ + gn^ = (x+y) + z

Hence G is a group. Conversely suppose that G is a group. Let

x, y, z € N such that (x+y) + z + x + (y+z) . Since G is faithful,

there exists a g € G such that g[(x+y)+z) + g[x+(y+z)) , for otherwise,

g[(x+y)+z) = g[x+(y+z)) for all g € G . Then

= (o) .

Therefore

Then (x+y) + z = x + (y+z) , which is not true. Therefore, for some

g € G , g[(x+y)+z) + g[x+(y+z)) . Then (gx+gy) + gz t gx + (gy+gz) ,

which contradicts that G is a group. Therefore, for all x, y, z in

N , (x+y) + 3 = x + (y+z) . Hence N is associative and consequently N

is a near-ring.

LEMMA 3.11. Every N-loop of type 2 is an N-loop of type 1 and

hence an N-loop of type 0 .

Proof. The proof of this lemma will follow as in the case of near-

rings (see [/]).

COROLLARY 3.12. If N contains a unity element and G is an N-loop

of type 1 , then G is an N-loop of type 2 .

The proof of this corollary will follow as in the case of near-rings

(see [/]).

EXAMPLE 3.13. Let G = {l, 2, 3, k, 5, 6} . Addition in G is
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defined as shown below:
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Then ((?,+) is a loop with identity 1 and <? can be generated by

any one of 3, k, 5, 6 [2, p . 58]. # = {l, 2} is the only subloop of G

which i s different from {l} and G .

Define

= { / : < ? 1/ = 1} ,

N± = if : G ->• G | If = 1, HfcH} ,

N
2 ~ & '• G ~* ff I 1/ = 1, #f = tl}} .

Then i t is easy to verify that

(1) G is an A? -loop of type 2 ,

(2) G i s an N -loop of type 0 but not of type 1 ,

(3) G is an A7 -loop- of type 1 but G is not an N -loop of

type 2 .

LEMMA 3.14. Let G be an US-loop and let P be an Ideal of S

such that P<^_A(G) . Then G has the structure of an N\P-loop.

Proof. Define g(n+P) = gn . Suppose n + P = n' + P . Then

n = n' + p where p t P . Wow gn = g{n'+p) = gn' + gp = tyrz' . Hence the

mapping (g, n+P) •*• g(n+P) of G x #|P -»• G is well defined. I t can be

easily verified that G has the structure of an tf|?-loop.

LEMMA 3.15. Let P be an ideal of N and let G be an N\P-loop.

Then G has the structure of an N-loop and Pc_A(G) .

Proof. Let g € G and n t N . Define gn = g(n+P) . Then i t can

be easily verified that G has the structure of an ff-loop and P c A(G) .
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COROLLARY 3.16. Let G be an N-loop and let P be an ideal of N

such that PcA{G) . Then the N-loop kernels of G are the same as the

N\P-loop kernels of G .

The proof is easy and will be omitted.

We are now in a position to introduce various radicals for loop near-

rings as in the case of near-rings.

DEFINITION 3.17. Jy{N) is defined as the intersection of al l

annihilating ideals of N-loops of type 1/ in N for V = 0, 1, 2 . In

case N possesses no #-loops of type V then J»(N) is defined as N

itself.

DEFINITION 3.18. D(N) is defined as the intersection of all modular

maximal right ideals of JV . In case N has no modular maximal right

ideals, D(N) is defined as N itself.

DEFINITION 3.19. A loop near-ring N is said to be a (/-primitive

loop near-ring if there exists an iV-loop G of type 1/ such that

A(G) = (0) .

DEFINITION 3.20. An ideal P of N is called a l/-primitive ideal

provided N\P is a (/-primitive loop near-ring.

COROLLARY 3.21.. An ideal P of N is V-primitive if and only if

there exists an N-loop G of type V with A{G) = P .

The proof is easy and will be omitted.

We remark that Jy(N) is the intersection of all (/-primitive ideals

of N for 1/ = 0, 1, 2 ,

COROLLARY 3.22. If L is a right ideal in N , then

(L : N) = (0 : N -L) where 0 is the identity of the loop N+ - L .

Proof, a € (L : N) if and only if Sa c L , if and only if

(N+-L)a = 0 , if and only if a € (0 : N+-L) .

DEFINITION 3.23. A modular right ideal L of N is said to be a

(/-modular right ideal provided N - L is an il/-loop of type 1/ .

We observe that a 0-modular right ideal is a modular maximal right

ideal and a 2-modular right ideal is a maximal #-subloop of N+ . Hence
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D(N) is the intersection of all 0-modular right ideals.

We now characterize (/-primitive ideals of a loop near-ring in terms

of f-modular right ideals.

LEMMA 3.24. L is a V-modular right ideal of N if and only if

(L : N) is a V-primitive ideal of N .

Proof. L is a l/-modular right ideal if and only if N - L is an

tf-loop of type V , if and only if (0 : N -L) is a (/-primitive ideal.

Since (0 : N+~L) = (L : N) , (L : N) is a (/-primitive ideal.

LEMMA 3.25. An ideal P of N is a V-primitive ideal if and only

if P = (L : N) , where L is a V-modular right ideal of N .

Proof. If P = (L : N) , where L i s a l/-modular r ight ideal of N ,

then, t>y Lemma 3.2*1, P i s a (/-primitive ideal of N . Suppose that P

i s a (/-primitive ideal of N . Then there exis ts an #-loop G of type

(/ such that P = A{G) . Let g be an ^/-generator of G . Then

G = gN . Now the mapping <t> : N •*• G defined by <()(«) = gn is an #-loop

homomorphism of N onto G . Let L = ker((j>) and le t g = ge for some

e € N . Now for every n £ N ,

g[n+enr) = gn + g[en^ = gn + (ge)np = gn + gnp = gin+nj = ~0 .

Therefore n + en d L for a l l n € N . Therefore £ is a modular right

ideal with e as a left identity modulo L . Since G is of type V ,

N - L is an tf-loop of type V . Therefore L is a l/-modular right

i d e a l . Now P = A{G) = (0 : N+-L) = (L : N) .

COROLLARY 3 .26 . Jy(N) = fl (L : N) where L ranges over all
L

V-modular right ideals.

Proof. ^.iW = H P where P ranges over all (/-primitive ideals of
v P

N . Since P is a IZ-primitive ideal if and only if P = (L : N) , where

£ is a l/-modular right ideal of N , J (N) = fl (£ : N) , where L ranges
L

over all C-modular right ideals of N .

The following results will follow in a similar way as in the case of

near-rings (see [4]).
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THEOREM 3.27. Jy{N) is the intersection of all V-modular right

ideals L in N for 1/ = 1, 2 .

LEMMA 3.28. If {l^ \ a € A} is a family of right ideals of N ,

then n [L : N) = [ fl L : N) .
ct<=A a a€A a

THEOREM 3 .29 . [D(N) : N) = JQ(N) .

COROLLARY 3.30. JQW is the largest ideal of N contained in

D(N) .

DEFINITION 3.31. An ideal I of If is said to be a modular ideal

i f and only i f L is a modular r ight ideal .

THEOREM 3.32. Any modular maximal ideal L of N is a O-primitive

ideal.

4. Quasi-regular elements of type V

The notion of a quasi-regular element in near-rings has been

introduced by various authors in different ways. However in the case of

loop near-rings we introduce three types of quasi-regular elements.

DEFINITION 4.1. An element z of a loop near-ring N is called a

right quasi-regular element of type V if there is no (/-modular right

ideal containing all elements of the form x + zx , x € N .

We remark that every right quasi-regular element of type 0 is a

right quasi-regular element of type 1 , and every right quasi-regular

element of type 1 is a right quasi-regular element of type 2 .

DEFINITION 4.2. A right ideal (loop module) L of N is a quasi-

regular right ideal (loop module) of type V if every element of L is

a right quasi-regular element of type V , and an ideal L of N is

called a quasi-regular ideal of type f provided L is a quasi-regular

right ideal of type V .

We remark that a quasi-regular right ideal of type 0 is a quasi-

regular right ideal of type 1 , and a quasi-regular right ideal of type 1

is a quasi-regular right ideal of type 2 .

By Corollary 2.8 it will follow that a left identity modulo a proper
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modular right ideal L can not be a right quasi-regular element of type

0 .

LEMMA 4.3. An element z of N is a right quasi-regular element of

type 0 if and only if the minimal right ideal containing all elements of

the form x + zx , x £ N t coincides with N .

The proof is easy and will be omitted.

Now we prove the following important lemma.

LEMMA 4.4. Any niVpotent element of N is a right quasi-regular

element of type V , 1/ = 0, 1, 2 .

Proof. Let z be a nilpotent element of N and z = 0 where n

is a positive integer. Let £ be a (/-modular right ideal containing a l l

elements of the form x + zx , x £ N . Now for each x £ N ,

x+zx , zx+z(zx) , , zn~ x+z{z ~ x) belong to L . Hence

x+zx , zx+z x , . . . , zn~ x+z x belong to L . Since x + zx € L ,

{x+zx ) + L = [zx+zx ) + L . Since # - L is a loop, we have

2
x + L = zx + L . Since zx + z x £. L and since L is a normal subloop

o f A?+ ,

f 2 "I f 2 1 ?
\x+z x \ + L = L + \x+z x \ = {L+x) + z xv

2 { 1 \
= (L+zx) + z x• = L + \zx+z x = L .

2 2
Therefore x+zx € £ for all x £ N . Since x+zx (. L and

2 3 ^
z x + z x € L , we have x + zJx^ £ L for all x e N . Proceeding in

this way we finally get x + znx £ L for all X £ N . Now

x+zx = x £ L . Hence L = N , a contradiction. Hence there is no

(/-modular right ideal of N containing all elements of the form x+zx ,

x € N . Therefore z is a right quasi-regular element of type V ,

V = 0, 1, 2 .
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COROLLARY 4.5. Any nil right ideal (loop module) of H is a quasi-

regular right ideal of type V 3 V = 0, 1, 2 .

The proof of this is a direct consequence of Lemma k.h.

We now characterize the ideals ^i/(^) in terms of right quasi-regular

elements of type V .

LEMMA 4.6. ^II(#) is a quasi-regular ideal of type V ,

1/ = 0, 1, 2 .

Proof. If ^|,(^) = N , there is nothing to prove. Suppose

^ii(^) ̂  N • Let z be an element of îi(̂ 0 , and assume that z is not a

right quasi-regular element of type V . Then there exists a (/-modular

right ideal, say L , such that L contains all elements of the form

x + zx , x € N . Since z € ̂ (/(^) . z belongs to every V-modular

right ideal and in particular z £ £ . So zx € L for all x € N . Since

x + zx 6 L , [x+zx ) + L = [zx+zx ) + L . Since N - L is a loop,

x + L = zx + L . Therefore x + L = L . Hence x 6 L . Then L = N , a

contradiction. Therefore z is a right quasi-regular element of type V .

Hence ^y(^) is a quasi-regular ideal of type V .

THEOREM 4.7. Jn(N) is the largest quasi-regular right ideal of type

V , 1/ = 1, 2 .

Proof. By Lemma k.6, ^i/^) i-s a quasi-regular right ideal of type

1/ . Now we shall show that <Jy(N) contains all the quasi-regular right

ideals of type V , 1/ = 1, 2 . If Jy(N) = N there is nothing to prove.

Suppose ^ y W * N • Let Q be a quasi-regular right ideal of type 1/ ,

1/ = 1, 2 . Suppose Q c£ Jy(N) . Then there exists a l/-modular right

ideal, 1/ = 1, 2 , say L , such that Q <$_ L . Let e be a left identity

modulo L . Now N = L + Q and e = n + s where n € L , s £ Q . Since

L is a right ideal, ea + sa = (n+s)a + sa € £ , for all a € /V . Since

e is a left identity modulo £ , a + ea £ L for all a € tf . Therefore

for each a € N , (a+ea ) + £ = [ea+ea ) + L . Since # - L is a loop,

a + L = ea + L . Now (a+saj + L = [ea+sa ) + L = L . Therefore
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a + sa € L for a l l a € N . So s can not be a right quasi-regular

element of type V , V = 1, 2 . Since s € Q , s is a right quasi-
regular element of type 1/ , f = 1, 2 ; a contradiction. Therefore
Q <=_L and hence £ c ^(tf) , 1/ = 1, 2 .

COROLLARY 4 .8 . c/̂ OV) contains all nil right ideals of N 3

1/ = 1, 2 .

Proof. Since a nil right ideal is a quasi-regular right ideal of
type V , by Theorem U.7, < î/W contains a l l nil right ideals of N .

COROLLARY 4.9 . Jy(N) contains all nilpotent right ideals of N ,

V = 1, 2 .

THEOREM 4.10. D(N) is the largest quasi-regular right ideal of type

0 .

Proof. Let a be an element of D(N) and suppose L is a

0-modular right ideal containing all elements of the form x + zx ,

x € N . Now L ̂ D(N) and hence z € L . Since for each x € N ,

x + zx € L , [x+zx ) + L = (zx+sx ) + L . Since N - L is a loop, we

have x + L = zx + L . Since z € L , zx € L . Therefore x + L = L .

Hence x i L . Then L = N , a contradiction. Therefore there is no

0-modular right ideal of N containing all elements of the form x+zx ,

x € N . Hence z is a right quasi-regular element of type 0 ,. and

therefore D(N) is a quasi-regular right ideal of type 0 . Now we shall

show that D(N) contains all the quasi-regular right ideals of type 0 .

If D(N) = N there is nothing to prove. Suppose D(N) f N . Let <j be

any quasi-regular right ideal of type 0 and let L be any 0-modular

right ideal. If Q c£ L , then N = L + Q . Now proceeding as in Theorem

U.7, we get a contradiction. Therefore Qc_L and hence QcD(N) .

As there are near-rings where the radicals ^n(^) and D(N) are

different, from Theorems h.f and l*.10 we observe that the three types of

quasi-regular right ideals which we introduced are distinct.

COROLLARY 4.11. D(N) contains all nil right ideals.

COROLLARY 4.12. D{N) contains all nilpotent right ideala.
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THEOREM 4.13. ^n^) ^ s the largest quasi-regular ideal of type 0

Proof. By Lemma k.6, ^Q(^) is a quasi-regular ideal of type 0 .

Let L be any quasi-regular ideal of type 0 . Since a quasi-regular

ideal of type 0 is a quasi-regular right ideal of type 0 , L cD(N) .

Since J
Q(N) is the largest ideal contained in D(N) , i t follows that

L c JQHI) .

COROLLARY 4.14. <fQ(N) contains all the nil ideals of N .

COROLLARY 4.15. JQW contains all the nilpotent ideals of N .
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