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In this paper, we are interested in investigating notions of stability for generalized
linear differential equations (GLDEs). Initially, we propose and revisit several
definitions of stability and provide a complete characterization of them in terms of
upper bounds and asymptotic behaviour of the transition matrix. In addition, we
illustrate our stability results for GLDEs to linear periodic systems and linear
impulsive differential equations. Finally, we prove that the well-known definitions of
uniform asymptotic stability and variational asymptotic stability are equivalent to
the global uniform exponential stability introduced in this article.
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1. Introduction

The beginning of the generalized ordinary differential equations (GODEs) date
back to 1957 when the seminal work of J. Kurzweil [22] introduced this new class
of differential equations and gives the first steps in a thoroughgoing construction of
a qualitative theory developed in a series of subsequent articles, see [21, 23, 24].
Kurzweil’s contribution was and has been until today an inspiration for several
mathematicians who continue growing up this qualitative theory and establishing
noteworthy connections between other types of differential systems, such as impul-
sive differential equations, differential equations in measure, dynamic equations on
time scales and functional differential equations, see for instance [10, 13, 19, 29,
34, 39]. In the last years a lot of progress has been made in the characterization of
exponential dichotomies and its applications [6, 7], along with the development of
a stability theory [2, 12, 15]. This article will be focused on this last topic.

Let us to commence by introducing the notion of generalized equation above
mentioned. Given a function F : Ω → R

n, where Ω = O × R, and O ⊂ R
n is an open

set; a function x : [a, b] → R
n, with [a, b] ⊂ R, is called a solution of the generalized

ODE

dx

dτ
= DF (x, t) (1.1)
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on the interval [a, b], if (x(t), t) ∈ Ω for every t ∈ [a, b], and

x(d) − x(c) =
∫ d

c

DF (x(τ), t), whenever [c, d] ⊆ [a, b]. (1.2)

It is important to emphasize two aspects of this concept: at first, equation (1.1)
is defined via its solution. Secondly, the integral on the right-hand side of (1.2) is
understood in the Kurzweil sense defined in [20]. A precise statement will be given
in § 2 to understand the relationship between F and the formalism DF on (1.1)
and (1.2).

In this paper, we focus our attention in the stability theory for GODEs (1.1)
described by functions F : Ω → R

n defined by F (x, t) = A(t)x + g(t), where A :
[0, +∞) → L(Rn) and g : [0, +∞) → R

n are functions of locally bounded variation
with additional properties that will be specified later. This particular case of GODE
is known as generalized linear differential equation (GLDE), and is symbolically
denoted by

dx

dτ
= D[A(t)x + g(t)]. (1.3)

When the above function g is considered identically null, equation (1.3) is said
homogeneous GLDE and is denoted by

dx

dτ
= D[A(t)x]. (1.4)

This type of linear problem was intensively studied since 1971 by Š. Schwabik,
who developed – in collaboration with M. Tvrdý – a qualitative linear theory
in a saga of papers devoted to the existence and uniqueness theorems, the rep-
resentation of the unique solution for the homogeneous GLDE (1.4) with initial
condition x(s0) = x0 ∈ R

n through a transition matrix U(t, s), a variation of con-
stants formula for GLDEs (1.3), among other interesting results, see e.g. [33, 34,
36–38].

In 2019, Federson et al. [12] have been considering stability notions in the sense
of Lyapunov for GODEs (1.1) – see definition 3.1 in § 3 – and also established
results about uniform stability and uniform asymptotic stability by using Lya-
punov functions, see [12, Th.3.4] and [12, Th.3.6], respectively. Later, Gallegos
et al. in [15] established new results concerned to stability, asymptotic stabil-
ity and exponential stability for GODEs (1.1), see [15, Th.3.4], [15, Th.3.6] and
[15, Th.3.9], respectively. In the aforementioned articles the authors applied the
above stability results to measure differential equations and dynamic equations
on time scales. Recently, Andrade da Silva et al. in [2] proved a converse Lya-
punov theorem on uniform stability, and a converse Lyapunov theorem on uniform
boundedness for GODEs (1.1), see [2, Th.4.7] and [2, Th.5.2], respectively. In addi-
tion, this last article studies the relationship between uniform stability, uniform
boundedness and stability with respect to perturbations.

Motivated by the aforementioned articles of stability concerned to GODEs (1.1)
[2, 12, 15], the main purpose in this paper consists in to extend our knowledge
about the stability notion introduced in [12] by considering the special case of the
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homogeneous GLDE (1.4), with the goal to obtain sharper results in comparison
with the nonlinear framework. More specifically, in § 3 we provide our first results:

• In Theorem 3.4, we characterize the uniform stability in terms of the bound-
edness of the transition matrix U(t, s) associated to the homogeneous GLDE
(1.4).

• In theorem 3.7, we characterize the uniform asymptotic stability with a uniform
exponential decay of the transition matrix of the form

‖U(t, s)‖ � Ke−α(t−s), for K,α > 0, and any t � s � 0.

• We introduce definitions of global asymptotic stability and global uniform expo-
nential stability for the trivial solution of the homogeneous GLDE (1.4) – see
definition 3.2 – and we provide a characterization of these both concepts of
stability in terms of the transition matrix U(t, s), see theorem 3.6 and theorem
3.7.

• By using the Floquet theory [33] for periodic systems (1.4), we provide a nec-
essary and sufficient condition ensuring global uniform exponential stability for
(1.4), see corollary 3.11.

In § 4, we recall – see [34, example 6.20] – that a linear impulsive differential
equation can be seen as a particular case of the GLDE (1.4), whose transition
matrices are the same. This fact allows us to compare the stability notions and
results developed in § 3 with those established in the impulsive linear framework
[3, 17, 31]. More specifically, we provide several scalar examples which illustrate
the types of stability described in the previous section. See examples 4.2 to 4.5.

In the last section, we are concerned with the notion of variational stability intro-
duced by Š. Schwabik in [35], where a well-known result states that the variational
stability is equivalent to the existence of a uniform bound for the transition matrix
U(t, s) and – by using the results from § 3 – we point out that this is also equivalent
to the uniform stability. These preliminary results motivate the main result of this
section, namely theorem 5.8, which states that the variational asymptotic stability
of the trivial solution for the homogeneous GLDE (1.4) is equivalent to the uniform
asymptotic stability studied in [2, 12, 15] and revisited in § 3 for the linear case.

2. Preliminaries

Throughout the text, X will always denote a Banach space endowed with a norm
‖ · ‖X , and the set L(Rn) denotes the vector space consisting of all n × n - matrices
with real components endowed with the operator norm. In order to give a brief
overview of the Kurzweil integral theory, we will introduce the following definitions:

• A subset P = {α0, α1, . . . , αν(P )} ⊂ [a, b], with ν(P ) ∈ N, is said to be a parti-
tion of [a, b] if α0 = a < α1 < . . . < αν(P ) = b. We denote the set which contains
all partitions of [a, b] by P([a, b]).

• The pair (P, τ) := {([αj−1, αj ], τj) : j = 1, . . . , ν(P )}, where P ∈ P([a, b])
and τj ∈ [αj−1, αj ], is called a tagged partition of [a, b].
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• Any positive function δ : [a, b] → R
+ is called a gauge on [a, b].

• If δ is a gauge on [a, b], a tagged partition (P, τ) is called δ-fine if

[αj−1, αj ] ⊂ (τj − δ(τj), τj + δ(τj)) , j = 1, . . . , ν(P ).

• Let f : [a, b] → X be a function. We denote the variation of f over the interval
[a, b] by

varb
a(f) = sup

P∈P([a,b])

ν(P )∑
j=1

‖f(αj) − f(αj−1)‖X .

The vector space consisting of all functions f : [a, b] → X for which varb
a(f) < ∞ is

denoted by BV ([a, b], X), and it is a Banach space for the norm

‖f‖BV = ‖f(a)‖X + varb
a(f).

We denote by BVloc([0, +∞), X) the set consisting of all functions f : [0, +∞) → X
of locally bounded variation, i.e. all functions f such that varb

a(f) < ∞ for every
compact interval [a, b] ⊂ [0, +∞).

Now, we are in a position to define the Kurzweil integral introduced in [22]:

Definition 2.1. A function G : [a, b] × [a, b] → X is called Kurzweil integrable on
[a, b], if there is an element I ∈ X having the following property: for every ε > 0,
there is a gauge δ(·) on [a, b] such that∥∥∥∥∥∥

ν(P )∑
j=1

[G(τj , αj) − G(τj , αj−1)] − I
∥∥∥∥∥∥

X

< ε,

for all δ–fine tagged partition (P, τ) of [a, b]. In this case, I is called the Kurzweil
integral of G over [a, b] and will be denoted by

∫ b

a
DG(τ, t).

If
∫ b

a
DG(τ, t) exists, then we define

∫ a

b
DG(τ, t) = − ∫ b

a
DG(τ, t) and we set∫ c

c
DG(τ, t) = 0 for all c ∈ [a, b].

Remark 2.2. Definition 2.1 has sense due to the fact that given a gauge δ on
[a, b], there always exists a δ-fine tagged partition (P, τ) of the interval [a, b]. See
[34, Cousin’s lemma 1.4] or [8, lemma 3.1].

The Kurzweil integral satisfies the usual properties of integration such as lin-
earity, integrability of subintervals, additivity on adjacent intervals, among others
(see chapter I in [34]). Let us emphasize certain facts of the Kurzweil integrabil-
ity notion. The Henstock–Kurzweil integral definition – also called gauge integral
– of a function x : [a, b] → R is obtained by considering in definition 2.1 the func-
tion G(τ, t) = x(τ)t for all (τ, t) ∈ [a, b] × [a, b]. It is well known that this integral
contains the classical ones of Riemann and Lebesgue, see e.g. [8, 20]. Moreover,
by considering the function G(τ, t) = x(τ)g(t), where g : [a, b] → R, the Kurzweil
integral turns out to be equivalent to the Perron–Stieltjes integral of the function
x(·) with respect to g, see [22].
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In order to provide an appropriate notation for the subsequent sections, we
present the following example

Example 2.3. Consider functions x : [a, b] → R
n and A : [a, b] → L(Rn). By defin-

ing G(τ, t) = A(t)x(τ) in definition 2.1, we obtain the Kurzweil–Stieltjes integral
of the function x respect to the function A. This particular case is also called Per-
ron–Stieltjes integral. Note that the integral can be approximated by a Stieltjes
sum in the following sense

∫ b

a

DG(τ, t) =
∫ b

a

D[A(t)x(τ)] ∼
ν(P )∑
j=1

[A(sj) − A(sj−1)]x(τj).

Therefore, we use the following conventional notation:∫ b

a

D[A(t)x(τ)] =
∫ b

a

d[A(s)]x(s).

For a list of fundamental properties of the Perron–Stieltjes integral, we refer to
[27, 28, 32].

An ubiquitous Banach space in the functional setting of the Perron–Stieltjes
integral is given by the set G([a, b], X), consisting of all regulated functions f :
[a, b] → X, endowed with the uniform convergence norm ‖f‖∞ = sup

t∈[a,b]

‖f(t)‖X .

We point out that BV ([a, b], X) ⊂ G([a, b], X). For a detailed discussion about
this space we refer the reader to [14].

We recall an existence result for the Perron–Stieltjes integral which will be crucial
in the development of generalized linear differential equations.

Theorem 2.4 [27, proposition 2.1]. Assume that A ∈ BV ([a, b], L(Rn)) and f ∈
G([a, b], R

n). Then, the Perron–Stieltjes integral
∫ b

a
d[A(s)]f(s) exists and we have∥∥∥∥∥

∫ b

a

d[A(s)]f(s)

∥∥∥∥∥ �
∫ b

a

‖f(s)‖d[vars
a(A)] � ‖f‖∞varb

a(A).

Given an arbitrary function ϕ : [a, b] → X in G([a, b], X), throughout this paper
we will use the following notations

Δ+ϕ(t) := ϕ(t+) − ϕ(t), and Δ−ϕ(t) := ϕ(t) − ϕ(t−),

where ϕ(t+) – respectively ϕ(t−) – denotes the right-hand (left-hand) limit at t.

2.1. Generalized ODEs

We recall the concept of generalized ordinary differential equations (GODEs),
along with some well-known results. In the next statements, we assume that F : Ω →
R

n is a given R
n-valued function, where Ω = O × [t0, +∞), O ⊂ R

n is an open
subset of R

n, and t0 � 0.
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Definition 2.5. Let J ⊂ [t0, +∞) be a nondegenerate interval. A function x : J →
R

n is called a solution of the generalized ordinary differential equation (GODE)

dx

dτ
= DF (x, t) (2.1)

on the interval J , if (x(t), t) ∈ Ω for every t ∈ J , and

x(d) − x(c) =
∫ d

c

DF (x(τ), t), (2.2)

whenever [c, d] ⊆ J .

The integral on the right-hand side of (2.2) is understood in the sense of definition
2.1.

Remark 2.6. As pointed out in [34, pp.99–100], a generalized ordinary differen-
tial equation denoted by (2.1) is a formal equation being defined via its solution.
Actually, the derivative symbol involved in (2.1) does not imply a priori that the
function x(·), which is a solution of (2.1), possess a derivative in some sense.

Proposition 2.7 [34, proposition 3.5]. If x : J → R
n is a solution of the GODE

(2.1) on the interval J ⊂ [t0, +∞), then for every fixed γ ∈ J we have

x(s) = x(γ) +
∫ s

γ

DF (x(τ), t), for any s ∈ J. (2.3)

Furthermore, if a function x : J → R
n satisfies the integral equation (2.3) for some

γ ∈ J and all s ∈ J , then x(·) is a solution of the GODE (2.1).

With the purpose to obtain more specific information about the solutions of
GODEs, we precise extra conditions over the function F : Ω → R

n. For that reason,
we define a broad class of functions F for which are included the theory of ordi-
nary differential equations, measure differential equations and impulsive differential
equations, among others. See [23] or chapter V in [34].

Definition 2.8. If there exists a nondecreasing function h : [t0, +∞) → R such
that F : Ω → R

n satisfies

(F1) ‖F (x, s2) − F (x, s1)‖ � |h(s2) − h(s1)|, for all (x, si) ∈ Ω, with i = 1, 2,

(F2) ‖F (x, s2) − F (x, s1) − F (y, s2) + F (y, s1)‖ � |h(s2) − h(s1)|‖x − y‖, for all
(x, si), (y, si) ∈ Ω, with i = 1, 2,

then we say that F belongs to the class F(Ω, h) or simply F ∈ F(Ω, h).

Example 2.9. Consider x0 ∈ R
n, and let [a, b] ⊂ [t0, +∞) be a compact interval.

Assume that A ∈ BV ([a, b], L(Rn)) and g ∈ BV ([a, b], R
n). Note that for every
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(x, t) ∈ R
n × [a, b], we can define

F (x, t) = A(t)x + g(t). (2.4)

Consider Ω = Bc(x0) × [a, b], with c � 1. The function F defined by (2.4) belongs
to the class F(Ω, h), where the function h : [a, b] → R is defined by h(t) = (c +
‖x0‖)vart

a(A) + vart
a(g), for all t ∈ [a, b].

The next lemma describes properties of the solutions of GODEs when the
function F satisfies the condition (F1).

Lemma 2.10. Let F : Ω → R
n be a function that satisfies condition (F1). If x : J →

R
n is a solution of the GODE (2.1) on the interval J, then the inequality

‖x(s2) − x(s1)‖ � |h(s2) − h(s1)|

holds for every s1, s2 ∈ J .

Remark 2.11. When the function F satisfies the condition (F1) and x(·) is a solu-
tion of the GODE (2.1) on J , since the function h is locally of bounded variation
on J (nondecreasing function defined on J), it follows that x(·) is also locally of
bounded variation on J . In addition, the continuity points of the function h are
continuity points of the solution x(·) of the GODE (2.1) on J .

The next theorem concerns with the existence-uniqueness of solutions for GODEs
defined on a maximal interval, see [11].

Theorem 2.12. Let F ∈ F(Ω, h), where h : [t0, +∞) → R is a nondecreas-
ing left–continuous function. Assume that Ω = ΩF := {(x, t) ∈ Ω: x + F (x, t+) −
F (x, t) ∈ O}. Then, for every (x0, s0) ∈ Ω there exists a unique maximal solution
x : [s0, ω(x0, s0)) → R

n of the GODE (2.1), with x(s0) = x0 and ω(x0, s0) � +∞.

The condition Ω = ΩF := {(x, t) ∈ Ω : x + F (x, t+) − F (x, t) ∈ O} ensures that
there are no points in Ω for which the solution of the generalized ODE (2.1) can
escape of O, see [34, p.127].

2.2. Generalized linear differential equations

In this subsection, we put our attention in the special case of GODEs which was
regarded in example 2.9. Throughout this paper, we consider that J = [0, +∞),
and A : J → L(Rn) is a n × n - matrix valued function of locally bounded variation
on J .

As it was explained in chapter VI of [34], if g ∈ BVloc(J, R
n), then a particular

case of the GODE (2.1) is obtained if we consider the function F : R
n × J → R

n

defined by (2.4). This case in literature is known as generalized linear differential
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equation (GLDE), and it is denoted by

dx

dτ
= D[A(t)x + g(t)]. (2.5)

It follows from definition 2.5 that a function x : J → R
n is a solution of (2.5) on J

if for every a, b ∈ J we have

x(b) − x(a) =
∫ b

a

D[A(t)x(τ) + g(t)],

where the integral is considered in the sense of definition 2.1. Taking into consid-
eration the comments in example 2.3, the integral on the right-hand side can be
decomposed as follows

∫ b

a

D[A(t)x(τ) + g(t)] =
∫ b

a

D[A(t)x(τ)] + g(b) − g(a)

=
∫ b

a

d[A(s)]x(s) + g(b) − g(a).

Summarizing, a function x : J → R
n is a solution of (2.5) if for every a, b ∈ J we

have

x(b) − x(a) =
∫ b

a

d[A(s)]x(s) + g(b) − g(a).

Remark 2.13. Similarly as in the classical theory of ordinary differential equations,
in the case that the function g : J → R

n is identically null, equation (2.5) is called
homogeneous GLDE and it is denoted by

dx

dτ
= D[A(t)x]. (2.6)

To develop a qualitative theory for the GLDE (2.5), it is necessary to introduce
conditions over the function A. For a detailed discussion about this aspect, see
[34, proposition 6.4]. Consider the following condition

(A) The matrix [I − Δ−A(t)] is invertible for all t ∈ (0, +∞) and the matrix
[I + Δ+A(t)] is invertible for every t ∈ J .

Now, we will see that for every (x0, s0) ∈ R
n × J there is a unique solution x(·)

of (2.5) with initial condition x(s0) = x0 defined on the whole interval [s0, +∞),
i.e. in the generalized linear case, under appropriate assumptions, we always can
prolongate the solution and consider ω(s0, x0) = +∞.

Theorem 2.14 [34, theorem 6.5]. Let g ∈ BVloc(J, R
n). Assume that A ∈

BVloc(J, L(Rn)) and (D) holds. Then for every (x0, s0) ∈ R
n × J there exists

a unique solution x(·) ∈ BVloc(J, R
n) of the GLDE (2.5) with initial condition

x(s0) = x0.
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In the next, we define the concept of fundamental matrix for the homogeneous
GLDE (2.6).

Definition 2.15. A matrix valued function X : J → L(Rn) is called a fundamental
matrix of the homogeneous GLDE (2.6) if X satisfies the identity

X(t) − X(ξ) =
∫ t

ξ

d[A(s)]X(s) (2.7)

for all ξ, t ∈ J , and if the matrix X(t) is invertible for at least one value t ∈ J .

Remark 2.16. The integral on the right-hand side of the equation (2.7) should be
understood in the sense of definition 2.1, where G(τ, t) = A(t)X(τ). In addition, it
can be proved that X : J → L(Rn) satisfies (2.7) if, and only if, any column of X
is a solution of (2.6), i.e. if every k-th column Xk of X satisfies

Xk(t) − Xk(ξ) =
∫ t

ξ

d[A(s)]Xk(s),

for all t, ξ ∈ J . Furthermore, if A ∈ BVloc(J, L(Rn)) and (D) holds, then every
fundamental matrix of (2.6) is invertible for all t ∈ J , see [34, theorem 6.12].

The next theorems provide an essential tool to study the theory of GLDEs. Let us
emphasize that, despite to seem analogous to the classical world of nonautonomous
linear systems, the proofs of the following results are plenty of bulky technicalities
and subtle steps most of them related with properties of the Perron–Stieltjes inte-
gral, and follow a completely different approach to the proofs in the classical case
of ordinary differential equations. For details, we refer [34, 35].

Theorem 2.17. Assume that A ∈ BVloc(J, L(Rn)) and (D) holds. Then there exists
a uniquely determined n × n - matrix valued function U : J × J → L(Rn) such that

U(t, s) = I +
∫ t

s

d[A(r)]U(r, s), (2.8)

for t, s ∈ J . In addition, the function U has the following properties:

(a) U(t, t) = I, for all t ∈ J .

(b) For every compact interval [a, b] ⊂ J, there exists a constant M � 0 such
that
(i) ‖U(t, s)‖ � M for all t, s ∈ [a, b],

(ii) varb
a(U(t, ·)) � M for t ∈ [a, b],

(iii) varb
a(U(·, s)) � M for s ∈ [a, b],

(c) For every r, s, t ∈ J the relation U(t, s) = U(t, r)U(r, s) holds.

(d) U(t, s) ∈ L(Rn) is invertible for every t, s ∈ J, and the relation [U(t, s)]−1 =
U(s, t) holds.
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(e) For t, s ∈ J, the following equality holds
(i) U(t+, s) = [I + Δ+A(t)]U(t, s),

(ii) U(t−, s) = [I − Δ−A(t)]U(t, s),

(iii) U(t, s+) = U(t, s)[I + Δ+A(t)]−1,

(iv) U(t, s−) = U(t, s)[I − Δ−A(t)]−1.

The n × n - matrix valued function U defined by (2.8) is called transition matrix
of the homogeneous GLDE (2.6).

Theorem 2.18 [34, theorem 6.14]. Assume that A ∈ BVloc(J, L(Rn)) and (D)
holds. Then for every (x0, s0) ∈ R

n × J, the unique solution x(·) ∈ BVloc(J, R
n)

of the homogeneous GLDE (2.6) with initial condition x(s0) = x0 is given by

x(t, s0, x0) = U(t, s0)x0, fot any t ∈ J,

where U is defined by (2.8).

In the next, we recall the variation of constants formula for the GLDE (2.5).

Theorem 2.19 [34, theorem 6.17]. Assume that A ∈ BVloc(J, L(Rn)) and (D)
holds. Then for every (x0, s0) ∈ R

n × J and g ∈ BV (J, R
n), the unique solution

of (2.5) with initial condition x(s0) = x0 can be written in the form

x(t, s0, x0) = U(t, s0)x0 + g(t) − g(s0) −
∫ t

s0

d[U(t, s)](g(s) − g(s0)), (2.9)

for all t ∈ J , where U is the transition matrix defined by (2.8).

Remark 2.20. As in the classical theory of nonautonomous linear systems, if X :
J → L(Rn) is an arbitrary fundamental matrix of the homogeneous GLDE (2.6),
then U(t, s) = X(t)X−1(s), for every t, s ∈ J . Therefore, it follows that the identity
(2.9) can be rewritten in the form

x(t, s0, x0) = X(t)
(
X−1(s0)x0 + X−1(t)(g(t) − g(s0))

−
∫ t

s0

d[X−1(s)](g(s) − g(s0))
)

.

Now, using integration by parts formula [38, theorem I.4.33], we get

x(t, s0, x0) = X(t)
[
X−1(s0)x0 +

∫ t

s0

X−1(s)d[g(s) − g(s0)]

−
∑

s0<τ�t

Δ−X−1(τ)Δ−g(τ) +
∑

s0�τ<t

Δ+X−1(τ)Δ+g(τ)

⎤
⎦ ,

(2.10)
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or equivalently,

x(t, s0, x0) = U(t, s0)x0 +
∫ t

s0

U(t, s)d[g(s) − g(s0)] −
∑

s0<τ�t

Δ−U(t, τ)Δ−g(τ)

+
∑

s0�τ<t

Δ+U(t, τ)Δ+g(τ).

(2.11)

3. Stability for generalized linear differential equations

In this section, we will establish Lyapunov-type stability results for the homoge-
neous GLDE (2.6). Throughout this section, we will consider that J = [0, +∞),
A ∈ BVloc(J, L(Rn)) and condition (D) holds, the function F : R

n × J → R
n of

the GODE (2.1) will be defined by F (x, t) = A(t)x, for all (x, t) ∈ R
n × J , i.e. we

are concerned with the homogeneous GLDE (2.6). It is clear from definition that
the trivial solution x ≡ 0 is a solution of the homogeneous GLDE (2.6).

Since theorem 2.18, we can guarantee that the unique solution x(·, s0, x0) of
the homogeneous GLDE (2.6) with initial condition x(s0) = x0 ∈ R

n is defined on
the whole interval [s0, +∞), and x(t, s0, x0) = U(t, s0)x0, for all t � s0 � 0, where
U(t, s0) is the transition matrix defined by (2.8).

Let us recall stability concepts for the trivial solution x ≡ 0 of the generalized
ODE (2.1), which were introduced in [12]. These notions emulate the classical
Lyapunov-type stability definitions for nonautonomous ODEs, see for instance
[9, Def.4.1.12]. We reformulate the statement adapted for the homogeneous GLDE
(2.6).

Definition 3.1. The trivial solution x ≡ 0 of the homogeneous GLDE (2.6) is said
to be

• Stable, if for every s0 � 0 and every ε > 0, there exists a δ = δ(s0, ε) > 0
such that if x0 ∈ R

n and ‖x0‖ < δ, then ‖x(t, s0, x0)‖ = ‖x(t)‖ < ε for all t ∈
[s0, +∞).

• Uniformly stable, if it is stable with δ > 0 independent of s0.

• Uniformly asymptotically stable, if it is uniformly stable and if there exists
δ0 > 0 such that, for each ε > 0, there is a T = T (ε) � 0 such that if s0 � 0
and x0 ∈ R

n with

‖x0‖ < δ0,

then

‖x(t, s0, x0)‖ = ‖x(t)‖ < ε,

for all t ∈ [s0 + T (ε), +∞).

Furthermore, we consider the following notions of global asymptotic stability for
GLDEs.

https://doi.org/10.1017/prm.2023.13 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.13


392 C.A. Gallegos and G. Robledo

Definition 3.2. The trivial solution x ≡ 0 the homogeneous GLDE (2.6) is said to
be

• Globally asymptotically stable, if it is stable and for any x(s0) = x0 ∈ R
n,

we get ‖x(t, s0, x0)‖ −→ 0 as t → +∞.

• Globally uniformly exponentially stable, if there exist constants α, K > 0
such that for any x(s0) = x0 ∈ R

n, we get ‖x(t, s0, x0)‖ < K ‖x0‖ e−α(t−s0) for
all t ∈ [s0, +∞).

• Globally nonuniformly exponentially stable, if there exist a constant
α > 0 and a nondecreasing function K : [0, +∞) → [1, +∞) such that for
any x(s0) = x0 ∈ R

n, we get ‖x(t, s0, x0)‖ < K(s0) ‖x0‖ e−α(t−s0) for all t ∈
[s0, +∞).

Let us emphasize that the global exponential stabilities – uniform and nonuniform
– are particular cases of the global asymptotic stability notion.

Remark 3.3. Let Bc be the open ball in R
n centred at the origin with radius

c > 0, and Ω = Bc × [t0, +∞) where t0 � 0. The notions of asymptotical stabil-
ity and exponential asymptotical stability of the origin have been introduced in
[15, definition 3.1] for nonlinear generalized ODEs of type

dx

dτ
= DF (x, t),

where the function F : Ω → R
n belongs to the class F(Ω, h) and satisfies F (0, t) −

F (0, s) = 0 for all t, s � t0. In this case, the initial conditions are assumed in Bρ

with 0 < ρ < c. Nevertheless, when x 
→ F (t, x) is a linear map, the initial condi-
tions can be localized in a ball with infinite radius. Taking this fact into account,
we highlight that the first two global stabilities stated in definition 3.2 for GLDEs
are directly recovered from [15, definition 3.1], considering in this last mentioned
notion the limit case of infinite radius. For that reason, the adjective global is addi-
tioned in the linear context. Moreover, we emphasize that the global nonuniform
exponential stability stated in definition 3.2 is a novel definition in the GLDEs
framework but emulates the classical definition in the linear ODE context, namely,
the contractive case of the nonuniform exponential dichotomy, see [5, 40].

We are in a position to establish the first stability results for the homogeneous
GLDE (2.6).

Theorem 3.4. The trivial solution of the homogeneous GLDE (2.6) is uniformly
stable if and only if the transition matrix U(t, s0) is bounded for all t � s0 � 0.

Proof. Assume that the trivial solution of (2.6) is uniformly stable. Let ε = 1. There
exists δ = δ(1) > 0 such that

‖x(t, s0, x0)‖ = ‖U(t, s0)x0‖ < 1,

for all t � s0 � 0, and ‖x0‖ < δ. Therefore, for an arbitrary z ∈ R
n with ‖z‖ � 1, we

have ‖x(t, s0, (δ/2)z)‖ = ‖U(t, s0)(δ/2)z‖ < 1 for all t � s0 � 0. Hence, we deduce
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that

‖U(t, s0)‖ = sup
‖z‖�1

‖U(t, s0)z‖ � 2/δ,

for all t � s0 � 0.
On the other hand, suppose that there exists a positive constant C > 0 such that

‖U(t, s0)‖ � C for all t � s0 � 0. Given ε > 0, we can take δ = ε/C, and it follows
that

‖x(t, s0, x0)‖ = ‖U(t, s0)x0‖ � ‖U(t, s0)‖‖x0‖ < ε,

for all t � s0 � 0, and ‖x0‖ < δ. Therefore, the trivial solution of (2.6) is uniformly
stable. �

In the previous theorem 3.4, the boundedness of the transition matrix is inde-
pendent of the initial time s0 ∈ J . It is straightforward to see that the stability can
be characterized with a bound depending on the initial time s0 ∈ J . Specifically,
we can state the following result

Corollary 3.5. The trivial solution of the homogeneous GLDE (2.6) is stable if
and only if for every s0 ∈ J , there is C = C(s0) > 0 such that ‖U(t, s0)‖ � C for
all t � s0.

In the next, we characterize the global asymptotic stability of the trivial solution.

Theorem 3.6. The trivial solution of the homogeneous GLDE (2.6) is globally
asymptotically stable if and only if for every s0 ∈ J, it follows that ‖U(t, s0)‖ −→ 0
as t → +∞.

Proof. Let s0 ∈ J and assume that the trivial solution of the generalized linear
ODE (2.6) is globally asymptotically stable. Then it follows that

‖U(t, s0)‖ = sup
‖z‖�1

‖U(t, s0)z‖ = sup
‖z‖�1

‖x(t, s0, z)‖ −→ 0, as t → +∞.

On the other hand, suppose that for every s0 ∈ J , ‖U(t, s0)‖ −→ 0 as t → +∞. We
will prove the stability of the trivial solution. Let ε > 0 be fixed. There exists N ∈ R

such that ‖U(t, s0)‖ < ε for all t � N . In addition, since U(·, s0) : [s0, N ] → L(Rn)
is a function of bounded variation, it follows that the function ‖U(·, s0)‖ : [s0, N ] →
R is of bounded variation on [s0, N ]. Hence, there exists a K(ε, s0) > 0 such that
‖U(t, s0)‖ < K(ε, s0) for all t � s0.

Now, if we choose δ = ε/K(ε, s0), then we have

‖x(t, s0, x0)‖ = ‖U(t, s0)x0‖ = ‖U(t, s0)‖‖x0‖ < ε,

for all ‖x0‖ < δ, and we conclude the stability. In addition, since x(t, s0, x0) =
U(t, s0)x0, and ‖U(t, s0)‖ −→ 0 as t → +∞, it follows that x(t, s0, x0) −→ 0 as
t → +∞ (independent if x0 is close to zero). �

The next result is a characterization of the uniform asymptotic stability for the
homogeneous GLDE (2.6) and proves that the uniform asymptotic stability in the
linear case is equivalent to the global uniform exponential stability.

https://doi.org/10.1017/prm.2023.13 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.13


394 C.A. Gallegos and G. Robledo

Theorem 3.7. The trivial solution of the homogeneous GLDE (2.6) is uniformly
asymptotically stable if and only if there exist positive constants α, K > 0 such that

‖U(t, s0)‖ � Ke−α(t−s0) (3.1)

for all t � s0 � 0.

Proof. Assume that there exist positive constants α, K > 0 such that (3.1) holds
for all t � s � 0. Clearly, the transition matrix is bounded, with ‖U(t, s0)‖ � K, for
all t � s0 � 0. Hence, by theorem 3.4, the trivial solution of the linear generalized
ODE (2.6) is uniformly stable.

Let ε > 0 be fixed. We can always assume that K > ε. Consider x0 ∈ R
n and

s0 � 0. Note that we have the following equivalence

Ke−α(t−s0) < ε ⇐⇒ t > s0 +
ln(K/ε)

α
.

Therefore, considering δ0 = 1 and T (ε) =
ln(K/ε)

α
, we obtain that

‖x(t, s0, x0)‖ = ‖U(t, s0)x0‖ � ‖x0‖Ke−α(t−s0) < ε,

for all t � s0 + T (ε). Hence, we conclude that the trivial solution of the generalized
ODE (2.6) is uniformly asymptotically stable.

On the other hand, suppose that the trivial solution of (2.6) is uniformly asymp-
totically stable. Let 0 < ε < 1 be fixed. There exists δ0 > 0 independent of ε, and
there is T = T (ε) > 0, such that

‖U(t, s0)x0‖ <
εδ0

2
,

for all t � s0 + T and ‖x0‖ < δ0. Now, for an arbitrary z ∈ R
n with ‖z‖ �

1 we obtain ‖U(t, s0)(δ0/2)z‖ < (εδ0/2) for all t � s0 + T , which implies that
‖U(t, s0)z‖ < ε for all t � s0 + T . Hence,

‖U(t, s0)‖ < ε, (3.2)

for all t � s0 + T .
From the uniform stability assumption of (2.6) and theorem 3.4, we deduce the

existence of a positive constant C > 0 such that ‖U(t, s0)‖ � C for all t � s0 � 0.
Consider t � s0 � 0, and let N � 1 be the smallest integer such that t � s0 + NT .

Then, by the transition property of the transition matrix we have the following
decomposition

U(t, s0) = U(t, s0 + (N − 1)T )U(s0 + (N − 1)T, s0 + (N − 2)T ) · · ·U(s0 + T, s0).

By (3.2) and the previous equality we obtain

‖U(t, s0)‖ � ‖U(t, s0 + (N − 1)T )‖εN−1 � CεN−1, for all t � s0. (3.3)

Consider an arbitrary α > 0. In the case that N = 1, i.e. s0 < t � s0 + T , we have

‖U(t, s0)‖ � C = Ceα(t−s0)e−α(t−s0) � CeαT e−α(t−s0) = Ke−α(t−s0),
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where K = CeαT . In addition, in the case that N > 1, for s0 + (N − 1)T � t �
s0 + NT , we deduce

e−α(t−s0)eαT � e−α(N−1)T . (3.4)

Therefore, if we take α = − ln(ε)
T

> 0, then from (3.3) and (3.4) it follows that

‖U(t, s0)‖ � Ce−α(N−1)T � CeαT e−α(t−s0) = Ke−α(t−s0). (3.5)

Gathering all the previous observations, for α = − ln(ε)
T

> 0 and K = CeαT > 0,
we obtain

‖U(t, s0)‖ � Ke−α(t−s0), for all t � s0 � 0,

getting the desired result. �

Remark 3.8. Theorem 3.7 ensures that the uniform asymptotic stability is equiva-
lent to the global uniform exponential stability. In fact, if the trivial solution of the
homogeneous GLDE (2.6) is uniformly asymptotically stable, then there exist posi-
tive constants K, α > 0 satisfying (3.1). Then, for an arbitrary s0 � 0 and x0 ∈ R

n

we get

‖x(t, s0, x0)‖ = ‖U(t, s0)x0‖ � K‖x0‖e−α(t−s0), for all t � s0,

and the global uniform exponential stability follows. The other implication fol-
lows easily from the second paragraph of the proof of theorem 3.7. It is important
to emphasize that this equivalence is well known in the classic context [16, Th.
58.7]. Nevertheless, to the best of our knowledge, it has not been verified for the
homogeneous GLDE (2.6).

In the next, we recall a result of the Floquet theory which has been generalized
to the context of GLDEs, see [33] and [38].

Theorem 3.9. Assume that A ∈ BVloc(J, L(Rn)), condition (D) holds and
A(t + ω) − A(t) = C, for all t ∈ J, where ω > 0 and C ∈ L(Rn) is a constant
matrix. Then for the fundamental matrix X(t) = U(t, 0) associated to the homo-
geneous GLDE (2.6), there exist a n × n - matrix valued function P : J → L(Rn)
which is ω-periodic and a constant matrix Q ∈ L(Rn) such that

X(t) = P (t)eQt, for all t ∈ J, (3.6)

where Q = 1
ω ln(X(ω)).

Remark 3.10. Theorem 3.9 can be stated on the whole real axis if we interchange
– in the enunciate – the interval J by R and consider the condition (D) as follows:
the matrices [I − Δ−A(t)] and [I + Δ+A(t)] are invertible for all t ∈ R. The proof
of the previous assertion can be found in [38, Th.3.2, p.124].

Similarly as in the classical Floquet theory, the stability of a ω-periodic
homogeneous GLDE (2.6) can be studied in terms of the monodromy matrix X(ω).

https://doi.org/10.1017/prm.2023.13 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.13


396 C.A. Gallegos and G. Robledo

Corollary 3.11. Assume the hypotheses of theorem 3.9. The trivial solution of
the homogeneous GLDE (2.6) is globally uniformly exponentially stable if and only
if the eigenvalues of the monodromy matrix X(ω) are inside of the unit circle.

Proof. Suppose that every eigenvalue ρ of X(ω) verifies |ρ| < 1. We will prove that
for any t � s0 � 0, the inequality (3.1) holds. Note that as X(ω) is invertible, it is
easy to deduce from (3.6) that for every t ∈ J the matrix P (t) is invertible. Now,
from remark 2.20, we have that

U(t, s0) = P (t)eQ(t−s0)P−1(s0), for any t � s0 � 0,

where P−1 : J → L(Rn) is also ω-periodic. In fact, note that P (t)P−1(t) =
P (t + ω)P−1(t) = I leads to P−1(t) = P−1(t + ω) and the ω-periodicity follows.

By (3.6) we have that P (t) = X(t)e−Qt. Now, by using remark 2.20 and statement
(b) from theorem 2.17 we deduce the existence of a constant M � 0 such that for
any t ∈ [0, ω]:

‖P (t)‖ � ‖U(t, 0)‖‖e−Qt‖
� M max

t∈[0,ω]
‖e−Qt‖,

and we conclude the existence of M1 > 0 and M2 > 0 such that

sup
t∈[0,ω]

‖P (t)‖ � M1 and sup
t∈[0,ω]

‖P−1(t)‖ � M2,

where the second inequality can be obtained in a similar way. Now, the above
estimations and the ω-periodicity of P and P−1 implies that

‖U(t, s0)‖ � ‖P (t)‖ ‖P−1(s0)‖ ‖eQ(t−s0)‖
� K0 ‖eQ(t−s0)‖, (3.7)

for all t � s0 � 0, where K0 = M1M2. In addition, note that every eigenvalue λk of
Q, has the form

λk =
1
ω

[ln |ρk| + i (arg ρk + 2mπ)] with m ∈ Z,

where ρk is an eigenvalue of the matrix X(ω), we refer the reader to [1, p.20] for
details. Moreover, as all the eigenvalues of X(ω) are inside the unit circle, from
[30, Th.1.9.2] we infer the existence of positive constants α > 0 and K1 > 0 such
that ‖eQ(t−s0)‖ � K1e

−α(t−s0) for all t � s0 � 0. This fact combined with (3.7)
leads to the estimate

‖U(t, s0)‖ � Ke−α(t−s0) for any t � s0 � 0,

where K = K0K1. Finally, gathering theorem 3.7 and remark 3.8 we conclude
that the trivial solution of the homogeneous GLDE (2.6) is globally uniformly
exponentially stable.

On the other hand, suppose that the homogeneous GLDE (2.6) is globally uni-
formly exponentially stable. We will prove that any eigenvalue ρ of X(ω) belongs
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to the interior of the unit circle. By contradiction, assume that there exists an
eigenvalue ρ satisfying |ρ| � 1 with

U(ω, 0)x0 = ρ x0,

where x0 is an eigenvector associated to ρ. Then, it is straightforward to prove that

U(kω, 0)x0 = ρkx0 for any k ∈ N,

since U(t + ω, s + ω) = U(t, s) for all t, s � 0. The above identity combined with
(3.1) leads to

|ρ|k‖x0‖ = ‖U(kω, 0)x0‖ � Ke−αkω‖x0‖,
for some K > 0 and α > 0. As |ρ| � 1, a contradiction is obtained letting k → ∞.

�

4. Applications to scalar impulsive equations

A noteworthy result of Schwabik [34, pp.193–196] establishes that every linear
impulsive differential equation can be written as a particular homogeneous GLDE
(2.6) provided some mild conditions. In this section, we will consider the scalar case
in order to study the stability properties of the impulsive differential equation

{
ẋ = a(t)x, for t = τk

Δ+x(τk) = bkx(τk), (4.1)

where t � 0, the function a : [0, +∞) → R is locally Lebesgue integrable on
[0, +∞), {τk}k∈N is a divergent sequence without cluster points, and the real
sequence {bk}k∈N verifies 1 + bk = 0 for all k ∈ N.

As above mentioned, the impulsive differential equation (4.1) can be written as
a scalar homogeneous GLDE

dx

dτ
= D[A(t)x], (4.2)

by considering the function A : [0, +∞) → R defined by

A(t) =
∫ t

0

a(r) dr +
∞∑

k=1

bkHτk
(t), for all t � 0, (4.3)

where Hτk
(·) is defined by Hτk

(t) = H(t − τk) for all t � 0, and H(·) denotes the
Heaviside function. Note that the function A(·) is continuous from the left, locally
of bounded variation on [0, +∞), and satisfies condition (D) from § 2. Therefore,
the unique forward solution of the homogeneous GLDE (4.2) passing through x0 at
time t = s0 has the form x(t, s0, x0) = U(t, s0)x0, for all t � s0 � 0, where U(t, s0)
is the transition matrix described by theorem 2.17.
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Following the techniques employed in [34, pp.195–196], we can state that for
t, s � 0 the transition matrix for the homogeneous scalar GLDE (4.2) has the form

U(t, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Φ(t, s) , τj < t, s � τj+1,

Φ(t, s)
i∏

k=j+1

(1 + bk) , τj < s � τj+1 � τi < t � τi+1,

Φ(t, s)
i∏

k=j+1

(
1

1 + bk

)
, τj < t � τj+1 � τi < s � τi+1,

(4.4)

where Φ(t, s) = e
∫ t

s
a(τ) dτ denotes the transition matrix associated to the continu-

ous part of the impulsive differential equation (4.1).
On the other hand, note that the transition matrix (4.4) coincides with the

transition matrix corresponding to the impulsive equation (4.1) which is well known
for the classical theory of impulsive linear systems developed in the pioneering
works of [3, 17, 25, 31]. Hence, both the impulsive differential equation (4.1) and
the scalar homogeneous GLDE (4.2) have the same transition matrix, which in turn
implies that its solutions passing through x0 at time s0 are the same and are given
by

x(t, s0, x0) = U(t, s0)x0, for all t � s0 � 0.

The stability notions described in definitions 3.1 and 3.2 for homogeneous GLDEs
have some similarities with the stability theory for linear impulsive equations. In
fact, the concepts of stability, uniform stability and global asymptotic stability
of GLDEs are equivalent to those for impulsive systems stated in [26, p.35] and
[31, pp.56–57] respectively. Moreover, the stability theory of linear impulsive sys-
tems allows to classify several types of global asymptotic stabilities that can be
described as a particular case of dichotomies with identity projector. A definition
tailored to the scalar impulsive case (4.1) – adapted from [40, Def.2.2] – is the
following:

Definition 4.1. The scalar impulsive differential equation (4.1):

(a) Has a uniform contraction if there exist a couple (K, α) of positive con-
stants and an increasing function h : [0, +∞) → [1, +∞) with h(0) = 1 and
lim

t→+∞h(t) = +∞ such that

|U(t, s)| � K

(
h(t)
h(s)

)−α

for any t � s � 0. (4.5)

(b) Has a nonuniform contraction if there exist three positive constants {K, α, ε}
and two increasing functions h, μ : [0, +∞) → [1, +∞) with h(0) = μ(0) = 1
and lim

t→+∞h(t) = lim
t→+∞μ(t) = +∞ such that

|U(t, s)| � K

(
h(t)
h(s)

)−α

μ(s)ε for any t � s � 0. (4.6)
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In the next, we illustrate with simple examples our stability results for the homo-
geneous GLDE (4.2) established in the previous section and we compare them with
the stability notions in the impulsive framework.

Example 4.2. If we assume that the function a(·) is Lebesgue integrable on [0, +∞)

and the sequence {bk}k∈N is such that the series
∞∑

k=1

ln(|1 + bk|) is absolutely con-

vergent, then the origin of the homogeneous GLDE (4.2) is uniformly stable. In fact,
the integrability of the function a : [0, +∞) → R and the absolute convergence of
the series imply the existence of constants L1 ∈ R and L2 > 0 such that

Φ(t, s) = e
∫ t

s
a(τ) dτ � eL1 and

i∏
k=j+1

|1 + bk| � e

∞∑
k=1

| ln(|1+bk|)|
� eL2 .

By using (4.4) we obtain that |U(t, s)| � eL1+L2 for all t � s � 0 and the uniform
stability of the null solution of (4.2) follows from theorem 3.4.

As we mentioned above, the definition of the uniform stability is the same for
GLDEs and linear impulsive equations, which is determined by the uniform bound-
edness of the transition matrix. Hence, the origin is also a uniformly stable solution
for the impulsive equation (4.1).

Now, we provide an example of global (nonuniform) asymptotic stability for the
homogeneous GLDE (4.2).

Example 4.3. Consider the function a : [0, +∞) → R defined by a(t) = −ω −
ct sin(t), for all t � 0, with 0 < c < ω, and assume that the series

∞∑
k=1

ln(|1 + bk|) is

absolutely convergent. Then the origin of (4.2) is globally asymptotically stable. In
fact, it follows from [5, proposition 2.3] that the assumption 0 < c < ω implies the
existence of a positive constant K0 > 0 such that

Φ(t, s) = e
∫ t

s
a(τ) dτ � K0e

−(ω−c)(t−s)e2cs, for t � s � 0.

Therefore, using (4.4) and the absolute convergence of the series as in example 4.2,
we obtain a positive constant K > 0 such that

|U(t, s)| � Ke−(ω−c)(t−s)+2cs = K(s)e−(ω−c)(t−s), for t � s � 0. (4.7)

In consequence, by theorem 3.6 we have that the origin of the homogeneous GLDE
(4.2) is globally asymptotically stable. Moreover, since ω > c, this global stability
corresponds to the specific case of global nonuniform exponential stability stated
in definition 3.2.

In example 4.3, the definition of global nonuniform exponential stability for
GLDEs can be seen as a specific case of nonuniform contraction of the impul-
sive differential equation (4.1) with functions h, μ : [0, +∞) → [1, +∞) defined by
h(t) = et and μ(t) = e2t, while the corresponding positive constants are given by
α = ω − c and ε = c.
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The last two examples will illustrate the uniform asymptotic stability of the
trivial solution for the homogeneous GLDE (4.2).

Example 4.4. Let a(·) be a bounded and piecewise continuous function verifying
the average condition

lim sup
t−s→+∞

1
t − s

∫ t

s

a(τ) dτ � −α, for t > s, (4.8)

where α > 0. Assume further that the series
∞∑

k=1

ln(|1 + bk|) is absolutely convergent.

Then the origin of the homogeneous GLDE (4.2) is uniformly asymptotically stable.
In fact, the average condition (4.8) means that the upper Bohl exponent of the
equation ẋ = a(t)x is smaller than −α < 0 (see [4], [18, pp.258–259] for details),
which in turn implies the existence of K0 > 0 such that

Φ(t, s) = e
∫ t

s
a(τ) dτ � K0e

−α(t−s) for all t � s � 0.

In addition, as in the previous example 4.2, by the absolute convergence of the

series we get an estimation for the product
i∏

k=j+1

|1 + bk|. Now, using (4.4) and

the above estimations, we deduce the existence of a positive constant K > 0 such
that |U(t, s)| � Ke−α(t−s) for all t � s � 0. Hence, the uniform asymptotic stability
follows from theorem 3.7.

Let us emphasize that example 4.4 is also an example of global uniform expo-
nential stability for the trivial solution of the homogeneous GLDE (4.2). In fact,
for an arbitrary x0 ∈ R and s0 � 0 we get

|x(t, s0, x0)| = |U(t, s0)x0| � |x0|Ke−α(t−s0), for all t � s0.

Moreover, the definition of global uniform exponential stability for GLDEs can be
regarded as a particular case of uniform contraction of the impulsive differential
equation (4.1) with function h : [0, +∞) → [1, +∞) defined by h(t) = et.

In the above examples, the asymptotic behaviour of the homogeneous GLDE
(4.2) is dominated by the continuous part while the discrete one is harmless. Our
last example inverses this behaviour.

Example 4.5. Consider a positive valued function a : [0, +∞) → [0, +∞)
Lebesgue integrable on [0, +∞). Moreover, assume that the sequence of impulses
{τk}k∈N verifies the condition

(a) There exists c > 0 such that

inf
i+1>j

{
i − j

τi+1 − τj

}
= c, (4.9)

while the sequence {bk}k∈N verifies the condition

(a) There exists θ, η ∈ (0, 1) such that η < |1 + bk| � θ for all k ∈ N.
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In the case that t > s with s ∈ (τj , τj+1] and t ∈ (τi, τi+1] with i � j + 1. By
using the asbolute integrability of a(·), combined with properties a) and b), and
defining α0 = −c ln(θ) > 0 we have that:

|U(t, s)| � K θi−j

� K e

[
i − j

τi+1 − τj

]
(τi+1−τj) ln(θ)

� K e−α0(τi+1−τj),
� K e−α0(t−s).

(4.10)

In the case that t > s with t, s ∈ (τj , τj+1], we choose a s0 ∈ (τj+1, τj+2] and
decompose U(t, s) = U(t, s0)U(s0, s). Then, by using the previous estimations and
condition (b), we obtain

|U(t, s)| � Ke−α0(s0−s)|[U(s0, t)]−1|

� Ke−α0(t−s)e

∣∣∣− ∫ s
s0

a(ξ)dξ
∣∣∣ 1
|1 + bj+1|

� K2η−1e−α0(t−s).

Summarizing, there exist positive constants N > 0 and α0 > 0 such that |U(t, s)| <
Ne−α0(t−s), for all t > s � 0. Therefore, by theorem 3.7, we deduce that the trivial
solution of the homogeneous GLDE (4.2) is uniformly asymptotically stable.

5. Variational stability for generalized linear differential equations

In this section, we recall the concepts of variational stability and stability with
respect to perturbations for homogeneous GLDEs introduced in [35]. We will study
the relation of these concepts with the notion of stability given in the previous
section (§ 3).

Throughout this section, we assume that the function A ∈ BVloc([0, +∞), L(Rn))
is continuous from the left and condition (D) holds. Since A is left-continuous, we
just assume that [I + Δ+A(t)] is invertible for all t � 0 because the case when the
matrix [I − Δ−A(t)] is invertible evidently holds.

We begin by introducing the notion of variational stability.

Definition 5.1. The trivial solution x ≡ 0 of the homogeneous GLDE (2.6) is said
to be

• Variationally stable, if for every ε > 0, there exists a δ = δ(ε) > 0 such
that if y : [s0, +∞) → R

n, s0 � 0, is a function of locally bounded variation
on [s0, +∞) and left-continuous on (s0, +∞) with ‖y(s0)‖ < δ and

sup
t�s0

vart
s0

(
y(s) −

∫ s

s0

d[A(ξ)]y(ξ)
)

< δ,

then ‖y(t)‖ < ε for all t � s0.

• Variationally attracting, if there exists δ0 > 0 and for every ε > 0 there
is a T = T (ε) � 0 and γ = γ(ε) > 0 such that if y : [s0, +∞) → R

n, s0 � 0,
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is a function of locally bounded variation on [s0, +∞) and left-continuous on
(s0, +∞) with ‖y(s0)‖ < δ0 and

sup
t�s0

vart
s0

(
y(s) −

∫ s

s0

d[A(ξ)]y(ξ)
)

< γ,

then ‖y(t)‖ < ε for all t � s0 + T (ε) and s0 � 0.

• Variationally asymptotically stable, if it is variationally stable and
variationally attracting.

We cite the following reflection about the variational stability notion stated in
[34, remark 10.7]: ‘This concept comes from the following intuitive idea: if a certain
function y(·) given on some interval [t0, t1] ⊂ [0, +∞) is such that the initial value
y(t0) is close to zero and on the interval [t0, t1] the function y is almost a solution
of (2.1), i.e. the variation of the function

y(s) − y(t0) −
∫ s

t0

DF (y(τ), t)

on [t0, t1] is small enough, then y is close to zero on the interval [t0, t1]’.

Remark 5.2. Note that in definition 5.1 when it is considered the function y(·)
as a solution of homogeneous GLDE (2.6), then we recover the definition 3.1 of
stability given in § 3. In particular, the variational stability notion can be seen as
the uniform stability, and the variational asymptotic stability notion can be seen
as the uniform asymptotic stability.

In the next, we will define a concept of stability respect to perturbations which
is closely related with the previous notion of variational stability. For our purpose,
consider the following generalized perturbed equation

dx

dτ
= D[A(t)x + P (t)], (5.1)

where P : [0, +∞) → R
n is a function.

Definition 5.3. The trivial solution x ≡ 0 of the homogeneous GLDE (2.6) is said
to be

• Stable with respect to perturbations, if for every ε > 0, there exists a
δ = δ(ε) > 0 such that if y0 ∈ R

n with ‖y0‖ < δ, and P ∈ BVloc([s0, +∞)) is a
left-continuous function on (s0, +∞) such that

sup
t�s0

vart
s0

(P ) < δ,

then ‖y(t, s0, y0)‖ < ε for all t � s0, where y(·, s0, y0) is the unique solution
of (5.1) with initial condition y(s0, s0, y0) = y0.

• Attractive with respect to perturbations, if there exists δ0 > 0 and for
every ε > 0 there is a T = T (ε) � 0 and γ = γ(ε) > 0 such that if y0 ∈ R

n with
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‖y0‖ < δ0, and P ∈ BVloc([s0, +∞)) is a left-continuous function on (s0, +∞)
such that

sup
t�s0

vart
s0

(P ) < γ,

then ‖y(t, s0, y0)‖ < ε for all t � s0 + T (ε), where y(·, s0, y0) is the unique
solution of (5.1) with initial condition y(s0, s0, y0) = y0.

• Asymptotically stable with respect to perturbations, if it is stable with
respect to perturbations and attractive with respect to perturbations.

We continue with the reflection of Schwabik stated in [34, remark 10.7]: ‘The
stability with respect to perturbations is motivated by the desire that the solutions
of the perturbed equation (5.1) be close to zero on a certain [t0, t1] whenever the
value y(t0) is close to zero and the perturbing term P in (5.1) is small in the sense
that vart1

t0(P ) is small’.

Remark 5.4. When the perturbation P is identically null, we recover again the
notion of stability given in § 3. Specifically, considering P ≡ 0, the stability with
respect to perturbations emulates the uniform stability, and the asymptotic stabil-
ity with respect to perturbations emulates the uniform asymptotic stability from
definition 3.1.

The following theorem shows the equivalence between the notion of variational
stability and stability with respect to perturbations. For a proof of the next result,
we refer to the reader [32, theorem 10.8].

Theorem 5.5. The trivial solution of the homogeneous GLDE (2.6) is

• Variationally stable if and only if it is stable with respect to perturbations.

• Variationally attracting if and only if it is attractive with respect to perturba-
tions.

• Variationally asymptotically stable if and only if it is asymptotically stable with
respect to perturbations.

The following theorem is also due to Schwabik and characterize the variational
stability with respect to the transition matrix U given by (2.8). We will include the
original proof for the reader’s convenience, see [35, p.405].

Theorem 5.6. Let A ∈ BVloc([0, +∞), L(Rn)) be continuous from the left and
condition (D) holds. Then, the trivial solution of the homogeneous GLDE (2.6)
is variationally stable if and only if the transition matrix U(t, s0) is bounded for all
t � s0 � 0.

Proof. Assume that there exists a constant C > 0 such that ‖U(t, s0)‖ � C, for all
t � s0 � 0. Since theorem 5.5, we will prove that the trivial solution of (2.6) is stable
with respect to perturbations. Consider a function y(·, s0, y0) which is a solution
of the perturbed linear equation (5.1) with initial condition y(s0, s0, y0) = y0.
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From equation (2.11), the left continuity of A, and theorem 2.17 item (e)–(ii), it
follows that for every t � s0

‖y(t, s0, y0)‖ =

∥∥∥∥∥∥U(t, s0)y0+
∫ t

s0

U(t, s)d[P (s)−P (s0)]+
∑

s0�τ<t

Δ+U(t, τ)Δ+P (τ)

∥∥∥∥∥∥
� C‖y0‖ + Cvart

s0
(P ) + 2Cvart

s0
(P )

� C‖y0‖ + 3C sup
t�s0

vart
s0

(P ).

Therefore, for a given ε > 0, we can choose δ =
ε

4C + 1
> 0, which satisfies

‖y0‖ < δ and sup
t�s0

vart
s0

(P ) < δ =⇒ ‖y(t, s0, y0)‖ < ε, for all t � s0.

Hence, the trivial solution of (2.6) is variationally stable.
On the other hand, assume that (2.6) is variationally stable. For ε = 1, there

exists a δ > 0 such that if x : [s0, +∞) → R
n is a solution of (2.6), i.e. vart

s0
(x(s) −∫ s

s0
d[A(ξ)]x(ξ)) = 0 for all t � s0, with ‖x(s0)‖ < δ, then ‖x(t, s0, x(s0))‖ < 1 for

all t � s0.
Therefore, for an arbitrary z ∈ R

n with ‖z‖ � 1, we have ‖U(t, s0)(δ/2)z‖ < 1
for all t � s0 � 0, because U(t, s0)(δ/2)z is a solution of (2.6) with initial condition
(δ/2)z. Hence, we obtain

‖U(t, s0)‖ = sup
‖z‖�1

‖U(t, s0)z‖ � 2/δ,

for all t � s0 � 0, which implies the boundedness of the transition matrix. �

Remark 5.7. If we think about the previous remarks 5.2 and 5.4, along with a
careful reading of the results obtained in theorem 3.4 and theorem 3.7, it seems rea-
sonable to expect a possible characterization of the variational asymptotic stability
in terms of the transition matrix U .

The following theorem is the main result of this section. We provide a character-
ization of the asymptotic variational stability and the global uniform exponential
stability, see definition 3.2.

Theorem 5.8. Let A ∈ BVloc([0, +∞), L(Rn)) be continuous from the left and
condition (D) holds. Then, the trivial solution of the homogeneous GLDE (2.6)
is variationally asymptotically stable if and only if there exist positive constants
α, K > 0 such that (3.1) holds for all t � s0 � 0.

Proof. Assume that there exist positive constants α, K > 0 such that (3.1) holds
for all t � s0 � 0. Clearly, the transition matrix is bounded, with ‖U(t, s0)‖ � K,
for all t � s0 � 0, and thus the trivial solution of (2.6) is variationally stable.

Since theorem 5.5, we will prove that the trivial solution of (2.6) is attractive with
respect to perturbations. Let ε > 0 be fixed, assume that K > ε, and let y0 ∈ R

n.
Consider a function y(·, s0, y0), which is a solution of the perturbed linear equation
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(5.1) with initial condition y(s0, s0, y0) = y0, where P ∈ BVloc([s0, +∞), R
n) is a

left-continuous function on (s0, +∞).
For every t � s0 we have the estimate

‖y(t, s0, y0)‖ =

∥∥∥∥∥∥U(t, s0)y0+
∫ t

s0

U(t, s)d[P (s)−P (s0)]+
∑

s0�τ<t

Δ+U(t, τ)Δ+P (τ)

∥∥∥∥∥∥
� Ke−α(t−s0)‖y0‖ + 3Kvart

s0
(P )

.

Let us consider δ0 = 1, 0 < γ < ε/3K, and T (ε) = [ln(K/(ε − 3Kγ))]/α. Therefore,
it follows that for ‖y0‖ < δ0, and sup

t�s0

vart
s0

(P ) < γ we get

‖y(t, s0, y0)‖ � Ke−α(t−s0) + 3Kγ < ε, for all t � s0 + T (ε).

Hence, we conclude that the trivial solution of (2.6) is attractive with respect to
perturbations.

On the other hand, assume that the trivial solution of (2.6) is variationally asymp-
totically stable. Let 0 < ε < 1 be fixed. From the variational attracting assumption,
there exists a δ0 > 0 independent of ε, and there is a T = T (ε) > 0 such that if
x : [s0, +∞) → R

n is a solution of (2.6), i.e. vart
s0

(x(s) − ∫ s

s0
d[A(ξ)]x(ξ)) = 0 for

all t � s0, with ‖x(s0)‖ < δ0 then

‖x(t, s0, x(s0))‖ = ‖U(t, s0)x(s0)‖ <
εδ0

2
, for all t � s0 + T (ε).

Hence, for an arbitrary z ∈ R
n with ‖z‖ � 1 we obtain ‖U(t, s0)(δ0/2)z‖ < εδ0/2

for all t � s0 + T , which in turn implies that ‖U(t, s0)z‖ < ε for all t � s0 + T .
And we get

‖U(t, s0)‖ = sup
‖z‖�1

‖U(t, s0)z‖ < ε, for all t � s0 + T.

Now, from the variational stability assumption of (2.6) and theorem 5.6, we deduce
the existence of a positive constant C > 0 such that ‖U(t, s0)‖ � C for all t � s0 �
0, and the rest of the proof follows exactly analogous to the final part of the proof
given in theorem 3.7. �

Remark 5.9. The notion of uniform stability of the trivial solution of the homoge-
nous GLDE (2.6) given in § 3 is equivalent to the notion of variational stability,
both concepts are comparable to the uniform boundedness of the transition matrix
U defined by (2.8), namely, a bound independent of the initial time s0 � 0. In addi-
tion, the uniform asymptotic stability notion from § 3 is equivalent to the variational
asymptotic stability of the trivial solution of the homogeneous GLDE (2.6), and as
we have seen in theorem 3.7 and theorem 5.8, both of these concepts are equivalent
to the uniform exponential decay of the transition matrix described by (3.1), and
consequently coincide with the global uniform exponential stability notion given in
definition 3.2.

https://doi.org/10.1017/prm.2023.13 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.13


406 C.A. Gallegos and G. Robledo

Acknowledgements
C. A.G is supported by FONDECYT Postdoctorado No 3220147; G. R. is partially
supported by FONDECYT Regular No 1210733.

References

1 L. Y. Adrianova. Introduction to Linear Systems of Differential Equations, Translations of
the AMS, Vol. 146 (AMS, Providence, 1991).

2 F. Andrade da Silva, M. Federson and E. Toon. Stability: boundedness and controllability
of solutions of measure functional differential equations. J. Differ. Eq. 307 (2022), 160–210.

3 D. Bainov and P. Simeonov. Impulsive Differential Equations: Periodic Solutions and
Applications, Pitman Monographs and Surveys in Pure and Applied Mathematics Vol.
66 (Harlow: Longman Scientific & Technical, New York, John Wiley & Sons, 1993).

4 E. A. Barabanov and A. V. Konyukh. Bohl exponents of linear differential equations. Mem.
Differential Equations Math. Phys. 24 (2001), 151–158.

5 L. Barreira and C. Valls. Stability of Nonautonomous Differential Equations, Lecture Notes
in Mathematics Vol. 1926 (Springer, Berlin, 2008).

6 E. Bonotto, M. Federson and F. L. Santos. Dichotomies for generalized ordinary differential
equations and applications. J. Differ. Eq. 264 (2018), 3131–3173.

7 E. Bonotto, M. Federson and F. L. Santos. Robustness of exponential dichotomies for
generalized ordinary differential equations. J. Dynam. Differ. Equ. 32 (2020), 2021–2060.
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