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1. Introduction. If a < u < b and n > 0 then 

f(x) dx 
K (* - « ) B + 1 

is a so-called improper integral owing to the infinity in the integrand at 
x — u. When n — 0 we have associated with (1) the well-known Cauchy 
principal value, namely 

Hadamard (1, p. 117 et seq.) derives from an improper integral an expression 
which he calls its finite part and which, as he shows, possesses many important 
properties. For given/(x) this finite part is obtained by constructing a function 
g(.r) so that the following limit exists (1, pp. 136 and 138): 

(3) lim V-/ -^rL(dx. f )m-g(x)\ 
t-^u—O da \ \ x UJ 

Hadamard confines himself to the case when m — n + \ and n is a positive 
integer. In this paper we shall use Hadamard's idea to define a principal value 
for (1) in the case when n, in (1), is a positive integer greater than zero. 
When n = 0 the definition will reduce to (2). 

The principal value so defined enables us to generalize several well-known 
theorems. We shall illustrate this generalization later by discussing the 
Hilbert transform (4, p. 120 (5.1.11)) and the Plemelj formulae (2, p. 42 
(17.2)). 

2. The principal value of (1). For the rest of this paper n will always 
denote a positive integer or zero;/ f(x) will denote the ith derivative of f(x) 
with respect to x and the principal value of (1) will be indicated by means of a 
prefix P before the integral sign. 

For integration along the real axis with a < u < b the principal value of 
(1) is defined as follows: 

where 
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0>) H0(u, «0 = 0, n = 0, 

(6) Hn(u, e) = X ) £ ^ | ^ " - ^ i £ - | , n > 0. 

When n = 0 this principal value evidently reduces to (2). 

THEOREM 1. / / (i) f(x) possess derivatives up to order n in (a, b) and (ii) 
fn(x) satisfies a Lipschitz {or Holder) condition, namely 

(7) [pfo) -fn(x2)\ <A\xi -xlf 

whenever X\ and x2 both lie in (a, b), A is a constant and 0 < n < 1, /Am //?,<? 
limit on the right hand side of (4) exists. 

Proof. Consider the expression E given by 

(8) E = {/(*) -/(«) - ^=p*/(«) - . • . 

(* ~ «)" * f - i / ^ l 1 
"(n-!)!•' WJ(*~«) Ï + Î 

From (i) and the mean value theorem, we see that 

on "--rf3-!. 
n\ (x — u) 

where / lies between x and u. On writing 

(10) EJm^m + up£)• E, + B. 
K n\ (x — u) ) n\ (x — u) 

we see from (ii) that, since t lies between x and u, 
(11) |£i | <A\x- ur\ - 1 < M - 1 < o . 
Consequently it follows from the usual theory of the Cauchy principal value 
(2, chap. 2) that 

linn I + I (Edx 

exists. 
Denote the part of (4) inside the brackets { } by R. Then, apart from 

functions of w, we see that 

(12) ^ - ) f + \ (Edx 

contains only negative powers of x — u in its integrand. On performing the 
integrations we find that (12) is independent of e and it therefore follows that 

lim R 

must also exist. This completes the proof of Theorem 1. 
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The definition (4) is easily extended to the case when the integration is 
taken along the arc of a plane curve. The variables are then all complex, 
a and b correspond to the end points of the arc of integration, x is any point 
on this arc and u is a fixed point on it. Draw a circle centre u and radius 
e(>0) so small that the arc of integration is cut in two points only, u — ei 
between a and u and u + e2 between u and b. The principal value is then 
obtained by making the following changes in the right hand side of (4) : 
(i) in the first integral replace u — e by u — ei, (ii) in the second integral 
replace u + e by u + e2 and (iii) in Hn(u, e) replace 

(-ID) <± A_±2_^> bv ± IJL, _ 1—±4—V 
V (n — i) e ; (n — i) Ui e2 ) 

Theorem 1 holds for this definition also if the interval (a, b) is replaced by the 
arc of integration from a to b. 

3. Some properties of the principal value (4). 

THEOREM 2. With the same conditions as in Theorem 1 and 0 < m < n, 
n > 1, we have 

n*\ P Ç"-JMAX- = V <»-- *'- Wi-J'teï _/(*) I 
l ' 4 j Jn (x - «)"+' £ „ »! \ ( o - « ) - ' (6 - « )" - ' / 

(» - w)! f» f ( x ) à 
^ »! J a (* - u)n~m+1 • 

Proof. Denote the part of (4) inside the brackets j } by R. Denote the result 
of replacing/(M) b y / ^ w ) and n by n — ] in the right hand side of (6) by 
K„-i{u, e). On integrating the two integrals in R by parts we have 

n , , p JM f(b) / ( « - « ) •_/(« + 6) 
v n(a — u) nib — u) n{ — e) n(e) 

+ ; « - < • • •> + n\ f W + f r^f - *-<*• •>}• 
W n\ Ja {X — U) Jti+e (X — U) J 

Denote the sum of the 3rd, 4th, 5th, and 6th terms on the right by 5. From 
condition (i) we may expand/(w — e) andf(u + e), by the mean value theorem, 
in powers of e as far as the nth derivative of f(u). It is then easily found that 
all the coefficients of the various powers of e vanish, so that 5 is equal to the 
remainder terms only. Consequently 

(16) -5 = -{-^- , 

where t\ lies between u — e and u, while t2 lies between u and u + e. From 
the Holder condition it follows immediately that 5 —» 0 as e —> + 0. On 
letting e —-> + 0 in (15) we see from (4) and the definition of Kn_i{u, e) that 
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This is evidently (14) with m — 1. On applying (17) to the principal value 
on the right hand side of (17) we establish (14) for the case m = 2. By con
tinuing this process m times we establish (14) for every integral value of 
m < n. 

Theorem 2 is also true for complex integration: 

THEOREM 2A. / / conditions (i) and (ii) of Theorem 1 hold with a = — œ 
and b = + oo, (Hi) for large \x\,fm(x) = 0(xn~m~p) (p > 0, m < w), wAere 0 
is the Landau order symbol and (iv) fi{x)/xn~i —» 0 (i = 0, 1, . . . m — 1) 
w/^w x—^ co or x —> — oo, //zen 

(18) p J_œ F " - ^ + 1 " n\ p J_œ F ' - ^ r ^ (w < n)-
Proof. From (iii) the integrals in (14) converge when a = — oo and 

o = + oo and so, from (i) and (ii), (14) is true with — oo and oo as the limits 
of integration. From (iv) all the terms in the summation sign of (14) vanish 
for such infinite limits and so (14) reduces to (18). 

THEOREM 2B. If f(z) is one valued and analytic in a domain which includes 
the simple closed Jordan curve C and its interior then 

f f(z)dz (n-m)\ Ç fm(z)dz 

where the integrals are taken once round C and u is a fixed point on C. 

Proof. Since f(z) is analytic it possesses derivatives of all orders, each 
derivative satisfying a Lipschitz condition. Hence (14), with integration 
along the contour C, is true when f(z) is analytic. Since C is closed the end 
points coincide, i.e. b = a. Hence since f(z) and its derivatives are one valued 
it follows that the terms in the summation sign of (14) cancel in pairs, leaving 
us with (19). 

4. An extension of the Hilbert transform. 

THEOREM 3. / / the conditions of Theorem 2A hold, and (v) for large \x\ 
fn(x) = 0{x-^~v) for p > 0, and 

(20) g{u) = lPCJ^ 
IT J-m (X - U) 

where u is real, then 
(20.1) g(x)e £ 2 ( - » , » ) : 

and 

(22) J \g(x)}2 dx = -^ J {/*(*)}2 dx. 

n+1 i 
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Proof. Since Theorem 2A holds we may use (18). On using (18) with 
m = n it follows that (20) can be written in the form 

K J *V ) ir{n\) J_m (x - u) 

On replacing x by u — t in the range — oo < x < u — e and x by u + / 
in the range u + e < x < °°, (23) becomes 

(24) g(«) = 7 - - ( T lim f f\u + t) ~f\u~t) d[ 

From (v) fn(x) Ç L2(— oo, oo) and so we may apply Hilbert's transform 
theorem (4, Theorem 91, p. 122) to (24). The truth of (20.1), (21) and (22), 
including the existence of the principal value on the right of (21), then follows 
immediately. 

Evidently we may look upon (20) as an integral equation with g(x) as a 
known and f(x) as an unknown function. The solution is then given by (21). 
Theorem 3 can also be established under a different set of conditions if we use 
M. Riesz's version of the Hilbert Transform (4, p. 132). 

5. An extension of the Plemelj formulae. Let A denote an arc in the 
complex z plane generated by points z = x + iy where x = x(t) and y = y(t) 
are continuous single valued functions of the real variable t. We shall assume 
that there is a unique tangent at each point of the arc and we shall denote 
the end points by Ei and E2- On describing A from E\ to E2 we can divide the 
neighbourhood of each point u on A (other than E\ and E2) into two areas, 
a left hand area and a right hand area with a small segment of A, containing 
u, as a boundary between the two areas. Certain functions h(v) possess the 
following property. Let u be a point on the arc A, other than one of the end 
points, then aszi->w the function h(v) tends to a unique limit provided that 
the path to u lies entirely either in the left hand area or in the right hand 
area. If this is the case then the limit from the left hand area will be denoted 
by h+{u) and that from the right hand area by h~(u). We exclude paths which 
approach it ultimately along the tangent to A. 

When A becomes a closed contour C then C is described so that its exterior, 
containing the point at infinity, is the right hand area. 

Let F{v) be defined by the equation 

<25> m-hL 
where the integration is taken along the arc A. 

THEOREM 4. / / (i) for all points of A, except possibly the end points, f(z) 
possess derivatives up to order n, (ii) f(z) satisfies a Holder condition on A 
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(see inequality (7)) and u is a point on A other than one of the end points, then 
F+(u) and F~(u) both exist and 

2{n\y v ' ' 2 « J A ( 2 - w) 

Proof. With v not a point on A integrate (25) n times by parts. We obtain 

(28) F(v) = G(v) + - ^ f £ f ^ , 
Ziriynl) J A yz — v) 

where 
(9^ CU,\ - l ^ i n - i - l)!l f(a) f(b) \ 
(29) G{V) ~ 2^ih n\ W-v)^ ~ W-vT^ • 
The conditions assumed above ensure the truth of Theorems 1 and 2 for the 
case of integration along the arc A. Hence when v = u, where u is a point on 
A, the integral on the right of (25) has a principal value. Again on taking the 
case when m = n in (14), multiplying by \/(2wi) and subtracting from (28) 
we obtain 

(30) F(v)-^-.P f T ^ ^ F I 
2-KI JA (z — u) 

= G(v) - G(u) + v \ 7 T - P (J—\( . 
2Tt(n\) { J A (z — v) J A (z — u) » 

Now let 

(31) h(v) = — . I , ^ \ -
2rt J A (z — v) 

Then if w is a point on ^4, since jfw(s) satisfies a Holder condition, it is known 
that h+(u) and hr{u) exist (2, §16, p. 37). Again as v —-» w we have {G(v) — 
G(u)} —* 0. Hence on making v—> u through the left hand area it follows 
from (30) that F+(u) exists and that 

(32) F+(u) - -LP f r M * « i iA + ( B ) l ? f £ ? ! * } . 
27ri J A (z — u) n\\ 2iri JA (Z — u)) 

From the first of the Plemelj formulae given by Muskhelishvili (2, p. 42 
(17.2)) we see that the right hand side of (32) is equal to fn(u)/2(nl) which 
establishes the truth of (26). 

Similarly, by using the second of the Plemelj formulae just cited we can 
establish the fact that F~(u) exists and also the truth of (27). 

When we place n = 0 in (26) and (27) they reduce to the Plemelj formulae. 
The theorem still holds if A is a simple closed contour. It can be extended 

to the case when the path of integration is the real axis, from — oo to oo, if 
suitable conditions are imposed upon the derivatives of f(x) in order to make 
the integrals converge, for example conditions (iii) and (iv) of Theorem 2A. 
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We now see t h a t F(v), as defined in (25) with v complex, possesses the follow
ing propert ies: (i) if v is not on A it is an analyt ic function of v, (ii) for large 
v it is 0(v~n~l) and (iii) the arc A is a line of discontinuity. In fact from (20) 
and (27), when u is on A we have 

(33) F+(u) - F~{u) = ^ i y / » . 

Again, with u on A, F(u) is undefined, bu t if the conditions of Theorem 4 
are satisfied we may define F(u) to be equal to the principal value of the inte
gral on the right of (25). 

If a is one of the end points of A and f(z) has a zero of order r a t z = a 
then it is not difficult to see t h a t f or r > n F (a) exists and t h a t F+(a) = F~(a) 
= F (a). If r < n then in general F(v) has a singulari ty a t v = a which is the 
sum of a logarithmic singularity and a pole. 

6. T w o a p p l i c a t i o n s of (33). When n = 0, (33) reduces to a result 
which can be derived from the Cauchy principal value, a result which can be 
used to solve many impor tan t boundary problems in various branches of 
mathemat ica l physics (2, chaps. 12 and 13; 3 pt . V) . W e now discuss briefly 
two such problems where we can use (33) in the more general case when 
n > 0 (n an integer). 

Problem 1. Find a function F(v) which (i) is analyt ic a t all points v except 
for points on the arc A, (ii) for large v is 0(v~n~l) and (iii) for given g (u), where 
u is on the arc A bu t is not one of its end points , we have 

(34) F+(u) - F~(u) = g(u). 

T o obtain a formal solution we first solve the differential equation 

(35) f(u) = (nl)g(u) 

ior f(u) and then by an obvious subst i tut ion we can express (34) in the form 
(33). We then obtain as a formal solution of our problem 

If g(z) is an analyt ic function of z in a domain D which includes the arc A 
then there exists a solution of (35), f(z) say, which is also analyt ic in D. 
Since f(z) then satisfies the conditions of Theorem 4 it will follow t h a t F{v) 
is a solution of the problem. Wi th a more prolonged discussion it is possible 
to show t h a t a solution exists if g(z) satisfies a Holder condition along the 
arc A. 

Problem 2. This is connected with the singular integral equat ion. For the 
case n = 0 the singular integral equat ion below has been studied in great 
detail by Muskhelishvili (2, chap. 0). For the general case n > 1 many new 
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difficulties occur but in one case a solution can be obtained by means of a 
reduction to Problem 1. The equation in question is 

(37) g(u)f(u) + ̂ pf T ^ 4 T = *(«), 
-Kl J A [Z — U) 

where g(u), h{u) and k(u) are given along the arc A and/(z) is to be determined. 
A formal solution is obtained by assuming that a function F(v) exists which 

is related to f(z) as in (25) and for which (26) and (27) both hold. On adding 
and subtracting (26) and (27) we obtain both fn(u) and the integral in (37) 
in terms of F+(u) and F~(u). After an obvious division (37) is then transformed 
to 

m F M ~ \}Wîn^+l^û)f F {U) + \~g(u)Tni) + h(u)f ' 

This equation can be reduced to the same type of equation as is solved in 
Problem 1, namely (34) with functions transformed from F+(u), F~(u), 
g(u), h(u) and k(u) of (38) by means of known operations. F(v) can then be 
found and then, by using (33),/(s) can be found by integration. 

The most important part of this solution is the reduction of (38) to an 
equation of type (34), an equation which is solvable by means of the methods 
of Problem 1. This reduction does not depend upon the value of n and is 
therefore the same for the general value of n as for the case when n = 0. 
The details and the ingenious methods used by Muskhelishvili to effect this 
reduction when n = 0 can be found in (2, §47, p. 123). If the coefficient of 
F~(u) in (38) and the second term on the right hand side of (38) both satisfy 
Holder conditions then the solution obtained by this method is valid. 
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