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On a nonlinear differential-integral

equation for ecological problems

V. Sree Hari Rao and K. Kuppuswamy Rao

In this paper we consider a nonlinear differential-integral

equation which arises in the problems of ecology and study the

questions of convergent solutions and asymptotic equivalence of

the solutions.

1. Introduction

Ecology is the study of various species in relation to their

environment, competition for resources within and among the species, and

predator-prey relations among them. At times the environment may be

poisoned or polluted by metabolic actions of the species. In all these

situations, since timerates of changes of population sizes are involved, it

is natural that the mathematical modelling be given by differential

equations, systems of differential equations or differential-integral

equations. Problems of this type have gained increasing significance in

recent years and many interesting results have been accumulated. The

reader is referred to the works [3], [4], [5], [9], [10], [72], [73], for

motivation and for reference to earlier literature. In animal population

the accumulation of metabolic products may cause inconvenience to the whole

population and may ultimately result in a fall of the birth rate while the

death rate is increased. Volterra assumed that the total toxic effect on

birth and death rates be expressed by the following differential-integral

equation
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? r
(1) x ' ( t ) = ax(t) - bx (t) - exit) K(t-s)x(8)ds , 0 < s £ t < °° ,

>0

where ' = T T , a, b , and a are constants. The kernel function K

is due to the residual action and will be a decreasing function vanishing

after a certain value.

Consider the differential system

(2) *'(*) = A(t)xti) + (Gx)(t) ,

where x € JV , the euclidean M-space, A is an n x n matrix function,

and G is a l inear or non-linear operator. Note that equation ( l ) may be

regarded as a special case of (2) with

? f*
Ait) = a , (Gx)(t) B -bx (t) - exit) K{t-s)x{s)ds .

Jo

In HO] equation ( l ) i s discussed when K{t) = 1 . In many s i tua t ions , for

example, populations governed by a log is t ic equation

x'(t) =ax(t) - bx2(t)

for 0 - x — alb , this growth rate decreases as population increases.

Also equations of this type .may arise in the study of problems of

communicable diseases.

In studying the behaviour of solutions of (2) we are interested in the

questions of existence and uniqueness of convergent solutions, whether (2)

has solutions which converge to any a priori given vector. Also we present

results on asymptotic behaviour of solutions for (2). The hypotheses we

give here will be appropriate for many population problems> and also permit

us to include a large variety of perturbations in (2).

2. Convergent solutions

In the following discussion J stands for the half real line

[0, °°) . Let Cj. denote the space of all n-vector functions cp

defined and continuous on J , and such that <p{t) admits a finite limit as

t •*• °° . It follows that Cj. is a Banach space (see [J])» with the norm of

<f> 6 Cr given by
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||cp|| = sup | < p ( t ) | ,
tiJ

where | • | is the euclidean norm on if . The same symbol | • | will also

be used to denote a convenient matrix norm. By x[t, t , x ) , we mean a

solution of the initial value problem associated with (2).

THEOREM 1. Assume the following:

(i) A is an n x n matrix function defined and continuous

on J and \A(s) \ds < <=° ;
J0

(ii) G(0) E 0 ;

(Hi) there exists a function g : J •+ J, which is continuous on

J, such that |(Gp1)(t)-(Op2)(t)| £ g(t)\y1(t)-<?2(t)\ and

r g(s)ds

Then all the solutions of (2) belong to C . Further, given any T\ £ iP ,

there exists a unique solution x of (2) such that lim x(t) = r\ .
t-x°

Proof. A solution x[t, t , x ) of (2) is given by

(t (t
x(t) = x + A(s)x(s)ds + (Gx){s)ds , t i O .

In view of the hypotheses (i)-(iii), it follows that

|a(t)| S |x.| + f |A(8)||X(9)|<2B + f g(s)\x(s)\d8 .
JO ^0

Applying the integral inequality of Bellman (see [2]),

\x(t)\ S IxJexpjJ [\A(S)\+g(8)]d8^ .(3) \\ I J p j J
From (i), (ii), and (Hi) we see that x is bounded, and by taking

limits on both sides as t •*• °> , the convergence follows.

Now let n € rf1 and K be such that ||n|| < K . (i) and (ii) imply
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that there exis ts a T > 0 such that

r f
(U) ||n|| + K\ \A(s)\ds + K] g(s)ds 5 K

St h

for a l l t > T . Set

Sj, = {cp : (p i s an n-vector function defined and continuous
on [T, ») a n ( i a i s o s u c h that sup |cp(t) | 2

Define an operator 2" : £^ ->• 5^ by the relation

(5) (2*P)(*) = n - \ A(sMs)ds - f
>t >t

From (U) and (5) it is easy to conclude that the operator T is a

contraction and has a unique fixed point in S , for all t > T , and has

all the requirements. By continuity the same can be extended to the whole

of the interval J and the proof is complete.

REMARK I. Theorem 1 is an existence and uniqueness type result for

the solutions of (2) to be in C. and convergent to any a priori given

member of K . The following theorem extends Theorem 1 at the expense of

giving up uniqueness.

THEOREM 2. Let the condition (i) of Theorem 1 hold. Let G satisfy

the following hypotheses: there exists a continuous function g •. J •*• J

such that |(ftp)*| 5 g(t)\<?{t)\ and g(s)ds < °° . Then all the

>0

solutions of (2) belong to C^ and further, given any n € if1 , there

exists a solution x of (2) such that x(t) converges to r\ as

3. Asymptotic behaviour

Throughout we denote by BC = BC[O, ») the class of all bounded

continuous w-vector valued functions defined on J . Let LL (J) denote

the class of all measurable functions which are integrable on compact

subsets of J . It is easy to see that the initial value problem
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associated with (2) may be regarded as a perturbed system of the linear

system

(6) y'(t) = A(t)y(t) , y[tQ) = xQ .

Now we present an asymptotic equivalence type result for the solutions

between the systems (2) and (6).

Concerning the perturbations G in (2) we assume that G is a

continuous mapping of BC into LLAJ) , and that there exists a measurable

Jo
function X with X(t) 5 0 and \{s)ds < °° , such that

Jo

(T) | ( G p ) ( t ) | < ( l + | c p | ) A ( i ) , f o r t i. J .

The hypothesis (7) allows us to include a variety of perturbations in G ,

for example,

(Gx){t) = B(t, s)x>(s)ds ,
rt

=
>0

where B is a matrix and a > 0 .

Let Y be the fundamental matrix solution of (6). Then a

solution x[t, t-, x.) of (2) may be expressed as

ft ,
(8) x(t) = Y(t)xQ + j Y(t)Y-1(s)(Gx){s)ds .

THEOREM 3. Suppose that A € LL (j) and that Y satisfies the

following conditions:

ft

| j ' ( * ) J T 1 ( 8 ) | d B < » ( 0 £ * < » ) ,

J 0

and for each fixed T- > 0 ,

lim | l-rUjr^sJlds = 0 .

Let the perturbations G satisfy ( 7 ) .

Then given a solution y[t, tQ, xQ) in BC[0, «>) of the system ( 6 ) J
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•there exists a solution x[t, t , x ) of the system (2) such that

lim [x(t)-y{t)) = 0 ; and conversely.

The proofs of Theorems 2 and 3 crucially depend on the Schauder-

Tychonoff fixed point theorem. For the specific version of the theorem the

reader is referred to [7]. Results parallel to our theorems may be found

in [//], [73].

In this paper we have not discussed the stability and other

qualitative behaviour of (2). Also it will be a matter of interest when

the perturbations in (2) are impulsive. However these results are under

study and will be reported elsewhere. Further, the authors strongly feel

that the results of this exposition can be carried over to more general

Banach spaces and dynamical systems without much difficulty.
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