On loop near-rings

D. Ramakotaiah and C. Santhakumari

A new class of algebraic systems known as loop near-rings are introduced, which includes near-rings and consequently rings. Different types of radicals are introduced in a loop near-ring N, which coincide with the Jacobson radical when N happens to be a ring, and several characterizations of these radicals are obtained.

Introduction

The notion of a loop near-ring arises out of an axiomatization of the algebraic systems of mappings of the additive loop G into G which fix the identity of G. Every near-domain (additively non-associative near-field) in the sense of Pilz [3, Definition 8.41] is a loop near-ring. We introduce a right quasi-regular element in a different way from the usual tradition, and this seems to define three types of right quasi-regular elements as there are three types of modular maximal right ideals.

This paper is divided into four sections. In §1, loop near-rings, loop near-ring loops are introduced and examples of such systems are presented. Right ideals, ideals, and modular right ideals are introduced in §2, and a characterization of the unique maximal ideal contained in a modular right ideal is obtained. In §3, N-loops of type V, V-primitive ideals, V-primitive loop near-rings, V-modular right ideals for V = 0, 1, 2, and various radicals are introduced and we characterize the ideals $J_V(N)$ in terms of the largest ideals of N contained in V-modular right ideals in N for V = 0, 1, 2. In §4, we introduce the notion of "right quasi-regular element of type V" for V = 0, 1, 2, which generalizes the notion of a right quasi-regular element as introduced

Received 10 October 1978.

417

in [4]. If N happens to be a ring all these three notions coincide with the notion of a right quasi-regular element as introduced in ring theory. Characterization of the radicals in terms of quasi-regular elements is obtained.

1. Fundamental definitions and simple consequences

For definitions of loops, subloops, normal subloops, see [2]. We begin this section with the following:

DEFINITION 1.1. A system $N = (N, +, \cdot, 0)$ is called a loop nearring if the following conditions are satisfied:

- (i) (N, +, 0) is a loop which we denote by N^+ ;
- (ii) (N, •) is a semigroup;
- (iii) $a \cdot (b+c) = a \cdot b + a \cdot c$ for all a, b, c in N;
 - (iv) $0 \cdot a = 0$ for all a in N, where 0 is the identity of the loop N^+ .

For any a belonging to an additive loop, we shall denote the unique right and left additive inverses of a by a_n and a_1 respectively.

Using Definition 1.1 (iii), it is easy to verify that $a \cdot 0 = 0$, $(a \cdot b)_{p} = a \cdot b_{p}$, $(a \cdot b)_{1} = a \cdot b_{1}$ for all a, b in N.

Throughout this paper N always stands for a loop near-ring. We abbreviate $(N, +, \cdot, 0)$ by N. The identity element of N^+ will be denoted by 0. Multiplication in most cases will be indicated by justaposition; so we write nm instead of $n \cdot m$.

EXAMPLE 1.2. If G is an additive loop, then the set of all mappings of G into itself fixing the identity of G has the structure c a loop near-ring under addition and composition of mappings [2, p. 68].

EXAMPLE 1.3. Every near-domain (additively non-associative near-field) [3, Definition 8.41] is a loop near-ring.

EXAMPLE 1.4. Let $(G, +, \overline{0})$ be an additive loop, where $\overline{0}$ is the identity element of G. Define ab = b for all $\overline{0} \neq a$ and b in G; define $\overline{0b} = \overline{0}$. Then $(G, +, \overline{0})$ is a loop near-ring.

Of course every near-ring is a loop near-ring.

. Subloop near-rings, isomorphisms, and homomorphisms of loop nearrings are defined in the usual way. Left (right) identities, left (right) invertible elements, and nilpotent elements are defined as in near-rings.

We introduce the notion of N-loops, N-loop homomorphisms in the usual way.

DEFINITION 1.5. An additive loop $(G, +, \overline{0})$ is called an N-loop provided there exists a mapping $(g, n) \rightarrow gn$ of $G \times N \rightarrow G$ such that

- (i) g(n+m) = gn + gm,
- (ii) g(nm) = (gn)m for all $g \in G$, $n, m \in N$.

Clearly N^+ is an N-loop. If $\overline{0}$ is the identity of the loop G, $g0 = \overline{0}$ and $\overline{0}n = (\overline{0}0)n = \overline{0}(0n) = \overline{0}0 = \overline{0}$ for all $n \in \mathbb{N}$. Further $(gn)_n = gn_n$ and $(gn)_L = gn_L$.

We abbreviate $(G, +, \overline{0})$ by G. The identity element of an N-loop G will be denoted by $\overline{0}$.

EXAMPLE 1.6. If G is an additive loop and N is the loop nearring of all mappings of G into itself fixing the identity element, then G has the structure of an N-loop.

If G is an N-loop and Δ and K are subsets of G and N respectively, then the set $\{\delta_k \mid \delta \in \Delta, k \in K\}$ will be denoted by ΔK .

DEFINITION 1.7. A subloop Δ of an N-loop G is called an N-subloop of G if $\Delta N \subseteq \Delta$.

The N-subloops in N^+ are called N-loop modules of N.

DEFINITION 1.8. Suppose G and G' are N-loops. A mapping $f : G \neq G'$ is called an N-loop homomorphism provided

(1) f(x+y) = f(x) + f(y) for all x, y in G,

(2) f(xn) = f(x)n for all x in G and n in N.

An N-loop homomorphism f of G into G' is called an N-loop isomorphism if f is a bijection of G into G'.

EXAMPLE 1.9. Let G be an N-loop and let $g \in G$. Then the mapping $n \rightarrow gn$ is an N-loop homomorphism of N^+ into G.

DEFINITION 1.10. The kernel of an N-loop homomorphism of an N-loop

G is called an N-loop kernel of G .

We now obtain necessary and sufficient conditions for a nonempty subset of an N-loop G to be an N-loop kernel of G.

THEOREM 1.11. A nonempty subset K of an N-loop G is an N-loop kernel of G if and only if

(i) (K, +) is a normal subloop of G,

(ii) $(g+k)n + gn \in K$ for all $g \in G$, $k \in K$, and $n \in N$.

Proof. Let $\phi : G \neq G'$ be an *N*-loop homomorphism and let $K = \ker(\phi)$. Then *K* is a normal subloop of *G* [2, p. 60]. Let $g \in G$, $k \in K$, and $n \in N$. Consider

$$\phi((g+k)n+gn_p) = \phi((g+k)n) + \phi(gn_p) = \phi(g+k)n + \phi(g)n_p$$

$$= \phi(g)n + \phi(g)n_p = \phi(g)0 = \overline{0}',$$

where $\overline{0}'$ is the identity of G'. Therefore $(g+k)n + gn_p \in K$ for all $g \in G$, $k \in K$, and $n \in N$. Therefore K satisfies conditions (i) and (ii). Conversely let G be an N-loop and K be a nonempty subset of G, satisfying (i) and (ii). We wish to show that G|K has the structure of an N-loop. For g + K, g' + K in G|K, define (g+K) + (g'+K) = (g+g') + K. Then it can be shown that G|K has the structure of a loop [2, p. 61]. Put (g+K)n = gn + K. Suppose g + K = g' + K, $g \in g' + K$. Then g = g' + k, where $k \in K$. Now gn = (g'+k)n. Therefore $gn + g'n_p = (g'+k)n + g'n_p \in K$. Hence, $(gn+g'n_p) + K = (g'n+g'n_p) + K$. Since cancellation laws hold good in a loop and since G|K is a loop we have (gn+K) = g'n + K. Hence the map (g+K, n) + (g+K)n of $G|K \times N + G|K$ is well defined. Let $g+K \in G|K$ and $n, m \in N$. Then

$$(g+K)(n+m) = g(n+m) + K = (gn+gm) + K = (gn+K) + (gm+K) = (g+K)n + (g+K)m$$

and

$$(g+K)nm = g(nm) + K = (gn)m + K = (gn+K)m = ((g+K)n)m$$

Therefore G|K has the structure of an N-loop. Now the mapping $\overline{\phi}: x \to x + K$ is an N-loop homomorphism of G onto G|K, $x \in \ker(\overline{\phi})$ if and only if $\overline{\phi}(x) = \overline{0}$ (where $\overline{0}$ is the identity of G|K), and $\overline{\phi}(x) = \overline{0}$ if and only if x + K = K, and x + K = K if and only if $x \in K$. Hence $K = \ker(\overline{\phi})$. Hence K is an N-loop kernel of an N-loop G.

In a similar way it can be shown that a nonempty subset K of G is an N-loop kernel of G, if and only if (K, +) is a normal subloop of (G, +) and $gn_1 + (g+k)n \in K$ for all $g \in G$, $k \in K$, and $n \in N$.

The factor loop of an N-loop G by an N-loop kernel K of G is denoted by G - K.

REMARK 1.12. By Theorem 1.11, it can be easily shown that every N-loop kernel of G is an N-subloop of G.

We now have the following:

THEOREM 1.13. Let $h: G \rightarrow G'$ be an N-loop epimorphism. Then h induces a one-to-one correspondence between the N-subloops (N-loop kernels) of G containing ker(h) and the N-subloops (N-loop kernels) of G' by $K(\subseteq G) \rightarrow h(K)$.

Proof. If K is a subloop (normal subloop) of G then h(K) is a subloop (normal subloop) of G'. Conversely if K' is a subloop (normal subloop) of G' then $h^{-1}(K')$ is a subloop (normal subloop) of G [2, iv, Lemma 1.6]. The rest of the proof would follow in the usual way and hence is omitted.

THEOREM 1.14. The intersection of any family of N-loop kernels of an N-loop G is an N-loop kernel of G.

Proof. Let $\{K_{\alpha}\}_{\alpha \in A}$ be a family of N-loop kernels of an N-loop G. By [2, iv, Theorem 1.2], $\bigcap K_{\alpha}$ is an N-loop kernel of G. $\alpha \in A$

LEMMA 1.15. The set S of all N-loop kernels of an N-loop G form a commutative semigroup under addition.

Proof. Let A and B be N-loop kernels of an N-loop G: $A + B = \{a+b \mid a \in A, b \in B\}$. Now A and B are normal subloops of G (Theorem 1.11). Since the set of all normal subloops of an additive loop form a commutative semigroup under addition [2, iv, Theorem 1.4], A + Bis a normal subloop of G and A + B = B + A; further (A+B) + C = A + (B+C) for all A, B, $C \in S$. We wish to show that 422

 $(g+(a+b))n + gn_{p} \in A + B$ for all $g \in G$, $n \in N$, and $a+b \in A+B$. Since B is a normal subloop of G, g + (a+B) = (g+a) + B. But $g + (a+b) \in g + (a+B)$. Hence g + (a+b) = (g+a) + b', where $b' \in B$. Since B is an N-loop kernel of G and $b' \in B$,

$$\{\{(g+a)+b'\}n+(g+a)n_n\} + B = B = \overline{0} + B = \{(g+a)n+(g+a)n_n\} + B$$

Since G - B is a loop, ((g+a)+b')n + B = (g+a)n + B. Now $\{(g+(a+b))n+gn_{p}\} + B = \{((g+a)+b')n+gn_{p}\} + B = ((g+a)n+gn_{p}) + B = a' + B$, where $a' = (g+a)n + gn_{p} \in A$, since $a \in A$ and A is an N-loop kernel of G. Therefore $(g+(a+b))n + gn_{p} \in A + B$. Hence A + B is an N-loop kernel of G. Therefore the set of all N-loop kernels of an N-loop Gis a commutative semigroup under addition.

LEMMA 1.16. If G is an N-loop, then for every $g \in G$, $gN = \{gn \mid n \in N\}$ is an N-subloop of G.

Proof. Let $gn, gn' \in gN$. Then $gn + gn' = g(n+n') \in gN$ and $g0 = \overline{0} \in gN$. Since $gn, gn' \in G$ and G is a loop, there exist unique elements $x, y \in G$ such that gn = gn' + x = y + gn'. Further there exist unique elements $m, m' \in N$ such that n = n' + m = m' + n'. Hence gn = gn' + gm = gm' + gn'. Since x and y are unique, gm = x and gm' = y. Therefore $x, y \in gN$. Hence gN is a subloop of G.

2. Modular right ideals

In this section we introduce the notion of a modular right ideal in a loop near-ring and obtain a characterization of the unique maximal ideal contained in a modular right ideal.

DEFINITION 2.1. By a right ideal of a loop near-ring N we mean an N-loop kernel of N^+ as an N-loop.

In view of Theorem 1.11, a nonempty subset L of a loop near-ring N is a right ideal of N if and only if (L, +) is a normal subloop of N^+ and $(x+n)m + nm_p \in L$ for all $x \in L$, $n, m \in N$. Further, if L is a right ideal of N, then $LN \subseteq L$.

Nil and nilpotent right ideals in N are defined in the usual way.

DEFINITION 2.2. A right ideal L of N is called an ideal of N if $NL \subset L$.

REMARK 2.3. If P is an ideal of N then N|P is a loop near-ring in which (a+P)(b+P) = ab + P for all a + P, b + P in N|P.

LEMMA 2.4. If L and Q are two ideals of N, then L + Q is an ideal of N.

Proof. Let L and Q be two ideals of N. By Lemma 1.15, L + Qis a right ideal of N. Let $x+y \in L+Q$. For every $n \in N$, $n(x+y) = nx + ny \in L + Q$. Hence L + Q is an ideal of N.

We now introduce the notion of a modular right ideal in a loop nearring.

DEFINITION 2.5. A right ideal L of N is said to be a modular right ideal of N if there exists an element $e \in N$ such that $n + en_n \in L$ for all $n \in N$. e is said to be a left identity modulo L.

LEMMA 2.6. A right ideal L of N is a modular right ideal if and only if there exists an element e in N such that $en_l + n \in L$ for all $n \in N$.

The proof of this lemma is easy and will be omitted.

LEMMA 2.7. If L is a proper modular right ideal with e as a left identity modulo L then $e \notin L$.

Proof. Suppose $e \in L$. Then $en \in L$ for all $n \in N$. Since e is a left identity modulo L, $n + en_n \in L$ for all $n \in N$. Then

$$(n+en_n) + L = L = 0 + L = (en+en_n) + L$$
.

Since $N^+ - L$ is a loop, n + L = en + L. Since $en \in L$, en + L = L. Therefore n + L = L. Hence $n \in L$. Then L = N, a contradiction. Therefore $e \notin L$.

LEMMA 2.8. Every proper modular right ideal can be extended to a maximal modular right ideal.

The proof of this lemma would follow in the usual way.

We now characterize the unique maximal ideal contained in a modular right ideal. For this we require the following notation.

Let L be a modular right ideal of N . We denote the set $\{a \in N \mid Na \subset L\}$ by (L : N).

THEOREM 2.9. If L is a modular right ideal of N then (L : N) is an ideal in N and it is the largest ideal contained in L.

We break this theorem into several lemmas and prove one after the other.

LEMMA 2.9.1. If L is a modular right ideal of N , then $(L : N) \subseteq L$.

Proof. Let $a \in (L : N)$ and let e be a left identity modulo L. Since $a \in (L : N)$, $Na \subseteq L$. Then $ea \in L$. Since e is a left identity modulo L, $a + ea_n \in L$ for all $a \in N$. Then

$$(a+ea_{p}) + L = L = (ea+ea_{p}) + L$$

Since $N^+ - L$ is a loop, a + L = ea + L. Since $ea \in L$, ea + L = L. Hence a + L = L. Therefore $a \in L$. Hence $(L : N) \subseteq L$.

LEMMA 2.9.2. (L:N) is a subloop of N^+ .

Proof. Clearly $0 \in (L:N)$. Let $n, n' \in (L:N)$. Since $(L:N) \subseteq L$, $n, n' \in L$. Now for each $m \in N$, $m(n+n') = mn + mn' \in L$ and hence $n + n' \in (L:N)$. Since L is a subloop of N^+ , there exist unique elements a, a' in L such that n' = n + a = a' + n. Then for any $m \in N$, mn' = mn + ma = ma' + mn. Since L is a normal subloop of N^+ and since $mn, mn' \in L$, we have

L = L + mn' = L + (mn+ma) = (L+mn) + ma = L + ma.

Then $ma \in L$ for all $m \in N$. Hence $a \in (L : N)$. Further

L = mn' + L = (ma' + mn) + L = ma' + (mn+L) = ma' + L.

Hence $ma' \in L$ for all $m \in N$. Therefore $a' \in (L : N)$. Hence (L : N) is a subloop of N^+ .

LEMMA 2.9.3. (L : N) is a normal subloop of N^+ .

Proof. By Lemma 2.9.2, (L:N) is a subloop of N^{\dagger} . Let $a \in (L:N)$ and $n \in N$. We wish to show that n + (L:N) = (L:N) + n. Since $a \in (L:N)$, $a \in L$, and since L is a normal subloop of N^{\dagger} , n + L = L + n. But $n + a \in n + L$. Hence n + a = b + n, where $b \in L$. Then for any $r \in N$, rn + ra = rb + rn. Since L is a normal subloop of N^+ and since $ra \in L$, (rm+ra) + L = rn + (ra+L) = rn + L. Hence (rb+rn) + L = rn + L. Since $N^+ - L$ is a loop, rb + L = L. Hence $rb \in L$ for all $r \in N$. Therefore $b \in (L : N)$. Hence n + a = b + nwhere $b \in (L : N)$. Therefore $n + (L : N) \subseteq (L : N) + n$. By a similar argument it can be shown that $(L : N) + n \subseteq n + (L : N)$. Therefore n + (L : N) = (L : N) + n. Let $n, m \in N$ and $a \in (L : N)$. We wish to show that (n+m) + (L : N) = n + (m+(L : N)). Since $a \in (L : N)$, $a \in L$, and since L is a normal subloop of N^+ , (n+m) + L = n + (m+L)for all $n, m \in N$. Now $(n+m) + a \in (n+m) + L$. Hence (n+m) + a = n + (m+b) where $b \in L$. We show that $b \in (L : N)$. For every $r \in N$, ((rm+rm)+ra) + L = (rm+(rm+rb)) + L. Since L is a normal subloop of N^+ and since $ra \in L$,

$$((rn+rm)+ra) + L = (rn+rm) + (ra+L) = (rn+rm) + L$$
.

Therefore

$$(rn+(rm+rb)) + L = ((rn+rm)+ra) + L = (rn+rm) + L$$
.

Since $N^+ - L$ is a loop, (rm+rb) + L = rm + L. Hence rb + L = L. Then $rb \in L$ for all $r \in N$. Hence $b \in (L : N)$. Therefore $(n+m) + (L : N) \subseteq n + (m+(L : N))$. The other inclusion is also true. Hence (n+m) + (L : N) = n + (m+(L : N)). By a similar argument it can be shown that (L : N) + (m+n) = ((L : N)+m) + n for all $m, n \in N$. Therefore (L : N) is a normal subloop of N^+ .

LEMMA 2.9.4. (L:N) is an ideal of N.

Proof. (L:N) is a normal subloop of N^+ by Lemma 2.9.3. Let $a \in (L:N)$, $n, n' \in N$. Now for every $m \in N$,

$$m[(a+n)n'+nn'_{p}] = (ma+mn)n' + (mn)n'_{p} \in L$$
,

since $ma \in L$ and L is a right ideal of N. Therefore $(a+n)n' + nn'_{r} \in (L : N)$. Let $a \in (L : N)$ and $n \in N$; then $N(na) = (Nn)a \subseteq Na \subseteq L$. Therefore $na \in (L : N)$ for all $n \in N$. Hence (L : N) is an ideal of N.

LEMMA 2.9.5. (L:N) is the largest ideal of N contained in L. Proof. Let P be an ideal of N contained in L. Let $p \in P$. Then $Np \subseteq P \subseteq L$. Hence $p \in (L:N)$. Therefore $P \subseteq (L:N)$. Hence

(L : N) is the largest ideal of N contained in L.

426

Proof of Theorem 2.9. The proof of this theorem follows from Lemmas 2.9.1 to 2.9.5.

3. A characterization of the ideals $J_{ij}(N)$

Let G be an N-loop. If Δ is a nonempty subset of G then the set $A(\Delta) = \{n \in N \mid gn = \overline{0} \text{ for all } g \in \Delta\}$ is called the annihilating set of Δ in N.

LEMMA 3.1. If G is an N-loop and $g \in G$, then $A(g) = \{n \in N \mid gn = \overline{0}\}$ is an N-loop kernel of N^+ .

Proof. The mapping $f : n \to gn$ is an *N*-loop homomorphism of N^+ into *G* and hence $\ker(f) = A(g)$ is a right ideal of *N*.

We remark that if G is an N-loop, then $A(G) = \bigcap A(g)$ is an $g \in G$

ideal in N and A(G) is called the annihilating ideal of G in N.

We introduce various types of N-loops as in near-rings. Let G be an N-loop not equal to $\{\overline{0}\}$.

DEFINITION 3.2. An element $g \in G$ is called an N-generator of G if gN = G.

DEFINITION 3.3. G is said to be a faithful N-loop if A(G) = (0).

DEFINITION 3.4. G is said to be an irreducible N-loop provided G has no nontrivial N-loop kernels.

DEFINITION 3.5. An N-loop G is said to be a minimal N-loop provided G has only the trivial N-subloops $(\overline{0})$ and G.

DEFINITION 3.6. An irreducible N-loop G with a generator g is called an N-loop of type 0.

DEFINITION 3.7. An N-loop of type 0 is called an N-loop of type 1 if for each $g \in G$ either $gN = (\overline{0})$ or gN = G.

DEFINITION 3.8. An N-loop G is said to be an N-loop of type 2 if G is minimal and $GN \neq (\overline{0})$.

LEMMA 3.9. If G is a faithful N-loop then N is isomorphic to a loop near-ring of zero fixing mappings of G into itself, and we can

identify $n \in N$ with the mapping $G \rightarrow G : g \rightarrow gn$.

The proof is easy and will be omitted.

LEMMA 3.10. Let G be a faithful N-loop with an N-generator g. Then N is a near-ring if and only if G is a group.

Proof. Suppose N is a near-ring. It is enough to show that '+' in G is associative. Now G = gN. Let $x, y, z \in G$. Then $x = gn_1$, $y = gn_2$, $z = gn_3$, where $n_1, n_2, n_3 \in N$. Since N^+ is associative, $x + (y+z) = gn_1 + (gn_2+gn_3) = g(n_1+(n_2+n_3)) = g((n_1+n_2)+n_3)$ $= (gn_1+gn_2) + gn_3 = (x+y) + z$.

Hence G is a group. Conversely suppose that G is a group. Let $x, y, z \in N$ such that $(x+y) + z \neq x + (y+z)$. Since G is faithful, there exists a $g \in G$ such that $g((x+y)+z) \neq g(x+(y+z))$, for otherwise, g((x+y)+z) = g(x+(y+z)) for all $g \in G$. Then

$$((x+y)+z) + (x+(y+z))_n \in A(G) = (0)$$
.

Therefore

$$((x+y)+z) + (x+(y+z))_{p} = 0 = (x+(y+z)) + (x+(y+z))_{p}$$

Then (x+y) + z = x + (y+z), which is not true. Therefore, for some $g \in G$, $g((x+y)+z) \neq g(x+(y+z))$. Then $(gx+gy) + gz \neq gx + (gy+gz)$, which contradicts that G is a group. Therefore, for all x, y, z in N, (x+y) + z = x + (y+z). Hence N^+ is associative and consequently N is a near-ring.

LEMMA 3.11. Every N-loop of type 2 is an N-loop of type 1 and hence an N-loop of type 0.

Proof. The proof of this lemma will follow as in the case of nearrings (see [1]).

COROLLARY 3.12. If N contains a unity element and G is an N-loop of type 1, then G is an N-loop of type 2.

The proof of this corollary will follow as in the case of near-rings (see [1]).

EXAMPLE 3.13. Let $G = \{1, 2, 3, 4, 5, 6\}$. Addition in G is

defined as shown below:

+	1	2	3	4	5	6	
1	l	2	3	4	5	6	
2	2	1	6	3	4	5	
3	3	4	5	2	6	1	
4	4	5	1	6	2	3	
5	5	6	4	1	3	2	
6	6	3	2	5	1	4	•

Then (G, +) is a loop with identity 1 and G can be generated by any one of 3, 4, 5, 6 [2, p. 58]. $H = \{1, 2\}$ is the only subloop of G which is different from $\{1\}$ and G.

Define

$$\begin{split} N_0 &= \{f : G \neq G \mid 1f = 1\} , \\ N_1 &= \{f : G \neq G \mid 1f = 1, Hf \subseteq H\} , \\ N_2 &= \{f : G \neq G \mid 1f = 1, Hf = \{1\}\} . \end{split}$$

Then it is easy to verify that

LEMMA 3.14. Let G be an N-loop and let P be an ideal of N such that $P \subseteq A(G)$. Then G has the structure of an N|P-loop.

Proof. Define g(n+P) = gn. Suppose n + P = n' + P. Then n = n' + p where $p \in P$. Now gn = g(n'+p) = gn' + gp = gn'. Hence the mapping $(g, n+P) \rightarrow g(n+P)$ of $G \times N | P \rightarrow G$ is well defined. It can be easily verified that G has the structure of an N | P-loop.

LEMMA 3.15. Let P be an ideal of N and let G be an N|P-loop. Then G has the structure of an N-loop and $P \subseteq A(G)$.

Proof. Let $g \in G$ and $n \in N$. Define gn = g(n+P). Then it can be easily verified that G has the structure of an N-loop and $P \subseteq A(G)$.

428

COROLLARY 3.16. Let G be an N-loop and let P be an ideal of N such that $P \subseteq A(G)$. Then the N-loop kernels of G are the same as the N|P-loop kernels of G.

The proof is easy and will be omitted.

We are now in a position to introduce various radicals for loop nearrings as in the case of near-rings.

DEFINITION 3.17. $J_V(N)$ is defined as the intersection of all annihilating ideals of *N*-loops of type *V* in *N* for *V* = 0, 1, 2. In case *N* possesses no *N*-loops of type *V* then $J_V(N)$ is defined as *N* itself.

DEFINITION 3.18. D(N) is defined as the intersection of all modular maximal right ideals of N. In case N has no modular maximal right ideals, D(N) is defined as N itself.

DEFINITION 3.19. A loop near-ring N is said to be a V-primitive loop near-ring if there exists an N-loop G of type V such that A(G) = (0).

DEFINITION 3.20. An ideal P of N is called a V-primitive ideal provided $N \mid P$ is a V-primitive loop near-ring.

COROLLARY 3.21. An ideal P of N is V-primitive if and only if there exists an N-loop G of type V with A(G) = P.

The proof is easy and will be omitted.

We remark that $J_V(N)$ is the intersection of all V-primitive ideals of N for V = 0, 1, 2.

COROLLARY 3.22. If L is a right ideal in N, then $(L : N) = (0 : N^+ - L)$ where 0 is the identity of the loop $N^+ - L$.

Proof. $\alpha \in (L : N)$ if and only if $N\alpha \subseteq L$, if and only if $(N^+-L)\alpha = 0$, if and only if $\alpha \in (0 : N^+-L)$.

DEFINITION 3.23. A modular right ideal L of N is said to be a V-modular right ideal provided $N^{\dagger} - L$ is an N-loop of type V.

We observe that a 0-modular right ideal is a modular maximal right ideal and a 2-modular right ideal is a maximal N-subloop of N^+ . Hence

D(N) is the intersection of all 0-modular right ideals.

We now characterize V-primitive ideals of a loop near-ring in terms of V-modular right ideals.

LEMMA 3.24. L is a V-modular right ideal of N if and only if (L:N) is a V-primitive ideal of N.

Proof. L is a V-modular right ideal if and only if $N^+ - L$ is an N-loop of type V, if and only if $(0 : N^+-L)$ is a V-primitive ideal. Since $(0 : N^+-L) = (L : N)$, (L : N) is a V-primitive ideal.

LEMMA 3.25. An ideal P of N is a V-primitive ideal if and only if P = (L : N), where L is a V-modular right ideal of N.

Proof. If P = (L : N), where L is a V-modular right ideal of N, then, by Lemma 3.24, P is a V-primitive ideal of N. Suppose that P is a V-primitive ideal of N. Then there exists an N-loop G of type V such that P = A(G). Let g be an N-generator of G. Then G = gN. Now the mapping $\phi : N^{\dagger} \Rightarrow G$ defined by $\phi(n) = gn$ is an N-loop homomorphism of N^{\dagger} onto G. Let $L = \ker(\phi)$ and let g = ge for some $e \in N$. Now for every $n \in N$,

$$g(n+en_p) = gn + g(en_p) = gn + (ge)n_p = gn + gn_p = g(n+n_p) = \overline{0}$$
.

Therefore $n + en_r \in L$ for all $n \in N$. Therefore L is a modular right ideal with e as a left identity modulo L. Since G is of type V, $N^+ - L$ is an N-loop of type V. Therefore L is a V-modular right ideal. Now $P = A(G) = (0 : N^+ - L) = (L : N)$.

COROLLARY 3.26. $J_V(N) = \bigcap (L : N)$ where L ranges over all L

Proof. $J_V(N) = \bigcap_P P$ where P ranges over all V-primitive ideals of N. Since P is a V-primitive ideal if and only if P = (L : N), where L is a V-modular right ideal of N, $J(N) = \bigcap_L (L : N)$, where L ranges L over all V-modular right ideals of N.

The following results will follow in a similar way as in the case of near-rings (see [4]).

THEOREM 3.27. $J_V(N)$ is the intersection of all V-modular right ideals L in N for V = 1, 2.

LEMMA 3.28. If $\{L_{\alpha} \mid \alpha \in \Delta\}$ is a family of right ideals of N, then $\bigcap_{\alpha \in \Delta} (L_{\alpha} : N) = (\bigcap_{\alpha \in \Delta} L_{\alpha} : N)$.

THEOREM 3.29. $(D(N) : N) = J_0(N)$.

COROLLARY 3.30. $J_0(N)$ is the largest ideal of N contained in D(N) .

DEFINITION 3.31. An ideal L of N is said to be a modular ideal if and only if L is a modular right ideal.

THEOREM 3.32. Any modular maximal ideal L of N is a 0-primitive ideal.

4. Quasi-regular elements of type V

The notion of a quasi-regular element in near-rings has been introduced by various authors in different ways. However in the case of loop near-rings we introduce three types of quasi-regular elements.

DEFINITION 4.1. An element z of a loop near-ring N is called a right quasi-regular element of type V if there is no V-modular right ideal containing all elements of the form $x + zx_n$, $x \in N$.

We remark that every right quasi-regular element of type 0 is a right quasi-regular element of type 1, and every right quasi-regular element of type 1 is a right quasi-regular element of type 2.

DEFINITION 4.2. A right ideal (loop module) L of N is a quasiregular right ideal (loop module) of type V if every element of L is a right quasi-regular element of type V, and an ideal L of N is called a quasi-regular ideal of type V provided L is a quasi-regular right ideal of type V.

We remark that a quasi-regular right ideal of type 0 is a quasiregular right ideal of type 1, and a quasi-regular right ideal of type 1 is a quasi-regular right ideal of type 2.

By Corollary 2.8 it will follow that a left identity modulo a proper

modular right ideal L can not be a right quasi-regular element of type 0 .

LEMMA 4.3. An element z of N is a right quasi-regular element of type 0 if and only if the minimal right ideal containing all elements of the form $x + zx_n$, $x \in N$, coincides with N.

The proof is easy and will be omitted.

Now we prove the following important lemma.

LEMMA 4.4. Any nilpotent element of N is a right quasi-regular element of type V , V = 0, 1, 2 .

Proof. Let z be a nilpotent element of N and $z^n = 0$ where n is a positive integer. Let L be a V-modular right ideal containing all elements of the form $x + zx_p$, $x \in N$. Now for each $x \in N$, $x+zx_p$, $zx+z(zx)_p$, ..., $z^{n-1}x+z(z^{n-1}x)_p$ belong to L. Hence $x+zx_p$, $zx+z^2x_p$, ..., $z^{n-1}x+z^nx_p$ belong to L. Since $x + zx_p \in L$, $(x+zx_p) + L = (zx+zx_p) + L$. Since $N^+ - L$ is a loop, we have x + L = zx + L. Since $zx + z^2x_p \in L$ and since L is a normal subloop of N^+ , $(x+z^2x_p) + L = L + (x+z^2x_p) = (L+x) + z^2x_p$ $= (L+zx) + z^2x_p = L + (zx+z^2x_p) = L$.

Therefore $x + z^2 x_p \in L$ for all $x \in N$. Since $x + z^2 x_p \in L$ and $z^2 x + z^3 x_p \in L$, we have $x + z^3 x_p \in L$ for all $x \in N$. Proceeding in this way we finally get $x + z^n x_p \in L$ for all $x \in N$. Now $x + z^n x_p = x \in L$. Hence L = N, a contradiction. Hence there is no V-modular right ideal of N containing all elements of the form $x + z x_p$, $x \in N$. Therefore z is a right quasi-regular element of type V, V = 0, 1, 2. COROLLARY 4.5. Any nil right ideal (loop module) of \mathbb{N} is a quasiregular right ideal of type V, V = 0, 1, 2.

The proof of this is a direct consequence of Lemma 4.4.

We now characterize the ideals $J_V(N)$ in terms of right quasi-regular elements of type V .

LEMMA 4.6. $J_V(N)$ is a quasi-regular ideal of type V, V = 0, 1, 2.

Proof. If $J_{V}(N) = N$, there is nothing to prove. Suppose $J_{V}(N) \neq N$. Let z be an element of $J_{V}(N)$, and assume that z is not a right quasi-regular element of type V. Then there exists a V-modular right ideal, say L, such that L contains all elements of the form $x + zx_{p}$, $x \in N$. Since $z \in J_{V}(N)$, z belongs to every V-modular right ideal and in particular $z \in L$. So $zx \in L$ for all $x \in N$. Since $x + zx_{p} \in L$, $(x+zx_{p}) + L = (zx+zx_{p}) + L$. Since $N^{+} - L$ is a loop, x + L = zx + L. Therefore x + L = L. Hence $x \in L$. Then L = N, a contradiction. Therefore z is a right quasi-regular element of type V.

THEOREM 4.7. $J_V(N)$ is the largest quasi-regular right ideal of type V , V = 1, 2 .

Proof. By Lemma 4.6, $J_V(N)$ is a quasi-regular right ideal of type V. Now we shall show that $J_V(N)$ contains all the quasi-regular right ideals of type V, V = 1, 2. If $J_V(N) = N$ there is nothing to prove. Suppose $J_V(N) \neq N$. Let Q be a quasi-regular right ideal of type V, V = 1, 2. Suppose $Q \notin J_V(N)$. Then there exists a V-modular right ideal, V = 1, 2, say L, such that $Q \notin L$. Let e be a left identity modulo L. Now N = L + Q and e = n + s where $n \in L$, $s \in Q$. Since L is a right ideal, $ea + sa_p = (n+s)a + sa_p \in L$, for all $a \in N$. Since e is a left identity modulo L, $a + ea_p \in L$ for all $a \in N$. Therefore for each $a \in N$, $(a+ea_p) + L = (ea+ea_p) + L$. Since $N^+ - L$ is a loop, a + L = ea + L. Now $(a+sa_p) + L = (ea+sa_p) + L = L$. Therefore $a + sa_r \in L$ for all $a \in \mathbb{N}$. So s can not be a right quasi-regular element of type V, V = 1, 2. Since $s \in Q$, s is a right quasi-regular element of type V, V = 1, 2; a contradiction. Therefore $Q \subseteq L$ and hence $Q \subseteq J_U(\mathbb{N})$, V = 1, 2.

COROLLARY 4.8. $J_V(N)$ contains all nil right ideals of N , V = 1, 2 .

Proof. Since a nil right ideal is a quasi-regular right ideal of type V, by Theorem 4.7, $J_U(N)$ contains all nil right ideals of N.

COROLLARY 4.9. $J_V(N)$ contains all nilpotent right ideals of N , V = 1, 2 .

THEOREM 4.10. D(N) is the largest quasi-regular right ideal of type 0.

Proof. Let z be an element of D(N) and suppose L is a O-modular right ideal containing all elements of the form $x + zx_p$, $x \in N$. Now $L \supseteq D(N)$ and hence $z \in L$. Since for each $x \in N$, $x + zx_p \in L$, $(x+zx_p) + L = (zx+zx_p) + L$. Since $N^+ - L$ is a loop, we have x + L = zx + L. Since $z \in L$, $zx \in L$. Therefore x + L = L. Hence $x \in L$. Then L = N, a contradiction. Therefore there is no O-modular right ideal of N containing all elements of the form $x + zx_p$, $x \in N$. Hence z is a right quasi-regular element of type 0, and therefore D(N) is a quasi-regular right ideal of type 0. Now we shall show that D(N) contains all the quasi-regular right ideals of type 0. If D(N) = N there is nothing to prove. Suppose $D(N) \neq N$. Let Q be any quasi-regular right ideal of type 0 and let L be any O-modular right ideal. If $Q \notin L$, then N = L + Q. Now proceeding as in Theorem 4.7, we get a contradiction. Therefore $Q \subseteq L$ and hence $Q \subseteq D(N)$.

As there are near-rings where the radicals $J_V(N)$ and D(N) are different, from Theorems 4.7 and 4.10 we observe that the three types of quasi-regular right ideals which we introduced are distinct.

COROLLARY 4.11. D(N) contains all nil right ideals. COROLLARY 4.12. D(N) contains all nilpotent right ideals.

THEOREM 4.13. $J_{\rho}(N)$ is the largest quasi-regular ideal of type 0.

Proof. By Lemma 4.6, $J_0(N)$ is a quasi-regular ideal of type 0. Let L be any quasi-regular ideal of type 0. Since a quasi-regular ideal of type 0 is a quasi-regular right ideal of type 0, $L \subseteq D(N)$. Since $J_0(N)$ is the largest ideal contained in D(N), it follows that $L \subseteq J_0(N)$.

COROLLARY 4.14. $J_0(N)$ contains all the nil ideals of N. COROLLARY 4.15. $J_0(N)$ contains all the nilpotent ideals of N.

References

- [1] Gerhard Betsch, "Struktursätze für Fastringe", (Dissertation, Universität zu Tübingen, 1963).
- [2] Richard Hubert Bruck, A survey of binary systems, 2nd edition (Ergebnisse der Mathematik und ihrer Grenzgebiete, 20. Springer-Verlag, Berlin, Heidelberg, New York, 1966).
- [3] Günter Pilz, Near-rings. The theory and its applications (North-Holland Mathematics Studies, 23. North-Holland, Amsterdam, New York, Oxford, 1977).
- [4] D. Ramakotaiah, "Radicals for near-rings", Math. Z. 97 (1967), 45-56.

Department of Mathematics, Nagarjuna University, Nagarjunanagar, Andhra Pradesh, India.