J. Goodwin (RSRE): You described how the time discrepancies varied between the city pairs; obviously some cities, like Rome, have further to fly before they can reach the oceanic track structure. Are these differences simply a question of geography, or is there more to it?

Mr Attwooll: There seems to be some indication that city pairs in the centre, like London and Frankfurt, are for some reason or other better off; so Copenhagen and Rome are worse off than London and Frankfurt. There could be several reasons for this but we have not isolated these yet, and there are various other discrepancies.

ERRATA

'Conflicts Between Random Flights in a Given Area'

By S. Ratcliffe and R. L. Ford

The following misprints should be corrected in the paper published in Vol. 35, No. 1, Pp. 47-74 (The authors' corrections to the original proofs were inadvertently ignored in the published version):
P. 55, line 22: for S_{r} read S_{r}^{\prime}
P. 56, line 41: for W^{\prime} read W_{2}^{\prime}
P. 5^{8}, last equation should read:

$$
N_{\mathrm{cl} 1}=\frac{d p_{1}\left(p_{1}-r\right) S_{\mathrm{i}}^{\prime}}{A F_{\mathrm{i}}}
$$

Equations (9), (24) and (26) should read:

$$
\begin{align*}
& N_{\mathrm{b} 2}=\left[d p_{2}\left(p_{2}-1\right) S_{\mathrm{r}}^{\prime}\right] / A \tag{9}\\
& \frac{N_{\mathrm{c} 2}}{N_{\mathrm{c} 1}} \approx \frac{2 F_{\mathrm{i}} h S_{\mathrm{r}}^{\prime}}{H S_{\mathrm{i}}^{\prime}}=\frac{2 h S_{\mathrm{r}}^{\prime}}{J_{1} S_{\mathrm{i}}^{\prime}} \tag{24}\\
& N_{\mathrm{h}}=C t D(\mathrm{mt}) p(p-\mathrm{r}) / R^{2} \tag{26}
\end{align*}
$$

