Quantities to be deducted on account of pence occurring in the price of the annuity.

$1 d$.	$\cdot 000160256$	$\cdot 000179426$	$\cdot 000198413$	$\cdot 000217220$
2	$\cdot 000320513$	$\cdot 000358852$	$\cdot 000396825$	$\cdot 000434439$
3	$\cdot 000480769$	$\cdot 000538278$	$\cdot 000595238$	$\cdot 000651659$
4	$\cdot 000641026$	$\cdot 000717703$	$\cdot 000793651$	$\cdot 000868878$
5	$\cdot 000801282$	$\cdot 000897129$	$\cdot 000992063$	$\cdot 001086098$
6	$\cdot 000961538$	$\cdot 001076555$	$\cdot 001190476$	$\cdot 001303318$
7	$\cdot 001121795$	$\cdot 001255981$	$\cdot 001388889$	$\cdot 001520537$
8	$\cdot 00128205 \mathrm{I}$	$\cdot 001435407$	$\cdot 001587302$	$\cdot 001737757$
9	$\cdot 001442308$	$\cdot 001614833$	$\cdot 001785714$	$\cdot 001954976$
10	$\cdot 001602564$.001794258	$\cdot 001984127$	$\cdot 002172196$
11	$\cdot 001762821$	$\cdot 001973684$	$\cdot 002182540$	$\cdot 002389415$

*** We print this modification of Orchard's tables in the form adopted by our correspondent; but we think no good purpose is served by giving more than five decimal places. In practice, it would probably be better to make the corrections additive: thus, taking the above example,

$$
\begin{aligned}
& \text { £8. } 17 \mathrm{~s} \text {. } 10 \mathrm{~d} .=£ 9-2 \mathrm{~s} .2 \mathrm{~d} \text {. } \\
& \text { Value for the } £ 9=523 \cdot 809524 \\
& \text { Add for the } \mathbf{\Sigma} \text { s. } \quad 4 \cdot 761905 \\
& \text { " " } 2 d . \quad 396825 \\
& \text { Value, as above, } \quad 528.968254
\end{aligned}
$$

> ED. J. I. A.

ON "TEN YEAR NON-FORFEITURE POLICIES."

To the Editor of the Journal of the Institute of Actuaries.
Srr,-If leisure had permitted I intended to have given in the last Number of the Journal a development of the suggestion contained in your foot note to my letter in the January Number, and to have looked at the American ten year non-forfeiture policies from the surrender point of view. I now propose to do this, and as all numerical results given in the present communication are based upon the Experience rate of mortality and three per cent interest, it will be advisable first to give the following recomputed values, on the same basis, of the numerical illustrations contained in my last letter.

Ageat Entry.	Law of Surrender.${\underset{1}{1}}_{p}=1, \underset{2}{p}=\underset{3}{p}=\underset{4}{p} \ldots=p_{9}(=p) .$				Law of Surrender.$p=1, \underset{2}{p}=p=p=p(=p), p=\frac{p}{7}=p=\underset{9}{p}=1 .$			
	$p=0$.	$p=\frac{1}{3}$.	$p=\frac{2}{3}$.	$p=1$.	$p=0$.	$p=\frac{1}{8}$.	$p=\frac{2}{3}$.	$p=1$.
30	$4 \cdot 674$	$4 \cdot 690$	$4 \cdot 686$	$4 \cdot 691$	$4 \cdot 674$	$4 \cdot 689$	$4 \cdot 683$	$4 \cdot 691$
40	5.636	$5 \cdot 633$	$5 \cdot 637$	$5 \cdot 630$	$5 \cdot 636$	5.632	5635	5.630
50	$7 \cdot 002$	$7 \cdot 091$	$7 \cdot 080$	$7 \cdot 088$	$7 \cdot 002$	$7 \cdot 088$	$7 \cdot 056$	$7 \cdot 088$

Each of these results denotes the annual premium per cent.
If, now, we call V_{n} the true cash surrender value of a policy at the end of the nth year, just before the $(n+1)$ th premium becomes due, and
V_{n}^{\prime} the corresponding valne given by the American plan, we shall have the following formulæ for the computation of $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$, \&c., the annual premium payable being π, and p denoting as before the probability at the time the nth renewal premium becomes due, that it will be paid, supposing the life assured to be then in existence.

$$
\begin{align*}
& \mathrm{V}_{1}=\frac{1}{\mathrm{D}_{x+1}} \int p_{1}\left(\mathrm{M}_{x+1}-\mathrm{M}_{x+2}\right)+(1-p) \mathrm{D}_{x+1} \mathrm{~V}_{1}^{\prime} \\
& +\underset{d 2}{ } p\left(\mathrm{M}_{x+2}-\mathrm{M}_{x+3}\right)+\underset{1}{p}(1-p) \mathrm{D}_{x+2} \mathrm{~V}_{2}^{\prime} \\
& +\operatorname{ppp}_{123}\left(\mathrm{M}_{x+3}-\mathrm{M}_{x+4}\right)+p_{12}(1-p) \mathrm{D}_{x+3} \mathrm{~V}_{3}^{\prime} \\
& \vdots \\
& +\underset{123}{p p p} \ldots \ldots \underset{8}{p}\left(\mathrm{M}_{x+8}-\mathrm{M}_{x+9}\right)+\underset{123}{p p p} \ldots \underset{7}{p}(1-\underset{8}{p}) \mathrm{D}_{x+8} \mathrm{~V}_{8}^{\prime} \\
& +{ }_{123} p p \ldots{ }_{9}^{p} \mathrm{M}_{x+9}+\underset{123}{p p p} \ldots p_{8}^{p(1-p)} \mathrm{D}_{x+9} \mathrm{~V}_{9}^{\prime} \\
& \left.-\underset{1}{\infty}\left(\mathrm{D}_{x+1}+{ }_{2}^{p} \mathrm{D}_{x+2}+\underset{23}{p p} \mathrm{D}_{x+3} \ldots++_{23}^{p p} \ldots p_{9}^{p} \mathrm{D}_{x+9}\right)\right\} \\
& \mathrm{V}_{2}=\frac{1}{\mathrm{D}_{x+2}}\left\{\begin{array}{l}
p\left(\mathrm{M}_{x+2}-\mathrm{M}_{x+3}\right)+(1-p) \mathrm{D}_{x+2} \mathrm{~V}_{2}^{\prime}
\end{array}\right. \tag{A}\\
& +\underset{23}{p p}\left(\mathrm{M}_{x+3}-\mathrm{M}_{x+4}\right)+\underset{2}{p}(1-p) \mathrm{D}_{x+3} \mathrm{~V}_{3}^{\prime} \\
& +\underset{234}{p p p}\left(\mathrm{M}_{x+4}-\mathrm{M}_{x+5}\right)+\underset{23}{p p}(1-p) \mathrm{D}_{x+4} \mathrm{~V}_{4}^{\prime} \\
& +{ }_{23}^{p p} \cdots p_{8}^{p}\left(\mathrm{M}_{x+8}-\mathrm{M}_{x+9}\right)+{ }_{23}^{p p} \cdots{\underset{7}{7}}_{p}(1-p) \mathrm{D}_{x+8} \mathrm{~V}_{8}^{\prime} \\
& +\underset{23}{p} \ldots{\underset{9}{p}}_{p} \mathrm{M}_{x+9}+\underset{23}{p p} \ldots \underset{8}{p}\left(1-p_{9}\right) \mathrm{D}_{x+9} \mathrm{~V}_{9}^{\prime}
\end{align*}
$$

It is not necessary to give the expressions for $V_{3}, V_{4}, \& c$., the law of their formation being sufficiently obvious from the above formulæ. The concluding values of the series are

$$
\begin{align*}
\mathrm{V}_{8}=\frac{1}{\mathrm{D}_{x+8}}\left\{\begin{array}{l}
p\left(\mathrm{M}_{x+8}-\mathrm{M}_{x+9}\right)+(1-p) \mathrm{D}_{x+8} \mathrm{~V}_{8}^{\prime} \\
\\
\\
+\underset{89}{p p} \mathrm{M}_{x+9}+\underset{8}{p}(1-\underset{9}{p}) \mathrm{D}_{x+9} \mathrm{~V}_{9}^{\prime} \\
\\
\left.-\underset{8}{w p}\left(\mathrm{D}_{x+8}+\underset{9}{p} \mathrm{D}_{x+9}\right)\right\}
\end{array}\right\} \begin{array}{c}
\text { (A) } \\
\text { continued. }
\end{array} \\
\mathrm{V}_{9}=\frac{1}{\mathrm{D}_{x+9}}\left\{\underset{9}{\left.p \mathrm{M}_{x+9}+(1-\underset{9}{p}) \mathrm{D}_{x+9} \mathrm{~V}_{9}^{\prime}-\operatorname{mip}_{9} \mathrm{D}_{x+9}\right\}}\right\} \tag{A}
\end{align*}
$$

According to American practice $p_{1}=1$ and $\nabla_{2}^{\prime}=\frac{2}{10} \frac{\mathrm{M}_{x+2}}{\mathrm{D}_{x+2}}$,
$\mathrm{V}_{3}^{\prime}=\frac{3}{10} \frac{\mathrm{M}_{x+3}}{\mathrm{D}_{x+3}}, \ldots \mathrm{~V}_{9}^{\prime}=\frac{9}{10} \frac{\mathrm{M}_{x+9}}{\mathrm{D}_{x+9}}$. These values being substituted in the above, and the further supposition made that $\underset{2}{p}=\underset{3}{p}=p \ldots=p(=p)$, we get, after a little reduction,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{i}}=\frac{1}{\mathrm{D}_{x+1}}\left\{\mathrm{M}_{x+1}-(1-p)\left(\frac{8}{10} \mathrm{M}_{x+2}+\frac{7}{10} p \mathrm{M}_{x+3}+\frac{6}{10} p^{2} \mathrm{M}_{x+4} \ldots+\frac{1}{10} p^{7} \mathrm{M}_{x+9}\right)\right. \\
& \left.-w\left(\mathrm{D}_{x+1}+p \mathrm{D}_{x+2}+p^{2} \mathrm{D}_{x+3} \cdots+p^{8} \mathrm{D}_{x+9}\right)\right\} \\
& \mathrm{V}_{2}=\frac{1}{\mathrm{D}_{x+2}}\left\{\mathrm{M}_{x+2}-(1-p)\left(\frac{8}{10} \mathrm{M}_{x+2}+\frac{7}{10} p \mathrm{M}_{x+3}+\frac{6}{10} p^{2} \mathrm{M}_{x+4} \ldots+\frac{1}{10} p^{7} \mathrm{M}_{x+9}\right)\right. \\
& \left.-\varpi p\left(\mathrm{D}_{x+2}+p \mathrm{D}_{x+3}+p^{2} \mathrm{D}_{x+4} \cdots+p^{7} \mathrm{D}_{x+9}\right)\right\} \\
& \mathrm{V}_{3}=\frac{1}{\mathrm{D}_{x+3}}\left\{\mathrm{M}_{x+3}-(1-p)\left(\frac{7}{10} \mathrm{M}_{x+3}+\frac{6}{10} p \mathrm{M}_{x+4}+\frac{5}{10} p^{2} \mathrm{M}_{x+5} \ldots+\frac{1}{10} p^{6} \mathrm{M}_{x+9}\right)\right. \\
& \left.-\varpi p\left(\mathrm{D}_{x+3}+p \mathrm{D}_{x+4}+p^{2} \mathrm{D}_{x+5} \cdots+p^{6} \mathrm{D}_{x+9}\right)\right\} \\
& \vdots \quad \vdots \\
& \mathrm{V}_{8}=\frac{1}{\mathrm{D}_{x+8}}\left\{\mathrm{M}_{x+8}-(1-p)\left(\frac{2}{10} \mathrm{M}_{x+8}+\frac{1}{10} p \mathrm{M}_{x+9}\right)-\omega p\left(\mathrm{D}_{x+8}+p \mathrm{D}_{x+9}\right)\right\} \\
& \mathrm{V}_{9}=\frac{1}{\mathrm{D}_{x+9}}\left\{\mathrm{M}_{x+9}-(1-p) \frac{1}{10} \mathrm{M}_{x+9}-\varpi p \mathrm{D}_{x+9}\right\}
\end{aligned}
$$

In writing down the values of $\mathrm{V}_{4}, \mathrm{~V}_{5}, \mathrm{~V}_{6}, \mathrm{~V}_{7}$, the law indicated by the expressions for V_{2} and V_{3} must be followed. V_{1} is not included in that law owing to the exceptional value of p as compared with $p, p, \& c$.

If we use the same values of $\mathrm{V}_{2}^{\prime}, \mathrm{V}_{3}^{\prime}$, \&c., as above, and suppose
 equations (A) the following series of surrender values.

$$
\begin{aligned}
\mathrm{V}_{1}=\frac{1}{\mathrm{D}_{x+1}}[& \mathrm{M}_{x+1}-(1-p)\left(\frac{8}{10} \mathrm{M}_{x+2}+\frac{7}{10} p \mathrm{M}_{x+3}+\frac{6}{10} p^{2} \mathrm{M}_{x+4}+\frac{5}{10} p^{3} \mathrm{M}_{x+5}\right) \\
& \left.-\varpi\left\{\mathrm{D}_{x+1}+p \mathrm{D}_{x+2}+p^{2} \mathrm{D}_{x+3}+p^{3} \mathrm{D}_{x+4}+p^{4}\left(\mathrm{~N}_{x+4}-\mathrm{N}_{x+9}\right)\right\}\right]
\end{aligned} \quad \begin{aligned}
\mathrm{V}_{2}=\frac{1}{\mathrm{D}_{x+2}}[& \mathrm{M}_{x+2}-(1-p)\left(\frac{8}{10} \mathrm{M}_{x+2}+\frac{7}{10} p \mathrm{M}_{x+3}+\frac{6}{10} p^{2} \mathrm{M}_{x+4}+\frac{5}{10} p^{3} \mathrm{M}_{x+5}\right) \\
& \left.\quad-\varpi p\left\{\mathrm{D}_{x+2}+p \mathrm{D}_{x+3}+p^{2} \mathrm{D}_{x+4}+p^{3}\left(\mathrm{~N}_{x+4}-\mathrm{N}_{x+9}\right)\right\}\right]
\end{aligned} \quad \begin{aligned}
& \mathrm{V}_{3}=\frac{1}{\mathrm{D}_{x+3}}\left[\mathrm{M}_{x+3}-(1-p)\left(\frac{7}{10} \mathrm{M}_{x+3}+\frac{6}{10} p \mathrm{M}_{x+4}+\frac{5}{10} p^{2} \mathrm{M}_{x+5}\right)\right. \\
&\left.\quad-\varpi p\left\{\mathrm{D}_{x+3}+p \mathrm{D}_{x+4}+p^{2}\left(\mathrm{~N}_{x+4}-\mathrm{N}_{x+9}\right)\right\}\right] \\
& \mathrm{V}_{4}=\frac{1}{\mathrm{D}_{x+4}}\left[\mathrm{M}_{x+4}-(1-p)\left(\frac{6}{10} \mathrm{M}_{x+4}+\frac{5}{10} p \mathrm{M}_{x+5}\right)-\varpi p\left\{\mathrm{D}_{x+4}+p\left(\mathrm{~N}_{x+4}-\mathrm{N}_{x+9}\right)\right\}\right]
\end{aligned}
$$

$\mathrm{V}_{5}=\frac{1}{\mathrm{D}_{x+5}}\left\{\mathrm{M}_{x+5}-(1-p)\left(\frac{5}{10} \mathrm{M}_{x+5}\right)-\varpi p\left(\mathrm{~N}_{x+4}-\mathrm{N}_{x+9}\right)\right\}$
$\mathrm{V}_{6}=\frac{1}{\mathrm{D}_{x+6}}\left\{\mathrm{M}_{x+6}-w\left(\mathrm{~N}_{x+5}-\mathrm{N}_{x+9}\right)\right\}$
$\mathrm{V}_{7}=\frac{1}{\mathrm{D}_{x+7}}\left\{\mathrm{M}_{x+7}-\approx\left(\mathrm{N}_{x+6}-\mathrm{N}_{x+9}\right)\right\}$
$\mathbf{V}_{8}=\frac{1}{\mathrm{D}_{x+8}}\left\{\mathrm{M}_{x+8}-\varpi\left(\mathrm{N}_{x+7}-\mathrm{N}_{x+9}\right)\right\}$
$\mathrm{V}_{9}=\frac{1}{\mathrm{D}_{x+9}}\left\{\mathrm{M}_{x+9}-\pi\left(\mathrm{N}_{x+8}-\mathrm{N}_{x+9}\right)\right\}$
The numerical values of $V_{2}, V_{3}, \& c$., for a policy of $£ 100$ deduced from this last set of formulæ on the supposition that $p=\frac{1}{3}$ are set forth in the following table, the age at entry being successively taken at 30, 40, and 50. The values of V_{1} are omitted as being unnecessary, the American regulations not allowing a surrender until two annual premiums have been paid. The values of w for ages 30,40 , and 50 , as given in the table at the commencement of this letter are $\cdot 04689, \cdot 05632$, and $\cdot 07088$ respectively.

$\begin{array}{\|c\|} \hline \text { Age } \\ \text { at Entry. } \end{array}$	V2.	V3.	V_{4}.	V_{5}.	V_{6}.	V_{7}.	V8.	V_{9}.
30	$8 \cdot 185$	$12 \cdot 489$	16.938	21-524	26.216	31-179	36.328	41-669
40	$9 \cdot 804$	$14 \cdot 983$	$20 \cdot 353$	25.913	31.657	$37 \cdot 607$	43.776	$50 \cdot 180$
50	$11 \cdot 782$	$17 \cdot 964$	$24 \cdot 307$	30.727	36.945	$44 \cdot 061$	$51 \cdot 486$	$59 \cdot 256$

These cash values are given to enable the reader to convert them into reversionary sums by any table of single premiums he may prefer. For the purpose of illustration I have formed a table of single premiums upon the Experience rate of mortality and 3 per cent interest, with an addition of $7 \frac{1}{2}$ per cent throughout,* and by this table the cash sums above given would purchase paid-up policies of the following amounts, P_{n} being the amount of such policy at the end of the nth year.

at Ene	P_{2}.	P_{3}.	P_{4}.	P_{5}.	P_{6}.	$\mathrm{P}_{7}{ }^{\text {. }}$	P_{8}.	P_{9}.
30	18.600	27.891	37•171	$46 \cdot 409$	55•529	64:871	74.233	83.614
40	$18 \cdot 614$	27.921	37-224	$46 \cdot 512$	55.769	65.030	74.313	$83 \cdot 636$
50	18.604	27.870	$37 \cdot 058$	46.046	54-432	63:838	73:373	83.085

It will be seen that the amount is in every case below that given by the American Companies. It is likely however that the tables of single premiums adopted by some London Offices would give larger values for $\mathrm{P}_{7}, \mathrm{P}_{8}, \mathrm{P}_{9}$, from the same cash values $\mathrm{V}_{7}, \mathrm{~V}_{8}, \mathrm{~V}_{9}$, used in forming this table, but in no instance is it probable that the paid-np policy would reach the round numbers held out by the Americans.

[^0]As appertaining to the general subject in hand it will be well to examine the effect of assuming $V_{1}^{\prime}=V_{1}, V_{2}^{\prime}=V_{2}, \ldots V_{9}^{\prime}=V_{9}$ in the formulæ (A). The ten premiums will not now be necessarily equal, therefore we will denote them, in the order in which they are paid, by $\varpi_{0}, \varpi_{1}, \varpi_{2}, \varpi_{3} \ldots \varpi_{9}$ respectively. We shall then have

$$
\begin{align*}
& \mathrm{V}_{9}=\underset{9}{p} \frac{\mathrm{M}_{x+9}}{\mathrm{D}_{x+9}}+(1-\underset{9}{p}) \mathrm{V}_{9}-{ }_{9}{ }_{9} \sigma_{9} \\
& \therefore \quad \mathrm{~V}_{9}=\frac{\mathrm{M}_{x+9}}{\mathrm{D}_{x+9}}-\varpi_{9} \\
& \mathrm{~V}_{8}=\underset{8}{p} \frac{\mathrm{M}_{x+8}-\mathrm{M}_{x+9}}{\mathrm{D}_{x+8}}+(1-p) \mathrm{V}_{8}+\underset{89}{ } \frac{\mathrm{M}_{x+9}}{\mathrm{D}_{x+8}} \tag{B}\\
& +p(1-p) \frac{\mathrm{D}_{x+9}}{\mathrm{D}_{x+8}} V_{9}-p_{8} w_{8}-p p p_{89} \frac{\mathrm{D}_{x+9}}{\mathrm{D}_{x+8}} \pi_{9}
\end{align*}
$$

and if we substitute for V_{9} its value just found, this equation will reduce to

$$
\mathrm{V}_{8}=\frac{\mathrm{M}_{x+8}}{\mathrm{D}_{x+8}}-\varpi_{8}-\frac{\mathrm{D}_{x+9}}{\mathrm{D}_{x+8}} \varpi_{9}
$$

Proceeding in the same way we get
and

$$
\left.\begin{array}{cc}
\mathrm{V}_{7}=\frac{\mathrm{M}_{x+7}}{\mathrm{D}_{x+7}}-\varpi_{7}-\frac{\mathrm{D}_{x+8}}{\mathrm{D}_{x+7}} \pi_{8}-\frac{\mathrm{D}_{x+9}}{\mathrm{D}_{x+7}} \varpi_{9} \\
\vdots & \vdots \\
\vdots \\
\mathrm{~V}_{1} & =\frac{\mathrm{M}_{x+1}}{\mathrm{D}_{x+1}}-\varpi_{1}-\frac{\mathrm{D}_{x+2}}{\mathrm{D}_{x+1}} \varpi_{2} \ldots-\frac{\mathrm{D}_{x+9}}{\mathrm{D}_{x+1}} \varpi_{9} \\
\mathrm{~V}_{0} & =\frac{\mathrm{M}_{x}}{\mathrm{D}_{x}}-\varpi_{0}-\frac{\mathrm{D}_{x+1}}{\mathrm{D}_{x}} \varpi_{1} \ldots-\frac{\mathrm{D}_{x+9}}{\mathrm{D}_{x}} \varpi_{9}
\end{array}\right\} \begin{gathered}
\text { (B) } \\
\text { continued. } .
\end{gathered}
$$

It will be observed that the quantities $\underset{1}{p}, \underset{2}{p}, \ldots{ }_{9}^{p}$, have now disappeared entirely from the equations, and therefore if we give to $V_{9}, V_{8}, V_{7}, \& c$., any values we please, the ten premiums determined by these ten equations will be true for all laws of surrender.

The premiums expressed in terms of $\mathrm{V}_{9}, \mathrm{~V}_{8}, \mathrm{~V}_{7}$, \&c., are

$$
\begin{align*}
& \varpi_{9}=\frac{1}{\mathrm{D}_{x+9}}\left(\mathrm{M}_{x+9}-\mathrm{D}_{x+9} \mathrm{~V}_{9}\right) \\
& w_{8}=\frac{1}{\mathrm{D}_{x+8}}\left(\mathrm{M}_{x+8}-\mathrm{M}_{x+9}-\mathrm{D}_{x+8} \mathrm{~V}_{8}+\mathrm{D}_{x+9} \mathrm{~V}_{9}\right) \\
& w_{7}=\frac{1}{\mathrm{D}_{x+7}}\left(\mathrm{M}_{x+7}-\mathrm{M}_{x+8}-\mathrm{D}_{x+7} \mathrm{~V}_{7}+\mathrm{D}_{x+8} \mathrm{~V}_{8}\right) \tag{C}\\
& \vdots \\
& \vdots \\
& w_{1}=\frac{1}{\mathrm{D}_{x+1}}\left(\mathrm{M}_{x+1}-\mathrm{M}_{x+2}-\mathrm{D}_{x+1} \mathrm{~V}_{1}+\mathrm{D}_{x+2} \mathrm{~V}_{2}\right) \\
& w_{0}=\frac{1}{\mathrm{D}_{x}}\left(\mathrm{M}_{x}-\mathrm{M}_{x+1}-\mathrm{D}_{x} \mathrm{~V}_{0}+\mathrm{D}_{x+1} \mathrm{~V}_{1}\right)
\end{align*}
$$

It will be interesting to see what these premiums are, on the supposition that the various surrender values are those given by the American scheme. It is only necessary to put $\mathrm{V}_{9}=\frac{9}{10} \frac{\mathrm{M}_{x+9}}{\mathrm{D}_{x+9}}, \mathrm{~V}_{8}=\frac{8}{10} \frac{\mathrm{M}_{x+8}}{\mathrm{D}_{x+8}}, \ldots$. $\mathrm{V}_{2}=\frac{2}{10} \frac{\mathrm{M}_{x+2}}{\mathrm{D}_{x+2}}, \mathrm{~V}_{1}=0$, and $\mathrm{V}_{0}=0$, in the equations (C), and we shall obtain the following for the true premium values, taking $£ 100$ as the amount of the policy.

$\stackrel{\text { Age }}{\text { at Entry. }}$	$\pi_{0} 0$	ω_{1}.	π_{2}.	ϖ_{3}.	w_{4}.	± 5.	ω_{6}	ω_{7}.	ω_{8}.	± 9.
30	0.818	$8 \cdot 713$	$4 \cdot 688$	$4 \cdot 685$	$4 \cdot 680$	$4 \cdot 675$	$4 \cdot 668$	4659	$4 \cdot 649$	$4 \cdot 636$
40	1.006	$10 \cdot 443$	$5 \cdot 640$	$5 \cdot 647$	$5 \cdot 654$	$5 \cdot 657$	$5 \cdot 654$	$5 \cdot 642$	$5 \cdot 618$	$5 \cdot 581$
50	$1 \cdot 547$	12:886	7-111	7-108	$7 \cdot 088$	$7 \cdot 049$	$6 \cdot 987$	6.900	6.784	6.634

These premiums would, as I have already intimated, give the assurance company an exact equivalent for the risk undertaken, whatever were the law according to which surrenders might happen to take place. The supposition $V_{1}=0$, made above, causes the value of ϖ_{0} to express merely the assurance risk of the first year, leaving ϖ_{1} to provide for the assurance risk of the second year, and for the whole of the surrender value at the end of that year; but, as no surrender value is allowed the first year, we may equalize the first two premiums without disturbing the accuracy of the table just given.

Let \boldsymbol{m}^{\prime} be the annual payment for the first and second year equivalent to the premiums ω_{0} and $\tilde{\omega}_{1}$, then

$$
\varpi^{\prime}\left(1+\frac{\mathrm{D}_{x+1}}{\mathrm{D}_{x}}\right)=\varpi_{0}+\omega_{1} \frac{\mathrm{D}_{x+1}}{\mathrm{D}_{x}} \quad \therefore \omega^{\prime}=\frac{\omega_{0} \mathrm{D}_{x}+w_{1} \mathrm{D}_{x+1}}{\mathrm{D}_{x}+\mathrm{D}_{x+1}} .
$$

This expression for w', however, may be simplified for calculation. By adding together the two last of equations (C), remembering that $\mathrm{V}_{0}=0$ and $\mathrm{V}_{1}=0$, we get

$$
\varpi_{0} \mathrm{D}_{x}+\varpi_{1} \mathrm{D}_{x+1}=\mathrm{M}_{x}-\mathrm{M}_{x+2}+\mathrm{D}_{x+2} \mathrm{~V}_{2}=\mathrm{M}_{x}-\frac{4}{5} \mathrm{M}_{x+2}
$$

and this being the numerator of π^{\prime} we have $\varpi^{\prime}=\frac{\mathrm{M}_{x}-\frac{4}{5} \mathrm{M}_{x+2}}{\mathrm{D}_{x}+\mathrm{D}_{x+1}}$. When $x=30$ we shall find $w^{\prime}=4 \cdot 691$; therefore, in the place of each of the values 0.818 and 8.713 in the table, we are at liberty to put 4.691 , and this substitution brings the whole series of premiums for age 30 within much nearer limits of equality. At age 40 we find $\omega^{\prime}=5 \cdot 630$, and at 50 , $w^{\prime}=7 \cdot 088$, which may be substituted in the same mamner for the tabular values of ϖ_{0} and ϖ_{1} at those ages.

By examining the equations (C) it appears that the expression for ϖ_{0}, namely, $\frac{\mathbf{M}_{x}-\mathrm{M}_{x+1}}{\mathrm{D}_{x}}+\frac{\mathrm{D}_{x+1}}{\mathrm{D}_{x}} \mathrm{~V}_{1}$, is composed of the value, at the commencement of the first year, of that year's risk and of the cash surrender, payable at the end of the year. It is therefore evident that whatever be the number of surrenders in the first year (supposing any to be then allowed) the premium w_{0}, thus calculated, wonld be sufficient to provide
for them all. Next take the case of a policy upon which the second year's premium ϖ_{1} has just been paid. Here the sum V_{1} not having been taken, stands to the credit of the policybolder when he enters upon the second year, and therefore when he pays the premium ϖ_{1} the office holds $V_{1}+\varpi_{1}$. Now, from the equation expressing the value of w_{1} in (C), we find that $V_{1}+w_{1}=\frac{M_{x+1}-M_{x+2}}{D_{x+1}}+\frac{D_{x+2}}{D_{x+1}} V_{2}$, which shows that the sum in the hands of the Society at the commencement of the second year is exactly sufficient to provide for the second year's risk and the surrender V_{2} at the end of that year, hence the Society cannot suffer loss however many surrenders take place in the second year. The same reasoning applied to the subsequent years will be found to lead to similar results.

Suppose we now proceed to find what uniform annual preminm (w^{\prime}) is equivalent to the series of premiums $w_{0}, w_{1}, w_{2}, w_{3} \ldots w_{9}$ as determined by (C). We must then have an equation satisfied, which, after multiplying both sides by D_{x}, becomes

$$
\begin{aligned}
& \omega^{\prime}\left(\mathrm{D}_{x}+\underset{\mathrm{i}}{p} \mathrm{D}_{x+1}+\underset{12}{p p} \mathrm{D}_{x+2} \ldots+\underset{12}{p p} \ldots \underset{9}{p} \mathrm{D}_{x+9}\right)=w_{0} \mathrm{D}_{x}+{\underset{1}{1}}_{p} \mathrm{D}_{x+1} \omega_{1} \\
& +\underset{12}{ } \mathrm{D}_{x+2} \mathrm{D}_{2} \ldots+p_{12} \ldots{\underset{9}{p} \mathrm{D}_{x+9} \sigma_{9}}
\end{aligned}
$$

and if we substitute for $\varpi_{0}, \varpi_{1}, \& c$., their values given by (C), previously putting $\mathrm{V}_{0}=0, \mathrm{~V}_{1}=\frac{1}{10} \frac{\mathrm{M}_{x+1}}{\mathrm{D}_{x+1}}, \mathrm{~V}_{2}=\frac{2}{10} \frac{\mathrm{M}_{x+2}}{\mathrm{D}_{x+2}}$, \&c., the above equation will be found to give for \boldsymbol{w}^{\prime} precisely the same expression as that which was obtained for w by the formula (1) and (2) in my last letter. From this we see that it is solely on account of charging a uniform premium that it becomes necessary to introduce the probabilities of surrender, and thus, in the absence of the knowledge of what those probabilities are, to bring a speculative element into the contract.

There is yet one other case to be glanced at. We may suppose the premiums to be all equal, or $\varpi_{0}=\pi_{1}=\varpi_{2} \ldots=\pi_{9}(=\varpi)$, the values of $\mathrm{V}_{9}, \mathrm{~V}_{8}, \mathrm{~V}_{7}, \& \mathrm{c}$., then become,

$$
\begin{aligned}
& \mathrm{V}_{9}=\frac{\mathrm{M}_{x+9}}{\mathrm{D}_{x+9}}-w \\
& \mathrm{~V}_{8}=\frac{\mathrm{M}_{x+8}}{\mathrm{D}_{x+8}}-w \frac{\mathrm{~N}_{x+7}-\mathrm{N}_{x+9}}{\mathrm{D}_{x+8}} \\
& \mathrm{~V}_{7}=\frac{\mathrm{M}_{x+7}}{\mathrm{D}_{x+7}}-w \frac{\mathrm{~N}_{x+6}-\mathrm{N}_{x+9}}{\mathrm{D}_{x+7}} \\
& \vdots \\
& \vdots \\
& \mathrm{~V}_{1}=\frac{\mathrm{M}_{x+1}}{\mathrm{D}_{x+1}}-w \frac{\mathrm{~N}_{x}-\mathrm{N}_{x+9}}{\mathrm{D}_{x+1}} \\
& \mathrm{~V}_{0}=\frac{\mathrm{M}_{x}}{\mathrm{D}_{x}}-w \frac{\mathrm{~N}_{x-1}-\mathrm{N}_{x+9}}{\mathrm{D}_{x}}
\end{aligned}
$$

Since $\mathrm{V}_{0}=0$ in practice, the last equation gives $\omega=\frac{\mathrm{M}_{x}}{\mathrm{~N}_{x-1}-\mathrm{N}_{x+9}}$, which determines the premium, and, substituting this value in each of the other
equations, the nine surrender values become known. We have here the familiar case of a whole-life assurance, all the premiums for which are comprised in ten equal annual payments, one at the commencement of each of the first ten years, but where no surrender values of given amounts form any part of the contract, and it is evident from what precedes that this is the only possible instance-for the same description of policy-in which a uniform premium will exactly provide (under any law of surrender) for a set of surrender values, the amounts of which might be specified beforehand or at the time the assurance was effected.

The actual amounts of the surrenders which might be thus held out to the assurer, without introducing any uncertainty or specnlation into the transaction, are the values of $\mathrm{V}_{9}, \mathrm{~V}_{8}, \& \mathrm{c}$., given by the last set of formulx, and these are specified for ages 30,40 , and 50 , at entry, in the following table. On comparing them with the results previonsly obtained for V_{9}, V_{8}, \&c., on another hypothesis, it will be seen that the difference is only in the decimal in each case.

At Entry	m.	V_{2}.	V_{3}.	V_{4}.	V_{5}.	V_{6}.	V_{7}.	V_{8}.	V9.
30	$4 \cdot 674$	$8 \cdot 152$	$12 \cdot 445$	16.891	$21 \cdot 498$	26.273	31.223	36.357	41-684
40	5.636	$9 \cdot 812$	14.986	$20 \cdot 345$	$25 \cdot 894$	31-641	37-594	$43 \cdot 768$	$50 \cdot 176$
50	$7 \cdot 002$	11.600	17.683	23.974	30494	37'262	$44 \cdot 304$	51.653	$59 \cdot 342$

The figures here given for w are derived, of course, from $w=\frac{\mathbf{M}_{x}}{\mathbf{N}_{x-1}-\mathbf{N}_{x+9}}$.
Sufficient materials have now probably been given in this and my former letter to enable any one interested in the subject to form an opinion as to the merits of the American system of ten year nonforfeiture policies. Its simplicity of statement is its one recommendation, and no doubt a great and important one, but it is plain that if a Company issued a considerable number of such policies, some care would be necessary at each periodical valuation in determining the reserve required for the risks, in order to attain that degree of exactness and certainty in the results to which most English Actuaries are accustomed.

17, Waterloo Place, | Pall Mall, London, |
| :---: |
| 31st May, 1869. |

> I am,
> $\stackrel{\text { Sir, }}{ }$ Your most obedient Servant,

SAMUEL YOUNGER.
Pall Mall, London, 31st May, 1869.

To the Editor of the Journal of the Institute of Actuaries.
Sir,-In Mr. Higham's paper on the value of "selection," in vol. i., in discussing the effect of taking the lives in quinquemial groups, he says in a foot-note, page 186 , that if the numbers living at ages $m, m+1, m+2$, $m+3, m+4$, respectively, be represented by $10,9,8,7,6$, then, if the probability of living a year diminish by sccond differences, the probability for the quinquennial combination is $=1$ st term $+\frac{7}{4} d_{1}+\frac{52}{32} d_{2}$,
d_{1}, d_{2}, being the 1 st and 2 nd orders of differences of p_{n}.

[^0]: * Would it not suffice, considering all the circumstances of the problem, to use the net single premiums, as is virtually the case when all the premiums have been paid?Ed. J. I. A.

