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Indoor localisation has always been a challenging problem due to poor Global Navigation
Satellite System (GNSS) availability in such environments. While inertial measurement
sensors have become popular solutions for indoor positioning, they suffer large drifts after ini-
tialisation. Collaborative positioning enhances positioning robustness by integrating multiple
localisation information, especially relative ranging measurements between local users and
transmitters. However, not all ranging measurements are useful throughout the whole posi-
tioning process and integrating too much data will increase the computation cost. To
enable a more reliable positioning system, an adaptive collaborative positioning algorithm
is proposed which selects units for the collaborative network and integrates ranging measure-
ment to constrain inertial measurement errors. The algorithm selects the network adaptively
from three perspectives: the network geometry, the network size and the accuracy level of the
ranging measurements between the units. The collaborative relative constraint is then defined
according to the selected network geometry and anticipated measurement quality. In the case
of trials with real data, the positioning accuracy is improved by 60% by adjusting the range
constraint adaptively according to the selected network situation, while also improving the
system robustness.
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1. INTRODUCTION. Location-based Services (LBS) have gradually expanded
from military and government departments into our everyday life. From emergency
responders to social networks, LBS users inevitably demand far more accurate and re-
liable positioning information in a wider range of areas. Although Global Navigation
Satellite Systems (GNSS) can provide accurate positioning outdoors, they lack the
same accuracy and robustness in more complicated environments due to signal disrup-
tion and blockage, e.g. inside buildings and urban canyons (von Watzdorf and
Michahelles, 2010).
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Inertial navigation is a common approach in GNSS-denied environments, as it does
not rely on any infrastructure other than an Inertial Measurement Unit (IMU) that
works in almost any environment. However these are notorious for gyro heading
drifts, which could accumulate to up to tens of metres after just a few seconds.
Therefore either corrections or external measurements must be applied to inertial mea-
surements to provide more reliable results (Abdulrahim et al., 2011). Various Inertial
Navigation System (INS) integration methods, such as INS/Global Positioning System
(GPS) and INS/Wi-Fi integration, have been proposed where each sensor compliments
the other if one fails during a short period (Evennou and Marx, 2006; Weyn and
Schrooyen, 2008). Wireless signals are available indoors and naturally become a good
alternative indoors, even though they suffer signal instability (Narzullaev et al., 2008;
Kaemarungsi and Krishnamurthy, 2012).

Collaborative positioning integrates multiple systems into a single network, which
was first introduced in intelligent transport systems. Roadside beacons and vehicle
clusters helped to maintain reliable positioning by correcting GNSS observations
and reducing errors through vehicle-to-vehicle ranging when the vehicle could not
receive sufficient satellite signals (Yao et al., 2011; Tang et al., 2012). For a more
general idea of collaborative positioning, signal of opportunity was introduced in
Yang et al. (2009) where positioning is achieved by integrating a number of different
types of signals in the surrounding environment. However, the overall performance
can be affected by the reliability of each particular signal, the amount of data and
the relative position.

This paper proposes a collaborative positioning solution for an indoor pedestrian
navigation scenario, which integrates measurements from multi-users through Peer-
To-Peer (P2P) ranging. Based on the signal properties in the indoor environment,
this paper provides a detailed analysis on the collaborative network structure and its
effects on the positioning result. A particle filter-based Adaptive Ranging constraint
Collaborative Positioning (ARCP) algorithm is proposed which integrates inertial
measurements, map information and relative ranging. It improves the positioning ac-
curacy and robustness in complicated indoor environments by applying a selecting and
weighting scheme to the ranging constraint on each user based on the obtained ranging
measurements and network geometry. Simulations are carried out to analyse the
network characteristics and the anticipated positioning outcome. Finally, trials are
carried out to validate the positioning algorithm performance.

2. SELECTING THE NETWORK. Multi-users can share local environment in-
formation and constrain errors directly through P2P ranging between users (Jing
et al., 2013). P2P ranging is relative ranging measurements between nearby units,
which can update and correct the user state model by restricting valid measurements
to the measured distance and pushing the final solution towards the true position.
Therefore the ranging constraint plays a crucial role in the positioning performance.
To integrate only the most effective ranges, a decision-making scheme is introduced
here to enhance positioning accuracy and system efficiency.

The decision is made each epoch based on the current situation, hence is adaptable
to different measurement error models and network geometry. Three different aspects
are considered. First of all, the ranging measurement accuracy level is estimated from
signal characteristics. Secondly, the network geometry of the collaborative network is
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formed by selected nodes. Finally, the network size should also be considered for
efficiency.

The collaborative network discussed here consists of two types of units, fixed trans-
mitters with known positions, known as anchors (denoted as Tx), and mobile users
whose positions need to be determined, known as rovers (denoted as Rx). The
optimal network should consist of the minimum number of units that produces the
required positioning accuracy. The Cramer-Rao Lower Bound (CRLB) of different
networks is presented below to examine the relationship between network size, geom-
etry and positioning accuracy.

2.1.  Network Cramer-Rao Lower Bound. CRLB provides a lower boundary on
the achievable variance of any unbiased location estimator for unknown parameters,
which is useful for justifying how well an estimator can perform (Patwari et al.,
2005; Wymeersch et al., 2009; Penna et al., 2010). CRLB states that the variance of
an unbiased estimator 0 should at least be as high as the inverse of a function of the
expectation taken with respect to the probability density function (pdf) p(x; 6),

CRLB = - {52 hllp(x; 9)] < var(é) (1)

ol

where the derivate is evaluated at the true value of 6. Assume that we are interested in
ranging measurement stated as,

== x4 (=) e @

where (X, ) is the user location, (x; y;) is the ith reference node, r; is the ranging

measurement centred at /() with a noise £ of Gaussian zero mean with covariance

R. If there were m nodes in the network and H = %h(@). CRLB at location (x, y)

is given by

CRLB(x,y) = \/ n(HTR'H)™) (3)

where R = diag(o3,03,...,02,), o7 is the variance of ith measurement. The resulting
CRLB indicates the positioning accuracy level at each location. The performance of
different networks is discussed below in detail.

2.2.  Ranging accuracy. Generally, ranging measurement noise £ consists of white

noise w and bias . Thus Equation (2) can be rewritten as,

ri= \/(Scu — X))+ (G —yi) + wi+ b (4)

The white noise is a zero mean variable with a variance of ¢, which can be modelled
based on prior observation data. To testify the error bound for range-based positioning
of different measurement levels, four different anchor locations are set on each corner
of a 100 m X 100 m square area. The CRLB of the entire simulated area is calculated
for different noise levels with variances of 6> =1, 6> =3 and o> = 5 while bias 5= 1 m
and b = 5 m respectively (Figure 1). Blue indicates low CRLB and red indicates high
values.
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Figure 1. CRLB with different noise variance and bias.

While CRLB increases when the variance or bias increases, meaning a lower posi-
tioning accuracy, the effect of the variance is larger than that of the bias.

2.3.  Network dilution of precision. The accuracy of GNSS positioning at a point
on Earth is related to the geometry of observable satellite constellation, which is
reflected by the Dilution Of Precision (DOP) (Langley, 1999). Thus good signal geom-
etry plays a significant role in positioning which restricts the measurement uncertainty
into a smaller boundary.

The geometry of the collaborative network can be assumed as the satellite constel-
lation projected onto a 2-D scenario. If ranging measurements between a user located
at (X,,7,) and surrounding units located at (x;, y;) is expressed as Equation (4), the
coordinate differences form the geometry matrix,

Xy — X1 YV, — N1 1

r r

Xy — X2 YVy— W2 1

A= r g}

Xu—=Xm Vy = Vm

'm 'm
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where " denotes estimated results. In 2-D positioning, the Horizontal DOP (HDOP) is
defined as

HDOP = \/trace((4T4)™") (5)

DOP can be applied to analyse the collaborative network from two aspects. First of all,
lower DOP indicates better positioning geometry. Secondly, increasing units could also
potentially reduce the DOP. Figure 2 reflects that the positioning uncertainty bound-
ary is markedly affected by the relative position of the units. When the two anchors are
close together, DOP increases as well as the positioning uncertainty.

2.3.1. Network Geometry Quality. In recent works, DOP has been applied to the
analysis of geometric and signal strength for GPS/Wi-Fi and cellular communications
positioning system (Zirari et al., 2009; Chen et al., 2013). In this paper, DOP is used as
an indicator of the anticipated network performance. The corresponding CRLB and
DOP is compared for the designated area described in Section 2.2 where two
anchors placed at different locations along the side of the area, marked as red dia-
monds in Figures 3 and 4. Dark blue indicates low values and red indicates high
values. Results indicate that low DOP areas correspond to the low CRLB areas.

2.3.2. Network Capacity. Increasing the network size is also a solution to
improve accuracy. As Yang (2014) suggests, increasing the number of units will give
better positioning performance in collaborative positioning scenarios. As the
network size increases, the relative location of the anchors becomes a less dominating
factor. However, the number of anchors should be controlled so that computation cost
is kept as low as possible without affecting the positioning performance. Therefore the
number of anchors should be carefully selected to maintain the balance. In this case, a
threshold should be identified where increasing the unit number begins to have less of
an obvious impact on improving positioning performance.

The CRLB of the designated area corresponding to network sizes increasing from
two to eight are computed, of which four scenarios are shown below. The anchors
are located along the side of the designated area marked as red diamonds in
Figure 5, while noise level remains o= 1. Results indicate an obvious decrease in
CRLB when the network size increases, however the deduction rate is reduced when
the number of anchors reaches four.

3. ADAPTIVE COLLABORATIVE POSITIONING

3.1. Gathering measurements. The proposed collaborative positioning aims to
constrain inertial measurement errors by integrating external information to a
Pedestrian Dead Reckoning (PDR) model. A popular method of constraining
heading bias in indoor positioning is through map matching. P2P ranging is also inte-
grated to provide further constraint. The principles of PDR are given below, as well as
the characteristics of the other measurements.

3.1.1.  Pedestrian Dead Reckoning. PDR obtains the current position from a rela-
tive measurement between the current state and the previous state, e.g. the distance and
direction travelled. These measurements may be obtained from any inertial device that
provides a step count and heading, e.g. low-cost IMUs or smartphone. The step length
is usually estimated by a step recognition model or set to a constant value, e.g. 0-7 m,
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Figure 2. Network geometry and error boundary.
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Figure 3. CRLB for different geometry settings.

and later corrected through filtering. The basic PDR model is as below,

(6)

|:5Ck] | Xk—1 + S(kjr—1) cOS é(k\k—l)
Vi

Pret + Sy sin Ot

where [X, ] is the estimated position at time k, 3(xx—1) is the estimated step length
from time k-1 to time k, é(k‘k_l) is the measured heading. Due to gyro drifts, the
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Figure 4. DOP for different geometry settings.

heading measurement 0 tends to be biased which increases continuously if no correc-
tion is implemented.

3.1.2. Peer-to-peer Ranging. Recent studies have shown that Ultra-Wideband
(UWB) systems can achieve decimetre, or centimetre level ranging and positioning
accuracy in an open environment (Gentile and Kik, 2007; Xu and Law, 2009).
Hence multi-user collaborative networks can be established through P2P measure-
ments from UWB units. Although not currently widely applied due to cost and
many other reasons, the implementations of UWB in mobile devices can potentially
boost its application popularity (Seo and Lee, 2010). Furthermore, the recent advances
in wireless technology brings forth Bluetooth 4.0 and 5 G Wi-Fi, both of which has
greater potential in providing much higher accuracy ranging estimations than
current wireless signals (Cinefra, 2012).

UWB systems work on a bandwidth of more than 1 GHz and spread the signal
pulses along the whole bandwidth so that they are able to transmit signals at a very
high time resolution, which enables high accuracy ranging (Lee and Scholtz, 2002;
Koppanyi et al., 2014). Yet UWB measurements are also influenced by obstructions
that cause Non-Line-Of-Sight (NLOS) signals, which disturb signal properties and
reduce accuracy.

Many methods have been proposed to identify UWB NLOS signals and characterise
its accuracy level based on signal characteristics (Ismail et al., 2008; Marano et al.,
2010; Wymeersch et al., 2012). The collaborative constraint is set adaptively according
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Figure 5. CRLB for different network sizes.

to the ranging measurement and the detected accuracy level, which is converted to the
anticipated standard deviation of the ranging measurement.

3.1.3. Interior Map Information. Map matching is commonly applied to con-
strain measurement errors in indoor navigation by forcing the user to stay within
the reasonable path, i.e. pedestrians can only walk along corridors and travel
through doors (Pinchin et al., 2012). As shown in Figure 6, the user could only
enter Room 2 by going out of the door into the corridor (c1) and then go through
the door linking c1 and Room 2. The trouble with interior maps is that they must
be available prior to use.

3.2.  Particle filtering-based collaborative positioning. Particle filtering (PF) is a
recursive Bayesian filtering method that handles non-linear and non-Gaussian
systems. It has been widely applied to positioning and navigation problems due to
its ability to integrate different measurements (Gustafsson et al., 2002). PF predicts
the system states through sequential Monte Carlo estimation from a large set of par-
ticles with associated weights that represent the state probability density function (pdf).
The system state vector xy, is a discrete time stochastic model:

Xk = fie(Xr—1,Vi-1) (7)

where k is the time index, fj is the non-linear function of the state x;_; and process
noise v;_;. The state vector xy is recursively updated from observation z:

Zk = hic(Xk, wi) (8)
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Figure 6. Implementation of room polygons.

where /. is usually a non-linear function with measurement noise wy. PF looks into
estimating the state x; at time k, given observations z;, up to time k. At each
epoch, the predicted pdf is updated through measurements to represent the posterior
pdf of the current state. However it is usually impossible to obtain the true posterior
pdf. Therefore N particles are generated to represent a discrete approximation p(x),

N
p(x) =y wid(x —x') ©)
i=1

where w' is the weight of the ith particle. As N — co, the approximation should ap-
proach the true posterior pdf (Arulampalam et al., 2002).
A basic PF-based Collaborative Positioning (CP) is outlined below:

i. Initialisation: generate N, particles around the initial position of each Rx [xy,
o), all particles are assigned an equal weight w}, = 1/N,,.

ii. Prediction: particles propagate forward based on the PDR prediction model
Equation (6). The step length is a constant value s/ with a uniformly distributed
random noise U ~ (—nj, ny), the heading 6;,,_;) consists of a constant heading
bias b, and a uniformly distributed random noise U ~ (—ny, ny).

iii. Update and weighting: particles that cross walls are “killed”, i.e. w{ = 0. The
collaborative constraint is then implemented by obtaining the ranging measure-

ments 7, between the current rover to each other unit, as well as the distance 21’,’;1
calculated from each particle of the rover to the other N, units. For a particular
particle i, if the difference between the two is over a collaborative constraint
threshold thres,

d —
mn " m=12... Ny,

dif f; =

> thres, (10)

the particle is “killed”. thres, is given based on the anticipated accuracy level of
ranging measurements.

iv. Resampling: if the number of “live” particles falls below a threshold, i.e. N,/2,
new particles are generated to maintain a total number of N particles.

v. Return to ii or end iteration.
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This algorithm is applied to the simulated network as shown in Figure 7. Eight po-
tential locations are indicated along the sides of a square area of 100 m X 100 m where
anchors could be placed. North direction points upwards along the y-axis, East points
rightwards along the x-axis. A single trajectory is defined and plotted in the green line
while the magenta line indicates the PDR result. Five different location pairs for two
anchors are simulated at five different locations, producing different geometries.
Figure 8(a) indicates the positioning error of the networks with different DOPs,
Figure 8(b) shows the DOP for each network while the rover is moving.

To examine the positioning accuracy for different network sizes, the performance of
networks consisting of between 2-10 anchors (shown in Figure 7) is examined. The
mean positioning errors for different ranging accuracy levels, i.e. ranging error stand-
ard deviation o, of 3, 5 and 15 respectively, are plotted in Figure 9. We see a distinct
improvement in positioning when the number of anchors increases from three to four
for networks when o,,. = 3 and o,,. = 5 m, and four to five when o,,,, = 15. The improve-
ment in positioning becomes less evident after this size is reached. An increase in posi-
tioning error can actually be spotted when the number of anchors increases from 7 to 8
when o,,.=3 m and o,,.= 15 m, and from 8 to 9 when o,,,., = 5 m. This is due to the
inaccuracy in the ranging measurement; when the number of ranging constraints
increases, so does the inaccuracy in the constraint. Hence such increases are more
likely when the ranging measurement itself is uncertain, e.g. the increase happens
twice when o,,. = 15 m. Therefore, it is not a good idea to use more than the necessary
number of units in a collaborative network, especially when the measurements them-
selves contain error or bias. Yet the optimal accuracy cannot be achieved if not enough
units are used. Thus keeping a balance of the network size is important.

3.3. Modified DOP.  Although DOP demonstrates the relationship between the
geometry and positioning performance, it cannot reflect all details inside a collabora-
tive network. The first factor that is not reflected in DOP is the ranging accuracy,
which directly influences the effectiveness of the constraint in collaborative position-
ing. The constraint threshold thres, is defined as the anticipated accuracy level of
the ranging measurements plus an “error boundary”. However, if this threshold is
smaller than the measurement error itself, i.e. the constraint is too “tight”, the posi-
tioning estimation would be pushed towards a wrong location. On the other hand, if
the bound is much larger than the error, i.e. constraint too “weak”, then the observa-
tion noise and error may not be sufficiently eliminated.

Therefore, a Modified DOP (MDOP) that integrates the ranging quality is proposed
here and the geometry matrix A4,,,, is computed as below,

XLI_XI j}u_Yl

1
a-r a-r
XM_XZ j}u_YZ 1
Amod = a-n a-n (11)
Xu_Xn j}u_}]/1 1

a-r, a-r,

where ¢ is a measurement accuracy coefficient derived from accuracy detection. The
detection method provides the user with how likely the measurement is to be reflecting
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Figure 8. (a) Positioning errors for different networks. (b) DOP of each network.

the true distance, which is given by a, a value between 0 and 1. Hence reliable measure-
ments produce a closer to 1 and 4,,,q4 would be close to A. MDOP is computed from

Ajmoaq as in Equation (12), thus the produced MDOP is usually larger than the original
DOP.

MDOP = \/ trace((A7  Amod) ) (12)
While the rover is always moving during navigation, it is hard for the DOP to reflect
the dynamic directional information, e.g. the direction of the bias of the current rover
relative to the anchors. Figure 10 shows the error in both the East and North directions
when CP is applied to the rover simulated in Figure 7. As Tx5 and Tx6 are located on
either side of the rover, the network constrains the error in the North direction better
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than the East direction. Tx7 and Tx8 are both located to the north of the rover, thus
they constrain the error in the East direction better than the North direction.
Measurements coming from different directions will constrain error along different
directions. The selected units should consider the dynamic situation of the rover as
directions change.

MDOP is not just a value that reflects the geometry with the ranging accuracy, but
rather a concept of considering all the relevant information of a dynamic collaborative
network, i.e. the ranging accuracy, the network geometry and the relative positions of
the units.

34. ARCP. When collaborative units are available, the appropriate units should
be selected to form a network with the optimal MDOP to produce the best positioning
results. The Adaptive Ranging Constraint collaborative Positioning (ARCP) method is

https://doi.org/10.1017/S037346331500065X Published online by Cambridge University Press


https://doi.org/10.1017/S037346331500065X

NO. 2 AN ADAPTIVE WEIGHTING BASED ON MODIFIED DOP 237

developed here and its procedure outlined in Figure 11. Compared to CP, the adaptiv-
ity of the ARCP is defined from three aspects: adaptability to varying measurement
accuracies, the flexibility to select different network size and unit locations. More spe-
cifically, the adaptivity is reflected in the selection of the appropriate units.

Once the rover takes a step based on PDR, it will look for local units to form the
collaborative network. The optimal size of the network is considered to be four accord-
ing to the simulation results presented in Section 3.2. Integrating too many or not
enough units will both result in reduced positioning performance. If more than four
units (including rovers and anchors) are available, the estimated accuracy level of
the ranging measurement from each unit is obtained. Those units with an associated
a larger than 0-5 are considered as potential units. They are then combined with the
current rover to form a network of four units and the MDOP of each possible
network is computed. The relative positions of the units are also considered by
sharing the position of the anchors and the estimated position of the other rovers.
The network with the smallest MDOP value is selected as the optimal network. The
constraint thres, for each ranging measurement is set according to MDOP, which
reflects both @ and DOP. If less than four units are available, the units would simply
be included in the collaborative network and thres, set according to MDOP.

a can be converted to the estimated standard deviation of the measurement o,, which
is then applied as the constraint threshold. ¢ is mapped onto three categories of thres,,

I,  a>08,
thres,(a) = ¢ 2, 0.5<a<0.38, (13)
3, a<0.5.

The values are selected based on real indoor measurement error levels and indicate the
expected error in metres. Most measurements should fall within category 1 or 2. A
threshold of 3 indicates a very loose constraint, where the rover mostly depends on
PDR propagation. The thres, is further derived from DOP based on Equation (14)
which multiplies a coefficient to thres, (a). Simulations have shown that if the threshold
were set to the same value as the real measurement standard deviation, the constraint
would be too tight. Hence the final threshold is always larger than the expected error
standard deviation. The threshold categories can be adjusted but the values applied
here are selected from the combination that gives the best constraint performance
for the simulations in this paper.

thres,(a)*1.5, DOP <5,
thres,(DOP) = ¢ thres,(a)x2, 5 < DOP < 10, (14)
thres,(a)*3 DOP > 10.

By applying the ARCP, the possibility of selecting units with a low ranging accuracy is
reduced. The constraint threshold is then also set according to the estimated measure-
ment accuracy. Hence a collaborative network consisting of the optimal units will more
likely output positions with higher accuracy and reliability. Less optimal network posi-
tioning mostly depends on inertial measurements.

ARCEP is applied to the same networks as those in Figure 8 and the positioning error
of ARCP and CP is compared in Figure 12. An obvious improvement can be seen
when the adaptive selection is applied.
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4. ALGORITHM EVALUATION

4.1.  Simulations. The proposed ARCP algorithm is applied to two sets of trials,
denoted as Trial A and Trial B, to validate its application within real environments.
Data are collected and post-processed in real-time mode on Matlab 2013 and different
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Figure 12. Positioning error comparisons for ARCP and non-adaptive CP.

algorithms are implemented for comparison. For both trials, the inertial data are col-
lected using MicroStrain 3DM-GX3®-25 IMU, which is connected to a Raspberry Pi
for data logging. The step and heading information are then extracted and applied to
the PDR model. The interior building map was surveyed by Leica TS30 total station
and loaded into Matlab as polygons (rooms and corridors) and points (doors).

In Trial Al, all real inertial data was collected in the Nottingham Geospatial
Building (NGB), University of Nottingham. Three anchors (Tx1, Tx2 and Tx3)
were simulated at different locations inside the building to provide extra ranging con-
straints. The ranging data between the rovers and anchors were simulated based on
indoor ranging performance of wireless signals, where the error variance is larger
when the two rovers are in NLOS and smaller when there is no obstruction. The
basic CP algorithm is applied in Trial Al by integrating one of the anchors into the
network. The measurement error of the rover is constrained by integrating the
ranging measurement from the other rover and one anchor at every epoch by applying
a constant threshold. The non-adaptive result of the network consisting Rx1, Rx2 and
Tx1 is shown in Figure 13. The green line indicates the ground truth for both rovers,
the cross dot line indicates the position estimation of Rover 1 and the circle dash line
indicates the position estimation of Rover 2.

The ARCP algorithm is applied in Trial A2 where each rover selects one anchor to
form a collaborative network with the other rover that produces the optimal MDOP at
every epoch. thres, is adjusted according to MDOP. Results are shown in Figure 14.
The plot indications are the same as Figure 13.

In Trial A3, the ARCP is applied while eliminating the building map information
with results as shown in Figure 15. Here, the particles are no longer restricted from
crossing walls and the measurement error is bounded only by the ranging constraint.

4.2. Real data. Trial B was carried out in the Business School Building,
University of Nottingham. PDR data was collected using the same equipment worn
on two pedestrians, Rover 1 and Rover 2. A UWB network was set up in the building
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Figure 13. CP Positioning result with wall constraint (Trial A1-Tx1).

as indicated with a red star in Figure 16 to act as anchors and provide ranging meas-
urement. Each rover also carried a mobile UWB unit to receive ranging measurements
from other units.

Data was collected for ten minutes. In every epoch, each rover selected a number of
the anchors to form a collaborative network with the other rover. The network size and
the ranging constraint threshold were adjusted according to the actual network quality.

The ground truth is plotted in Figure 16. Due to lack of equipment, the ground truth
of Rover 2 was provided by the UWB system, whose outdoor performance was dis-
rupted (light blue part of the trajectory in Figure 16(b)), as all units are set up
indoors. The positioning results for Rover 1 and Rover 2 are shown in Figure 17 (a)
and (b) respectively. The green solid line indicates the ground truth, the cyan dashed
line shows the PDR output from raw inertial data. The blue line represents the
ARCP output with wall constraint, and the magenta line represents the ARCP
result without wall constraint.

4.3. Results. Collaborative positioning is able to constrain measurement errors
by integrating relative ranging constraints into the system. However in reality, this
does not always give the best performance due to the complexity of real data, which
could be caused by environmental disturbance, hardware failure and human impact
etc. Figure 13 shows the performance of CP when none of this is taken into consider-
ation. Positions can be constrained mistakenly into the wrong location.

ARCEP is applied to provide the system with more adaptivity to varying situations.
The positioning system has more freedom to adjust the “strength” of the required con-
straint as well as choose the optimal collaborative network. When a network with good
geometry, sufficient signals and good accuracy measurement is selected, the relative
constraint is “tighter” so that only particles lying within the threshold will remain
and those outside will be killed, bringing the rover state estimation closer to the
truth. A less ideal network will produce a “loose” constraint so that fewer particles
will be killed to avoid pushing particles towards the wrong location.

https://doi.org/10.1017/S037346331500065X Published online by Cambridge University Press


https://doi.org/10.1017/S037346331500065X

NO. 2 AN ADAPTIVE WEIGHTING BASED ON MODIFIED DOP 241

30 T T
251 4
20 - <
= 151 1
E
z
10f 1
s - <
o err1 mean:0.91m; sd:0.49m Truthi|
. err2 mean:0.66m; sd:0,34m . ) ) * Tx
0 5 10 15 20 25 30 35 40 45
E (m)
Figure 14. ARCP Positioning result (Trial A2).
30 T T T T T T T
25 - -
20 1
= 15¢ 1
E
z
10~ 1
5 = N
% errf mean:1.30m; sd:1.41m — Truth[]
. err2 mean:0.70m; sd:0,45m | ; . : e L
0 5 10 15 20 25 30 35 40 45
E(m)

Figure 15. ARCP Positioning result without map matching (Trial A3).

Tables 1 and 2 list the mean and maximum positioning error throughout Trial A and
Trial B. Table 2 only lists the error for Rover 1, as the ground truth for Rover 2 is pro-
vided by the UWB system which is not accurate enough to justify the positioning ac-
curacy of ARCP. PDR indicates the result of DR from inertial measurements with wall
constraint. CP indicates the result of non-adaptive CP with wall constraint. The CP
result in Table 1 is an average of integrating one of the three anchors each time and
the CP result in Table 2 is an average of integrating all available measurements.
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Figure 17. ARCP Positioning result for Rover 1 and Rover 2 (Trial B).
Table 1. Positioning errors for Trial A (NGB) (m).
PDR CP ARCP (wall) ARCP (no wall)
mean max mean max mean max mean max
Rover 1 2:95 7-87 1-65 4:25 1-17 2-83 1-18 312
Rover 2 127 376 1-05 4-40 0-71 171 0-70 2:24

In Trial B, as two rovers and four anchors are available, only the appropriate units
are selected. As anchors are not represented by particles, therefore increasing the
number of anchors does not affect the computation cost too much. However, the pro-
cessing time is reduced by at least 5% when a rover is integrated. Hence the network
size is kept within four, which was indicated as the effective size.
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Table 2. Positioning errors for Trial B (BSS) (m).

CP ARCP (wall) ARCP (no wall)
mean max mean max mean max
Rover 1 5-30 15-99 203 8:61 2:28 8-98

As not enough factors are considered in CP, ARCP improves positioning accuracy
by 25% in Trial A and 60% in Trial B compared to CP. In Trial A, the improvement is
more obvious for Rover 1 as the trajectory for Rover 2 is much simpler and the wall
constraint is quite sufficient to constrain the inertial bias. The improvement is also
much more obvious in Trial B where real ranging data is implemented, which are
noisier and more unstable. ARCP can cope with different noise levels of real data
with its threshold adjustment.

In both trials, the same threshold categories are applied as specified in Equation
(14). ARCP results demonstrate the ability to cope with situations without map infor-
mation. Wall constraint is most effective in a straight long corridor without doors.
However, such conditions are not always met and when the state predication model
is noisy, wall constraints can misplace particles in the wrong room and restrict its
chances of regenerating in the right location. Collaborative positioning can provide
sufficient constraint even in places when wall constraint cannot. Therefore, the build-
ing map information can be eliminated in the ARCP algorithm. This means that users
can start navigating in an environment where no prior information is available.

5. CONCLUSIONS. Collaborative positioning enhances positioning performance
by forming a collaborative network that integrates available positioning information
including P2P ranging measurements between nearby rovers and anchors to constrain
the measurement errors. Ranging measurements vary in different environments and
conditions. If the wrong information is integrated, position estimation may be
pushed further into the wrong location while reducing positioning efficiency unneces-
sarily. To avoid this, only the useful measurements are selected and integrated into the
positioning system.

This paper proposes an adaptive ranging constraint collaborative positioning strat-
egy that enables the user to decide on the most effective network at each epoch. This
selection is based on the network geometry, network size and ranging accuracy of the
units and their measurements. All three elements are combined to produce a decisive
factor, MDOP, which helps the system to select the appropriate units as well as set the
proper constraint threshold. Only those units that form a good geometry while provid-
ing high ranging accuracy will be used for positioning and others will be neglected.
ARCP improves the positioning accuracy by more than 60% for real data, while reduc-
ing the maximum error by 45%. The contribution of ranging constraints also enables
the system to navigate when no interior building map is available.

By applying ARCP, the system produces results with higher accuracy and enhanced
robustness. It allows the system to start up without prior information on the surround-
ing environment as long as collaborative units are found. This could be applied with
Wi-Fi fingerprinting to introduce more adaptivity into the positioning system enabling
it to cope with various difficult situations in the real world.
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