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Abstract
This paper presents a comprehensive study of the forward and inverse kinematics of a six-degrees-of-freedom (DoF)
spatial manipulator with a novel architecture. Developed by Systemantics India Pvt. Ltd., Bangalore, and designated
as the H6A (i.e., Hybrid 6-Axis), this manipulator consists of two arm-like branches, which are attached to a rigid
waist at the proximal end and are coupled together via a wrist assembly at the other. Kinematics of the manipulator is
challenging due to the presence of two multi-DoF passive joints: a spherical joint in the right arm and a universal in
the left. The forward kinematic problem has eight solutions, which are derived analytically in the closed form. The
inverse kinematic problem leads to 160 solutions and involves the derivation of a 40-degree polynomial equation,
whose coefficients are obtained as closed-form symbolic expressions of the pose parameters of the end-effector, thus
ensuring the generality of the results over all possible inputs. Furthermore, the analyses performed lead naturally to
the conditions for various singularities involved, including certain non-trivial architecture singularities. The results
are illustrated via numerical examples which are validated extensively.

Nomenclature
H6A Hybrid 6-Axis manipulator
DoF degree(s)-of-freedom
FKP forward kinematic problem
IKP inverse kinematic problem
CAS computer algebra system
IKU inverse kinematic univariate (polynomial/equation)
DH Denavit–Hartenberg (as in DH parameters, see ref. [1], pp. 43)

1. Introduction
Hybrid manipulators form a class of robots which incorporate some characteristics of both serial and
parallel manipulators. The architecture of hybrid manipulators may vary significantly, for instance, it
can consist of a sequential concatenation of serial and parallel modules (see, e.g., ref. [2]) or several
stages of parallel manipulators arranged in a series (as in ref. [3]) or a parallel combination of serial
chains, forming closed kinematic loops (see, e.g., ref. [4]). The main motivation of research into these
manipulators is to attain some reasonable compromises between the serial characteristics, for example,
large workspaces, and the parallel ones, for example, better payload-to-self-weight ratio, rigidity and
superior dynamic response.

Many interesting manipulator architectures of hybrid nature have been proposed and analysed by
various researchers in the last few decades. In one of the early works, Waldron et al. [2] studied the
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kinematics of the ARTISAN hybrid manipulation system whose wrist and micro-manipulator together
constitute a six-degrees-of-freedom (DoF) serial–parallel module. Spatial robots of six-DoF consist-
ing of two 3-DoF parallel manipulators arranged serially have been analysed by Shahinpoor [3] and
Tanev [5]. Romdhane [6] introduced a novel six-DoF “hybrid serial-parallel Stewart like mechanism
(HS-PM)”, which also has two 3-DoF parallel manipulators arranged serially. The forward kinematic
problem (FKP) of a six-DoF hybrid manipulator with three identical limbs joining a moving platform to
the fixed platform is presented in ref. [7]. A two-limbed six-DoF hybrid manipulator, called the Hybrid
6-Axis Articulated Robot (H6AR), has been developed by Systemantics India Pvt. Ltd., Bangalore, and
its kinematics has been analysed in ref. [8]. Chablat et al. [4] have discussed the kinematic properties
of a three-DoF hybrid manipulator capable of avoiding gain-type singularities. The stiffness charac-
teristics of a novel hybrid manipulator called the Cassino Hybrid Manipulator (CaHyMan) has been
investigated analytically in the closed form in ref. [9]. Forward kinematics of a serial chain of 3-UPS
manipulators was analysed by means of screw theory in ref. [10]. Screw theory was employed in ref. [11]
to study the forward kinematics of the hybrid manipulator IRB 260 developed by the company ABB,
as well as the mobility of another six-DoF spatial hybrid manipulator in ref. [12]. The latter manipu-
lator, consisting of two spatial parallel manipulators in series, has been analysed recently by Hu et al.
[13] with regard to its inverse kinematics. Furthermore, the statics and stiffness characteristics of hybrid
manipulators consisting of k-stages of parallel manipulators arranged serially have been investigated by
Hu et al. [14].

Several studies have been conducted on the kinematics of five-DoF hybrid manipulators designed as
serial combinations of a three-DoF parallel manipulator and a two-DoF serial manipulator. For instance,
Guo et al. [15] have presented the closed-form kinematics of a novel hybrid manipulator, which consists
of a 3T parallel module and a 2-R serial module. This 3T2R manipulator was modelled mathemati-
cally using Denavit–Hartenberg (DH) parameters. The inverse kinematics of a 2-R serial manipulator
mounted on a 2R1T parallel manipulator is discussed in ref. [16]. Similarly, the forward and inverse
kinematics of a combination of a 2-UPU parallel manipulator and a 2-R serial manipulator are studied
in ref. [17]. The forward and inverse kinematics of a 3T2R parallel–serial (hybrid) manipulator are pre-
sented in ref. [18]. Yet another 5-axis hybrid robot, the TriMule, was analysed for its inverse kinematics
and singularities in ref. [19].

The applications of hybrid manipulators have also been as varied as their architectures. For instance,
Yang et al. have presented closed-form symbolic solutions for both the forward and inverse kinematics
of a new six-DoF hybrid manipulator with applications in deburring tasks for large jet-engine com-
ponents in ref. [20]. Xu et al. [21] described the design of a hybrid manipulator, which is composed
of a three-DoF parallel module, a two-DoF serial module and a redundant DoF, to aid in the process
of computer-controlled ultra-precision free-form polishing. Inverse kinematic analysis of a new hybrid
manipulator used for medical purposes was presented in ref. [22]. This manipulator was formed by the
serial combination of a three-DoF SCARA and a Stewart platform manipulator. Singh et al. [23] studied
the kinematics of a seven-DoF spatial hybrid manipulator, meant to aid in surgery. Both the manipulators
described in refs. [22, 23] were modelled using DH parameters.

This paper presents a detailed analysis of the kinematics of a novel six-DoF spatial hybrid manip-
ulator, namely the Hybrid 6-Axis (H6A), developed by Systemantics India Pvt. Ltd., Bangalore. The
manipulator consists of a pair of two-DoF serial arms arranged in parallel vertical planes (see Fig. 1).
These are mounted on a rigid “waist”, which itself can rotate about a vertical axis fixed to the inertial
frame of reference. At the other end, the arms are joined via a wrist assembly, thus creating a closed loop.
At the wrist, the yaw and roll1 DoFs are produced by the closed chain, while an actuator mounted on the
wrist is responsible for a pitch motion, which is independent of the rest of the manipulator. The FKP and
the inverse kinematic problem (IKP) of the manipulator are studied comprehensively in the closed form

1In this paper, the yaw, roll and pitch motions at the end-effector of the manipulator have been defined w.r.t. the inertial frame
of reference, when θ1 = 0.
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Figure 1. Kinematic diagram of the H6A manipulator, showing the reference frames associated with
the passive joints in additional close-ups.

using extensive symbolic computations in a computer algebra system (CAS).2 It is established that the
solution to the FKP has eight branches (including the complex ones, if any) for a generic set of actuator
inputs. Interestingly, even when all the branches are real, they manifest only as two identical sets of four
poses3 physically, as a pair of distinct values of joint angles at the passive spherical joint on the right
arm lead to the same configuration of the robot (see Fig. 2). The solution of the IKP turns out to be much
more complicated and interesting, which involves the derivation and solution of a 40-degree univariate
polynomial equation. For each solution of the said equation, there are four possible configurations of
the manipulator (including the complex ones, as the case may be), thus leading to a total of 160 solu-
tions in the general case. The solution procedure is illustrated numerically, and the results thereof are
validated by checking the residues of the original set of constraint equations, as well as comparing the
solutions of IKP with the corresponding inputs of the forward kinematics. Singularities associated with
the FKP and IKP are identified using the general condition of the merger of the branches of solutions.
These are further analysed to identify the corresponding loss and gain of DoF(s) at the end-effector of
the manipulator.

The key contributions of this paper may be summarised as follows.
The primary contribution of this work is to solve the kinematics of a hybrid manipulator with a

novel architecture. The topology of H6A is unique, and any such “twin-handed” yet asymmetric hybrid
architecture has not been analysed before, to the best of the authors’ knowledge. The nature of the
analysis is exact and comprehensive, as opposed to numerical and consequently, partial. Due to the

2In this paper, the CAS Mathematica v12.0 has been used for all symbolic as well as numeric computations.
3The pose of a rigid body refers to the combination of its position and orientation.
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Figure 2. Poses depicting the solutions to the forward kinematic problem for the given inputs
(enumerated as per the rows of Table IV).

exact analytical nature of this work, the total number of solutions is conclusively established. The final
results do not contain any spurious components and are, therefore, provably minimal. Furthermore,
the symbolic nature of the kinematic analysis makes it easy to perform extensive analytical studies of
the singularities. For example, a condition on the architecture parameters, which would lead to finite
self-motion, was derived in the closed form (see Eq. (90)), along with other conditions for singularities.

A secondary contribution of the paper lies in the more generic field of symbolic computations.
A number of techniques were developed and utilised in a fruitful manner to derive the analytical results
presented in this paper (as detailed in Section 7). These techniques may be applied to any other problem
in kinematics and beyond.

Finally, the integrated approach towards kinematics, which encompasses position and singularity
analysis in the exact closed form, is a major contribution of this work, as its scope of application is not
limited to this manipulator or even just hybrid manipulators – it could be applied to manipulators of any
architecture, at least in principle. That it was applicable in the case of such a complex spatial hybrid
manipulator establishes this claim in an objective manner.

The remainder of this paper is organised as follows: Section 2 presents the kinematic model of the
manipulator, from the geometrical description of the manipulator to the derivation of the loop-closure
equations. Sections 3 and 4 contain the detailed solution procedures of the FKP and IKP, respectively.
Section 5 presents the numerical examples, including the validation of the results. The singularities of
the manipulator mentioned above are studied in Section 6. The formulations and results presented in the
paper are summarised in Section 7. Finally, the conclusions are presented in Section 8.
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2. Kinematic model of the manipulator
The geometry of the H6A manipulator is described in this section, followed by the derivation of the
loop-closure equations.

2.1. Geometry
The kinematic sketch of the H6A manipulator is shown in Fig. 1. The global frame of reference, X0Y0Z0,
is attached to the waist joint, o, which rotates about the Z0 axis. The robot manipulator is composed of a
pair of 2-R “arms”, sLeL-eLpL on the left and sReR-eRpR on the right, both of which are attached to the waist
at a fixed offset d2 from the centre of the waist, o. The left arm comprises an upper arm, sLeL, of length l2

and a forearm, eLpL, of length l3. Similarly, the right arm consists of an upper arm, sReR, and a forearm,
eRpR, of lengths l2 and l3, respectively. At the other end, the serial arms are connected together via a
wrist assembly, pL-p-pR. The left arm is attached to the wrist assembly through a universal joint located
at pL. Likewise, a spherical at pR joins the right arm and the wrist assembly. The wrist assembly itself
consists of two links of length lw, which connect each arm to a rotary joint located at the wrist point, p.
Additionally, an end-effector, e, is connected to the rotary joint at p, through an L-shaped link having
proximal and distal arms of lengths a6 and d7, respectively. Thereafter, the L-shaped link is joined to the
link pRp at an angle κ . While the closed loop o-sL-eL-pL-p-pR-eR-sR-o is responsible for the yaw and roll
motions at the end-effector, a revolute actuator placed right before the end-effector is responsible for the
pitch motion which is decoupled from the rest of the motions of the manipulator.

The waist joint at o, shoulder joints at sL and sR, elbow joints at eL and eR and the revolute joint
situated before the end-effector, e, are active (i.e., actuated), and the corresponding joint angles are
denoted by θ1, θ2L, θ2R, θ3L, θ3R and θ7, respectively. These joints account for the six-DoF of the end-
effector.4 On the other hand, the joints associated with the wrist assembly, that is, those located at pL,
p and pR, respectively, are passive (i.e., unactuated), and the corresponding joint angles are {φ4L, φ5L},
φ6L and {φ4R, φ5R, φ6R}, respectively. Figure 1 shows the references for all the pertinent joint angles. For
instance, the angle θ1 is measured as the angle between X0 and x1, measured about Z0. Similarly, θ7

is the angle that xe makes with (a line parallel to) x7L. The close-ups of the wrist in Fig. 1 depict the
frames5 associated with the universal joint at pL and spherical joint pR. The intermediate frames at the
spherical joint are omitted to avoid clutter. The rotation at the spherical joint pR, between the frames
x4Rz4Ry4R and x7Ry7Rz7R (the axes y4R, y7R being omitted in the figure) may be represented using the ZXZ
convention of Euler angles as RZ(φ4R)RX(φ5R)RZ(φ6R + π/2). In summary, the H6A manipulator has a
total of seven architecture parameters, namely {d2, l2, l3, lw, a6, d7, κ}, and six actuated joints represented
by the active angles, θ = [θ1, θ2L, θ2R, θ3L, θ3R, θ7]�. In addition, there are six joints represented by the
passive angles, φ = [φ4L, φ4R, φ5L, φ5R, φ6L, φ6R]�. The left kinematic chain of the manipulator starts at
the waist, o, and runs all the way to the end-effector, e, via the left elbow; it is designated as o-sL-
eL-pL-p-e. Similarly, the right chain, running from o to p, is designated as o-sR-p-eR-pR-p. In order to
keep the kinematic descriptions of these chains simple and generic, these are described via the DH
parameters (see, e.g., ref. [1], pp. 43) owing primarily to the universal popularity of this system. The left
and right chains are described in Tables I and II, respectively.6 Further, from these tables, two sequences
of 4 × 4 homogeneous transformation matrices, namely 0

1T, . . . , 7
8TL and 0

1T, . . . , 7
8TR, are generated in a

systematic manner, which are subsequently used in Section 2.2 to formulate the loop-closure equations
of the manipulator.

It may be noted here that the architecture of the H6A is unique in the sense that it resembles two
hands emanating separately from a single-DoF “waist”, which are brought back together at the wrist
assembly. An additional and independently actuated link attached to the wrist assembly constitutes the
final output. The remaining four-DoF appear in the portion of the manipulator where the two arms

4The DoF of the manipulator is calculated in Appendix A following [30].
5The naming convention of the frames follows that of the transformation matrices listed in Tables I and II.
6All the angles are measured CCW about the respective axes of rotation.
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Table I. DH parameters for the left chain of the H6A manipulator.

i Transformation matrix αi−1 ai−1 di θ i Origin of the (i − 1)th frame
1 0

1T 0 0 0 θ1 Global frame, X0Y0Z0

2 1
2TL −π

2
0 d2 θ2L − π

2
Waist, o

3 2
3TL 0 l2 0 θ3L − π

2
Left shoulder, sL

4 3
4TL −π

2
0 l3 0 Left elbow, eL

5 4
5TL 0 0 0 φ4L + π

2

6 5
6TL

π

2
0 0 φ5L Universal joint, pL

7 6
7TL 0 lw 0 κ + φ6L − π

8 7
8TL −π

2
a6 −d7 θ7 Wrist point, p

Table II. DH parameters for the right chain of the H6A manipulator.

i Transformation matrix αi−1 ai−1 di θ i Origin of the (i − 1)th frame
1 0

1T 0 0 0 θ1 Global frame, X0Y0Z0

2 1
2TR −π

2
0 −d2 θ2R − π

2
Waist, o

3 2
3TR 0 l2 0 θ3R − π

2
Left shoulder, sR

4 3
4TR −π

2
0 l3 0 Left elbow, eR

5 4
5TR 0 0 0 φ4R + π

2

6 5
6TR

π

2
0 0 φ5R Spherical joint, pR

7 6
7TR −π

2
0 0 φ6R

8 7
8TR

π

2
lw 0 κ − π

are not connected to each other. As such, it may be but natural to expect that these parts of the two
arms, that is, sL-eL-pL and sR-eR-pR, should be identical in their architecture, inclusive of the manner at
which they meet the wrist assembly. Indeed, this thought process seems to have led to the design of the
manipulator H6AR, introduced in ref. [8], which preceded the manipulator H6A. However, the output
DoF of the H6AR manipulator, based on its architecture, is seen to be five, that is, given its six actuators,
the manipulator is redundantly actuated. The design of H6A eliminates this problem by replacing one
of the two universal joints connecting the arms to the wrist assembly by a spherical joint (at pR, to be
specific), while retaining the symmetry in the rest of the architecture, as well as in the dimensions of the
individual links.7 Evidently, this asymmetric architecture leads to interesting kinematic behaviours, as
may be seen in Section 4, in particular.

7It may be noted here that if both the universal joints in the H6A manipulator were to be replaced by spherical joints, in
order to maintain complete symmetry between the two arms, the manipulator would have become kinematically redundant, and
under-actuated, having seven-DoF and six actuators.
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2.2. Loop-closure equations
The loop-closure equations are constraints which ensure that the manipulator maintains its kinematic
integrity at every configuration. For the manipulator at hand, these equations are formulated by equat-
ing the pose of the wrist point p calculated through the left chain with that from the right. Hence, the
transformation matrix 0

pT ∈ SE(3) is determined as a concatenation of the matrices in constituting the
second column of Table I using the left chain (see, e.g., ref. [1], pp. 48):

0
pT = 0

1T
1
2TL

2
3TL

3
4TL

4
5TL

5
6TL

6
7TL. (1)

The matrix 0
pT may also be computed considering the right chain (refer to Table II):

0
pT = 0

1T
1
2TR

2
3TR

3
4TR

4
5TR

5
6TR

6
7TR

7
8TR. (2)

Therefore, the loop-closure constraints are obtained by equating the expressions of 0
pT appearing in

Eqs. (1) and (2) and eliminating the common factor, 0
1T, between them:

1
2TL

2
3TL

3
4TL

4
5TL

5
6TL

6
7TL = 1

2TR
2
3TR

3
4TR

4
5TR

5
6TR

6
7TR

7
8TR. (3)

Equation (3) contains six independent scalar equations, which form the loop-closure equations of the
manipulator. The six unknown passive joint angles, φ, are solved in terms of the active joint angles, θ ,
in the next section.

3. Forward kinematics
The FKP is defined as the determination of the poses of end-effector of the H6A manipulator, as
represented via:

0
eT = 0

pT
7
8TL ∈ SE(3), (4)

for a given set of active joint angle inputs, θ . It involves an intermediary step of solving for the passive
joint angle variables, φ, in terms of the active joint angle inputs, θ .

Firstly, the loop-closure constraint, (3), is rearranged to obtain the passive joint angle variables
corresponding to the left chain, grouped together as φL = [φ4L, φ5L, φ6L]�:

4
5TL

5
6TL

6
7TL

(
7
8TR

)−1 = (
1
2TL

2
3TL

3
4TL

)−1 1
2TR

2
3TR

3
4TR

4
5TR

5
6TR

6
7TR. (5)

Subsequently, equating the displacement vectors (i.e., the first three rows of the fourth column) on both
sides of (5) yields

ηFKL := 2lw sin
φ6L

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− sin φ4L sin

(
φ5L + φ6L

2

)

cos φ4L sin

(
φ5L + φ6L

2

)

− cos

(
φ5L + φ6L

2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−
⎡
⎢⎣

l13

l23

l33

⎤
⎥⎦= 0, where:

α1 = θ2L − θ2R + θ3L − θ3R,

l13 = −l2 sin θ3L + l2 sin (α1 + θ3R) + l3 sin α1,

l23 = 2d2,

l33 = −l2 cos θ3L + l2 cos (α1 + θ3R) − l3(1 − cos α1). (6)

The forward kinematic univariate equation, in φ6L, may be obtained as:

4l2
w sin2

(
φ6L

2

)
− (

l2
13 + l2

23 + l2
33

)= 0. (7)
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Equation (7) yields, in general, four distinct values of
φ6L

2
, given by:

φ6L

2
= arcsin

(
±√l2

13 + l2
23 + l2

33

2lw

)
, π − arcsin

(
±√l2

13 + l2
23 + l2

33

2lw

)
, since lw �= 0. (8)

However, these solutions coalesce into only a pair of distinct solutions for φ6L (since 2π ±ψ ≡ ±ψ ,
∀ψ ∈ [0, 2π ]):

φ6L = ±2 arcsin

(√
l2
13 + l2

23 + l2
33

2lw

)
. (9)

The remaining unknowns in (6) are obtained as:8

φ5L = atan2

⎛
⎜⎝±√l2

13 + l2
23

2lw sin
φ6L

2

,
−l33

2lw sin
φ6L

2

⎞
⎟⎠− φ6L

2
, assuming sin

φ6L

2
�= 0; (10)

φ4L = atan2

⎛
⎜⎜⎝ −l13

2lw sin

(
φ5L + φ6L

2

)
sin

φ6L

2

,
l23

2lw sin

(
φ5L + φ6L

2

)
sin

φ6L

2

⎞
⎟⎟⎠ ,

assuming further: sin

(
φ5L + φ6L

2

)
�= 0. (11)

It may be observed from Eqs. (9)–(11) that there are four9 distinct sets of solutions for the passive
joint angles φL for a generic input. However, under special conditions these solutions can merge, for

example, when l2
13 + l2

23 + l2
33 = 0 ⇒ sin

φ6L

2
= 0, or l2

13 + l2
23 = 0 ⇒ sin

(
φ5L + φ6L

2

)
= 0, Eqs. (9) and

(10) have repeated real solutions due to the coalescence of pairs of real or complex conjugate solutions,
which then manifest as pairs of coincident real solutions, thus forming the boundaries between the real
and complex solutions. These singular cases are discussed in Case 1 in Section 6.1.

The unknown passive joint variables associated with the right arm, namely φR = [φ4R, φ5R, φ6R]�,
are solved in a manner similar to the analysis of the left arm described above. First, the loop-closure
equation, (3), is rearranged as:

4
5TR

5
6TR

6
7TR = (

1
2TR

2
3TR

3
4TR

)−1 1
2TL

2
3TL

3
4TL

4
5TL

5
6TL

6
7TL

(
7
8TR

)−1
. (12)

Thereafter, equating elements (1, 3), (2, 3), (3, 1), (3, 2) and (3, 3) of the transformation matrices
(where element (i, j) appears in the ith row and the jth column of a matrix) appearing on either side of
(12), one obtains

ηFKR :=

⎡
⎢⎢⎢⎢⎢⎢⎣

sin φ4R sin φ5R

− cos φ4R sin φ5R

cos φ5R

cos φ6R sin φ5R

− sin φ6R sin φ5R

⎤
⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎣

r13

r23

r33

r31

r32

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0, where: (13)

8In the above, atan2 (a sin ( · ), a cos ( · )), a ∈R, denotes the two-argument arctangent function.
9It may appear that the total number of solutions is eight, if one considers (8) instead of (9). This anomaly is akin to a parametric

singularity which is of no consequence to the kinematics of the physical manipulator and its configurations corresponding to a
given set of inputs.
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β1 =φ5L + φ6L,

r13 =1

4
(cos (α1 + φ4L − β1)− cos (α1 − φ4L − β1)+ cos (α1 − φ4L + β1)− cos (α1 + φ4L + β1)

− 2 sin (α1 − β1)+ 2 sin (α1 + β1) ),

r23 = − cos φ4L sin β1,

r33 =1

2
(cos (α1 − β1)+ cos (α1 + β1)+ 2 sin α1 sin φ4L sin β1),

r31 =1

4
(cos (α1 + φ4L − β1)− cos (α1 − φ4L − β1)− cos (α1 − φ4L + β1)+ cos (α1 + φ4L + β1)

− 2 sin (α1 − β1)+ 2 sin (α1 + β1) ),

r32 = − cos φ4L sin α1.

The passive joint angles φL have been obtained previously, as in Eqs. (9)–(11). Taking these into
cognisance, the solutions of passive angles φR from (13) are computed as:

φ5R = atan2
(

±
√

r2
31 + r2

32, r33

)
, (14)

φ4R = atan2
(

r13

sin φ5R

,
−r23

sin φ5R

)
, assuming sin φ5R �= 0; (15)

φ6R = atan2
( −r32

sin φ5R

,
r31

sin φ5R

)
, assuming sin φ5R �= 0. (16)

Equations (14)–(16) show that the passive joint angles φR have two solutions for a generic set of
passive joint angles φL. These solutions merge when r2

31 + r2
32 = 0 ⇒ sin φ5R = 0, (14) produces repeated

roots. This singularity is studied in Case 2 of Section 6.1.
After computing the solutions of φL from Eqs. (9)–(11) and those of φR from Eqs. (14)–(16), the

configurations of all the links may be ascertained from the link-transformation matrices given in Tables I
and II, thus completing the solution of the FKP. The total number of solutions to the FKP for any generic
input equals 4 × 2 = 8 (see Table IV and Fig. 2 in Section 5.1).

The solution procedure for the IKP is presented in the following section.

4. Inverse kinematics
The IKP involves the determination of the active joint angles, θ , along with the passive joint angles, φ,
for a given pose of the end-effector of the H6A manipulator, as represented by the matrix 0

eT ∈ SE(3).
The task-space coordinates are input in the form of a displacement vector, p = [px, py, pz]�, and three
Euler angles, namely {α, β, γ }, representing the orientation of the end-effector in the ZYZ convention,
leading to the following parametrisation of the task space:

0
eT =

[
RZYZ p
01×3 1

]
, where RZYZ := RZ(α)RY(β)RZ(γ ) ∈ SO(3). (17)

In (17), RZ(α) ∈ SO(3) (i.e., the special orthogonal group of three dimensions) is the rotation matrix
corresponding to a CCW rotation about the positive Z axis by an angle α, and so on. For the sake of
convenience, the following variables are introduced, which are combinations of previously defined joint
angles, Euler angles and architecture parameters:

θ23L := θ2L + θ3L, ψ6L := φ6L + κ , θα1 := α − θ1, θγ7 := γ − θ7, θ23R := θ2R + θ3R.

The poses of the end-effector expressed through the left and the right chains, that is, using (1) and
(2), are used for solving the IKP. The pose of the end-effector can be described using (4). Rewriting (4)
using (1), that is, the pose of the end-effector considering the left chain, leads to:(

0
1T
)−1 0

eT
(

4
5TL

5
6TL

6
7TL

7
8TL

)−1 = 1
2TL

2
3TL

3
4TL. (18)
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The three components of the displacement vectors on both sides of (18) are equated to obtain:

η1L := l2 sin θ2L + l3 sin θ23L − px cos (α− θα1 ) − py sin (α − θα1 ) − (d7 − lw sinψ6L) cos θα1 sin β

+ (a6 − lw cosψ6L)(cos β cos θα1 cos θγ7 − sin θα1 sin θγ7 ) = 0, (19)

η2L := d2 − py cos (α − θα1 ) + px sin (α− θα1 ) − (d7 − lw sinψ6L) sin β sin θα1

+ (a6 − lw cosψ6L)(cos β cos θγ7 sin θα1 + cos θα1 sin θγ7 ) = 0, (20)

η3L := l2 cos θ2L + l3 cos θ23L − pz − (a6 − lw cosψ6L) sin β cos θγ7 − (d7 − lw sinψ6L) cos β = 0. (21)

Additionally, equating the elements (1,3), (3,2) and (3,3) of the rotation matrices on both sides of (18)
leads to the following equations:

ζ1L := sin θ23L + cos (φ5L +ψ6L) sin β cos θα1 + sin (φ5L +ψ6L)(cos β cos θγ7 cos θα1

− sin θα1 sin θγ7 ) = 0, (22)

ζ2L := cos θ23L + cos β cos (φ5L +ψ6L) − sin β cos θγ7 sin (φ5L +ψ6L) = 0, (23)

ζ3L := sin φ4L sin β sin θγ7 − cos φ4L(sin β cos (φ5L +ψ6L) cos θγ7 + cos β sin (φ5L +ψ6L)) = 0. (24)

Equations (19)–(24) are functions of the seven unknown variables appearing in the left chain, that is,
qL = [θα1 , θ2L, θ23L, φ4L, φ5L,ψ6L, θγ7 ]�.

Similarly, rewriting (4) using (2), that is, the pose of the end-effector expressed through the right
chain, yields (

0
1T
)−1 0

eT
(

4
5TR

5
6TR

6
7TR

7
8TR

7
8TL

)−1 = 1
2TR

2
3TR

3
4TR. (25)

Equating the three elements of the displacement vector on both sides of (25) produces

η1R := l2 sin θ2R + l3 sin θ23R − (d7 − lw sin κ) cos θα1 sin β − px cos (α− θα1 )

− py sin (α− θα1 ) + (a6 − lw cos κ)(cos β cos θα1 cos θγ7 − sin θα1 sin θγ7 ) = 0, (26)

η2R := d2 − px sin (α − θα1 ) + py cos (α− θα1 ) + (d7 − lw sin κ) sin β sin θα1

− (a6 − lw cos κ)(cos θα1 sin θγ7 + cos β sin θα1 cos θγ7 ) = 0, (27)

η3R := l2 cos θ2R + l3 cos θ23R − (a6 − lw cos κ) sin β cos θγ7 − (d7 − lw cos κ) cos β

− pz = 0. (28)

Moreover, the elements (1,3), (2,3) and (3,2) of the rotation matrices on both sides of (25) are equated
to obtain:

ζ1R := sin θ23R − sin θα1 (cos φ5R sin θγ7 sin κ + sin φ5R(cos κ cos φ6R sin θγ7

+ cos θγ7 sin φ6R)) + cos θα1 (cos β(sin κ cos φ5R cos θγ7 − sin φ5R(sin φ6R sin θγ7

− cos κ cos φ6R cos θγ7 )) − sin β(sin κ sin φ5R cos φ6R − cos κ cos φ5R)) = 0, (29)

ζ2R := cos θα1 (sin φ5R(cos κ cos φ6R sin θγ7 + cos θγ7 sin φ6R) + cos φ5R sin θγ7 sin κ)

+ cos β sin θα1 (sin φ5R(cos κ cos φ6R cos θγ7 − sin θγ7 sin φ6R))

+ sin β sin θα1 (cos κ cos φ5R − sin κ sin φ5R cos φ6R) = 0, (30)

ζ3R := sin φ4R(cos β sin κ sin φ6R + sin β(sin θγ7 cos φ6R + cos θγ7 sin φ6R cos κ))

+ cos φ4R(sin β(cos θγ7 sin κ sin φ5R − cos φ5R(cos θγ7 cos κ cos φ6R

− sin θγ7 sin φ6R)) − cos β(cos φ5R cos φ6R sin κ + cos κ sin φ5R)) = 0. (31)
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It may be observed that Eqs. (26)–(31) are functions of the seven unknown variables appearing in
the right chain, that is, qR = [θα1 , θ2R, θ23R, φ4R, φ5R, φ6R, θγ7 ]�. From the elements of displacement vec-
tors and rotation matrices of the left and right chains, that is, Eqs. (19)–(24) and Eqs. (26)–(31),
equations with the least number of unknown variables appearing in them are chosen to construct
the set of constraint equations defining the IKP. In this process, the IKP is defined in terms of
the following constraint equations: ηIK = {η1, η2, η3, η4, η5, η6} = 0. In the aforementioned equations,
{η1, η2, η3, η4, η5, η6} = {η1L, η2L, η3L, ζ1L, ζ2L, η2R} (see Eqs. (19)–(23) and (27)) are functions of the
unknown variables q = [θα1 , θ2L, θ23L, φ5L,ψ6L, θγ7 ]�:

η1(θα1 , θγ7 ,ψ6L, θ2L, θ23L) = 0, (32)

η2(θα1 , θγ7 ,ψ6L) = 0, (33)

η3(θγ7 ,ψ6L, θ2L, θ23L) = 0, (34)

η4(θα1 , θγ7 , θ23L, φ5L,ψ6L) = 0, (35)

η5(θγ7 , θ23L, φ5L,ψ6L) = 0, (36)

η6(θα1 , θγ7 ) = 0. (37)

In Eqs. (32)–(37), only the unknown variables are shown explicitly. The remaining six equations,
that is, Eqs. (24), (26) and (28)–(31), are used later to solve for the remaining variables {φ4L, θ2R, θ23R,
φ4R, φ5R, φ6R}. The order of elimination of variables is chosen based on the number of appearances,
starting with the smallest one. In other words, the variable appearing in the lowest number of equations
at each step is eliminated thereafter. This results in the following sequence of variables to be eliminated:
θ2L, φ5L, θ23L,ψ6L, θγ7 . The details of these eliminations are presented in the following.

4.1. Elimination of θ2L

The constraint equations η1 = 0 (see (19)) and η3 = 0 (see (21)) are linear in the sine and cosine of θ2L,
respectively. Hence, the expressions of sin θ2L and cos θ2L are obtained from Eqs. (19) and (21):

sin θ2L = λ1(θα1 , θγ7 ,ψ6L, θ23L)

l2

, cos θ2L = λ2(θγ7 ,ψ6L, θ23L)

l2

, since l2 �= 0. (38)

In (38), the polynomials λ1 and λ2 are functions of the variables θα1 , θγ7 ,ψ6L and θ23L. Substituting the
expressions of sin θ2L and cos θ2L in the trigonometric identity cos2 θ2L + sin2 θ2L = 1 leads to a new
equation in the remaining variables, namely f (θα1 , θγ7 ,ψ6L, θ23L) = 0. The resulting elimination of θ2L is
depicted below schematically:10

η1(θα1 , θγ7 ,ψ6L, θ2L, θ23L) = 0

η3(θγ7 ,ψ6L, θ2L, θ23L) = 0

)
×θ2L−−→ f (θα1 , θγ7 ,ψ6L, θ23L) = 0. (39)

4.2. Elimination of φ5L

Equations η4 = 0 and η5 = 0 (see Eqs. (22) and (23)) are linear in the sine and cosine of (φ5L +ψ6L) and
hence may be represented as:

η4 := i1(θα1 ) cos (φ5L +ψ6L) + j1(θα1 , θγ7 ) sin (φ5L +ψ6L) + k1(θ23L) = 0, (40)

η5 := i2 cos (φ5L +ψ6L) + j2(θγ7 ) sin (φ5L +ψ6L) + k2(θ23L) = 0, (41)

10In this paper, the symbol “ ×x−→” implies the elimination of the variable x from two simultaneous equations in the variable x.
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where the coefficients ii, ji and ki are functions of the variables θ23L,ψ6L and θγ7 . The expressions of
sin (φ5L +ψ6L) and cos (φ5L +ψ6L) are obtained from these equations and substituted in the trigonomet-
ric identity cos2 (φ5L +ψ6L) + sin2 (φ5L +ψ6L) = 1 yielding:

n(θα1 , θγ7 , θ23L) := cos θ23L sin β sin θγ7 − sin θ23L(cos θγ7 sin θα1 + cos β cos θα1 sin θγ7 ) = 0. (42)

The above equation is obtained assuming11 that:

|ij| := (i1j2 − i2j1) �= 0. (43)

Equation (42) represents a kinematic constraint in the unknown variables θα1 , θγ7 , and θ23L. Furthermore,
the conditions i2

1 + j2
1 − k2

1 = 0 and i2
2 + j2

2 − k2
2 = 0 cause repeated roots to satisfy (40) and (41),

respectively. The details of this singularity are discussed in Case 1 in Section 6.2.

4.3. Elimination of θ23L

The constraint equations n = 0 (see (42)) and f = 0 (see (39)) are both linear in the sine and cosine of
θ23L and can be written explicitly in terms of cos θ23L and sin θ23L as:

n := a1(θγ7 ) cos θ23L + b1

(
θγ7 , θα1

)
sin θ23L = 0, (44)

f := a2(θγ7 ,ψ6L) cos θ23L + b2

(
θγ7 , θα1 ,ψ6L

)
sin θ23L + c2

(
θγ7 , θα1 ,ψ6L

)= 0. (45)

As shown in Eqs. (44) and (45), the coefficients ai, bi and ci (i = 1, 2) are functions of the unknown
variables θα1 ,ψ6L and θγ7 . Subsequently, the variable θ23L is eliminated following the procedure described
in Sections 4.1 and 4.2, leading to the equation:

h1

(
θγ7 , θα1 ,ψ6L

)
:= c2

2

(
a2

1 + b2
1

)− |ab|2 = 0. (46)

It is assumed in the above that:

|ab| := (a1b2 − a2b1) �= 0. (47)

Transferring |ab|2 to the right-hand side of (46) and taking square roots of both the sides and rearranging,
one obtains

h
(
θγ7 , θα1 ,ψ6L

)
:= c2μ− |ab| = 0, whereμ

(
θγ7 , θα1

)
:= ±

√
a2

1 + b2
1. (48)

The size12 of the symbolic expression of h is 13.080 KB.
The identification of the form of (46) was made possible solely by the exact symbolic approach

adopted in this work. It has allowed the reduction of this equation to (48), a step which is of critical
importance in the symbolic computation scheme leading to the final univariate equation. It is a key
enabler in permitting the computation to continue in the exact symbolic form, for two reasons: (a) it
halves the degrees of the relevant variables appearing in (46) and (b) it helps in reducing the sizes of
the expressions involved rather dramatically, without which the subsequent computations would have
been rendered impractical (due to the demands on computational resources and time) or even infeasible.
Consider, for instance, (53), which is derived below after a few steps. If it were to be derived directly
from (46), it would have had a size of 6.110 MB, which might have deterred subsequent symbolic com-
putations. Also, the equation p = 0 would have been a quartic in the variable c6, making its elimination
significantly more difficult in the computations that follow the derivation of (53). However, when the
same equation is derived from (48), not only p becomes a quadratic function of c6, as an expression, its

11It may be noted that in the case when i1j2 − i2j1 = 0 (refer to (43)), Eqs. (40) and (41) become linearly dependent and the
elimination procedure presented no longer holds true. This could occur due to the choice of the constraint equations and, therefore,
does not necessarily lead to a singularity in the manipulator.

12In this article, the “size” of an expression refers to the amount of memory used internally by the CAS used in this work,
namely Mathematica [31], to store and use the expression for performing symbolic computations. It is computed using the
built-in command ByteCount.
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size is reduced to only 19.232 KB, that is, it is reduced by a factor greater than 300. As mentioned in
Section 7, this and similar custom-developed techniques in symbolic computation allow the derivation
of the key results in this paper.

It may be noted from (44) that θ23L has finite number of values iff:

μ �= 0 ⇒ a2
1 + b2

1 �= 0. (49)

The condition |ab| = 0 (see (47)), also caused13 by μ= 0 (see (48)), results in a singularity of the
manipulator. The details of the singularity are discussed in Case 2 in Section 6.2. Further, the con-
dition a2

2 + b2
2 − c2

2 = 0 leads to a double root of (45). The corresponding singularity is also studied in
Section 6.2, in Case 3. It is worth mentioning that a merger of the solutions of the variable θ23L leads to
a repeated solution of the variable θ2L as well.

4.4. Elimination of ψ6L

The constraint equation η2 = 0 (see (20)) is linear in the cosine and sine of ψ6L or, equivalently, linear
in {c6,s6}, where c6 = (a6 − lw cosψ6L) and s6 = (d7 − lw sinψ6L). Therefore, for the sake of conve-
nience, η2 = 0 (see (20)) and h = 0 (see (48)) are written in terms of {c6,s6} leading to the equations
g1

(
θγ7 , θα1 , c6, s6

)= 0 and g2

(
θγ7 , θα1 , c6, s6

)= 0, respectively:

η2

(
θγ7 , θα1 ,ψ6L

)= 0
ψ6L→c6,s6−−−−−→ g1

(
θγ7 , θα1 , c6, s6

)= 0,

h
(
θγ7 , θα1 ,ψ6L

)= 0
ψ6L→c6,s6−−−−−→ g2

(
θγ7 , θα1 , c6, s6

)= 0.
(50)

In the above, the symbol ‘ ψ6L→c6,s6−−−−−→’ implies the absorption of the trigonometric variables of ψ6L into
the algebraic variables s6 and c6. Subsequently, the expression of s6 is obtained in terms of c6 from
g1

(
θγ7 , θα1 , c6, s6

)= 0:14

s6 = 1

sin β sin θα1

ζ
(
θγ7 , θα1 , c6

)
, assuming sin β sin θα1 �= 0. (51)

Substituting s6 from (51) in the modified trigonometric identity (a6 − c6)2 + (d7 − s6)2 = l2
w yields a

quadratic equation in c6, denoted by g
(
θγ7 , θα1 , c6

)= 0:

g1

(
θγ7 , θα1 , c6, s6

)= 0

(a6 − c6)2 + (d7 − s6)2 − l2
w = 0

)
×s6−→ g

(
θγ7 , θα1 , c6

)= 0. (52)

Likewise, the expression of s6 presented in (51) is substituted in g2 = 0 (see (50)) to obtain a quadratic
in c6 of size 19.232 KB, namely p

(
θγ7 , θα1 , c6

)= 0:

g1

(
θγ7 , θα1 , c6, s6

)= 0

g2

(
θγ7 , θα1 , c6, s6

)= 0

)
×s6−→ p

(
θγ7 , θα1 , c6

)= 0. (53)

Hereafter, the equations g = 0 and p = 0 may be represented as:

g
(
θγ7 , θα1 , c6

)
:= a3c

2
6 + b3c6 + c3 = 0, (54)

p
(
θγ7 , θα1 , c6

)
:= a4c

2
6 + b4c6 + c4 = 0, (55)

13It is observed that c2 = 0 (see (48)) makes the Eqs. (44) and (45) linearly dependent. It is interesting to note that this could be
attributed to the choice of the constraint equations and hence, the manipulator need not encounter a singularity if c2 = 0.

14It is important to emphasise that when sin β sin θα1 = 0 an alternative procedure involving the determination of c6 from g1 = 0
is to be pursued. The detailed process is not included for the sake of brevity. The obtained expression of c6 is then substituted in the
modified trigonometric identity (a6 − c6)2 + (d7 − s6)2 − l2w = 0 and g2 = 0 to obtain the equations g = 0 and p = 0, respectively.
Subsequently, the resultant of g = 0 and p = 0 with respect to c6 yields q = 0. However, the singularity μ= 0 is encountered when
both the coefficients of c6 and s6 are zero, the details of which are discussed in Case 2 of Section 6.2.
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where the coefficients ai, bi and ci (i = 3, 4) are functions of the variables θγ7 and θα1 . Simultaneous
satisfaction of the conditions b2

3 − 4a3c3 = 0 and b2
4 − 4a4c4 = 0 causes the roots of Eqs. (54) and (55) to

repeat. The corresponding singularity is discussed under Case 4 in Section 6.2. The resultant15 of p = 0
and g = 0 with respect to c6 eliminates16 the variable and leads to a new equation q

(
θγ7 , θα1

)= 0 of size
839.088 KB:

p
(
θγ7 , θα1 , c6

)= 0

g
(
θγ7 , θα1 , c6

)= 0

)
×c6−→ q

(
θγ7 , θα1

)= 0. (56)

As noted before, the elimination of c6 was greatly facilitated by the reduction of (46) to (48).
Continuing further, the function q = 0 was simplified symbolically,17 which afforded its factorisation in
the following manner:

q
(
θγ7 , θα1

)
:=μ3 sin2 β sin2 θα1δ

(
θγ7 , θα1

)= 0, (57)

where δ
(
θγ7 , θα1

)
is a cubic polynomial in μ. Since it has already been assumed that μ �= 0 and

sin β sin θα1 �= 0 (in the context of Eqs. (49) and (51)), (57) reduces to δ
(
θγ7 , θα1

)= 0, which may be
written as:

δ
(
θγ7 , θα1

)
:= m0μ

3 + m1μ
2 + m2μ+ m3 = 0. (58)

The coefficients in (58), namely mi, are also functions of the variables θγ7 and θα1 . Since it is known
(from (48)) that μ2 = a2

1 + b2
1, (58) is manipulated to derive its equivalent, cast in terms of μ2:

δ1

(
θγ7 , θα1

)
:= (m0μ

2 + m2)2μ2 − (m1μ
2 + m3)2 = 0. (59)

Direct substitution of the expressions of the coefficients mi andμ2 in (59) leads to the following equation
free of radicals:

δ1

(
θγ7 , θα1

)= 0

μ2 − (
a2

1 + b2
1

)= 0

)
×μ2−→ r

(
θγ7 , θα1

)= 0. (60)

However, the size of r
(
θγ7 , θα1

)
, even after rigorous simplification, stands at 216.140 MB. It is reduced

in the next step, before proceeding further.

4.5. Elimination of θγ7

The expression r
(
θγ7 , θα1

)
turns out to be cubic in cos θγ7 . However, using the identities:

cos2m θα1 = (
1 − sin2 θα1

)m
, m ∈Z

+, (61)

(60) is reduced to:

rl

(
θγ7 , θα1

)= 0. (62)

15All the resultants computed in this paper employed the built-in function Resultant of the CAS Mathematica [31].
16It may be noted that when a3b4 − b3a4 vanishes, Eqs. (54) and (55) become linearly dependent and the procedure of elim-

ination fails. This is typically a mathematical artefact of the computation scheme, and as such, it does not necessarily imply a
physical singularity of the actual manipulator.

17All symbolic simplifications mentioned in this paper were performed using the customised schemes introduced in Section 3
of [24], the details of which are omitted for the want of space.
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The polynomial rl is linear in cos θγ7 . Furthermore, this reduction results in fewer coefficients, which,
upon symbolic simplification, shrink to the size of 89.311 MB. It may be noted here that the equation
η6 = 0 (see (27)), is also linear in cos θγ7 and sin θγ7 , from which one can find cosθγ7 in terms of sin θγ7 :18

cos θγ7 = ν
(
θα1 , sin θγ7

)
(a6 − lw cos κ) cos β sin θα1

, assuming (a6 − lw cos κ) cos β sin θα1 �= 0. (63)

In (63), ν
(
θα1 , sin θγ7

)
is linear in cos θα1 , sin θα1 and sin θγ7 . Substituting the expression of cos θγ7 in (62)

results in a sextic equation in sin θγ7 , namely u1

(
θα1 , sin θγ7

)= 0:

η6

(
θγ7 , θα1

)= 0

rl

(
θγ7 , θα1

)= 0

)
× cos θγ7−−−−→ u1

(
θα1 , sin θγ7

)= 0. (64)

It may be noted here that the reduction of (60) to (62) is yet another improvisation in symbolic compu-
tation which has played a crucial role in the derivation of the inverse kinematic univariate (IKU) in its
symbolic form. Specifically, if the equation r = 0 was used in (64) instead of rl = 0, the resulting size
of u1 would have been 191.635 MB. However, due to the said reduction, the actual size turns out to be
79.873 MB, which allows the computation to proceed further.

In the next step, the expression of cos θγ7 (from (63)) is substituted in the trigonometric identity
cos2 θγ7 + sin2 θγ7 = 1, to obtain a quadratic equation in sin θγ7 , namely u2

(
θα1 , sin θγ7

)= 0:

η6

(
θγ7 , θα1

)= 0

cos2 θγ7 + sin2 θγ7 − 1 = 0

)
× cos θγ7−−−−→ u2

(
θα1 , sin θγ7

)= 0. (65)

Eliminating sin θγ7 between Eqs. (64) and (65) yields the univariate equation in θα1 , that is, u(θα1 ) = 0,
which is of total degree 26 in sin θα1 and cos θα1 :

u1

(
θα1 , sin θγ7

)= 0

u2

(
θα1 , sin θγ7

)= 0

)
× sin θγ7−−−→ u(θα1 ) = 0. (66)

Therefore, one may arrive at the final univariate polynomial from (66), as described in the next
subsection. However, before that, a few special cases must be considered, for the sake of completeness.

It may be noted that repeated roots in the sextic equation u1 = 0 (see (64)) and the quadratic equation
u2 = 0 (see (65)) cause the manipulator to encounter a singularity. The sextic u1 = 0 (see (64)) is a
polynomial equation in s7 = sin θγ7 and its discriminant may be obtained as:

�1 = res

(
u1,

∂u1

∂s7

, s7

)
. (67)

In (67), res (a(x), b(x), x) denotes the resultant of the polynomials a(x) and b(x) w.r.t. x. Further, Equation
(65) may be written as:

u2

(
θα1 , sin θγ7

)
:= a5 sin2 θγ7 + b5 sin θγ7 + c5 = 0. (68)

In (68), the coefficients a5, b5 and c5 are functions of θα1 alone. Hence, the manipulator encounters a
singularity when the discriminants of Eqs. (64) and (65), that is,�1 (see (67)) and b2

5 − 4a5c5 (see (68)),
respectively, vanish simultaneously. The corresponding singularity is studied as Case 5 in Section 6.2.

18It is worth mentioning that if cos β sin θα1 = 0 (the term (a6 − lw cos κ) cannot vanish for the values of architecture parame-
ters chosen in this article (see Table III)) an alternative procedure requiring the calculation of sin θγ7 from (27) is to be pursued.
The process, being very similar to the one used above, is explained very briefly for the sake of completeness. The expression
of sin θγ7 is substituted in rl = 0 and the trigonometric identity cos2 θγ7 + sin2 θγ7 − 1 = 0 to yield equations u1 = 0 and u2 = 0,
respectively. Thereafter, the resultant of u1 = 0 and u2 = 0 with respect to cos θγ7 results in u = 0. However, when both the coeffi-
cients of cos θγ7 and sin θγ7 vanish, that is, cos2 θα1 + cos2 β sin2 θα1 = 0, a singularity is encountered, as discussed in Case 1 in
Section 6.2.
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Table III. Values of the architecture parameters (see Fig. 1) of the manipulator used for the
numerical examples.

Parameter d2 l2 l3 lw κ a6 d7

Value
1

2
3

269

100
1

2π

3

1

2

1

2

4.6. Derivation of the IKU equation
In the following, the total degree of the equation u = 0 (66) in sin θα1 and cos θα1 is brought down from
26 to 20 through the identification and subsequent rejection of spurious factors, which are associated
with singular solutions. Once again, this is an important step involving symbolic simplification and
factorisation, without which the final univariate polynomial equation, that is, the IKU, would have been
of degree 52, and not 40, as it is in (74).

The elimination process in (66) is simplified by rewriting u1 = 0 and u2 = 0 as polynomial equations
in sin θγ7 :

u1 := τ (θα1 )u16 sin6 θγ7 + u15 sin5 θγ7 + u14 sin4 θγ7 + u13 sin3 θγ7

+ u12 sin2 θγ7 + u11 sin θγ7 + u10 = 0, (69)

u2 := τ (θα1 ) sin2 θγ7 + u21 sin θγ7 + u20 = 0. (70)

In the preceding equations, the coefficients uij are functions of θα1 ; also,

τ (θα1 ) := cos2 θα1 + cos2 β sin2 θα1 . (71)

Thus, the resulting equation u(θα1 ) = 0 obtained by the elimination of sin θγ7 from Eqs. (69) and (70)
depends on uij(θα1 ) and τ (θα1 ), that is, ultimately, on θα1 alone. It is interesting to note that τ (θα1 ) = 0
trivially satisfies (70) and therefore, τ (θα1 ) �= 0 for θγ7 to have finite number of values. Expressing
u(θα1 ) = 0 in terms of the coefficients uij affords the advantage of yielding the factor τ 2(θα1 ) without
having to handle the large-sized expressions of uij:

u(θα1 ) := τ 2(θα1 )w1(θα1 ) = 0, (72)

where w1(θα1 ) is a function of uij. As the factor τ (θα1 ) appears in the leading coefficients of Eqs. (69) and
(70), the manipulator encounters a singularity when τ (θα1 ) = 0, which is described in Case 1 of Section
6.2. Therefore, in the non-singular cases, the relevant part of (72) is given by w1(θα1 ) = 0. Subsequently,
the actual expressions of the variables uij are substituted in w1 = 0, along with the architecture parame-
ters mentioned in Table III, which increases the size of w1 = 0 significantly to 25.388 MB even before
its symbolic expansion, making further computation time-consuming and computationally complex. To
overcome the aforementioned issues, the coefficients uij are transformed to the respective monomial-
based canonical (MBC) forms (see ref. [24], Section 3, for the details), treating sin θγ7 and cos θγ7 as
algebraic variables. Consequently, substituting these expressions of the coefficients uij in w1 = 0 results
in w2(sin θα1 , cos θα1 ) = 0, which is a polynomial of total degree 22 in sin θα1 and cos θα1 . The maxi-
mum degrees of cos θα1 and sin θα1 in w2(θα1 ) are 4 and 22, respectively. Subsequently, w2 is reduced
to a linear function of cos θα1 using the identities mentioned in (61), which is represented as ws(sin θα1 ,
cos θα1 ) = 0. Furthermore, the coefficients of each term of the form sinns θα1 cosnc θα1 , where ns, nc ∈N,
are isolated and simplified individually (due to the use of the MBC form), which reveals that the coef-
ficients of the following terms vanish identically: sin θα1 , cos θα1 and cos θα1 sin θα1 , and so does the
constant term (i.e., the term corresponding to nc = ns = 0). Once again, identification of such structural
properties of the polynomial has been made possible only due to the application of specialised sym-
bolic simplification routines, and it leads to a factorisation of ws = 0 in the following manner, which
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was otherwise intractable using the default routines provided by the CAS due to extreme complexity of
the computations involved:

ws(θα1 ) := sin2 θα1 ξ (θα1 ) = 0. (73)

In (73), ξ (θα1 ) is a polynomial of total degree 20 in sin θγ7 and cos θγ7 . Moreover, (73) reduces to
ξ (θα1 ) = 0 as sin θα1 �= 0, as explained in the context of (63). Subsequently, the equation ξ = 0 is con-
verted to its algebraic form, in terms of t1 = tan (θα1/2), to obtain an IKU of degree 40, v(t1) = 0, in the
new unknown t1:

v(t1) := ϑ0t40
1 + ϑ1t

39
1 + ϑ2t38

1 + . . .+ ϑ38t
2
1 + ϑ39t1 + ϑ40 = 0. (74)

It may be appreciated at this point that without the detailed multi-step and specialised symbolic manip-
ulations and simplifications, the explicit understanding of the structure of the polynomial equations
involved and their factorisations would not have been possible. Consequently, one would have obtained
an IKU of degree 52, as noted before. Because of all the steps mentioned above, the final polynomial
equation has been obtained in its minimal degree, without any spurious roots.19 Furthermore, in (74),
the coefficients ϑi are explicit symbolic functions of the task-space coordinates, which ensures that the
nature of the analysis is generic over the entire task space. Consequently, the expressions of the coef-
ficients are huge in their sizes,20 as listed below (in GBs), starting from that of ϑ0, running through to
ϑ40:

{0.872, 1.691, 4.228, 7.515, 13.393, 20.658, 30.779, 41.951, 55.085, 67.850, 80.946, 91.987,

102.013, 109.060, 114.839, 117.865, 120.333, 120.874, 121.749, 121.380, 70.737, 121.380,

121.749, 120.874, 120.333, 117.865, 114.839, 109.060, 102.013, 91.987, 80.946, 67.850,

55.085, 41.951, 30.779, 20.658, 13.393, 7.515, 4.228, 1.691, 0.872}. (75)

The above-mentioned large-sized expressions could only be manipulated by expressing them as polyno-
mials in the nested canonical form (see ref. [24], Section 3, for the details) in the position coordinates of
the end-effector, p, such that each of their coefficients reduced to only a few kilobytes in size and is solely
in terms of the trigonometric functions of the Euler angles expressing the orientation of the end-effector
frame. This improvisation not only reduces the computational complexity involved in simplification but
also leads to significant reduction in sizes of the subsequent expressions.

The IKU equation is derived and solved in the context of a numerical example in Section 5.2, and
the results are presented in Table VI and Fig. 4. Furthermore, due to the symbolic nature of the IKU,
its discriminant, �2, may be computed as below, the vanishing of which is the condition for a repeated
root of the IKU, implying a singularity.

�2 = res

(
v,
∂v

∂t1

, t1

)
. (76)

The corresponding singularity is discussed in Case 6 of Section 6.2.
With the knowledge of 40 solutions of θα1 from the solution of the IKU equation, the corre-

sponding solutions of θγ7 ,ψ6L, θ23L, φ5L and θ2L are obtained from Eqs. (37) and (60), Eqs. (33), (46),
and (47), Eqs. (22), (23) and (38), respectively, leading to a set of 40 solutions of the variables
{θα1 , θγ7 ,ψ6L, θ23L, φ5L, θ2L}.

19It has been checked independently in the numerical algebraic geometry tool Bertini [32] that there are 40 branches of (finite)
solutions in the complex plane to the IKP, which corroborates with the findings of this paper and supports the claim of minimality
of the derived IKU.

20The computations corresponding to obtaining the coefficients of the IKU as functions of task-space coordinates have been
performed on a server with 256 GB RAM and AMD� OpteronTM 6376 running at 2.3 GHz clock speed.
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Table IV. Forward kinematics solutions for θ1 = π

10
, θ2L = π

3
, θ3L = π

6
, θ2R = π

6
, θ3R = π

3
and θ7 = π

4
, the corresponding poses of which are displayed

in Fig. 2.

Branch φ4L φ5L φ6L φ4R φ5R φ6R px py pz α β γ eFK(× 10−16)
1 −0.83211 −0.24301 2.35431 −0.83211 2.11130 0 5.17431 1.03851 2.72026 1.19556 2.27373 −1.27501 1.11022
2 2.30948 −2.11130 2.35431 2.30948 0.24301 0 3.48671 1.28818 1.89027 0.92429 2.13239 1.70523 0.62063
3 −0.83211 −1.03030 −2.35431 −0.83211 2.89858 0 4.82610 1.48742 2.13329 2.28938 2.36092 −0.49020 0.62063
4 2.30948 3.38460 −2.35431 2.30948 1.03030 0 4.26210 1.57135 1.85425 0.32554 1.58329 1.52416 1.11022
5 −0.83211 −0.24301 2.35431 2.30948 −2.11130 3.14159 5.17431 1.03851 2.72026 1.19556 2.27373 −1.27501 1.11022
6 2.30948 −2.11130 2.35431 −0.83211 −0.24301 3.14159 3.48671 1.28818 1.89027 0.92429 2.13239 1.70523 0.62063
7 −0.83211 −1.03030 −2.35431 2.30948 −2.89858 3.14159 4.82610 1.48742 2.13329 2.28938 2.36092 −0.49020 0.62063
8 2.30948 3.38460 −2.35431 −0.83211 −1.03030 3.14159 4.26210 1.57135 1.85425 0.32554 1.58329 1.52416 1.11022

https://doi.org/10.1017/S0263574723000334 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0263574723000334


Robotica 19

Table V. Monic form of the IKU in (74) for α = 1.19556, β = 2.27373, γ = −1.27501, px =
5.17431, py = 1.03851 and pz = 2.72026.

Coefficient Term Coefficient Term Coefficient Term Coefficient Term
12.23931 t39 −5494.26626 t29 −1874022.90191 t19 −28,861.44935 t9

66.27187 t38 −313847.64900 t28 325810.99841 t18 −6922.19929 t8

200.50021 t37 −290216.59880 t27 1330215.97448 t17 9796.91903 t7

282.39213 t36 532500.99114 t26 −431064.77342 t16 −2890.36845 t6

−469.31658 t35 921007.08077 t25 −676029.67510 t15 −513.66449 t5

−3795.72323 t34 −541401.12877 t24 388719.92885 t14 720.26687 t4

−9333.32596 t33 −1627476.72169 t23 198961.53564 t13 −281.97621 t3

−3736.82898 t32 364320.84149 t22 −221421.39467 t12 60.74087 t2

40,005.59585 t31 2009887.81427 t21 3353.56737 t11 −7.28261 t1

94,474.52047 t30 −252378.62487 t20 71,247.08879 t10 0.38293 t0

4.7. Calculation of the remaining unknown variables
In the following, a procedure for obtaining the variables which remain unknown till this point, that is,
θ2R, θ23R, φ4L, φ4R, φ5R, and φ6R, is explained.

Equations (26) and (28) are linear in the sine and cosine of the angles θ2R and θ23R. Hence, the
expressions of cos θ23R and sin θ23R are calculated from Eqs. (26) and (28), respectively:

cos θ23R = ε1(θγ7 , θ2R)

l3

, sin θ23R = ε2(θα1 , θγ7 , θ2R)

l3

, since l3 �= 0, and

ε1(θγ7 , θ2R) := pz + (d7 − lw sin κ) cos β + (a6 − lw cos κ) sin β cos θγ7 − l2 cos θ2R, (77)

ε2(θα1 , θγ7 , θ2R) := px cos (α− θα1 ) + py sin (α− θα1 ) + (d7 − lw sin κ) cos θα1 sin β

+ (a6 − lw cos κ)(sin θα1 sin θγ7 − cos β cos θα1 cos θγ7 ). (78)

Thereafter, substituting the expressions of cos θ23R and sin θ23R from (77) in the identity cos2 θ23R +
sin2

θ23R = 1 results in equation o(θα1 , θγ7 , θ2R) = 0:

o(θα1 , θγ7 , θ2R) := o1(θγ7 ) cos θ2R + o2(θα1 , θγ7 ) sin θ2R + o3(θγ7 ) = 0. (79)

In (79), the coefficients oi are functions of θα1 and θγ7 . Subsequently, the equation is solved for known
values of θα1 and θγ7 , resulting in 80 solutions of the variables {θα1 , θγ7 ,ψ6L, θ23L, φ5L, θ2L, θ23R, θ2R}, in
the general case. It may be noticed that a singularity is encountered when o2

1 + o2
2 − o2

3 vanishes, as the
solutions of the variables θ2R and θ23R merge in this condition. This is discussed in detail in Section 6.2,
in Case 7.

The remaining passive joint variables, namely φ4L, φ4R, φ5R and φ6R may be obtained using Eqs. (11),
(14)–(16), for the known values of the active joint angles and the passive joint angles φ5L, φ6L. Since
the solution procedure for calculating the passive joint variables for the known active joint angles has
previously been covered as part of the FKP in Section 3, the corresponding details are not presented
here again for the sake of brevity. While the variable φ4L has a unique solution, the variables φ4R, φ5R

and φ6R have two sets of solutions. Thus, in total, the IKP leads to a total of 160 solutions (including
complex ones) for a generic pose of the end-effector in SE(3).

It may be noted, however, that even though the total number of solutions is rather high at 160, the
actual physical situation is not really as complex. There are only 40 main/independent branches of solu-
tions, which is not uncharacteristically high in the domain of kinematics, as the general 6-6-Stewart
platform manipulator has the same number of solutions for its FKP [25], and the SNU 3-UPU has 78
solutions to its FKP [26]. Within each of these 40 main branches, four sub-branches appear, two of which
essentially correspond to the elbow-up and elbow-down configurations of the right 2-R arm at the elbow
joint eR. It is interesting that the other two sub-branches, which are attributed to the spherical joint at pR,
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Table VI. Inverse kinematics solutions for α = 1.19556, β = 2.27373, γ = −1.27501, px = 5.17431, py = 1.03851 and pz = 2.72026, the correspond-
ing poses of which are displayed in Fig. 4.

Branch θ 1 θ 2L θ 3L θ 2R θ 3R θ 7 φ4L φ5L φ6L φ4R φ5R φ6R eIK(× 10−6)
1 0.23523 1.78022 −0.95775 0.57762 1.05418 1.21708 −0.88969 0.83837 −4.38393 −1.29552 1.99699 −0.52421 5.50971
2 0.23523 1.78022 −0.95775 0.57762 1.05418 1.21708 −0.88969 0.83837 −4.38393 1.84607 −1.99699 2.61738 5.50971
3 0.23523 1.78022 −0.95775 1.56841 −1.05418 1.21708 −0.88969 0.83837 −4.38393 −0.04847 2.89120 0.88031 5.50971
4 0.23523 1.78022 −0.95775 1.56841 −1.05418 1.21708 −0.88969 0.83837 −4.38393 3.09312 −2.89120 −2.26128 5.50971
5 0.30984 1.08507 0.44881 0.52456 1.05176 0.80977 −0.84354 −0.26981 −3.87174 −0.86086 2.10968 −0.03287 5.34075
6 0.30984 1.08507 0.44881 0.52456 1.05176 0.80977 −0.84354 −0.26981 −3.87174 2.28073 −2.10968 3.10872 5.34075
7 0.30984 1.08507 0.44881 1.51310 −1.05176 0.80977 −0.84354 −0.26981 −3.87174 0.30196 2.51557 1.48951 5.34075
8 0.30984 1.08507 0.44881 1.51310 −1.05176 0.80977 −0.84354 −0.26981 −3.87174 −2.83963 −2.51557 −1.65208 5.34075
9 0.31416 1.04721 0.52357 0.52360 1.04720 0.78541 −0.83211 −0.24302 −3.92885 −0.83212 2.11130 −0.00001 5.32751

10 0.31416 1.04721 0.52357 0.52360 1.04720 0.78541 −0.83211 −0.24302 −3.92885 2.30947 −2.11130 3.14158 5.32751
11 0.31416 1.04721 0.52357 1.50791 −1.04720 0.78541 −0.83211 −0.24302 −3.92885 0.30076 2.49250 1.50386 5.32751
12 0.31416 1.04721 0.52357 1.50791 −1.04720 0.78541 −0.83211 −0.24302 −3.92885 −2.84084 −2.49250 −1.6377 5.32751
13 0.33645 0.79789 0.95181 0.52315 1.01417 0.65487 −0.75849 0.13405 −4.44948 −0.67751 2.10789 0.179027 4.78108
14 0.33645 0.79789 0.95181 0.52315 1.01417 0.65487 −0.75849 0.13405 −4.44948 2.46408 −2.10789 −2.96257 4.78108
15 0.33645 0.79789 0.95181 1.47681 −1.01417 0.65487 −0.75849 0.13405 −4.44948 0.28149 2.37059 1.56666 4.78108
16 0.33645 0.79789 0.95181 1.47681 −1.01417 0.65487 −0.75849 0.13405 −4.44948 −2.86010 −2.37059 −1.57493 4.78108

https://doi.org/10.1017/S0263574723000334 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0263574723000334


Robotica 21

(a) (b)

Figure 3. Geometric relations between some of the FK branches shown in Fig. 2. The view angles have
been chosen so as to enhance the visual clarity in the 2-D figures.

result in the same physical configuration of the manipulator, as seen in Fig. 4. Thus, one can summarise
the situation as having 40 branches of solution, each with two possible configurations of the right arm.

5. Numerical examples
In this section, the theoretical developments presented so far are illustrated via numerical examples.
The FKP is solved first for a given set of inputs. The resulting pose of the manipulator is used as the
input to the IKP, which provides an intrinsic means of validating the results of both. The values of the
architecture parameters used are listed in Table III. All the lengths and angles mentioned in this paper
are measured in metres and radians, respectively. Real values, such as 0.5 and 2.69, have been replaced
by 1

2
and 269

100
, respectively, to take advantage of the exact arithmetic computations afforded by the CAS

employed, as opposed to the default floating-point operations.

5.1. Forward kinematics
The numerical values of the active joint angles are chosen as θ1 = π

10
, θ2L = π

3
, θ3L = π

6
, θ2R = π

6
,

θ3R = π

3
and θ7 = π

4
. The values of the passive joint angles obtained are listed in Table IV, and the

corresponding poses of the manipulator are depicted in Fig. 2. It is interesting to note that two dis-
tinct branches of solutions to the FKP result in identical poses of the manipulator (as indicated in the
subcaptions in Fig. 2). In other words, mathematically speaking, there are eight branches to the solu-
tions of FKP, which manifest, in the general case, only as four distinct physical poses. This is due to
the parametrisation of the passive spherical joint at pR in terms of the variables φ4R, φ5R and φ6R, which
correspond to a set of Euler angles, which allow two distinct sets of values to describe the same physi-
cal orientation. Specifying the active variables {θ1, θ2L, θ2R, θ3L, θ3R} locates pL and pR uniquely in space.
Therefore, the 2-R chain pL-p-pR can be assembled, in general, in two different manners, analogous to
the “elbow-up” and “elbow-down” configurations appearing in the IK of planar 2-R manipulators, as
seen in the poses 1 (or 5) and 3 (or 7), in Fig. 3(a). These configurations of the chain pL-p-pR, being
mirror-symmetric about the line pLpR, share the same plane. This is reflected by the common value of
φ4L between these two branches (see Table IV), since the orientation of the plane containing the chain
pL-p-pR is governed by φ4L. As may be expected, these geometric conditions continue to hold good when
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the passive joint variable φ4L undergoes a change by ±π starting from its value at pose 1 (or, 3, 5, 7)
results in the pose 2 (or 4, 6, 8, respectively), as seen in poses 1 and 2, in Fig. 3(b). The same is reflected
in the values of φ4L, as seen in Table IV.

Each branch of solution is validated numerically by substituting them back in the original constraint
equations, namely Eqs. (6) and (13), and computing their residue as the vector ηFK = [ηFKL, ηFKR]�. A
scalar measure of error, eFK , is then introduced via the norm of this residue:

eFK = ‖ηFK‖. (80)

The solutions are deemed accurate if eFK ≤ 10−10. The last column of Table IV tabulates the actual values
of eFK corresponding to all the branches of solutions.

A Mathematica “demonstration” (i.e., a GUI) has been developed to simulate finite inputs at the
active joints and to visualise the corresponding motions via on-screen animation. A simple example is
captured in the video file animation_forward_kinematics_H6A.mp4, wherein each joint is jogged,
albeit virtually, over finite ranges of inputs by manipulating individual sliders.

5.2. Inverse kinematics
The end-effector pose defined by α = 1.19556, β = 2.27373, γ = −1.27501, px = 5.17431, py =
1.03851 and pz = 2.72026, obtained in the first and fifth branches of forward kinematic solutions in
Table IV of Section 5.1, is used as input for performing the IKP.

As mentioned in Section 4, the symbolic expressions of the coefficients of the IKU equation (see (74))
are huge in size (see (75)). Therefore, even though these expressions are exact in nature, the numerical
values they yield after substitution of input variables as floating point numbers may incorporate signif-
icant error, due to accumulation of truncation errors associated with floating-point arithmetic. Hence,
floating-point numbers are replaced by their rational approximations (accurate up to the fifth digit after
the decimal), in order to pursue numerical computations in the exact form, to the extent possible. The
resulting IKU equation, that is, the numerical version of (74), is expressed in the monic21 form and its
coefficients, truncated to the fifth place after the decimal, are presented in Table V.

The IKU equation has been solved using the built-in routine Solve of Mathematica.
The values of joint angles corresponding to the real roots of the IKU are listed in Table VI, and the

poses of the manipulator corresponding to the branches are shown in Fig. 4. Similar to the solutions of
FKP, it may be seen here that a pair branches of mathematical solutions of the IKP result in the same
physical pose (see Table VI and Fig. 4). The IKP solutions can also be grouped pairwise into elbow-
up and elbow-down configurations of the right arm, as can be seen, for example, in Fig. 4(a) and (b),
respectively, the said elbow joint being located at eR.

As in the case of the FKP, a scalar measure of error is defined by referring back to the original
constraint equations, namely Eqs. (18) and (25):

eIK = ‖ηIK‖. (81)

However, due to much greater complexity of computations involved in this case, for example, the solution
of the 40-degree IKU equation, the acceptable limit on the error is set at eIK ≤ 10−5. It may be noted that
this limit is adequately small for these computations, as it is seen, for example, the inverse kinematic
solution branches (9, 10) in Table VI match with the corresponding forward kinematic solution branches,
namely (1, 5) in Table IV, up to the fourth place after the decimal. The last column of Table VI lists the
measure of error in each branch of solution.

21A polynomial/equation is called monic when the leading coefficient equals unity.
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Figure 4. Poses depicting the real solutions to the inverse kinematic problem for the given inputs
(enumerated as per the rows of Table VI).
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Figure 5. A schematic depicting the setup for the trajectory-tracking simulation. The manipulator is
depicted at the initial point of the path, which is chosen to be pose 1 shown in Fig. 2(a), conforming
to FK branch 1 in Table IV. The path corresponding to this branch of FK, which is computed first as
per the actuator inputs given by Eq. (82), is shown by magenta dots. It is subsequently tracked by the
manipulator, following the IK branch 9, whose initial point is listed in Table VI. The evolution of the
end-effector frame, xeyeze, is shown by the triad of mutually orthogonal arrows in the RGB convention,
with “R” denoting X, and so on. Only a few sets of target frames are shown to avoid clutter. The simu-
lation has been captured in the video file animation_inverse_kinematics_H6A.mp4 associated with this
paper. (Reference to colours pertain to the digital version of this article.)

5.3. Forward and inverse kinematics along joint-space trajectories
In the above, the results obtained in the FK and IK analyses have been validated for their numerical
accuracies by evaluating their residues independently, and also by checking one against the other for a
given set of inputs. In the following, the same is repeated for a finite span of motion of the manipulator, by
making it follow a given trajectory in its active joint space. Without any loss of generality, it is assumed
that the manipulator starts from rest and also comes to a complete halt at the end of the trajectory.

The initial configuration of the robot is chosen to be pose 1 shown in Fig. 2(a) that belongs to FK
branch 1 in Table IV. The set of active angles in this configuration is denoted by θ I. For the final pose, the

active angles, given by θF = [θ1F , θ2LF , θ2RF , θ3LF , θ3RF , θ7F ]� =
[
−7π

30
,
π

6
, 0,

π

2
,

7π

12
,

5π

12

]�
, are chosen

arbitrarily. Nevertheless, care is taken to ensure (by visual inspection) that the links of the manipulator
do not interfere while executing this trajectory.

The active joint variables at any time t ∈ [0, Tm] are obtained by a cubic interpolation of θ I and θF,
subjected to the static end conditions mentioned above:

θ(t) = θ I +
(

3 − 2t

Tm

)(
t

Tm

)2

(θF − θ I), (82)

where Tm is the duration of motion. Equation (82) is used to sample θ (t) uniformly at n points (n being
50 in the present case), to obtain n sets of inputs to the FK problem, denoted by θ i = θ (iTm/n), i =
1, 2, . . . , n. For each θ i, FK is performed following the solution procedure presented in Section 3 to
determine the end-effector coordinates, X i = [xi, yi, zi, αi, βi, γi]. All the passive angles are also computed
in the process. The variations in the angles φ4L, φ4R, φ5L, φ5R, φ6L and φ6R w.r.t. time are plotted in Fig. 6.
Among the eight FK branches obtained for each θ i, only the first branch (i.e., corresponding to the first
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Figure 6. Variations of the passive joint angles with time, as obtained from forward and inverse kine-
matic analysis. The IK branch 9 retraces the FK branch 1, as expected, the apparent mismatch in the
values of φ6L being due to a difference of 2π , which is trivial. It may also be noted that in the cases of
φ4R and φ6R, IK branch 10 differs from the IK branch 9 by π , while they have the opposite signs in the
case of φ5L.

row in Table IV) is considered at all the time instances, since the initial pose corresponds to this branch.
These plots provide the references for the IK solutions to be validated.

Inverse kinematic analysis is performed next, using as inputs the end-effector coordinates, X i, found
in the FK process. From Table VI, it may be seen that the initial pose corresponds to the 9th branch
of the IK solutions, making it the obvious choice for tracking and superposing the results in Fig. 6. As
expected, this branch of IK agrees at all the points with the reference, that is, FK branch 1. Another
branch of IK, namely the 10th, is also included in the said figure. While this branch is not supposed to
match the reference trajectories in all the variables, it has certain interesting relations with it, as noted
in the caption of Fig. 6.

Computationally, the tracking of the different IK branches is achieved by solving Eqs. (32)–(37) at
each point X i using the routine FindRoot available in Mathematica. It uses an iterative technique,
and it is found that the IK solution at the previous point, X i−1, serves as a successful initial guess

https://doi.org/10.1017/S0263574723000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000334


26 Pranathi Golla et al.

while computing X i in all the instances. These computations, as summarised visually in Fig. 6, provide
conclusive validations of the computational methods proposed in this article, and the results obtained
thereof.

In the next section, the singularity conditions obtained while solving the FKP and IKP,
in Sections 3, 4, respectively, are studied in detail.

6. Analysis of singularities in the forward and inverse kinematics
The analysis of loop-closure equations of a manipulator leads to the solution of its FKP and IKP, as
seen in the previous sections. In this section, the special cases identified in that process, that is, poses at
which pairs of branches of solutions merge, are discussed in detail.

It is helpful to initiate this discussion considering the general case first. Therefore, the loop-closure
constraints in Eqs. (19)–(25) and Eqs. (26)–(31) are represented as:

g(θ , φ, x) = 0, θ , φ, and x = [x, y, z, α, β, γ ]� ∈R
6, g ∈R

12. (83)

Differentiating (83) with respect to time, t, one obtains

dg
dt

= ∂g
∂t

+ ∂g
∂x

ẋ + ∂g
∂θ
θ̇ + ∂g

∂φ
φ̇ = 0. (84)

In the case of the H6A manipulator, the constraint equations are scleronomic (see, e.g., ref. [27],
pp. 74), that is, they have no explicit dependence on time. Hence, (84) reduces to (85), which relates the
output velocity, ẋ, to the input velocity, θ̇ , and the passive joint velocity, φ̇:

Jgxẋ + Jgθ θ̇ + Jgφφ̇ = 0, where Jgx := ∂g
∂x

, Jgθ := ∂g
∂θ

, Jgφ := ∂g
∂φ

∈R
12×6. (85)

There are many definitions and corresponding classifications of kinematic singularities. In the fol-
lowing, two types of singularities would be discussed, following refs. [28], [29], namely the loss- and the
gain-type of singularities. The loss-type singularity is defined here w.r.t. the end-effector, which loses
one or more DoF at such a singularity. The gain-type singularity, as the name suggests, leads to a gain
of one or more DoF, which manifests either at the end-effector or at some other passive link(s), or both.

• Loss-type singularities: The loss-type singularity occurs when a non-zero input fails to produce
any output at the end-effector, that is, θ̇ �= 0 but ẋ = 0. Therefore, (85) reduces to:

Jgθ θ̇ + Jgφφ̇ = 0; (86)

⇒Jgqq̇ = 0, where Jgq := [
Jgθ Jgφ

] ∈R
12×12 and q = [θ�, φ�]�.

Since θ̇ �= 0 (as mentioned above), q̇ �= 0, too. Hence, the condition for loss-type singularity is
obtained as:

det (Jgq) = 0. (87)

It may be noted that (86) may be satisfied even when ẋ �= 0, iff Jgx is also singular, and ẋ ∈
nullspace (Jgx).

• Gain-type singularities: The manipulator is said to encounter a gain-type singularity when the
end-effector and/or the passive link(s) acquire an infinitesimal or finite motion capability, that is,
either ẋ �= 0 or φ̇ �= 0, or both, even when the actuators are held fixed, that is, θ̇ = 0. Therefore,
at a gain-type singularity, (85) reduces to:

Jgξ ξ̇ = 0, where ξ = [x�, φ�]�, and hence, Jgξ := [
Jgx Jgφ

] ∈R
12×12. (88)
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Since ξ̇ �= 0 as at least one of ẋ and φ̇ is/are non-zero, the condition for gain-type singularities
may be derived as:

det (Jgξ ) = 0. (89)

As in the case of loss-type singularities, in this case, (88) holds good for θ̇ �= 0, iff Jgθ is also
singular, and θ̇ ∈ nullspace (Jgθ ).

Furthermore, the manipulator encounters loss-type and gain-type singularities simultaneously in the
case when Jgqq̇ = 0 and Jgξ ξ̇ = 0 together, that is, det (Jgq) = 0 (see (87)) and det (Jgξ ) = 0 (see (89)).

The singularities observed during the analyses of the FKP and the IKP are explained in the context
of loss and gain of DoF in the following. Certain architecture singularities (i.e., special architectures, at
which all poses can be singular in one or more ways) also appeared in the course of the mathematical
analysis. Some of these are trivial in nature, for example, those which require the vanishing of the
parameters l2, l3, lw, which are ignored as these are not feasible physically. Some others are of practical
interest, and these have been discussed in detail in the appropriate context.

6.1. Singularity conditions arising out of forward kinematic analysis
The singularity conditions gleaned from the study of the FKP are revisited in this subsection. The specific
cases are enumerated hereafter.

• Case 1: sin
φ6L

2
= 0 or sin

(
φ5L + φ6L

2

)
= 0. It is noticed that either of the conditions sin

φ6L

2
= 0

or sin

(
φ5L + φ6L

2

)
= 0 leads to the architecture singularity of d2 = 0 (see (6)), which causes

simultaneous rank deficiency of the Jacobian matrices Jgq and Jgξ . However, this singularity is
not relevant for the H6A manipulator, as its architecture ensures that the two arms always lie in
parallel planes at a mutual distance of 2d2 > 0 (see Table III).

• Case 2: sin φ5R = 0. It is interesting to note that this condition is akin to that of gimbal lock in
the context of Euler angles, due to the representation of the spherical joint, leading to a loss-type
singularity. This singularity is analogous to the “wrist singularity” associated with the wrist-
decoupled 6-R spatial manipulators, such as PUMA 560 (see, e.g., ref. [1], pp. 79). The condition
sin φ5R = 0 leads to at least one of the two following conditions (refer to (13)): cos φ4L = 0, and
sin (φ5L + φ6L) = 0, which are discussed separately in the following.

1. cos φ4L = 0. The condition cos φ4L = 0, together with sin φ5R = 0, yet again yields the archi-
tecture singularity d2 = 0 (see (6)) and results in the degeneracy of Jgq and Jgξ .

2. sin (φ5L + φ6L) = 0. In this case, too, the Jacobian matrices Jgq and Jgξ lose rank, leading to a
coincidence of the gain- and loss-type of singularities. As may be seen in Fig. 7(a), the links
pLp and ppR become collinear indicating the merger of two configurations of the sub-chain
pL-p-pR which would lie on either side of the line pLpR in the absence of this singularity. It may
be verified that the point p gains an infinitesimal translational DoF along a line perpendicular
to both the line pLpR and the axis of the passive rotary joint at p. This DoF is independent of
all the actuators.

6.2. Singularity conditions arising out of inverse kinematic analysis
The physical significance of the singularity conditions obtained from the study of the IKP is studied in
this subsection. The specific cases are listed below.

• Case 1: i2
1 + j2

1 − k2
1 = 0 and i2

2 + j2
2 − k2

2 = 0 (see Eqs. (40) and (41), respectively). When these
conditions are satisfied simultaneously, the compound variable (φ5L +ψ6L) appears in identical
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Figure 7. The joint angles of the pose in Fig. 7(a) are θ1 = 0.31416, θ2L = 1.04720, θ3L = −2.48784,
θ2R = −1.40982, θ3R = −3.17242, θ7 = 0.78540, φ4L = −1.04720, φ5L = 0, φ6L = 3.14159, φ4R =
1.04720, φ5R = 0 and φ6R = 3.14159 and the architecture parameters are mentioned in Table III.
For Fig. 7(b), the joint angles are θ1 = −2.35619, θ2L = 0.12378, θ3L = 4.29217, θ2R = −0.46959,
θ3R = 4.80511, θ7 = −2.32155, φ4L = −3.14159, φ5L = 1.57080, φ6L = −2.09440, φ4R = 3.00331,
φ5R = 0.52917 and φ6R = 0.15984, lw = 1.1547 and the rest of the architecture parameters is men-
tioned in Table III. Similarly, the poses of the manipulator in Fig. 7(c) are for the joint angles
θ1 = 0.31416, θ2L = 1.04720, θ3L = 0.52360, θ2R = 1.01576, θ3R = 0, θ7 = 0.78540, φ4L = −0.98233,
φ5L = 0.13389, φ6L = 2.38188, φ4R = 0.04002, φ5R = 2.81015 and φ6R = 1.11732 and the architecture
parameters are mentioned in Table III.

pairs in the solutions of IKP of the manipulator. It is interesting to note that the condition, τ = 0
(see (71)), exemplifies such a situation, which, in turn, has the following consequences:

τ = 0 ⇒
(

cos θα1 = 0,
cos β sin θα1 = 0.

(90)

Both the Jacobian matrices Jgq and Jgξ lose rank under these conditions. Figure 7(b) shows an
example of such a singularity, in which it is observed that the loss of a DoF is attributed to the
fact that the axis of active rotary joint at e is parallel to those of the other active rotary joints on
the left chain, namely sL and eL. It is also found that these conditions lead to the vanishing of ψ6L

and, finally, forms an architecture singularity, given by:

lw sin κ = 2d2. (91)

As long as this condition is satisfied, this kind of singularity would occur on a finite-dimensional
subspace of the workspace of the manipulator.
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• Case 2: a1b2 − a2b1 = 0 (refer to (47)). It may be observed that the condition a1b2 − a2b1 = 0
is trivially satisfied when a1 = 0 and b1 = 0, which also make μ vanish as per (48). In (44),
a1 = sin β sin θγ7 and b1 = −(cos θγ7 sin θα1 + cos β cos θα1 sin θγ7 ). Hence, vanishing of a1, b1

simultaneously leads to two subcases: (a) β = 0, θα1 = −θγ7 and (b) θα1 = 0, θγ7 = 0. The former
subcase is equivalent to gimbal lock at the end-effector due to the representation of the orienta-
tion using Euler angles. This is a parametric singularity and has been mentioned previously in
Case 2 in Section 6.2. Interestingly, both the subcases result in a loss-type singularity, as seen
in the loss of rank of Jgq, and also lead to the architecture singularity, d2 = 0. However, in this
case, the architecture singularity is not associated with a coincidence of loss-type and gain-type
of singularities, as in the Cases 1 and 2 discussed previously in Section 6.1.

• Case 3: a2
2 + b2

2 − c2
2 = 0 (see (45)). This singularity corresponds to the merging of the elbow-up

and elbow-down configurations of the planar 2-R sub-chain sLeL-eLpL, as evidenced by the van-
ishing of sin θ3L and the consequent loss of rank of Jgq. In this case, the point pL loses its ability
to translate along the direction of the links sLeL and eLpL.

• Case 4: b2
3 − 4a3c3 = 0 and b2

4 − 4a4c4 = 0 (refer to Eqs. (54) and (55), respectively). Iff satisfied
simultaneously, these conditions force a pair of values of the variableψ6L to merge in the solutions
of IKP of the manipulator, causing a singularity in the matrix Jgq and consequently, the loss of
a DoF. Interestingly, this case is observed to be satisfied when μ= 0 (see (48)), which requires
vanishing of d2, just as in Case 2 above.

• Case 5: �1 = 0 and b2
5 − 4a5c5 = 0 (see Eqs. (67) and (68), respectively). In this case, variable

θγ7 acquires a pair of repeated values in the solution of the IKP of the manipulator, resulting in
a loss-type singularity. This is also reflected in the singularity of the Jacobian matrix Jgq.

• Case 6:�2 = 0 (see (76)). This condition corresponds to the merger of the solutions of the vari-
able θα1 , leading to a loss-type singularity, as reflected in the rank deficiency of the Jacobian
matrix Jgq.

• Case 7: o2
1 + o2

2 − o2
3 = 0 (refer to (79)). This condition indicates the merger of the elbow-up

and elbow-down configurations of the 2-R sub-chain sReR-eRpR which causes sin θ3R to vanish.
It is obvious (see Fig. 7(c)) that in this case the point pR cannot have any motion along the said
links for any combination of actuator inputs. As expected, this loss of DoF is confirmed by the
degeneracy of the matrix Jgq.

7. Discussions
As mentioned before, the kinematics of the H6A is significantly challenging because of two reasons:
(a) incorporation of multi-DoF passive joints in its architecture and (b) the asymmetry of the two limbs
constituting the manipulator – while the left arm has a universal joint just before the wrist assembly, the
right one has a spherical joint. Interestingly, in this case, the IKP is much more complicated than the
FKP. Therefore, these two problems are addressed in a manner which is found to be best suited for them
individually, starting from different sets of equations depicting the kinematic constraints. This approach
is perhaps not the most common in the kinematic analyses of hybrid and parallel robots.

The solution to the FKP has only eight branches, all of which could be obtained in the closed form
(see Section 3). The IKP has 160 solutions, which were obtained by first reducing the problem to the
solution of a univariate polynomial equation of degree 40, as shown in Section 4. While this approach of
reducing a set of simultaneous loop-closure equations to a univariate equation of higher degree is indeed
common in manipulator kinematics, a significant distinction of the computational approach presented
in this paper vis-à-vis most others is that the coefficients of the said polynomial were obtained as closed-
form symbolic expressions in terms of the original inputs, that is, the pose variables {x, y, z, α, β, γ }. In
doing so, it is ensured that the results obtained are fully generic over the workspace of the manipulator.
It is, therefore, established conclusively that the H6A manipulator has 160 solutions for the IKP in the
complex plane, and 8 for the FKP, for any possible set of inputs.
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Another useful consequence of the exact symbolic approach is that all the special configurations
associated with the FKP and IKP are identified analytically. At these configurations, there are certain
breakdowns in the solution procedure arising out of the merger of different branches of kinematics. Such
configurations are analysed further to categorise them into loss-type, gain-type and architecture singu-
larities (see Section 6). Most of the architecture singularities requiring certain link lengths to vanish are
avoided naturally, as in the actual manipulator these lengths are not zeros (see Case 1 in Section 6.1 and
Cases 2 and 4 in Section 6.2). However, in Case 1 discussed in Section 6.2, a very important condition
is derived, which is non-trivial in nature, namely Eq. (91). It shows that the architecture parameters d2,
lw and κ cannot be chosen arbitrarily, but in a manner so as not to satisfy (91). It turns out that for the
given values of d2 and κ in Table III, this architecture singularity occurs at lw = 1.1547, which is distinct
from the actual architecture of the manipulator, where lw = 1, but not very far from it.

It may be mentioned here that the closed-form analytical results summarised above could only be
derived at the cost of a huge amount of symbolic computations and several improvisations, the details
of which may be found in Section 4. Specially designed algorithms to simplify large expressions con-
stituted of trigonometric and algebraic subexpressions were employed in these computations, since a
direct application of the default general-purpose routines of the CAS used proved to be grossly inad-
equate for this purpose. In particular, the elimination of the variables ψ6L and θγ7 from Eqs. (20), (48)
and Eqs. (27), (60), respectively, demanded a customised approach, involving careful observation and
exploitation of the special structures appearing in some expressions, specifically:

• Deriving (48) from (46) by rearranging and taking square roots brought down the size of the
equation p = 0 in (53) from 6.110 MB to 19.232 KB

• Using the identities in (61) facilitated:

• downsizing of the equation u1 = 0 (refer to (64)) from 191.635 MB to 79.873 MB, and
• the factoring of sin2 θα1 in (73), thereby the reduction in degree of the IKU by 4

• Rewriting the polynomial equations as shown in (69) and (70) enabled the factoring of the
polynomial τ (see (72)) and dropped the degree of the IKU by 8. Moreover, it also led to the
identification of the singularity caused by the vanishing of the polynomial τ .

Even with these computational concoctions, the sizes of the final expressions, for example the coef-
ficients of the univariate polynomial representing the IKP, sum up to 2760.873 GB. Without these
customised tools and improvisations, it may not have been possible to derive these expressions in the
closed form.

These symbolic computations, leading to the derivation of the univariate polynomial equation rep-
resenting the IKP and the analysis of the singularities associated with the FKP and IKP, form the
contributions of this paper.

8. Conclusions
This paper presents a comprehensive study of a novel six-DoF spatial manipulator of hybrid architecture
named H6A. The manipulator has two arms originating from a rigid “waist” which can swivel about a
fixed vertical axis. The arms join at the other end to form a wrist assembly. Asymmetry in the architec-
ture of the arms due to the presence of different multi-DoF passive joints in each makes the kinematics of
the manipulator complicated enough to be of sufficient interest. While the FKP is solved easily to obtain
all the eight solutions in the closed form, the IKP proves to be much harder, with a total of 160 solutions
in the general case. Through extensive symbolic computations, this problem is reduced to that of solv-
ing a 40-degree polynomial equation. The coefficients of this polynomial are obtained as closed-form
symbolic expressions of the corresponding inputs, which establishes the generic nature of the solutions.
The results obtained are numerically validated by computing the residues of the original equations, as
well as using the solutions of the forward kinematics in the inverse kinematics. The symbolic nature
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of the analysis presented in the paper affords the identification of the associated singularities in a nat-
ural manner, that is, by obtaining the conditions for the merger of the kinematic branches. This exact
symbolic computation approach to kinematic analysis may be helpful in studying other hybrid/parallel
manipulators.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/
S0263574723000334.
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A. Calculation of the degree-of-freedom of the H6A manipulator

As stated in ref. [30], the mobility of a mechanism with closed loops, that is, the DoF, attributed to both
Grübler and Kutzbach, is defined by:

M =
p∑

i=1

fi − 6l. (A1)

In the above equation, l is the total number of independent loops, p is the total number of joints
and fi is the DoF of the ith joint. The H6A manipulator consists of one independent kinematic loop
o-sL-eL-pL-p-pR-eR-sR-o, therefore, l = 1. The DoF corresponding to all the joints are tabulated in
Table A1. Thereafter, substituting data from Table A1 gives M = 6.

Table A1. Joints of the H6A manipulator and their correspond-
ing DoF.

Joint f i (DoF)
Waist, o 1
Left shoulder, sL 1
Left elbow, eL 1
Universal joint, pL 2
Rotary joint at wrist point, p 1
Spherical joint, pR 3
Right elbow, eR 1
Right shoulder, sR 1
Rotary joint before end-effector, e 1
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