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1. Introduction

Internal object actions were defined in [1] by Borceux, Janelidze and Kelly in order to
recapture categorically several algebraic notions of action, such as the action of a group
G on another group H, the action of a Lie algebra g on another Lie algebra h and so
on. In the same paper, the authors introduced the notion of representable action: an
object X has representable actions if the functor Act(−, X), sending each object B to
the set of actions of B on X, is representable (see §2 for further details). In [2], action
representability was extensively studied in the semi-abelian context and it was proved
that, for example, the category of commutative associative algebras over a field is not
action representable.
In [3] Bourn and Janelidze introduced the weaker notion of action accessible category

in order to include relevant examples that do not fit in the frame of action representable
categories (such as rings, associative algebras and Leibniz algebras amongst others).
Montoli proved in [15] that all categories of interest in the sense of Orzech [16] are action
accessible. On the other hand, the paper [4] by Casas, Datuashvili and Ladra showed that
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Leibniz algebras and Poisson algebras 999

a weaker notion of actor (namely, the universal strict general actor, USGA for short) is
available for any category of interest C.
Recently, Janelidze introduced in [10] the notion of weakly representable action: for an

object X in a semi-abelian category C, a weak representation of the functor Act(−, X)
is a pair (T, τ), where T is an object of C and τ : Act(−, X) � HomC(−, T ) is a
monomorphism of functors. When such monomorphism exists, one says that X has weakly
representable actions and T is a weak actor of X. In particular, when C is a category of
interest and USGA(X) is an object of C, then Act(−, X) has a weak representation (see
Corollary 4.2).
A semi-abelian category C is said to be weakly action representable if every object X in

C has a weak representation of actions. This is true, for instance, for the category AAlgF
of associative algebras over a field F [10]. Notice that a category of interest needs not
necessarily be weakly action representable, as observed by Gray in [9]. However, thanks
to the results of [4], we get that, for every object X in a category of interest C, there
exists a monomorphism of functors Act(−, X) � HomCG(−,USGA(X)), where CG is a
suitable category containing C as a full subcategory (see Proposition 4.1).
We analyse in details two specific cases: the category LeibAlgF of Leibniz algebras

(§3) and the category PoisAlgF of Poisson algebras (§5), where F is a fixed field with
char(F) 6= 2. We show that the first one is a weakly action representable category and
we provide a complete description of acting morphisms, i.e. morphisms into a weak actor
corresponding to internal actions, in this case and for associative algebras. Moreover, we
study the representability of actions in the category PoisAlgF by describing explicitly
a universal strict general actor [V ] = USGA(V ), for any Poisson algebra V, and the
corresponding monomorphism of functors:

τ : Act(−, V ) � HomNAlg2F
(−, [V ]),

where NAlg2
F is the category of algebras over F with two not necessarily associative bilin-

ear operations. Finally, we show that the subvariety CPoisAlgF of commutative Poisson
algebras is not weakly action representable. We leave the general case of PoisAlgF as an
open problem.

2. Preliminaries

The notion of semi-abelian category was introduced in [11] by Janelidze, Márki and
Tholen, in order to provide a categorical setting which would capture algebraic properties
of groups, rings and algebras. Let us recall that a category C is semi-abelian when it is
finitely complete, Barr-exact, pointed, protomodular and has finite coproducts.
One notion which is central in the present article is that of split extension. Let X,B

be objects of a semi-abelian category C; a split extension of B by X is a diagram:

0 �� X
k �� A

α ��
B

β

�� �� 0 (2.1)
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in C such that α◦β = idB and (X, k) is a kernel of α. Notice that protomodularity implies
that the pair (k, β) is jointly strongly epic, α is indeed the cokernel of k and diagram (2.1)
represents an extension of B by X in the usual sense. Morphisms of split extensions are
morphisms of extensions that commute with the sections. Let us observe that, again
by protomodularity, a morphism of split extensions fixing X and B is necessarily an
isomorphism. For an object X of C, we define the functor:

SplExt(−, X) : Cop → Set,

which assigns to any object B of C, the set SplExt(B,X) of isomorphism classes of
split extensions of B by X, and to any arrow f : B′ → B the change of base function
f∗ : SplExt(B,X) → SplExt(B′, X) given by pulling back along f.
A feature of semi-abelian categories is that one can define a notion of internal action.

If we fix an object X, actions on X give rise to a functor:

Act(−, X) : Cop → Set.

In fact, we will not describe explicitly internal actions, since there is a natural isomor-
phism of functors Act(−, X) ∼= SplExt(−, X), and split extensions are more handy to
work with (we refer the interested reader to [2], where this isomorphism is described in
detail). This justifies the terminology in the definition that follows.

Definition 2.1. A semi-abelian category C is action representable if for every object
X in C, the functor SplExt(−, X) is representable. This means that there exists an object
[X] of C, called the actor of X, and a natural isomorphism:

SplExt(−, X) ∼= HomC(−, [X]).

The prototype examples of action representable categories are the category Grp of
groups and the category LieAlgR of Lie algebras over a commutative ring R. In the first
case, it is well known that every split extension of B by X is represented by a homo-
morphism B → Aut(X), where the actor Aut(X) of X is the group of automorphisms
of the group X. In the case of Lie algebras, a split extension of B by X is represented
by a homomorphism B → Der(X), where Der(X) is the Lie algebra of derivations of X.
Therefore, Der(X) is the actor of X.
However, the notion of action representable category has proven to be quite restrictive.

For instance, in [8] the authors proved that, if a variety V of non-associative algebras (over
a field F with char(F) 6= 2) is action representable, then V = LieAlgF.
In [10] Janelidze introduced a weaker notion for the representability of actions in a

semi-abelian category C.

Definition 2.2. A semi-abelian category C is weakly action representable if for every
objext X in C, the functor SplExt(−, X) admits a weak representation. This means that
there exist an object T of C and a monomorphism of functors:

τ : SplExt(−, X) � HomC(−, T ).

An object T as above is called weak actor of X; a morphism ϕ : B → T ∈ Im(τB) is
called acting morphism.
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Notice that every action representable category C is weakly action representable. In this
case, T = [X] is the actor of X, τ is a natural isomorphism and every arrow ϕ : B → [X]
is an acting morphism.

2.1. Associative algebras

The case of associative algebras over a field F is studied in [10]: the category AAlgF
of associative algebras over F is weakly action representable. Let us recall the basic
constructions.
Given an associative algebra X, a weak actor of X is the associative algebra:

Bim(X) = {(f ∗ −,− ∗ f) ∈ End(X)× End(X)op | · · ·
· · · | f ∗ (xy) = (f ∗ x)y, (xy) ∗ f = x(y ∗ f), x(f ∗ y) = (x ∗ f)y, ∀x, y ∈ X},

of bimultipliers of X (see [13], where they are called bimultiplications). Moreover, the
isomorphism classes of split extensions of an associative algebra B by X are in bijection
with the class of morphisms:

B → Bim(X), a 7→ (a ∗ −,− ∗ a), ∀a ∈ B,

which satisfy the condition:

a ∗ (x ∗ b) = (a ∗ x) ∗ b, ∀a, b ∈ B, ∀x ∈ X, (2.2)

i.e. the left multiplier a ∗ − and the right multiplier − ∗ b are permutable. Notice that
(a ∗ −,− ∗ a) can be considered respectively the left and the right components of the
action of a ∈ B on X.
Equation (2.2) can be used to characterize the class of acting morphisms in the category

AAlgF. In [13] Mac Lane described, for a ring Λ, the Λ-bimodule structures over an
abelian group K in terms of ring morphisms from Λ to the ring of bimultipliers of K.
The following is a straightforward generalization to actions on an object which is not
necessarily abelian.

Proposition 2.3. Let B and X be associative algebras over F and let

ϕ ∈ HomAAlgF(B,Bim(X))

defined by:

ϕ(a) = (a ∗ϕ −,− ∗ϕ a), ∀a ∈ B.

Then, ϕ is an acting morphism if and only if

a ∗ϕ (x ∗ϕ b) = (a ∗ϕ x) ∗ϕ b,

for every a, b ∈ B and for every x ∈ X.
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Proof. We recall from [10] that a weak representation of an associative algebra X is
given by a pair (Bim(X), τ), where

τ : SplExt(−, X) � HomAAlgF(−,Bim(X)),

is the monomorphism of functors which associate with any split extension A of B by X,
as in diagram (2.1), the morphism ϕ : B → Bim(X) defined by:

ϕ(a) = (a ∗ϕ −,− ∗ϕ a) = (β(a) ·A −,− ·A β(a)),

for every a ∈ B. It follows from the associativity of the algebra A that the left multiplier
a ∗ϕ − and the right multiplier − ∗ϕ b are permutable, for every a, b ∈ B. Conversely,
with any morphism ϕ : B → Bim(X) satisfying:

a ∗ϕ (x ∗ϕ b) = (a ∗ϕ x) ∗ϕ b, ∀a, b ∈ B, ∀x ∈ X,

we can associative the split extension of B by X given by the semi-direct product BnX,
as in the proof of [2, Proposition 2.1], i.e. ϕ ∈ Im(τB). �

2.2. Jordan algebras

An example of variety of non-associative algebras over a field F which is not a weakly
action representable category is given by Jordan algebras. Recall that a Jordan algebra
over a field F is a non-associative commutative algebra (J, ·) over F which satisfies the
Jordan identity :

(xy)(xx) = x(y(xx)), ∀x, y ∈ J.

In [10], Janeldize showed that every weakly action representable category is action
accessible (see [3]). In fact the variety JordAlgF of Jordan algebras over F is not action
accessible (see [5]), hence it is not weakly action representable.

3. Leibniz algebras

We assume that F is a field with char(F) 6= 2.

Definition 3.1. ([12]). A (right) Leibniz algebra over F is a vector space g over F
endowed with a bilinear map (called commutator or bracket) [−,−] : g × g → g which
satisfies the (right) Leibniz identity

[[x, y] , z] = [[x, z], y] + [x, [y, z]] , ∀x, y, z ∈ g.

Every Lie algebra is a Leibniz algebra and every Leibniz algebra with skew-symmetric
commutator is a Lie algebra. In fact, the full inclusion i : LieAlgF → LeibAlgF has a
left adjoint π : LeibAlgF → LieAlgF that associates, with every Leibniz algebra g, its
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quotient g/gann, where gann = 〈[x, x] |x ∈ g〉 is the Leibniz kernel of g. Note that gann is
an abelian algebra.
We define the left and the right centre of a Leibniz algebra:

Zl(g) = {x ∈ g | [x, g] = 0} , Zr(g) = {x ∈ g | [g, x] = 0} ,

and we observe that they coincide when g is a Lie algebra. The centre of g is Z(g) =
Zl(g) ∩ Zr(g). In general Zr(g) is an ideal of g, while the left centre may not even be a
subalgebra.

3.1. Derivations and biderivations

The definition of derivation is the same as in the case of Lie algebras.

Definition 3.2. Let g be a Leibniz algebra over F. A derivation of g is a linear map
d : g → g such that:

d([x, y]) = [d(x), y] + [x, d(y)] , ∀x, y ∈ g.

The right multiplications of g are particular derivations called inner derivations and
an equivalent way to define a Leibniz algebra is to say that the (right) adjoint map
adx = [−, x] is a derivation, for every x ∈ g. On the other hand the left adjoint maps are
not derivations in general.
With the usual bracket [d1, d2] = d1 ◦ d2 − d2 ◦ d1, the set Der(g) is a Lie algebra and

the set Inn(g) of all inner derivations of g is an ideal of Der(g). Furthermore, Aut(g) is
a Lie group and the associated Lie algebra is Der(g).
The definitions of anti-derivation and biderivation for a Leibniz algebra were intro-

duced by Loday in [12].

Definition 3.3. An anti-derivation of a Leibniz algebra g is a linear map D : g → g
such that:

D([x, y]) = [D(x), y]− [D(y), x], ∀x, y ∈ g.

One can check that, for every x ∈ g, the left multiplication Adx = [x,−] defines and
anti-derivation. We observe that in the case of Lie algebras, there is no difference between
a derivation and an anti-derivation.

Remark 3.4. The set of anti-derivations of a Leibniz algebra g has a Der(g)-module
structure with the multiplication:

d ·D = [D, d] = D ◦ d− d ◦D,

for every d ∈ Der(g) and for every anti-derivation D.
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Definition 3.5. Let g be a Leibniz algebra. A biderivation of g is a pair (d,D) where
d is a derivation and D is an anti-derivation, such that:

[x, d(y)] = [x,D(y)], ∀x, y ∈ g.

The set of all biderivations of g, denoted by Bider(g), has a Leibniz algebra structure
with the bracket:

[(d,D), (d′, D′)] = (d ◦ d′ − d′ ◦ d,D ◦ d′ − d′ ◦D), ∀(d,D), (d,D′) ∈ Bider(g),

and it is possible to define a Leibniz algebra morphism:

g → Bider(g)

by

x 7→ (− adx,Adx), ∀x ∈ g.

The pair (− adx,Adx) is called inner biderivation of g and the set of all inner bideriva-
tions forms a Leibniz subalgebra of Bider(g). We refer the reader to [14] for a complete
classification of the Leibniz algebras of biderivations of low-dimensional Leibniz algebras
over a general field F with char(F) 6= 2.

3.2. Split extensions of Leibniz algebras

By studying biderivations of a Leibniz algebra h, we can classify the split extensions
with kernel h. This relies on the correspondence between actions and split extensions
available in any semi-abelian category, as explained in §2. Since the variety of Leibniz
algebra is a category of interest (see [16]), it is convenient here to describe internal actions
in terms of the so-called derived actions.

Definition 3.6. Let

0 �� h
i �� ĝ

π ��
g

s
�� �� 0 (3.1)

be a split extension of Leibniz algebras. The pair of bilinear maps

l : g× h → h, r : h× g → h,

defined by

lx(b) = [s(x), i(b)]ĝ, ry(a) = [i(a), s(y)]ĝ, ∀x, y ∈ g, ∀a, b ∈ h,

where lx = l(x,−) and ry = r(−, y), is called the derived action of g on h associated with
the split extension (3.1).
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Given a pair of bilinear maps

l : g× h → h, r : h× g → h,

one can define a bilinear operation on the direct sum of vector spaces g⊕ h

[(x, a), (y, b)](l,r) = ([x, y]g, [a, b]h + lx(b) + ry(a)), ∀(x, a), (y, b) ∈ g⊕ h.

By Theorem 2.4 in [16], this defines a Leibniz algebra structure on g⊕h if and only if the
pair (l, r) is a derived action of g on h. This in turn is equivalent to a set of conditions
on the pair (l, r), as explained in the following proposition, which is a special case of
Proposition 1.1 in [7].

Proposition 3.7. (g⊕ h, [−,−](l,r)) is a Leibniz algebra if and only if

(L1) rx([a, b]) = [rx(a), b] + [a, rx(b)];
(L2) lx([a, b]) = [lx(a), b]− [lx(b), a];
(L3) [a, rx(b) + lx(b)] = 0;
(L4) r[x,y] = [ry, rx] = ry ◦ rx − rx ◦ ry;
(L5) l[x,y] = [ry, lx] = ry ◦ lx − lx ◦ ry;
(L6) lx ◦ (ly + ry) = 0;

for every x, y ∈ g and for every a, b ∈ h. The resulting Leibniz algebra is the semi-direct
product of g and h and it is denoted by gn h.

Remark 3.8. Notice that, for any split extension (3.1) and the corresponding derived
action (l, r), there is an isomorphism of Leibniz algebra split extensions:

0 �� h

idh

��

i2 �� g� h

θ

��

π1 ��
g

idg

��

i1

�� �� 0

0 �� h
i �� ĝ

π ��
g

s
�� �� 0

where i1, i2, π1 are the canonical injections and projection and θ : gn h → ĝ is defined by
θ(x, a) = s(x) + i(a), for every (x, a) ∈ g⊕ h.

Remark 3.9. The first three equations of Proposition 3.7 state that, for every x ∈ g,
the pair

(−rx, lx)

is a biderivation of the Leibniz algebra h. Moreover, from the equalities (L4)–(L5), we
have that the linear map

ϕ : g → Bider(h)

https://doi.org/10.1017/S0013091523000548 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000548


1006 A. S. Cigoli, M. Mancini and G. Metere

defined by

ϕ(x) = (−rx, lx), ∀x ∈ g

is a Leibniz algebra morphism. Indeed

ϕ([x, y]g) = (−r[x,y]g , l[x,y]g) = (−[ry, rx], [ry, lx])

and

[ϕ(x), ϕ(y)]Bider(h) = [(−rx, lx), (−ry, ly)]Bider(h) = ([−rx,−ry], [lx,−ry]) =

= ([rx, ry],−[lx, ry]) = (−[ry, rx], [ry, lx]).

On the other hand, given a Leibniz algebra morphism

ϕ : g → Bider(h)

with notation

ϕ(x) = ([[−, x]], [[x,−]]), ∀x ∈ g,

satisfying

[[x, [[y, a]]− [[a, y]]]] = 0, ∀x, y ∈ g, ∀a ∈ h,

we can associate the split extension:

0 �� h
i �� (g ⊕ h, [−, −]ϕ)

π ��
g ��

s
�� 0

where the Leibniz algebra structure of g⊕ h is given by

[(x, a), (y, b)]ϕ = ([x, y]g, [a, b]h + [[x, b]]− [[a, y]]), ∀(x, a), (y, b) ∈ g⊕ h.

However a generic morphism from g to Bider(h) needs not give rise to a split extension,
as the following example shows.

Example 3.10. [6] Let g = F be the abelian one-dimensional algebra. Then the
morphism ϕ : F → Bider(F) = End(F)2 defined by:

ϕ(a) = (da, Da),

where

da(x) = −ax, Da(x) = ax, ∀a, x ∈ F
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does not define a split extension of F by itself. Indeed, in general

Da(Db(x)− db(x)) = a(bx− (−bx)) = 2abx 6= 0.

Example 3.11. (The (bi-)adjoint extension). Let g be a Leibniz algebra and
consider the canonical action of g on itself given by the pair of linear maps

rx = adx = [−, x], ∀x ∈ g,

ly = Ady = [y,−], ∀y ∈ g.

We have a split extension of g by itself with associated morphism

g → Bider(g)

defined by

x → (− adx,Adx), ∀x ∈ g,

which obviously satisfies the condition

Adx ◦(Ady +ady) = 0, ∀x, y ∈ g.

Indeed, for every z ∈ g

[x, [y, z] + [z, y]] = [x, [y, z]] + [x, [z, y]] =

= [[x, y], z]− [[x, z], y] + [[x, z], y]− [[x, y]z] = 0

Thus the Leibniz algebra morphism which defines the inner biderivations of g is associated
with the canonical (bi-)adjoint extension of g by itself.

Example 3.12. Let h be a Leibniz algebra. It is well known that (see [4] for more
details), if h has trivial centre (i.e. Z(h) = 0) or if h is perfect (which means that [h, h] = h),
then for every (d,D), (d′, D′) ∈ Bider(h) we have

D(D′(x)− d′(x)) = 0, ∀x ∈ h.

Thus, given any Leibniz algebra g, we can associate a split extension of g by h with any
morphism

g → Bider(h)

and Bider(h) is the actor of h.
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Remark 3.13. Let g and h be Lie algebras and let ĝ be a Lie algebra split extension
of g by h. Then, as observed above, we have that

ĝ ∼= (g⊕ h, [−,−]r),

where the Lie bracket is defined by

[(x, a), (y, b)]r = ([x, y]g, [a, b]h − rx(b) + ry(a)), ∀(x, a), (y, b) ∈ g⊕ h.

In this case the left component of the action of g on h is defined by

lx(b) = −rx(b), ∀x ∈ g, ∀b ∈ h,

thus the equation (L6) is automatically satisfied and every morphism

g → Bider(h), x 7→ ([[−, x]], [[−, x]]), ∀x ∈ g

represents a split extension of g by h in the category LieAlgF. Moreover the subalgebra
of Bider(h)

{(d, d) | d ∈ Der(h)}

is a Lie algebra isomorphic to Der(h).

We can now claim the following result.

Theorem 3.14. Let g and h be Leibniz algebras over F.

(i) The isomorphism classes of split extensions of g by h are in bijection with the
Leibniz algebra morphisms

ϕ : g → Bider(h), ϕ(x) = ([[−, x]], [[x,−]]), ∀x ∈ g,

which satisfy the condition

[[x, [[y, a]]− [[a, y]]]] = 0, ∀x, y ∈ g, ∀a ∈ h. (3.2)

(ii) The category LeibAlgF of Leibniz algebras over F is weakly action representable.
(iii) A weak actor of an object h in LeibAlgF is the Leibniz algebra Bider(h).
(iv) ϕ ∈ HomLeibAlgF(g,Bider(h)) is an acting morphism if and only if it satisfies

condition (3.2).

Proof.

(i) The first statement follows from Remark 3.9.
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(ii) Given any Leibniz algebra h, we take T = Bider(h) and we define τ in the following
way: for every Leibniz algebra g, the component

τg : SplExt(g, h) → HomLeibAlgF(g,Bider(h))

is the morphism in Set which associates with any split extension:

0 �� h
i �� ĝ

π ��
g ��

s
�� 0

the morphism ϕ(l,r) : g → Bider(h) defined by

x 7→ (−rx, lx), ∀x ∈ g

(see Remark 3.6). The transformation τ is natural. Indeed, for every Leibniz algebra
morphism f : g′ → g, it is easy to check that the following diagram in Set:

SplExt(g, h)
τg

��

SplExt(f,h)
��

Hom(g, Bider(h))

Hom(f,Bider(h))
��

SplExt(g′, h)
τg′

�� Hom(g′, Bider(h))

is commutative. Moreover, for every Leibniz algebra g, the morphism τg is an injec-
tion since every element of SplExt(g, h) is uniquely determined by the corresponding
action of g on h, i.e. by the pair of bilinear maps

l : g× h → h, r : h× g → h .

Thus τ is a monomorphism of functors and the category LeibAlgF is weakly action
representable.

(iii) It follows immediately from (ii) that a weak actor of h is the Leibniz algebra of
biderivations Bider(h).

(iv) Finally ϕ ∈ HomLeibAlgF(g,Bider(h)) is an acting morphism if and only if it defines
a split extension of g by h, i.e. if and only if it satisfies the condition

[[x, [[y, a]]− [[a, y]]]] = 0, ∀x, y ∈ g, ∀a ∈ h.

�

4. Categories of interest

The result of the previous section can be viewed as a particular case of Proposition 4.1
below, that is valid more in general for categories of interest. In [4] the authors studied
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the problem of representability of actions for a category of interest C. They introduced a
corresponding category CG of objects satisfying a suitable smaller set of identities than
C, so that C becomes a subvariety of CG. They proved that, for every object X in C, there
exists an object USGA(X) of CG, called universal strict general actor of X, with the
following property: for every object B in C and for every action ξ of B on X, there exists
a unique morphism ϕ : B → USGA(X) in CG such that ξ is uniquely determined by the
action of ϕ(B) on X. It was clear from their investigation that categories of interest are
not action representable in general. In fact, Gray showed in [9] that a category of interest
may not even be weakly action representable. However, from the results in [4], we can
deduce the following.

Proposition 4.1. Let C be a category of interest and let X be an object of C. Then
there exists a monomorphism of functors

τ : Act(−, X) � HomCG(−,USGA(X)).

If moreover USGA(X) is an object of C, then the pair (USGA(X), τ) is a weak
representation of Act(−, X).

Proof. By the above discussion, for every object B in C, there exists an injection

τB : Act(B,X) � HomCG(B,USGA(X)).

We want to prove that the collection {τB}B∈C gives rise to a natural transformation τ .
Consider in C a morphism f : B′ → B and an action ξ of B on X. The naturality of τ

is equivalent to saying that

τB′(f∗(ξ)) = (τB(ξ)) ◦ f,

for every such f and ξ, where f∗ = Act(f,X). This follows immediately from Definition
3.6 of [4].
Since C is a full subcategory of CG, when USGA(X) belongs to C, the pair

(USGA(X), τ) is a weak representation for the functor Act(−, X). �

Corollary 4.2. Let C be a category of interest. If USGA(X) is an object of C for every
X in C, then C is a weakly action representable category.

In view of the last results, an explicit description of the USGA in concrete cases is very
useful. Two examples were studied in [4]:

• the category AAlgF, where USGA(X) = Bim(X), for every associative algebra
X ;

• the category LeibAlgF, where USGA(g) = Bider(g), for every Leibniz algebra g.

In the next section, we provide such description in the case of Poisson algebras.
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5. Poisson algebras

The main goal of this section is to study the representability of actions of the category
PoisAlgF of Poisson algebras and to prove that the full subcategory CPoisAlgF of
commutative Poisson algebra is not weakly action representable. We assume again that
F is a field with char(F) 6= 2.

Definition 5.1. A Poisson algebra over F is a vector space P over F endowed with
two bilinear maps

· : P × P → P

[−,−] : P × P → P

such that (P, ·) is an associative algebra, (P, [−,−]) is a Lie algebra and the Poisson
identity holds:

[p, qt] = [p, q]t+ q[p, t], ∀p, q, t ∈ P,

i.e. the adjoint map [p,−] : P → P is a derivation of the associative algebra (P, ·). A
Poisson algebra P is said to be commutative if (P, ·) is a commutative associative algebra.

Now, we recall the main properties of split extension of Poisson algebras.

Definition 5.2. Let

0 �� V
i �� P̂

π ��
P ��

s
�� 0 (5.1)

be a split extension of Poisson algebras. The triple of bilinear maps

l : P × V → V, r : V × P → V, [[−,−]] : P × V → V

defined by

p ∗ y = s(p) ·P̂ i(y), x ∗ q = i(x) ·P̂ s(q), [[p, y]] = [s(p), i(x)]P̂ , ∀p, q ∈ P, ∀x, y ∈ V,

where p∗− = l(p,−) and −∗q = r(−, q), is called the derived action of P on V associated
with the split extension (5.1).

As in the case of Leibniz algebras, given a triple of bilinear maps

l : P × V → V, r : V × P → V, [[−,−]] : P × V → V,

one can define two bilinear operations on P ⊕ V

(p, x) � (q, y) = (pq, x ·V y + p ∗ y + x ∗ q),
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and

{(p, x), (q, y)} = ([p, q], [x, y]V + [[p, y]]− [[q, x]]),

for every (p, x), (q, y) ∈ P ⊕V , and this defines a Poisson algebra structure on the vector
space P ⊕ V if and only if the triple (l, r, [[−,−]]) is a derived action of P on V.
This is equivalent to a set of conditions on (l, r, [[−,−]]), as explained in the following

proposition (again, see Theorem 2.4 in [16] and Proposition 1.1 in [7]).

Proposition 5.3. (P ⊕ V, �, {−,−}) is a Poisson algebra if and only if

(P1) (P ⊕ V, �) is an associative algebra, i.e. the following equalities hold
• p ∗ (x ·V y) = (p ∗ x) ·V y;
• (x ·V y) ∗ p = x ·V (y ∗ p);
• x ·V (p ∗ y) = (x ∗ p) ·V y;
• (p ∗ x) ∗ q = p ∗ (x ∗ q);
• (pq) ∗ x = p ∗ (q ∗ x);
• x ∗ (pq) = (x ∗ p) ∗ q;

(P2) (P ⊕ V, {−,−}) is a Lie algebra, i.e.
• [[p, [x, y]V ]] = [[[p, x]], y]V + [x, [[p, y]]]V ;
• [[[p, q], x]] = [[p, [[q, x]]]]− [[q, [[p, x]]]];

(P3) [[pq, x]] = p ∗ [[q, x]] + [[p, x]] ∗ q;
(P4) [p, q] ∗ x = p ∗ [[q, x]]− [[q, p ∗ x]];
(P5) x ∗ [p, q] = [[q, x]] ∗ p− [[q, x ∗ p]];
(P6) p ∗ [x, y]V = [p ∗ x, y]V − [[p, y]] ·V x;
(P7) [x, y]V ∗ p = [x ∗ p, y]V − x ·V [[p, y]];
(P8) [[p, x ·V y]] = [[p, x]] ·V y + x ·V [[p, y]];

for every p, q ∈ P and for every x, y ∈ V . The resulting Poisson algebra is the semi-direct
product of P and V and it is denoted by P n V .

Remark 5.4. We recall that, for any split extension (5.1), we have an isomorphism
of split extensions:

0 �� V
i2 ��

idV

��

P � V
π1 ��

θ
��

P ��
i1

��

idP

��

0

0 �� V
i �� P̂

π ��
P ��

s
�� 0

where i1, i2, π1 are the canonical injections and projection and θ : P n V → P̂ is defined
by θ(p, x) = s(p) + i(x), for every (p, x) ∈ P ⊕ V .

The category PoisAlgF has two obvious forgetful functors to the categories AAlgF
and LieAlgF. Now, the category of Lie algebras is action representable: any split exten-
sion of a Lie algebra P by another Lie algebra V corresponds to a Lie algebra morphism
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ϕ : P → Der(V ). On the other hand, we know that AAlgF is a weakly action repre-
sentable category and a split extension of an associative algebra P by another associative
algebra V corresponds to an associative algebra morphism ϕ : P → Bim(V ). Notice that
Der(V ) is an actor, while Bim(V ) is only a weak actor (see §2), in fact they are both
universal strict general actors in the sense of [4]. It is not clear whether the category
PoisAlgF is weakly action representable, therefore in this section, we start by describing
a universal strict general actor USGA(V ), when V is a Poisson algebra. As explained in
§4, in general USGA(V ) lies in a larger category CG, which in this case is the category
NAlg2

F of algebras over F with two not necessarily associative bilinear operations. Thus,
we look for a suitable subspace

[V ] ≤ Bim(V )×Der(V )

and this must be endowed with two bilinear operations

·[V ], [−,−][V ] : [V ]× [V ] → [V ]

such that we can associate with every split extension of P by V in PoisAlgF a morphism

φ : P → [V ]

in NAlg2
F, defined by:

φ(p) = (p ∗ −,− ∗ p, [[p,−]]), ∀p ∈ P.

Thus

φ(pq) = φ(p) ·[V ] φ(q)

and

φ([p, q]) = [φ(p), φ(q)][V ].

In other words, by using Proposition 5.3, the operations in [V ] must satisfy the following
two conditions:

• (p ∗ −,− ∗ p, [[p,−]]) ·[V ] (q ∗ −,− ∗ q, [[q,−]]) =
= ((pq) ∗ −,− ∗ (pq), p ∗ [[q,−]] + [[p,−]] ∗ q)

• [(p ∗ −,− ∗ p, [[p,−]]), (q ∗ −,− ∗ q, [[q,−]])][V ] =
= (p ∗ [[q,−]]− [[q, p ∗ −]], [[q,−]] ∗ p− [[q,− ∗ p]], [[p, [[q,−]]]]− [[q, [[p,−]]]]),

for every p, q ∈ P .
We define [V ] as the subspace of all triples (f, F, d) of Bim(V )×Der(V ) satisfying the

following set of equations:

(V1) f([x, y]V ) = [f(x), y]V − d(y) ·V x;
(V2) F ([x, y]V ) = [F (x), y]V − x ·V d(y);
(V3) d(x ·V y) = d(x) ·V y + x ·V d(y);
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for every x, y ∈ V .

Remark 5.5. The subspace [V ] is not empty, since

(x ·V −,− ·V x, [x,−]V ) ∈ [V ]

for every x ∈ V . This triples are called inner multipliers of V.

Now we are ready to enunciate and prove the following.

Theorem 5.6. Let (V, ·V , [−,−]V ) be a Poisson algebra.

(i) The space [V ] with the bilinear operations

(f, F, d) ·[V ] (f
′, F ′, d′) = (f ◦ f ′, F ′ ◦ F, f ◦ d′ + F ′ ◦ d)

[(f, F, d), (f ′, F ′, d′)][V ] = (f ◦ d′ − d′ ◦ f, F ◦ d′ − d′ ◦ F, d ◦ d′ − d′ ◦ d)

is an object of NAlg2
F;

(ii) The set Inn(V ) of all inner multipliers of V is a subalgebra of [V ] and it is a
Poisson algebra itself;

(iii) For every object (P, ·, [−,−]) in PoisAlgF, the set of isomorphism classes of split
extension of P by V are in bijection with the morphisms

φ = (φ1, φ2, φ3) : P → [V ]

in NAlg2
F, such that (φ1, φ2) : P → Bim(V ) is an acting morphism in the category

AAlgF.
(iv) There exists a monomorphism of functors

τ : SplExt(−, V ) � HomNAlg2F
(−, [V ]),

such that an arrow (φ : P → [V ]) ∈ Im(τP ) if and only if (φ1, φ2) is an acting
morphism in AAlgF.

(v) If ([V ], ·[V ], [−,−][V ]) is a Poisson algebra, then the pair ([V ], τ) becomes a weak
representation for the functor SplExt(−, V ).

Proof.

(i) In order to show that [V ] is an object of NAlg2
F, we have to prove that the bilinear

operations are well defined. We observe that

(f ◦ d′ − d′ ◦ f, F ◦ d′ − d′ ◦ F ) ∈ Bim(V )

and

f ◦ d′ + F ′ ◦ d ∈ Der(V ),

for every (f, F, d), (f ′, F ′, d′) ∈ [V ]. This follows from equations (V1)–(V3), since
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(f ◦ d′ − d′ ◦ f)(x ·V y) = (f ◦ d′ − d′ ◦ f)(x) ·V y,

(F ◦ d′ − d′ ◦ F )(x ·V y) = x ·V (F ◦ d′ − d′ ◦ F )(y),

x ·V (f ◦ d′ − d′ ◦ f)(y) = (F ◦ d′ − d′ ◦ F )(x) ·V y

and

(f ◦ d′ + F ′ ◦ d)([x, y]V ) =

= [(f ◦ d′ + F ′ ◦ d)(x), y]V + [x, (f ◦ d′ + F ′ ◦ d)(y)]V ,

for every x, y ∈ V . Moreover the resulting triples:

(f ◦ f ′, F ′ ◦ F, f ◦ d′ + F ′ ◦ d),

(f ◦ d′ − d′ ◦ f, F ◦ d′ − d′ ◦ F, d ◦ d′ − d′ ◦ d),

belong to [V ], i.e. they satisfy equations (V1)–(V3). Here we show this statement
only for the second triple, since for the first triple the computations are similar. We
have that:

(f ◦ d′ − d′ ◦ f)[x, y]V =

= f([d′(x), y]V + [x, d′(y)]V )− d′([f(x), y]V − d(y) ·V x) =

= [f(d′(x)), y]V − d(d′(y)) ·V x− [d′(f(x)), y]V + d′(d(y)) ·V x =

= [(F ◦ d′ − d′ ◦ F )(x), y]V − (d ◦ d′ − d′ ◦ d)(y) ·V x.

In the same way, one can check that

(F ◦ d′ − d′ ◦ F )[x, y]V = [(F ◦ d′ − d′ ◦ F )(x), y]V − x ·V (d ◦ d′ − d′ ◦ d)(y).

Finally

(d ◦ d′ − d′ ◦ d)(x ·V y) =

= d(d′(x) ·V y + x ·V d′(y))− d′(d(x) ·V y + x ·V d(y)) =

= d(d′(x)) ·V y + x ·V d(d′(y))− d′(d(x)) ·V y − x ·V d′(d(y)) =

= (d ◦ d′ − d′ ◦ d)(x) ·V y + x ·V (d ◦ d′ − d′ ◦ d)(y).

Thus, [V ] is an object of NAlg2
F.
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(ii) The subspace Inn(V ) is precisely the image of the morphism:

Inn: V → [V ]

defined by:

x 7→ (x ·V −,− ·V x, [x,−]V ), ∀x ∈ V.

(iii) We associate with any split extension.

0 �� V
i �� P̂

π ��
P ��

s
�� 0

in the category PoisAlgF the morphism:

P → [V ]

in NAlg2
F, defined by:

p → (p ∗ −,− ∗ p, [[p,−]]), ∀p ∈ P,

where the bimultiplier (p ∗−,−∗ p) and the derivation [[p,−]] are as in Remark 5.2.

Since P̂ is also a split extension of (P, ·) by (V, ·V ) in the category AAlgF, we have
that

p ∗ (x ∗ q) = (p ∗ x) ∗ q,

for every p, q ∈ P and x ∈ V . Conversely, given a Poisson algebra P and a morphism
φ = (φ1, φ2, φ3) ∈ HomNAlg2F

(P, [V ]) defined by:

φ(p) = (p ∗φ −,− ∗φ p, [[p,−]]φ), ∀p ∈ P,

such that (φ1, φ2) : P → Bim(V ) is an acting morphism in AAlgF, we can associate
with φ the split extension of Poisson algebras:

0 �� V
i �� (P ⊕V, �(φ1,φ2), {−, −}φ3)

π ��
P ��

s
�� 0

where

(p, x) �(φ1,φ2) (q, y) = (pq, x ·V y + p ∗φ y + x ∗φ q)

and

{(p, x), (q, y)}φ3 = ([p, q], [x, y]V + [[p, y]]φ − [[q, x]]φ),
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for every (p, x), (q, y) ∈ P ⊕ V . One can check that these bilinear operations define
a Poisson algebra structure on P ⊕ V .

(iv) We define

τ : SplExt(−, V ) � HomNAlg2F
(−, [V ])

in the following way: for every object P in PoisAlgF, τP associates with any split
extensions of P by V the morphism:

P → [V ]

defined as in (iii). By the description of split extensions in Remark 5.2, each com-
ponent τP is injective since every morphism which belongs to Im(τP ) determines a
unique split extension of P by V. One can check that the family of injections:

τP : SplExt(P, V ) � HomNAlg2F
(P, [V ]),

is natural in P. By (iii), an arrow φ = (φ1, φ2, φ3) ∈ HomNAlg2F
(P, [V ]) belongs to

Im(τP ) if and only if (φ1, φ2) ∈ HomAAlgF(P,Bim(V )) is an acting morphism.
(v) The last statement follows from Proposition 4.1, since [V ] = USGA(V ).

�

The following example shows that ([V ], ·[V ], [−,−][V ]) is not in general a Poisson
algebra.

Example 5.7. Let V = F2 be the the abelian two-dimensional algebra (i.e. x ·V y =
[x, y]V = 0, for every x, y ∈ V ). It turns out that

[V ] = End(V )3 ∼= M2(F)3,

as vector spaces, since every linear endomorphism of V is represented by a 2× 2 matrix
with respect to a fixed basis. Then the bilinear operations of [V ] can be represented as:

(A,B,C) ·[V ] (A
′, B′, C ′) = (AA′, B′B,AC ′ +B′C),

[(A,B,C), (A′, B′, C ′)][V ] = (AC ′ − C ′A,BC ′ − C ′B,CC ′ − C ′C),

for every (A,B,C), (A′, B′, C ′) ∈ M2(F)3 and one can check that [V ] is not a Poisson
algebra since, for instance, the bracket [−,−][V ] is not skew-symmetric.

By Theorem 3.9 of [4], we can deduce that the category PoisAlgF is not action rep-
resentable. Indeed, since for a Poisson algebra V, USGA(V ) is not in general a Poisson
algebra, then V does not admit an actor.
The following remark shows that there are special cases where τ becomes a natural

isomorphism.
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Remark 5.8. Let (V, ·V , [−,−]V ) be a Poisson algebra such that the annihilator

Ann(V ) = {x ∈ V | x ·V y = y ·V x = 0, ∀y ∈ V }

of the associative algebra (V, ·V ) is trivial or (V 2, ·V ) = (V, ·V ). In this case we
have that

f ◦ F ′ = F ′ ◦ f, (5.2)

for every (f, F ), (f ′, F ′) ∈ Bim(V ) (see [4] for more details). It follows that, for any other
Poisson algebra P, every arrow

φ : P → [V ]

belongs to Im(τP ) and we have a natural isomorphism

SplExt(−, V ) ∼= HomNAlg2F
(−, [V ]).

Notice that the conditions Ann(V ) = 0 and V 2 = V are not necessary to obtain
equation (5.2). For instance, if V = F is the abelian one-dimensional algebra, then
Ann(V ) = V , V 2 = 0, [V ] ∼= F3 as vector spaces (every linear endomorphism of V
is of the form ϕa : x 7→ ax, with a ∈ F) and every left multiplier of V commutes with
every right multiplier. Moreover, it turns out that

(ϕa, ϕb, ϕc) ·[V ] (ϕa′ , ϕb′ , ϕc′) = (ϕaa′ , ϕb′b, ϕac′+b′c),

is an associative product and

[(ϕa, ϕb, ϕc), (ϕa′ , ϕb′ , ϕc′)][V ] = (0, 0, 0).

Thus, [V ] is a Poisson algebra and

SplExt(−, V ) ∼= HomPoisAlgF(−, [V ]),

i.e. [V ] is the actor of V. This is a special case of the following more general result.

Theorem 5.9. Let V be a Poisson algebra such that equation (5.2) holds. The
following statements are equivalent:

(i) [V ] is a Poisson algebra;
(ii) the functor SplExt(−, V ) admits a weak representation;
(iii) [V ] is the actor of V, hence SplExt(−, V ) is representable.

Proof. (i) ⇒ (iii). If [V ] is an object of PoisAlgF, we have a natural isomorphism

SplExt(−, V ) ∼= HomPoisAlgF(−, [V ]).

(iii) ⇒ (ii). If [V ] is the actor of V, then the pair ([V ], τ) is trivially a weak representation
of SplExt(−, V ).
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(ii) ⇒ (i). Finally, if we suppose that the functor SplExt(−, V ) admits a weak
representation (M,µ), then, by composition, we have a monomorphism of functors:

i∗ ◦ µ ◦ τ−1 : HomNAlg2F
(−, [V ]) � HomNAlg2F

(−,M),

where τ is the natural transformation defined in Theorem 5.6 and

i∗ : HomPoisAlgF(−,M) � HomNAlg2F
(−,M)

is given by the full inclusion of the category PoisAlgF in NAlg2
F. From the Yoneda

Lemma, it follows that [V ] is a subobject of M in the category NAlg2
F. But M is also an

object of PoisAlgF, thus [V ] is a Poisson algebra. �

Now, if we suppose that the category PoisAlgF is weakly action representable, then
the functor SplExt(−, V ) admits a weak representation for every Poisson algebra V.
By the last theorem, [V ] would be an object of PoisAlgF, for any Poisson algebra V
satisfying equation (5.2). Thus an explicit example of a Poisson algebra V of this kind
such that [V ] is not an object of PoisAlgF would prove that the category is not weakly
action representable. This is a result that we obtain for the subvariety CPoisAlgF of
commutative Poisson algebras.
If V is a commutative Poisson algebra, then we define [V ]c as the algebra of all pairs

(f, d) ∈ M(V )×Der(V ), where

M(V ) = {f ∈ End(V ) | f(xy) = f(x)y, ∀x, y ∈ V },

is the associative algebra of multipliers of V, such that:

(V1) f([x, y]V ) = [f(x), y]V − d(y) ·V x;
(V2) d(x ·V y) = d(x) ·V y + x ·V d(y);

endowed with the two bilinear operations

(f, d) ·[V ]c (f
′, d′) = (f ◦ f ′, f ◦ d′ + f ′ ◦ d),

[(f, d), (f ′, d′)][V ]c = (f ◦ d′ − d′ ◦ f, d ◦ d′ − d′ ◦ d),

for every (f, d), (f ′, d′) ∈ [V ]c. One can check that [V ]c is isomorphic to the subalgebra
of [V ] of triples of the form (f, f, d).
Using the notation of Theorem 5.6, one can associate, with any split extension of P by

V in CPoisAlgF, a morphism:

φ : P → [V ]c, p 7→ (p ∗ −, [[p,−]]), ∀p ∈ P,

in NAlg2
F. Conversely, if P and V are commutative Poisson algebras, every mor-

phism φ : P → [V ]c in NAlg2
F defines a commutative Poisson algebra split extension.

Indeed, by (iii) of Theorem 5.6, such φ ∈ Im(τP ) if and only if p 7→ p ∗ − defines an
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action in the category CAAlgF of commutative associative algebra over F, and more-
over ActCAAlgF(−, V ) ∼= HomAAlgF(−,M(V )) (see [2]). Thus there exists a natural
isomorphism:

SplExt(−, V ) ∼= HomNAlg2F
(−, [V ]c),

and we have the following characterization whose proof is similar to the one of
Theorem 5.9.

Theorem 5.10. Let V be a commutative Poisson algebra. The following statements
are equivalent:

(i) [V ]c is a commutative Poisson algebra;
(ii) the functor SplExt(−, V ) admits a weak representation;
(iii) [V ]c is the actor of V, hence SplExt(−, V ) is representable.

This allows us to conclude with the following.

Remark 5.11. The category CPoisAlgF of commutative Poisson algebras is not
weakly action representable. Otherwise the functor SplExt(−, V ) would admit a weak
representation, for any object V in CPoisAlgF. By Theorem 5.10, this would be equiv-
alent to saying that [V ]c is a commutative Poisson algebra. We get a contradiction since,
if for example V = F2 is the two-dimensional abelian algebra, then

[V ]c = M(V )×Der(V ) = End(V )2,

as a vector space, and it is easy to check that the bilinear operation:

(f, d) ·[V ]c (f
′, d′) = (f ◦ f ′, f ◦ d′ + f ′ ◦ d),

is not commutative.

Open problem

Eventually, our investigation does not clarify whether the category PoisAlgF of all
Poisson algebras over F is weakly action representable or not. A key point in the proof of
Theorem 5.9 is the fact that equation (5.2) is equivalent to saying that the monomorphism
of functors:

τ : SplExt(−, V ) � HomNAlg2F
(−, [V ]),

is a natural isomorphism. Since in the commutative case equation (5.2) is always satisfied,
we were able to find the counterexample of Remark 5.11.
Thanks to Theorem 5.9, finding a concrete counterexample of a Poisson algebra V

satisfying equation (5.2) and such that [V ] is not a Poisson algebra would prove that
PoisAlgF is not weakly action representable.
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