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OF FINITE GROUPS
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Dedicated to the memory of Bernhard H. Neumann

This paper is an attempt to provide a partial answer to the following question put
forward by Bernhard H. Neumann in 2000: "Let G be a finite group of order g and
assume that however a set M of m elements and a set N of n elements of the group
is chosen, at least one element of M commutes with at least one element of N. What
relations between g, m, n guarantee that G is Abelian?" We find an exponential
function f(m,n) such that every such group G is Abelian whenever |G| > f(m,n)
and this function can be taken to be polynomial if G is not soluble. We give an upper
bound in terms of m and n for the solubility length of G, if G is soluble.

1. INTRODUCTION AND RESULTS

This paper is an attempt to provide a partial answer to the following question put
forward by Bernhard H. Neumann in [10]: "Let G be a finite group of order g and assume
that however a set M of m elements and a set N of n elements of the group is chosen,
at least one element of M commutes with at least one element of N (call this condition
Comm(m, n)). What relations between g, m, n guarantee that G is Abelian?"

Following Neumann, for given positive integers m and n we say that a group G
satisfies the condition Comm(m, n) if and only if for every two subsets M and N of
cardinalities m and n respectively, there are elements x € M and y € N such that
xy = yx.

We note that an infinite group G satisfying the condition Comm(m, n) for some

m and n is Abelian. This is because every infinite subset of such group contains two

commuting elements. Thus by a famous Theorem of Neumann [9], it is centre-by-finite.

Therefore Z(G), the centre of G is infinite. Now let M and AT be two subsets of Z(G),

of sizes m and n respectively. Then for any two elements x and y of G, there are

elements z\ € M and z2 € N such that xz\yzi = yzzxz\, so that xy = yx; namely G is
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Abelian. Therefore in considering non-Abelian groups satisfying Comm(m, n) we need
only consider finite cases.

We use the usual notations: for example CQ(O) is the centraliser of an element a in a
group G, Sn is the symmetric group on n letters, An is the alternating group on n letters,
Din is the dihedral group of order 2n, Qg is the quaternion group of order 8 and T will
stand for the group (x,y \ x6 = l,y2 = x3,y~1xy = a:"1). If G satisfies the condition
C<ymm(m,n), then we say G is a C(m,n)-group, or G € C(m,n).

Throughout G will denote a finite non-Abelian group unless otherwise is stated. We
shall show that a C(m, n)-group has order bounded by a function of m and n which may
not always be chosen to be a polynomial function in terms of m and n. Our main results
are

THEOREM 1 . 1 . Let G be a C(m,n)-group. Then \G\ is bounded by a function
of m and n.

The solubility length of a soluble C(m, n)-group is bounded above in terms of m and
n. In fact we prove the following.

THEOREM 1 . 2 . LetG e C{m, n) be a soluble group of solubility length d. Then

d < max{flog2 m], [log2n\}

We also obtain a solubility criterion for C(m, n)-groups in terms of m and n, namely

THEOREM 1 . 3 . LetG be a C{m, n)-group and m + n ^ 58. Then G is a soluble
group.

We give a complete characterisation of C(m, n)-groups, where m + n ^ 10, in the
next theorem.

THEOREM 1 .4 . Let G be a C(m, n)-group, where m + n < 10. Then G is
isomorphic to one of the following: S3, Z?2n for n € {3,4,5,6}, Q$, T or a non-Abeiian
group of order 16 whose centre is of order 4.

2. A PARTIAL ANSWER TO NEUMANN'S QUESTION

A subset of a non-Abelian group G no two of whose distinct elements commute is
called non-commuting. A non-commuting subset of maximal size is called a maximal
non-commuting set and this maximal size will be denoted by UJ(G). In this section we
give a partial answer to Neumann's question by proving that a C(m, n)-group has the
order bounded by a function of m and n.

PROOF OF THEOREM 1.1: Let Z(G) = {zi,z2,...,zt}, where t ^ max{m,n}.
Choose any two elements o and b in G, and put

M = {azx,az2,....azm} and N = {bzubz2,...,bzn}

https://doi.org/10.1017/S000497270004750X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270004750X


[3] Ensuring commutativity of finite groups 123

Since G is a C(m, n)-group, there exist azi € M and bzj € N, where 1 ^ i ^ m and
1 ^ i ^ n, such that azibzj = bzjazi. This implies that a& = 6a, and so G is an
Abelian group, which is a contradiction. Thus |Z(G)| < max{m, n}. Suppose, for a
contradiction, that u = UJ(G) ^ m + n. Then there are UJ pairwise non-commuting
elements a,\,..., am+n e G. Put

M = {a i , . . . , am) and N = { a m + i , . . . , om + n}

Since G is a C(m, n)-group, there exist a,i e M and a.j € N such that OjOj = ajat,
which is a contradiction. Thus UJ < m + n. Now the main result of [11] implies that
\G : Z(G)| ^ <?, where c is a constant. Therefore

\G\ ^ d°\Z(G)\ ^ c m + n max{m,n},

which completes the proof. D

REMARK 2.1. Since an extra-special 2-group of order 22fc+1, has maximal non-commuting
sets of size 2k + 1 (see [4] or [11]), if f(m, n) is the least integer such that \G\ ̂  / (m, n)
for all C(m, n)-groups, then f(m, n) cannot be chosen to be a polynomial in terms of m
and n.

The following is a key lemma to some of our results.

LEMMA 2 . 2 . Let G be a C(m, n)-group and let N be a normal subgroup of G
such that G/N is non-Abelian. Then \N\ < max{m, n}.

P R O O F : Suppose on the contrary that N = {01,02,. . . , a t } and t ^ max{m,n}.
Choose any two elements x and y in G \ N, and put

X = {xa1,xa2,.. .,xam} and

Y = {yauya2,...,yan}.

Since G is a C(m, n)-group, there exist xat in X and yaj in Y such that [xa,-,j/aj] = 1.
Thus [x, y] € N and G/N is Abelian, which is a contradiction. D

COROLLARY 2 . 3 . Let G be an insoluble C{m, n)-group. Then

\G\ ^ 44(m + n)8 • max{m, n}.

P R O O F : Let S be the largest soluble normal subgroup of G. Then G/S has no
non-trivial normal Abelian subgroup and by [12, Theorem 1.3], \G/S\ < (n(G)) , where
n(G) is the size of the largest conjugacy class in G. Now by [11] we have n(G) ^ 4w(G)2.
Then by the proof of Theorem 1.1, LJ(G) < m + n and by Lemma 2.2, \S\ < max{ro,n},
which completes the proof. D
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3. SOLUBLE GROUPS SATISFYING THE CONDITION Comm{m,n)

In this section we prove Theorems 1.2 and 1.3. First we need some preliminary
lemmas.

LEMMA 3 . 1 . Let G be a C{m, n) -group. If au o2 , . . . , on are n distinct elements

ofG, then G\ \J CG{ai)
i

< ro.

PROOF: Suppose, for a contradiction, that there exist m distinct elements b\, b2,..., bn
n

in G\\J Caiat)- Since G is a C(m, n)-group, there exist elements at,bj such that
t = l

atbj = bjdi and so bj € Ca(ai), which is a contradiction. D

LEMMA 3 . 2 . IfG isaC(m, n)-group, then m + n ^ 6.

PROOF: Suppose, for a contradiction, that m + n < 6. We distinguish two cases:
CASE 1: n = 1. Then \G\ ^ 6 and so G = S3, since G is non-Abelian. If a € 53 is of
order 3, then Lemma 3.1 gives 3 = |G\CG(O)| < m. It follows that m = 4. But 53 is not
aC(l,4)-group.

CASE 2: n = 2. Since G is non-Abelian, there exists an element a in G \ Z(G) such
that o2 # 1; for let g2 = 1 for all g € G\Z(G). Then (jr*)2 = 1 for all z £ Z{G) and
g 6 G\.Z(G). It follows that 1 = g2z2 = z2 and so we have z2 = 1 for all z €
Hence g2 = 1 for all 3 € G which implies that G is Abelian, a contradiction.

Now since a ^ a"1, it follows from Lemma 3.1 that

\G\{CG{a)UCG(a-l))\^m-

Since CG(a) = CG(o-1), we have that \G\ ^ \CG(a)\ + 2. As a € G\Z{G), it follows
that \CG(a)\ ^ \G\/2 and so \G\ ^ |G|/2 + 2. Hence \G\ ^ 4, so G is Abelian. This
contradiction completes the proof. D

LEMMA 3 . 3 . Let G be a C(m, n)-group and let N be a non-trivial normal sub-
group ofG. Then G/N is a C{m -r,n- t)-group, for all positive integers r, t such that
2r ^ m and 2t ^ n.

PROOF: Suppose, for a contradiction, that G/N is not a C(m-r, n-£)-group. Thus
there exist two subsets

X = {XlN,...,xm-rN} and Y = {VlN,...,yn.tN}

such that [xi,yj] & N for all i, j . Let o be a non-trivial element of ./V and consider

Xx = {ax1,. . . ,axm_r,a;i , . . . ,xr} and

Y\ = {ayi,...,ayn-t,yi,...,yt}.
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It is clear that \X\ = m and \Y\ = n and no element of Xi commutes with no element of

Yx, which completes the proof. D

P R O O F O F T H E O R E M 1.2: We argue by induction on d. By hypothesis G is non-

Abelian, thus it follows from Lemma 3.2 that either m ^ 3 or n ^ 3. Thus for d = 2,

the result holds, since [log2 3] = 2. So assume that d ^ 3 and the result holds for d - 1.

Now G/G^" 1 ' has solubility length d — 1. Let k and I be positive integers such that

2* < m sS 2k+l and 2l < n < 2 / + 1 . Thus by Lemma 3.3, G/G^~^ satisfies Comm(2k, 2l).

Thus by the induction hypothesis d— 1 < max{fc, £} and so d < max{ flog2 m], [log2 n ] } ,

as required. D

To prove Theorem 1.3 we need the following lemma.

If G is a finite group, then for each prime divisor p of |G|, we denote by up(G) the

number of Sylow p-subgroups of G.

LEMMA 3 . 4 . Let G be a C(m, n)-group and p be a prime number dividing \G\

such that every two distinct Sylow p-subgroups of G have trivial intersection. Then

up(G) < m + n - 1.

PROOF: It follows from the proof of Theorem 1.1, that w(G) < m + n. Now [7,
Lemma 3] completes the proof. D

PROOF OF THEOREM 1.3: Suppose, on the contrary, that there exists a non-soluble
finite group G G C(m, n) of the least possible order, where m + n ^ 58. If there exists a
non-trivial proper normal subgroup N of G, then both N and G/N are in C(m, n) and
so they are soluble. It follows that G is soluble, which is a contradiction. Therefore G is
a minimal simple C{m, n)-group. By Thompson's classification of minimal simple groups
[13], G is isomorphic to one of the following simple groups:

A5 the alternating group of degree 5,

PSL(2,2P), where p is an odd prime,

PSL(2,3P), where p is an odd prime,

P5L(2,p), where 5 < p is prime and p = 2 (mod 5),

PSL(3,3), and

Sz(2p), p an odd prime.

We first prove that A5 is not a C(m, n)-group, where m + n ^ 58. Let P i , . . . , P5,

Qii • • • iQiOi ^i> • • • > #6 be Sylow p-subgroups of A$, for p = 2,3,5, respectively. It is

easy to see that A$ is the union of these Sylow subgroups and no two distinct non-trivial

elements of coprime orders in As commute (see [3]). Since every non-trivial element in
6

U Ri U Q\ U Qi does not commute with one in

10

i=3
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(where a is an arbitrary non-trivial element of Qio), A5 is not a C(28,30)-group and since
every non-trivial element in

({JRiUQlUQ2UQ3\\{b}

(where b is an arbitrary non-trivial element of Qi) does not commute with one in

10

i=l i=4

As is not a C(29,29)-group. Now suppose that n ̂  27. Then n = 4k+£ for some integers
A; and £, where 0 ̂  A; ^ 6 and 0 < I ^ 3. Let a be an arbitrary non-trivial element of
Qio and define

i *
I Rt if I = 0

if £ = 2

if / = 3

and

(
6u 10

U
6u 10

t=2
5

»=2

t=2
10

if ^ = o

if 1=1

if ^ = 3

Then no non-trivial element of An commutes with one of Bn. It then follows that A5 is
not a C(n, m)-group, where n + m ^ 58.

If G is isomorphic to PSL(2,2P) or PSL(2,3P), where p is an odd prime, then
by [1, Lemma 4.4], w(G) > 64, which is a contradiction. If G = P5L(3,3), then |G|
= 24 x 33 x 13 so that uu{H) = 144 > 57, which is not possible by Lemma 3.4. If
G = PSL(2,p) and p > 7 (p is a prime number), then [1, Lemma 4.4] implies that
w(G) ^ 133, a contradiction. If G = PSL(2,7), then by [1, Proposition 3.21] and a
similar argument as for A5 we conclude that G is not a C(m, n)-group. If G = Sz(2p),
then \G\ = 22* x (V - 1) x (22p -1-1) and u2(G) = 22p + 1 ̂  65 (see Theorem 3.10 (and
its proof) of [8, Chapter XI]). D

We note that the bound 58 in Theorem 1.3 is the best possible. In fact we have
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THEOREM 3 . 5 . The alternating group A5 is the only non-Abelian finite simple
C(m, n)-group, for some positive integers m and n such that m + n = 59.

P R O O F : First we note that, since every centraliser of A5 has order at least 3, A5 is a
C(l , 58)-group. For uniqueness, suppose, on the contrary, that there exists a non-Abelian
finite simple group not isomorphic to A5 and of least possible order which is a C(m, n)-
group, for some positive integers m and n with m + n — 59. Then by [5, Proposition 3],
G is isomorphic to one of the following groups:

PSL(2,2p), p = 4 or a prime;

PSL{2,3p), PSL(2,5"), p a prime;

PSL(2,p), p a prime and 7 ^ p;

P5L(3,3);
PSL(2,5);
P5f/(3,4)(the projective special unitary group of degree 3 over the finite
field of order 42) or

Sz(2p), p an odd prime.

Now an argument similar to the one in the proof of Theorem 1.3 gives a contradiction in
each case. D

4. GROUPS SATISFYING THE CONDITION Comm(m,n) FOR SOME SMALL POSITIVE

INTEGERS m AND n

In this section we characterise C(m, n)-groups for some particular m and n and
hence prove Theorem 1.4. First we need some preliminary lemmas.

LEMMA 4 . 1 . Let G be a C(m, n)-group. Let x be a non-central element of finite
order such that y(|z|) > n, where <p is the Euler ^-function. Then \G \ CQ{X)\ < m.

PROOF: Suppose that

<A;€N : l^k^\x\ and gcd(k,\x\) = l\ = {di,d2,...,d^\x\)}.

Since xdi ^ xd> for all i ^ j , by Lemma 3.1

G\ m.

Also we have CG{x) = CG(i*) for all 1 ^ i ^ dj^y Hence \G \ CG{x)\ <m. D

LEMMA 4 . 2 . Let G be a finite niJpotent C(m, n)-group. Then J J p < max{m, n}.
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PROOF: The group G is the direct product of its Sylow subgroups. So G = TT P,
PlIGI

where P is the Sylow p-subgroup. Then Z(G) = J\ Z{P) and max{m,n} ^ \Z[G)\
P\\G\

. by the proof of Theorem 1.1. D

LEMMA 4 . 3 . If G is a C{m,n)-group, then for any prime divisor p of \G\,
p < max{m, n}.

PROOF: Suppose that p is a prime divisor of \G\. Let a be an element of order p in
G. For. any x in G put X = {xa, xa2,..., xam} and Y = {o, a2, . . . , a"}. Then, by the
hypothesis, there exist xa1 6 X and a? € Y such that xala? = o?xax. Since gcd(j,p) = 1,
we have [x,a] = 1. Thus a e Z(G), so that p \ \Z(G)\ and by the proof of Theorem 1.1,
p < \Z{G)\ <max{m,n}. D

LEMMA 4 . 4 . Let G be a non-Abelian finite group such tiat |G/Z(G) | = 4. Tien
G is not a C(z, 2z)-group, where z = |Z(G)|.

PROOF: Since G is non-Abelian, G/Z(G) = C2 x C2. Thus there exist elements
a,b € G such that

G = Z(G) U o6Z(G) U aZ(G) U bZ{G).

Therefore (aZ(G),bZ(G)) is an elementary Abelian 2-group of order 4. Thus
G = (a,b)Z(G) and so ab ^ 6a, since G is not Abelian. Now consider the subsets
M = aZ{G)UbZ(G) and N = abZ{G). We have xy ^ yx for all Z e M and y € N, since
06 ^ ba. This shows that G is not a C(z, 2z)-group. D

REMARK 4.5.

(1) Let G be a C(m, n)-group. Then it is easy to see that G is not a

C\t, \G \ CG(O)IJ-group, where a is any element of G with t ^ |Go(a)

\Z(G)\.

(2) If G is a C(m, n)-group, then for any two natural numbers ml and n' such

that m ^ m' and n ^ n', G is also a C(m', n')-group.

COROLLARY 4 . 6 . Let G be a G(l, n)-group, where 5 ^ n ^ 9. Then G = 53,
Dg, Q8) Z?10) T, Di2 or a non-Abeiian group of order 16 whose centre is of order 4.

PROOF: By Remark 4.5(2), it is enough to consider only the case n = 9. Suppose
that o is any non-central element of G. By Lemma 3.1 we have \G \ Cc{a)\ ^ 8 and
so \G\ ^ 16. If \G\ = 12, then G = AA, Dn or T. The alternating group AA has an
element whose centraliser has order 3. Thus by Remark 4.5(1), A4 is not a G(l, 9)-group.
If G = D12 or G = T, then the order of the centraliser of any element in G is at least
4. Thus G is a G(l,9)-group. If \G\ = 14, then G = D14 and there exists x € Du such
that |CG(i) | = 2. By Remark 4.5(1), Du is not a G(l,9)-group. Finally if \G\ = 16,
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then \Z{G)\ = 2 or 4. If \Z{G)\ = 4, then for all a € G, \CG{a)\ > 8. Thus G is a
C(l ,9)-group. If \Z(G)\ = 2, then there exists an element o in G such that |Cc(a ) | = 4,
so that by Remark 4.5(1), G is not a C ( l , 9)-group. D

COROLLARY 4 . 7 . Let G be a C(2, n)-group, where 4 4 n ^ 8. Then G ^ 5 3 ,

Q8, D8 or Dw.

P R O O F : By Remark 4.5(2), it is enough to consider only the case n = 8. Since G

is non-Abelian, there exists an element o in G \ Z(G) such that a2 ^ 1. By Lemma
3.1, \G \ CG{a)\ ^ 7, from which it follows that |G| < 14. If |G| = 12, then G contains
centraliser of order 4. Thus by Remark 4.5(1), G is not a C(2,8)-group. If \G\ = 14,
then G = Du, and it is not a C(2,8)-group since Du contains centralisers of order 2. D

LEMMA 4 . 8 . Let G be a C(3, n)-group, where 3 ^ n ^ 7. Then G = S3, D8, Qa

or Dio-

P R O O F : By Remark 4.5(2), it is enough to consider only the case n = 7. Since G is
non-Abelian, there exists non-central element a in G such that a2 ^ 1. Let 6 € G\Z(G)

be such that b ^ a, a"1. Then by Lemma 3.1,

\G \ CG(a) U CG(a-1) U CG(6)| ^ 6

Hence \G \ CG(a) U CG{b)\ < 6. Clearly |G| G {8,10,12,14,16,20}. If |G| = 12,
then G = Ai, DX2 or T. As before AA is not a C(3,7)-group. For Di 2 , the subsets
M = {b,ba3,ba5} and N = {a ,a 2 ,a 4 ,a 5 ,6a ,6a 2 ,6a 4 } show that Di2 is not a C(3,7)-
group. For T, the subsets M = {y,yx3,x2y} and N = {x,x2,x4,x5,yx,xy,yx2} show
that T is not a C(3,7)-group. For \G\ = 14, G = D u and there exists an element
x € Du such that | C D u ( x ) | = 7, showing that Z?M is not a C(3,7)-group. If \G\ = 16,
then G has centralisers of order 8. By Remark 4.5(1), G is not a C(3,7)-group. Every
non-Abelian group of order 20, has centralisers of order 4, and by Remark 4.5(1), is not
a C(3,7)-group. D

LEMMA 4 . 9 . If G is a C(4,6)-group and Z(G) ^ 1, then G = Q8orDs.

PROOF: By Lemma 3.3, G/(Z(G)) is an Abelian group and by Lemma 4.2,

Yl p ^ 5. Thus G is a p-group for p € {2,3,5}. If G is a 5-group, then there ex-
PIIGI
ists an element a in G \ Z(G) whose order is 5. Thus

|G \ CG(a) U CG(a2) U CG(a3) U C G (a 4 ) | ^ 5.

Hence |G \ Cc(a 2 ) | ^ 5 and therefore \G\ ^ 10, which is a contradiction. If G is a

3-group, then by the proof of Theorem 1.1, Z(G) = (z), and there exists an element a in

G \ Z(G) such that

\G \ CG(a) U CG(a2) U CG{az) U CG(az2) | ^ 5
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Hence \G \ CG(a)\ < 5 and so \G\ < 10, which is not possible. Therefore G is a 2-group
and by the proof of Theorem 1.1, \Z{G)\ = 2 or 4. Let \Z{G)\ = 2 and Z{G) = (z).
Then there exists an element a in G \ Z(G) of order 4. Now we distinguish two cases:

CASE 1: a? & Z(G). In this case

\G \ CG{a) U CG(a2) U CG(a3) U CG{az)\ ^ 5.

Hence \G \ CG(a2)| < 5, so that \G\ ^ 10, which cannot happen.
CASE 2: a2 € Z(G). In this case there exists an element b in G \ (a) such that

CG{a) U Cda-1) U CG(6) U CG(ba2)\ ^ 5 and

Clearly \G\ = 8. Now suppose that \Z(G)\ = 4. Say, Z(G) = {1, ^,22,2:3}. There exists
an element a in G \ Z(G) of order 4 such that a? ^ zx, and

|G \ CG(a) U CG(a2) U CG(a3) U CcCa^x)! ^ 5.

Therefore \G\ ^ 10, which is not possible again. D

LEMMA 4 . 1 0 . Let G be a C(4,n)-group, where 4 ^ n ^ 6. Then G = S3, Q8,
Ds, orD10.

PROOF: By Remark 4.5(2), it is enough to consider only the case n = 6. Let
a e G\Z(G). By Lemma 4.1, \a\ € {2,3,4,5,6,8,10,12}. Let Z(G) = 1. We Distinguish
three cases:

CASE 1. \a\ ^ 5. In this case \G\CG(a)UCG{a2)UCG{a3)uCG(a4)\ ^ 5 and |G| ^ 10.

CASE 2. |a| = 4. For b in G \ (a), we have \G\CG(a)l)CG(a2)uCG{a3)uCG(b)\ ^ 5 ,
from which it follows that \G\ 6 {8,10,12}. For \G\ = 12, then G = Ait but the subsets

M = {(12)(34), (13)(24), (14)(23), (123)} and

N = {(124), (142), (134), (143), (234), (243)}

show that Ai is not a C(4,6)-group.

CASE 3. \a\ € {2,3}. In this case there exist elements a and b in G of order 2 and 3,
respectively.

CASE 3(i). Suppose that there exists an element c in G \ (b) of order 3. Then

\G \ CG(b) U CoQr1) U CG(c) U CG(c-x)\ < 5,

from which it follows that \G\ = 10, 12 or 14 so that G = Dl0, A4 or Du. The group

Du has centraliser of order 7, and by Remark 4.5(1), it is not a C(4,6)-group.
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CASE 3(ii). Every c in G \ (b) has order two. Let oi, 02,a3)04,05 and a6 be elements of

order two. Then

G = CG{ai) U CG(a2) U CG(a3) U Cofa) U CG{a5) U CG(a6) U CG(b).

Now by [2, Theorem B], \G\ ^ 81. But |G| = 2* • 3 and hence |G| 6 {6,12,24,48}. Since
i44 and S4 are the only centreless groups of order 12 and 24 respectively which are not
C(4,6)-groups, |G| ^ 12 or 24.

Finally any centreless group of order 48, has more than two elements of order 3, so
that \G\ # 48. Now if Z{G) ± 1, then by Lemma 4.9, G S* Q8 or Ds, and the proof is
complete. D

LEMMA 4 . 1 1 . If G is a C(5,5)-group, then G = S3, Q&, Ds or Dl0.

P R O O F : A similar proof to that of Lemma 4.9, gives the result. D

P R O O F OF THEOREM 1.4: It follows easily from Lemmas 4.6-4.11. D
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