B.H. NEUMANN'S QUESTION ON ENSURING COMMUTATIVITY OF FINITE GROUPS

A. Abdollahi, A. Azad, A. Mohammadi Hassanabadi and M. Zarrin

Dedicated to the memory of Bernhard H. Neumann

This paper is an attempt to provide a partial answer to the following question put forward by Bernhard H. Neumann in 2000: "Let G be a finite group of order g and assume that however a set M of m elements and a set N of n elements of the group is chosen, at least one element of M commutes with at least one element of N. What relations between g, m, n guarantee that G is Abelian?" We find an exponential function $f(m, n)$ such that every such group G is Abelian whenever $|G|>f(m, n)$ and this function can be taken to be polynomial if G is not soluble. We give an upper bound in terms of m and n for the solubility length of G, if G is soluble.

1. Introduction and results

This paper is an attempt to provide a partial answer to the following question put forward by Bernhard H. Neumann in [10]: "Let G be a finite group of order g and assume that however a set M of m elements and a set N of n elements of the group is chosen, at least one element of M commutes with at least one element of N (call this condition Comm (m, n)). What relations between g, m, n guarantee that G is Abelian?"

Following Neumann, for given positive integers m and n we say that a group G satisfies the condition $\operatorname{Comm}(m, n)$ if and only if for every two subsets M and N of cardinalities m and n respectively, there are elements $x \in M$ and $y \in N$ such that $x y=y x$.

We note that an infinite group G satisfying the condition $\operatorname{Comm}(m, n)$ for some m and n is Abelian. This is because every infinite subset of such group contains two commuting elements. Thus by a famous Theorem of Neumann [9], it is centre-by-finite. Therefore $Z(G)$, the centre of G is infinite. Now let M and N be two subsets of $Z(G)$, of sizes m and n respectively. Then for any two elements x and y of G, there are elements $z_{1} \in M$ and $z_{2} \in N$ such that $x z_{1} y z_{2}=y z_{2} x z_{1}$, so that $x y=y x$; namely G is

[^0]Abelian. Therefore in considering non-Abelian groups satisfying $\operatorname{Comm}(m, n)$ we need only consider finite cases.

We use the usual notations: for example $C_{G}(a)$ is the centraliser of an element a in a group G, S_{n} is the symmetric group on n letters, A_{n} is the alternating group on n letters, $D_{2 n}$ is the dihedral group of order $2 n, Q_{8}$ is the quaternion group of order 8 and T will stand for the group $\left\langle x, y \mid x^{6}=1, y^{2}=x^{3}, y^{-1} x y=x^{-1}\right\rangle$. If G satisfies the condition $\operatorname{Comm}(m, n)$, then we say G is a $C(m, n)$-group, or $G \in C(m, n)$.

Throughout G will denote a finite non-Abelian group unless otherwise is stated. We shall show that a $C(m, n)$-group has order bounded by a function of m and n which may not always be chosen to be a polynomial function in terms of m and n. Our main results are

Theorem 1.1. Let G be a $C(m, n)$-group. Then $|G|$ is bounded by a function of m and n.

The solubility length of a soluble $C(m, n)$-group is bounded above in terms of m and n. In fact we prove the following.

Theorem 1.2. Let $G \in C(m, n)$ be a soluble group of solubility length d. Then

$$
d \leqslant \max \left\{\left\lceil\log _{2} m\right\rceil,\left\lceil\log _{2} n\right\rceil\right\}
$$

We also obtain a solubility criterion for $C(m, n)$-groups in terms of m and n, namely
Theorem 1.3. Let G be a $C(m, n)$-group and $m+n \leqslant 58$. Then G is a soluble group.

We give a complete characterisation of $C(m, n)$-groups, where $m+n \leqslant 10$, in the next theorem.

Theorem 1.4. Let G be a $C(m, n)$-group, where $m+n \leqslant 10$. Then G is isomorphic to one of the following: $S_{3}, D_{2 n}$ for $n \in\{3,4,5,6\}, Q_{8}, T$ or a non-Abelian group of order 16 whose centre is of order 4 .

2. A partial answer to Neumann's question

A subset of a non-Abelian group G no two of whose distinct elements commute is called non-commuting. A non-commuting subset of maximal size is called a maximal non-commuting set and this maximal size will be denoted by $\omega(G)$. In this section we give a partial answer to Neumann's question by proving that a $C(m, n)$-group has the order bounded by a function of m and n.

Proof of Theorem 1.1: Let $Z(G)=\left\{z_{1}, z_{2}, \ldots, z_{t}\right\}$, where $t \geqslant \max \{m, n\}$. Choose any two elements a and b in G, and put

$$
M=\left\{a z_{1}, a z_{2}, \ldots, a z_{m}\right\} \text { and } N=\left\{b z_{1}, b z_{2}, \ldots, b z_{n}\right\}
$$

Since G is a $C(m, n)$-group, there exist $a z_{i} \in M$ and $b z_{j} \in N$, where $1 \leqslant i \leqslant m$ and $1 \leqslant i \leqslant n$, such that $a z_{i} b z_{j}=b z_{j} a z_{i}$. This implies that $a b=b a$, and so G is an Abelian group, which is a contradiction. Thus $|Z(G)|<\max \{m, n\}$. Suppose, for a contradiction, that $\omega=\omega(G) \geqslant m+n$. Then there are ω pairwise non-commuting elements $a_{1}, \ldots, a_{m+n} \in G$. Put

$$
M=\left\{a_{1}, \ldots, a_{m}\right\} \text { and } N=\left\{a_{m+1}, \ldots, a_{m+n}\right\}
$$

Since G is a $C(m, n)$-group, there exist $a_{i} \in M$ and $a_{j} \in N$ such that $a_{i} a_{j}=a_{j} a_{i}$, which is a contradiction. Thus $\omega<m+n$. Now the main result of [11] implies that $|G: Z(G)| \leqslant c^{\omega}$, where c is a constant. Therefore

$$
|G| \leqslant c^{\omega}|Z(G)| \leqslant c^{m+n} \max \{m, n\}
$$

which completes the proof.
Remark 2.1. Since an extra-special 2-group of order $2^{2 k+1}$, has maximal non-commuting sets of size $2 k+1$ (see [4] or [11]), if $f(m, n)$ is the least integer such that $|G| \leqslant f(m, n)$ for all $C(m, n)$-groups, then $f(m, n)$ cannot be chosen to be a polynomial in terms of m and n.

The following is a key lemma to some of our results.
Lemma 2.2. Let G be a $C(m, n)$-group and let N be a normal subgroup of G such that G / N is non-Abelian. Then $|N|<\max \{m, n\}$.

Proof: Suppose on the contrary that $N=\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$ and $t \geqslant \max \{m, n\}$. Choose any two elements x and y in $G \backslash N$, and put

$$
\begin{aligned}
& X=\left\{x a_{1}, x a_{2}, \ldots, x a_{m}\right\} \text { and } \\
& Y=\left\{y a_{1}, y a_{2}, \ldots, y a_{n}\right\}
\end{aligned}
$$

Since G is a $C(m, n)$-group, there exist $x a_{i}$ in X and $y a_{j}$ in Y such that $\left[x a_{i}, y a_{j}\right]=1$. Thus $[x, y] \in N$ and G / N is Abelian, which is a contradiction.

Corollary 2.3. Let G be an insoluble $C(m, n)$-group. Then

$$
|G| \leqslant 4^{4}(m+n)^{8} \cdot \max \{m, n\}
$$

Proof: Let S be the largest soluble normal subgroup of G. Then G / S has no non-trivial normal Abelian subgroup and by [12, Theorem 1.3], $|G / S|<(n(G))^{4}$, where $n(G)$ is the size of the largest conjugacy class in G. Now by [11] we have $n(G) \leqslant 4 \omega(G)^{2}$. Then by the proof of Theorem 1.1, $\omega(G)<m+n$ and by Lemma 2.2, $|S|<\max \{m, n\}$, which completes the proof.

3. Soluble groups satisfying the condition $\operatorname{Comm}(m, n)$

In this section we prove Theorems 1.2 and 1.3. First we need some preliminary lemmas.

Lemma 3.1. Let G be a $C(m, n)$-group. If $a_{1}, a_{2}, \ldots, a_{n}$ are n distinct elements of G, then $\left|G \backslash \bigcup_{i=1}^{n} C_{G}\left(a_{i}\right)\right|<m$.

Proof: Suppose, for a contradiction, that there exist m distinct elements $b_{1}, b_{2}, \ldots, b_{m}$ in $G \backslash \bigcup_{i=1}^{n} C_{G}\left(a_{i}\right)$. Since G is a $C(m, n)$-group, there exist elements a_{i}, b_{j} such that $a_{i} b_{j}=b_{j} a_{i}$ and so $b_{j} \in C_{G}\left(a_{i}\right)$, which is a contradiction.

Lemma 3.2. If G is a $C(m, n)$-group, then $m+n \geqslant 6$.
Proof: Suppose, for a contradiction, that $m+n<6$. We distinguish two cases: CASE 1: $n=1$. Then $|G| \leqslant 6$ and so $G \cong S_{3}$, since G is non-Abelian. If $a \in S_{3}$ is of order 3, then Lemma 3.1 gives $3=\left|G \backslash C_{G}(a)\right|<m$. It follows that $m=4$. But S_{3} is not a $C(1,4)$-group.
CASE 2: $\quad n=2$. Since G is non-Abelian, there exists an element a in $G \backslash Z(G)$ such that $a^{2} \neq 1$; for let $g^{2}=1$ for all $g \in G \backslash Z(G)$. Then $(g z)^{2}=1$ for all $z \in Z(G)$ and $g \in G \backslash Z(G)$. It follows that $1=g^{2} z^{2}=z^{2}$ and so we have $z^{2}=1$ for all $z \in Z(G)$. Hence $g^{2}=1$ for all $g \in G$ which implies that G is Abelian, a contradiction.

Now since $a \neq a^{-1}$, it follows from Lemma 3.1 that

$$
\left|G \backslash\left(C_{G}(a) \cup C_{G}\left(a^{-1}\right)\right)\right| \leqslant m-1 \leqslant 2
$$

Since $C_{G}(a)=C_{G}\left(a^{-1}\right)$, we have that $|G| \leqslant\left|C_{G}(a)\right|+2$. As $a \in G \backslash Z(G)$, it follows that $\left|C_{G}(a)\right| \leqslant|G| / 2$ and so $|G| \leqslant|G| / 2+2$. Hence $|G| \leqslant 4$, so G is Abelian. This contradiction completes the proof.

LEMMA 3.3. Let G be a $C(m, n)$-group and let N be a non-trivial normal subgroup of G. Then G / N is a $C(m-r, n-t)$-group, for all positive integers r, t such that $2 r \leqslant m$ and $2 t \leqslant n$.

Proof: Suppose, for a contradiction, that G / N is not a $C(m-r, n-t)$-group. Thus there exist two subsets

$$
X=\left\{x_{1} N, \ldots, x_{m-r} N\right\} \text { and } Y=\left\{y_{1} N, \ldots, y_{n-t} N\right\}
$$

such that $\left[x_{i}, y_{j}\right] \notin N$ for all i, j. Let a be a non-trivial element of N and consider

$$
\begin{aligned}
X_{1} & =\left\{a x_{1}, \ldots, a x_{m-r}, x_{1}, \ldots, x_{r}\right\} \text { and } \\
Y_{1} & =\left\{a y_{1}, \ldots, a y_{n-t}, y_{1}, \ldots, y_{t}\right\}
\end{aligned}
$$

It is clear that $|X|=m$ and $|Y|=n$ and no element of X_{1} commutes with no element of Y_{1}, which completes the proof.

Proof of Theorem 1.2: We argue by induction on d. By hypothesis G is nonAbelian, thus it follows from Lemma 3.2 that either $m \geqslant 3$ or $n \geqslant 3$. Thus for $d=2$, the result holds, since $\left\lceil\log _{2} 3\right\rceil=2$. So assume that $d \geqslant 3$ and the result holds for $d-1$. Now $G / G^{(d-1)}$ has solubility length $d-1$. Let k and ℓ be positive integers such that $2^{k}<m \leqslant 2^{k+1}$ and $2^{\ell}<n \leqslant 2^{\ell+1}$. Thus by Lemma 3.3, $G / G^{(d-1)}$ satisfies $\operatorname{Comm}\left(2^{k}, 2^{\ell}\right)$. Thus by the induction hypothesis $d-1 \leqslant \max \{k, \ell\}$ and so $d \leqslant \max \left\{\left\lceil\log _{2} m\right\rceil,\left\lceil\log _{2} n\right\rceil\right\}$, as required.

To prove Theorem 1.3 we need the following lemma.
If G is a finite group, then for each prime divisor p of $|G|$, we denote by $\nu_{p}(G)$ the number of Sylow p-subgroups of G.

Lemma 3.4. Let G be a $C(m, n)$-group and p be a prime number dividing $|G|$ such that every two distinct Sylow p-subgroups of G have trivial intersection. Then $\nu_{p}(G) \leqslant m+n-1$.

Proof: It follows from the proof of Theorem 1.1, that $\omega(G)<m+n$. Now [7, Lemma 3] completes the proof.

Proof of Theorem 1.3: Suppose, on the contrary, that there exists a non-soluble finite group $G \in C(m, n)$ of the least possible order, where $m+n \leqslant 58$. If there exists a non-trivial proper normal subgroup N of G, then both N and G / N are in $C(m, n)$ and so they are soluble. It follows that G is soluble, which is a contradiction. Therefore G is a minimal simple $C(m, n)$-group. By Thompson's classification of minimal simple groups [13], G is isomorphic to one of the following simple groups:
A_{5} the alternating group of degree 5 ,
$\operatorname{PSL}\left(2,2^{p}\right)$, where p is an odd prime,
$\operatorname{PSL}\left(2,3^{p}\right)$, where p is an odd prime,
$P S L(2, p)$, where $5<p$ is prime and $p \equiv 2(\bmod 5)$,
$\operatorname{PSL}(3,3)$, and
$S z\left(2^{p}\right), p$ an odd prime.
We first prove that A_{5} is not a $C(m, n)$-group, where $m+n \leqslant 58$. Let P_{1}, \ldots, P_{5}, $Q_{1}, \ldots, Q_{10}, R_{1}, \ldots, R_{6}$ be Sylow p-subgroups of A_{5}, for $p=2,3,5$, respectively. It is easy to see that A_{5} is the union of these Sylow subgroups and no two distinct non-trivial elements of coprime orders in A_{5} commute (see [3]). Since every non-trivial element in $\bigcup_{i=1}^{6} R_{i} \cup Q_{1} \cup Q_{2}$ does not commute with one in

$$
\left(\bigcup_{i=1}^{5} P_{i} \cup \bigcup_{i=3}^{10} Q_{i}\right) \backslash\{a\}
$$

(where a is an arbitrary non-trivial element of Q_{10}), A_{5} is not a $C(28,30)$-group and since every non-trivial element in

$$
\left(\bigcup_{i=1}^{6} R_{i} \cup Q_{1} \cup Q_{2} \cup Q_{3}\right) \backslash\{b\}
$$

(where b is an arbitrary non-trivial element of Q_{1}) does not commute with one in

$$
\bigcup_{i=1}^{5} P_{i} \cup \bigcup_{i=4}^{10} Q_{i}
$$

A_{5} is not a $C(29,29)$-group. Now suppose that $n \leqslant 27$. Then $n=4 k+\ell$ for some integers k and ℓ, where $0 \leqslant k \leqslant 6$ and $0 \leqslant \ell \leqslant 3$. Let a be an arbitrary non-trivial element of Q_{10} and define

$$
\mathcal{A}_{n}= \begin{cases}\bigcup_{i=1}^{k} R_{i} & \text { if } \ell=0 \\ \left(\bigcup_{i=1}^{k} R_{i} \cup Q_{10}\right) \backslash\{a\} & \text { if } \ell=1 \\ \bigcup_{i=1}^{k} R_{i} \cup Q_{1} & \text { if } \ell=2 \\ \bigcup_{i=1}^{k} R_{i} \cup P_{1} & \text { if } \ell=3\end{cases}
$$

and

$$
\mathcal{B}_{n}=\left\{\begin{array}{ll}
\left(\begin{array}{ll}
\left.\bigcup_{i=k+1}^{6} R_{i} \cup \bigcup_{i=1}^{5} P_{i} \cup \bigcup_{i=1}^{10} Q_{i}\right) \backslash\{a\} & \text { if } \ell=0 \\
\bigcup_{i=k+1}^{6} R_{i} \cup \bigcup_{i=1}^{5} P_{i} \cup \bigcup_{i=1}^{6} Q_{i} & \text { if } \ell=1 \\
\left(\bigcup_{i=k+1}^{6} R_{i} \cup \bigcup_{i=2}^{5} P_{i} \cup \bigcup_{i=2}^{10} Q_{i}\right) \backslash\{a\} & \text { if } \ell=2 \\
\left(\bigcup_{i=k+1}^{6} R_{i} \cup \bigcup_{i=2}^{5} P_{i} \cup \bigcup_{i=1}^{10} Q_{i}\right) \backslash\{a\} & \text { if } \ell=3
\end{array} .\right.
\end{array} .\right.
$$

Then no non-trivial element of $\mathcal{A}_{\boldsymbol{n}}$ commutes with one of \mathcal{B}_{n}. It then follows that A_{5} is not a $C(n, m)$-group, where $n+m \leqslant 58$.

If G is isomorphic to $\operatorname{PSL}\left(2,2^{p}\right)$ or $\operatorname{PSL}\left(2,3^{p}\right)$, where p is an odd prime, then by [1, Lemma 4.4], $\omega(G)>64$, which is a contradiction. If $G \cong \operatorname{PSL}(3,3)$, then $|G|$ $=2^{4} \times 3^{3} \times 13$ so that $\nu_{13}(H)=144>57$, which is not possible by Lemma 3.4. If $G \cong P S L(2, p)$ and $p>7$ (p is a prime number), then [1, Lemma 4.4] implies that $\omega(G) \geqslant 133$, a contradiction. If $G \cong P S L(2,7)$, then by [1 , Proposition 3.21] and a similar argument as for A_{5} we conclude that G is not a $C(m, n)$-group. If $G \cong S z\left(2^{p}\right)$, then $|G|=2^{2 p} \times\left(2^{p}-1\right) \times\left(2^{2 p}+1\right)$ and $\nu_{2}(G)=2^{2 p}+1 \geqslant 65$ (see Theorem 3.10 (and its proof) of $[8$, Chapter XI]).

We note that the bound 58 in Theorem 1.3 is the best possible. In fact we have

ThEOREM 3.5. The alternating group A_{5} is the only non-Abelian finite simple $C(m, n)$-group, for some positive integers m and n such that $m+n=59$.

Proof: First we note that, since every centraliser of A_{5} has order at least $3, A_{5}$ is a $C(1,58)$-group. For uniqueness, suppose, on the contrary, that there exists a non-Abelian finite simple group not isomorphic to A_{5} and of least possible order which is a $C(m, n)$ group, for some positive integers m and n with $m+n=59$. Then by [5, Proposition 3], G is isomorphic to one of the following groups:
$P S L\left(2,2^{p}\right), p=4$ or a prime;
$P S L\left(2,3^{p}\right), P S L\left(2,5^{p}\right), p$ a prime;
$P S L(2, p), p$ a prime and $7 \leqslant p ;$
$\operatorname{PSL}(3,3)$;
PSL(2,5);
$P S U(3,4)$ (the projective special unitary group of degree 3 over the finite field of order 4^{2}) or
$S z\left(2^{p}\right), p$ an odd prime.
Now an argument similar to the one in the proof of Theorem 1.3 gives a contradiction in each case.
4. Groups satisfying the Condition $\operatorname{Comm}(m, n)$ for some small positive INTEGERS m AND n

In this section we characterise $C(m, n)$-groups for some particular m and n and hence prove Theorem 1.4. First we need some preliminary lemmas.

Lemma 4.1. Let G be a $C(m, n)$-group. Let x be a non-central element of finite order such that $\varphi(|x|) \geqslant n$, where φ is the Euler φ-function. Then $\left|G \backslash C_{G}(x)\right|<m$.

Proof: Suppose that

$$
\{k \in \mathbb{N}: 1 \leqslant k \leqslant|x| \text { and } \operatorname{gcd}(k,|x|)=1\}=\left\{d_{1}, d_{2}, \ldots, d_{\varphi(|x|)}\right\}
$$

Since $x^{d_{i}} \neq x^{d_{j}}$ for all $i \neq j$, by Lemma 3.1

$$
\left|G \backslash \bigcup_{i=1}^{d_{\varphi(|z|)}} C_{G}\left(x^{d_{i}}\right)\right|<m
$$

Also we have $C_{G}(x)=C_{G}\left(x^{d_{i}}\right)$ for all $1 \leqslant i \leqslant d_{\varphi(|x|)}$. Hence $\left|G \backslash C_{G}(x)\right|<m$.
Lemma 4.2. Let G be a finite nilpotent $C(m, n)$-group. Then $\prod_{p \| G \mid} p<\max \{m, n\}$.

Proof: The group G is the direct product of its Sylow subgroups. So $G=\prod_{p \| G \mid} P$, where P is the Sylow p-subgroup. Then $Z(G)=\prod_{p \||G|} Z(P)$ and $\max \{m, n\} \geqslant|Z(G)|$ $\geqslant \prod_{p| | G \mid} p$, by the proof of Theorem 1.1.

Lemma 4.3. If G is a $C(m, n)$-group, then for any prime divisor p of $|G|$, $p \leqslant \max \{m, n\}$.

Proof: Suppose that p is a prime divisor of $|G|$. Let a be an element of order p in G. For any x in G put $X=\left\{x a, x a^{2}, \ldots, x a^{m}\right\}$ and $Y=\left\{a, a^{2}, \ldots, a^{n}\right\}$. Then, by the hypothesis, there exist $x a^{i} \in X$ and $a^{j} \in Y$ such that $x a^{i} a^{j}=a^{j} x a^{i}$. Since $\operatorname{gcd}(j, p)=1$, we have $[x, a]=1$. Thus $a \in Z(G)$, so that $p||Z(G)|$ and by the proof of Theorem 1.1, $p \leqslant|Z(G)|<\max \{m, n\}$.

Lemma 4.4. Let G be a non-Abelian finite group such that $|G / Z(G)|=4$. Then G is not a $C(z, 2 z)$-group, where $z=|Z(G)|$.

Proof: Since G is non-Abelian, $G / Z(G) \cong C_{2} \times C_{2}$. Thus there exist elements $a, b \in G$ such that

$$
G=Z(G) \cup a b Z(G) \cup a Z(G) \cup b Z(G)
$$

Therefore $\langle a Z(G), b Z(G)\rangle$ is an elementary Abelian 2-group of order 4. Thus $G=\langle a, b\rangle Z(G)$ and so $a b \neq b a$, since G is not Abelian. Now consider the subsets $M=a Z(G) \cup b Z(G)$ and $N=a b Z(G)$. We have $x y \neq y x$ for all $x \in M$ and $y \in N$, since $a b \neq b a$. This shows that G is not a $C(z, 2 z)$-group.
Remark 4.5.
(1) Let G be a $C(m, n)$-group. Then it is easy to see that G is not a $C\left(t,\left|G \backslash C_{G}(a)\right|\right)$-group, where a is any element of G with $t \leqslant \mid C_{G}(a)$ $\backslash Z(G) \mid$.
(2) If G is a $C(m, n)$-group, then for any two natural numbers m^{\prime} and n^{\prime} such that $m \leqslant m^{\prime}$ and $n \leqslant n^{\prime}, G$ is also a $C\left(m^{\prime}, n^{\prime}\right)$-group.
Corollary 4.6. Let G be a $C(1, n)$-group, where $5 \leqslant n \leqslant 9$. Then $G \cong S_{3}$, $D_{8}, Q_{8}, D_{10}, T, D_{12}$ or a non-Abelian group of order 16 whose centre is of order 4.

Proof: By Remark 4.5(2), it is enough to consider only the case $n=9$. Suppose that a is any non-central element of G. By Lemma 3.1 we have $\left|G \backslash C_{G}(a)\right| \leqslant 8$ and so $|G| \leqslant 16$. If $|G|=12$, then $G \cong A_{4}, D_{12}$ or T. The alternating group A_{4} has an element whose centraliser has order 3. Thus by Remark 4.5(1), A_{4} is not a $C(1,9)$-group. If $G \cong D_{12}$ or $G \cong T$, then the order of the centraliser of any element in G is at least 4. Thus G is a $C(1,9)$-group. If $|G|=14$, then $G \cong D_{14}$ and there exists $x \in D_{14}$ such that $\left|C_{G}(x)\right|=2$. By Remark $4.5(1), D_{14}$ is not a $C(1,9)$-group. Finally if $|G|=16$,
then $|Z(G)|=2$ or 4. If $|Z(G)|=4$, then for all $a \in G,\left|C_{G}(a)\right| \geqslant 8$. Thus G is a $C(1,9)$-group. If $|Z(G)|=2$, then there exists an element a in G such that $\left|C_{G}(a)\right|=4$, so that by Remark 4.5(1), G is not a $C(1,9)$-group.

Corollary 4.7. Let G be a $C(2, n)$-group, where $4 \leqslant n \leqslant 8$. Then $G \cong S_{3}$, Q_{8}, D_{8} or D_{10}.

Proof: By Remark 4.5(2), it is enough to consider only the case $n=8$. Since G is non-Abelian, there exists an element a in $G \backslash Z(G)$ such that $a^{2} \neq 1$. By Lemma 3.1, $\left|G \backslash C_{G}(a)\right| \leqslant 7$, from which it follows that $|G| \leqslant 14$. If $|G|=12$, then G contains centraliser of order 4. Thus by Remark 4.5(1), G is not a $C(2,8)$-group. If $|G|=14$, then $G \cong D_{14}$, and it is not a $C(2,8)$-group since D_{14} contains centralisers of order 2 . $]$

Lemma 4.8. Let G be a $C(3, n)$-group, where $3 \leqslant n \leqslant 7$. Then $G \cong S_{3}, D_{8}, Q_{8}$ or D_{10}.

Proof: By Remark 4.5(2), it is enough to consider only the case $n=7$. Since G is non-Abelian, there exists non-central element a in G such that $a^{2} \neq 1$. Let $b \in G \backslash Z(G)$ be such that $b \neq a, a^{-1}$. Then by Lemma 3.1,

$$
\left|G \backslash C_{G}(a) \cup C_{G}\left(a^{-1}\right) \cup C_{G}(b)\right| \leqslant 6
$$

Hence $\left|G \backslash C_{G}(a) \cup C_{G}(b)\right| \leqslant 6$. Clearly $|G| \in\{8,10,12,14,16,20\}$. If $|G|=12$, then $G \cong A_{4}, D_{12}$ or T. As before A_{4} is not a $C(3,7)$-group. For D_{12}, the subsets $M=\left\{b, b a^{3}, b a^{5}\right\}$ and $N=\left\{a, a^{2}, a^{4}, a^{5}, b a, b a^{2}, b a^{4}\right\}$ show that D_{12} is not a $C(3,7)$ group. For T, the subsets $M=\left\{y, y x^{3}, x^{2} y\right\}$ and $N=\left\{x, x^{2}, x^{4}, x^{5}, y x, x y, y x^{2}\right\}$ show that T is not a $C(3,7)$-group. For $|G|=14, G \cong D_{14}$ and there exists an element $x \in D_{14}$ such that $\left|C_{D_{14}}(x)\right|=7$, showing that D_{14} is not a $C(3,7)$-group. If $|G|=16$, then G has centralisers of order 8 . By Remark 4.5(1), G is not a $C(3,7)$-group. Every non-Abelian group of order 20, has centralisers of order 4, and by Remark 4.5(1), is not a $C(3,7)$-group.

Lemma 4.9. If G is a $C(4,6)$-group and $Z(G) \neq 1$, then $G \cong Q_{8}$ or D_{8}.
Proof: By Lemma 3.3, $G /(Z(G))$ is an Abelian group and by Lemma 4.2, $\Pi p \leqslant 5$. Thus G is a p-group for $p \in\{2,3,5\}$. If G is a 5 -group, then there ex$p \||G|$
ists an element a in $G \backslash Z(G)$ whose order is 5 . Thus

$$
\left|G \backslash C_{G}(a) \cup C_{G}\left(a^{2}\right) \cup C_{G}\left(a^{3}\right) \cup C_{G}\left(a^{4}\right)\right| \leqslant 5 .
$$

Hence $\left|G \backslash C_{G}\left(a^{2}\right)\right| \leqslant 5$ and therefore $|G| \leqslant 10$, which is a contradiction. If G is a 3 -group, then by the proof of Theorem 1.1, $Z(G)=\langle z\rangle$, and there exists an element a in $G \backslash Z(G)$ such that

$$
\left|G \backslash C_{G}(a) \cup C_{G}\left(a^{2}\right) \cup C_{G}(a z) \cup C_{G}\left(a z^{2}\right)\right| \leqslant 5
$$

Hence $\left|G \backslash C_{G}(a)\right| \leqslant 5$ and so $|G| \leqslant 10$, which is not possible. Therefore G is a 2-group and by the proof of Theorem 1.1, $|Z(G)|=2$ or 4 . Let $|Z(G)|=2$ and $Z(G)=\langle z\rangle$. Then there exists an element a in $G \backslash Z(G)$ of order 4. Now we distinguish two cases:
CASE 1: $\quad a^{2} \notin Z(G)$. In this case

$$
\left|G \backslash C_{G}(a) \cup C_{G}\left(a^{2}\right) \cup C_{G}\left(a^{3}\right) \cup C_{G}(a z)\right| \leqslant 5
$$

Hence $\left|G \backslash C_{G}\left(a^{2}\right)\right| \leqslant 5$, so that $|G| \leqslant 10$, which cannot happen.
Case 2: $\quad a^{2} \in Z(G)$. In this case there exists an element b in $G \backslash\langle a\rangle$ such that

$$
\begin{gathered}
\left|G \backslash C_{G}(a) \cup C_{G}\left(a^{-1}\right) \cup C_{G}(b) \cup C_{G}\left(b a^{2}\right)\right| \leqslant 5 \text { and } \\
\left|G \backslash C_{G}(a) \cup C_{G}(b)\right| \leqslant 5 .
\end{gathered}
$$

Clearly $|G|=8$. Now suppose that $|Z(G)|=4$. Say, $Z(G)=\left\{1, z_{1}, z_{2}, z_{3}\right\}$. There exists an element a in $G \backslash Z(G)$ of order 4 such that $a^{2} \neq z_{1}$, and

$$
\left|G \backslash C_{G}(a) \cup C_{G}\left(a^{2}\right) \cup C_{G}\left(a^{3}\right) \cup C_{G}\left(a z_{1}\right)\right| \leqslant 5
$$

Therefore $|G| \leqslant 10$, which is not possible again.
Lemma 4.10. Let G be a $C(4, n)$-group, where $4 \leqslant n \leqslant 6$. Then $G \cong S_{3}, Q_{8}$, D_{8}, or D_{10}.

Proof: By Remark 4.5(2), it is enough to consider only the case $n=6$. Let $a \in G \backslash Z(G)$. By Lemma 4.1, $|a| \in\{2,3,4,5,6,8,10,12\}$. Let $Z(G)=1$. We Distinguish three cases:
CASE 1. $\quad|a| \geqslant 5$. In this case $\left|G \backslash C_{G}(a) \cup C_{G}\left(a^{2}\right) \cup C_{G}\left(a^{3}\right) \cup C_{G}\left(a^{4}\right)\right| \leqslant 5$ and $|G| \leqslant 10$.
CASE 2. $|a|=4$. For b in $G \backslash\langle a\rangle$, we have $\left|G \backslash C_{G}(a) \cup C_{G}\left(a^{2}\right) \cup C_{G}\left(a^{3}\right) \cup C_{G}(b)\right| \leqslant 5$, from which it follows that $|G| \in\{8,10,12\}$. For $|G|=12$, then $G \cong A_{4}$, but the subsets

$$
\begin{aligned}
M & =\{(12)(34),(13)(24),(14)(23),(123)\} \text { and } \\
N & =\{(124),(142),(134),(143),(234),(243)\}
\end{aligned}
$$

show that A_{4} is not a $C(4,6)$-group.
Case 3. $|a| \in\{2,3\}$. In this case there exist elements a and b in G of order 2 and 3, respectively.

Case 3(i). Suppose that there exists an element c in $G \backslash\langle b\rangle$ of order 3. Then

$$
\left|G \backslash C_{G}(b) \cup C_{G}\left(b^{-1}\right) \cup C_{G}(c) \cup C_{G}\left(c^{-1}\right)\right| \leqslant 5
$$

from which it follows that $|G|=10,12$ or 14 so that $G \cong D_{10}, A_{4}$ or D_{14}. The group D_{14} has centraliser of order 7, and by Remark 4.5(1), it is not a $C(4,6)$-group.

CASE 3(ii). Every c in $G \backslash\langle b\rangle$ has order two. Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ and a_{6} be elements of order two. Then

$$
G=C_{G}\left(a_{1}\right) \cup C_{G}\left(a_{2}\right) \cup C_{G}\left(a_{3}\right) \cup C_{G}\left(a_{4}\right) \cup C_{G}\left(a_{5}\right) \cup C_{G}\left(a_{6}\right) \cup C_{G}(b)
$$

Now by $[2$, Theorem $B],|G| \leqslant 81$. But $|G|=2^{k} \cdot 3$ and hence $|G| \in\{6,12,24,48\}$. Since A_{4} and S_{4} are the only centreless groups of order 12 and 24 respectively which are not $C(4,6)$-groups, $|G| \neq 12$ or 24 .

Finally any centreless group of order 48 , has more than two elements of order 3 , so that $|G| \neq 48$. Now if $Z(G) \neq 1$, then by Lemma $4.9, G \cong Q_{8}$ or D_{8}, and the proof is complete.

Lemma 4.11. If G is a $C(5,5)$-group, then $G \cong S_{3}, Q_{8}, D_{8}$ or D_{10}.
Proof: A similar proof to that of Lemma 4.9, gives the result.
Proof of Theorem 1.4: It follows easily from Lemmas 4.6-4.11.

References

[1] A. Abdollahi, S. Akbari and H.R. Maimani, 'Non-commuting graph of a group', J. Algebra 298 (2006), 468-492.
[2] A. Abdollahi and S.M. Jafarian Amiri, 'On groups with an irredundant 7-cover', J. Pure Appl. Algebra (to appear).
[3] A. Abdollahi and A. Mohammadi Hassanabadi, 'Finite groups with certain number of elements pairwise generating a non-nilpotent subgroup', Bull. Iranian Math. Soc. 30 (2004), 1-20.
[4] E.A. Bertram, 'Some applications of graph theory to finite groups', Discrete Math. 44 (1983), 31-43.
[5] R.D. Blyth and D.J.S. Robinson, 'Insoluble groups with the rewriting property P_{8} ', J. Pure Appl. Algebra 72 (1991), 251-263.
[6] R.A. Bryce, V. Fedri and L. Serena, 'Covering groups with subgroups', Bull. Austral. Math. Soc. 55 (1997), 469-476.
[7] G. Endimioni, 'Groupes finis satisfaisant la condition (N, n)', C. R. Acad. Sci. Paris Ser. I Math. 319 (1994), 1245-1247.
[8] B. Huppert and N. Blackburn, Finite groups, III (Springer-Verlag, New York, 1982).
[9] B.H. Neumann, 'A problem of Paul Erdös on groups', J. Austral. Math. Soc. Ser. A 21 (1976), 467-472.
[10] B.H. Neumann, 'Ensuring commutativity of finite groups', J. Aust. Math. Soc. 71 (2001), 233-234.
[11] L. Pyber, 'The number of pairwise non-commuting elements and the index of the centre in a finite group', J. London Math. Soc. (2) 35 (1987), 287-295.
[12] D. Segal and A. Shalev, 'On groups with bounded conjugacy classes', Quart. J. Math. Oxford Ser. (2) 50 (1999), 505-516.
[13] J.G. Thompson, 'Nonsolvable finite groups all of whose local subgroups are soluble', Bull. Amer. Math. Soc. 74 (1968), 383-437.

Department of Mathematics
University of Isfahan
Isfahan 81746-73441
Iran
e-mail: a.abdollahi@math.ui.ac.ir
a-azad@sci.ui.ac.ir
aamohaha@sci.ui.ac.ir
m.zarrin@math.ui.ac.ir

[^0]: Received 21st March, 2006
 This work was in part supported by the Center of Excellence for Mathematics, University of Isfahan.

