SOME EXAMPLES OF COMPLEMENTED MODULAR LATTICES

G. Grätzer and Maria J. Wonenburger
(received November 13, 1961)

Let L be a complemented, S-complete modular lattice. A theorem of Amemiya and Halperin (see [1], Theorem 4.3) asserts that if the intervals $[O, a]$ and $[O, b], a, b \varepsilon L$, are upper \mathscr{X}-continuous then $[O, a \cup b$] is also upper \mathscr{S}-continuous. Roughly speaking, in L upper \mathscr{Y}-continuity is additive. The following question arises naturally: is $\Varangle-$ completeness an additive property of complemented modular lattices? It follows from Corollary 1 to Theorem 1 below that the answer to this question is in the negative.

A complemented modular lattice is called a Von Neumann geometry or continuous geometry if it is complete and continuous. In particular a complete Boolean algebra is a Von Neumann geometry. In any case in a Von Neumann geometry the set of elements which possess a unique complement form a complete Boolean algebra. This Boolean algebra is called the centre of the Von Neumann geometry. Theorem 2 shows that any complete Boolean algebra can be the centre of a Von Neumann geometry with a homogeneous basis of order n (see [3] Part II, definition 3.2 for the definition of a homogeneous basis), n being any fixed natural integer.

Preliminaries

We first recall some properties of regular rings. The definitions and proofs can be found in [3] part II, Chap. II or [2], §3. We always assume that the regular ring has a unit element which will be denoted by 1 .

Canad. Math. Bull. vol. 5, no. 2, May 1962.

If S is a regular ring, $\overline{\mathrm{L}}_{S}\left(\bar{R}_{S}\right)$ denotes the complemented modular lattices of principal left (right) ideals. The mapping which takes each element of $\overline{\mathrm{L}}_{\mathrm{S}}$ into its right annihilator is a dual-isomorphism of \bar{L}_{S} onto \bar{R}_{S}. Under this map the principal left ideal (e) \mathcal{L}_{2} generated by the idempotent e goes into the principal right ideal $(1-\mathrm{e})_{\mathrm{r}}$.

If S is a regular ring, the ring S_{n} of $n \times n$ matrices with entries in S is also regular. There exists a lattice isomorphism between $\bar{L}_{S_{n}}\left(\bar{R}_{S_{n}}\right)$ and the Iattice of finitely generated submodules of the left (right) S-module of n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right), a_{i} \varepsilon$. Since S_{n} is regular, for every $A \varepsilon S_{n}$ there exists an idempotent matrix E such that $\left.{ }^{(E)}\right)_{\mathcal{L}}=(A)_{\mathcal{L}}$. Moreover, it is possible to choose

$$
E=\left(\begin{array}{cccc}
e_{1} & 0 & \cdots & 0 \\
c_{21} & e_{2} & \cdots & 0 \\
\cdot & \cdot & \cdots & \cdot \\
c_{n 1} & c_{n 2} & \cdots & e_{n}
\end{array}\right)
$$

where $e_{i}^{2}=e_{i}, e_{i} c_{i j}=c_{i j}, c_{i j} e_{j}=0$, for $i, j=1,2, \ldots, n$ and $c_{i j}=0$, for $j>i$. Such a matrix is called a left canonical matrix. An idempotent matrix such that $e_{i}^{2}=e_{i}, c_{i j} e_{j}=c_{i j}, e_{i} c_{i j}=0$ for $i, j=1,2, \ldots, n$ and $c_{i j}=0$ for $j>i$ is called right canonical. For every $A \varepsilon S_{n}$ the re exists a right canonical matrix E such that $(A)_{r}=(E)_{r}$ Notice that if E is a right (left) canonical matrix then $1-E$ is left (right) canonical.

In what follows our regular ring S will be the Boolean ring B defined by a Boolean algebra \mathcal{O}, that is, the elements
of B are those of \mathcal{B} and

$$
a+b=a b^{\prime} \cup b a^{\prime}, a b=a \cap b
$$

where c^{\prime} denotes the complement of $c \varepsilon \mathcal{B}$. The notation $\mathrm{c}=\mathrm{a} \dot{\mathrm{b}}$ implies that $\mathrm{ab}=0$. If is an ideal of \mathcal{B}, it defines an ideal I of B. There exists a 1-1 correspondence between the elements of $\mathcal{\beta}$ and the principal ideal of B.

In the ring S_{n} there is in general more than one left (right) canonical matrix corresponding to an element $A \varepsilon S_{n}$. However, if two left canonical matrices E and F are such that $(E)_{\mathscr{L}}=(F)_{\mathcal{L}}$ and they have the same idempotents down the main diagonal, then $E=F$. This follows from the fact that $E F=E$ if $(E)_{\mathscr{L}}=(F)_{\mathscr{L}}$. Although in general the element e_{i} is not uniquely defined by A, the ideal $\left(e_{i}\right){ }_{\ell}$ is unique.
Since in the Boolean ring B any principal ideal is defined by a unique element, any principal left ideal of B_{n} is defined by a unique left canonical matrix. We will identify the elements of \bar{L}_{B} with the corresponding left canonical matrices.
n

Some examples of complemented modular lattices

Throughout this section \mathcal{F} will be a Boolean algebra, \mathscr{A} an ideal of \mathcal{B}, and B and I the corresponding Boolean ring and ideal. \bar{J} denotes the cardinal power of the set J.

THEOREM 1. Let L consist of the 2×2 left canonical matrices

$$
A=\left(\begin{array}{ll}
e_{1} & 0 \\
a & e_{2}
\end{array}\right) \text {, where } e_{1}, e_{2} \varepsilon B \text { and } a \varepsilon I \text {. For }
$$

$A_{1}, A_{2} \varepsilon L$, define $A_{1} \leq A_{2}$ if $\left(A_{1}\right)_{\mathcal{L}} \subset\left(A_{2}\right)_{\mathscr{L}}$ where (A) is the principal left ideal of B_{2} generated by A. Then L is a complemented modular lattice. Moreover, the following conditions are equivalent
(i) L is an s_{α}-complete $\quad \mathcal{S}_{\alpha}$-sublattice of $\overline{\mathrm{I}}_{\mathrm{B}_{2}}$
(ii) L is an \mathcal{s}_{α}-complete \mathcal{S}_{α}-continuous γ_{α}-sublattice of $\bar{L}_{B_{2}}$
(iii) $\mathscr{L}_{\text {is an }} \quad y_{\alpha}$-ideal and \mathcal{B} is \mathscr{S}_{α}-complete.

Proof. Let R be the set of right canonical matrices $A=\left(\begin{array}{ll}e_{1} & 0 \\ a & e_{2}\end{array}\right), e_{1}, e_{2} \varepsilon B$ with $a \varepsilon I$, ordered by the relation
$A_{1} \leq A_{2}$ if $\left(A_{1}\right)_{r} C\left(A_{2}\right)_{r}$. Then the dual isomorphism between $\bar{L}_{B_{2}}$ and $\bar{R}_{B_{2}}$ induces a dual isomorphism between
L and R. Hence any statement about L implies its dual, since what we prove for L can be proved as well for R.

We show first that L is a complemented modular lattice. When $\mathcal{A}=\mathcal{B}$ the ordered set defined in the theorem coincides with $\overline{\mathrm{L}}_{\mathrm{B}_{2}}$ and there is nothing to prove. When $\mathscr{\Omega} \neq$ we will prove that L is a sublattice of $\bar{L}_{B_{2}}$. For this we use the lattice isomorphism between the principal left ideals of B_{2} and the finitely generated submodules of the left B -module of 2 -tuples $\left(a_{1}, a_{2}\right), a_{i} \varepsilon B$. If $\left\{\left(a_{1}, a_{2}\right)\right\}$ denotes the left submodule generated by the vector (a_{1}, a_{2}) then the module M corresponding to the canonical matrix $\left(\begin{array}{ll}e_{1} & 0 \\ a & e_{2}\end{array}\right)$ has the form
(1) $M=\left\{\left(e_{1}, 0\right)\right\} \oplus\left\{\left(a, e_{2}\right)\right\}=\left\{\left(e_{1}, 0\right)\right\} \oplus\{(a, a)\} \oplus\left\{\left(0, a_{0}\right)\right\}$ where $a_{0}=e_{2} a^{\prime}$ and \oplus indicates direct sum. Since the matrix is canonical $e_{2}=a \dot{\cup} a_{0}$ 。

It is clear that the only elements of M whose second or first component is zero are the elements of the submodules $\left\{\left(e_{1}, 0\right)\right\}$ or $\left\{\left(0, a_{0}\right)\right\}$, respectively. The elements of M of the form (c, c) are the elements of $\left\{\left(a \dot{U_{1}} a_{0}, a \dot{e_{1}} a_{o}\right)\right\}$.

The module

$$
\begin{equation*}
N=\left\{\left(f_{1}, 0\right)\right\} \oplus\{(b, b)\} \oplus\left\{\left(0, b_{o}\right)\right\} \tag{2}
\end{equation*}
$$

where $b \varepsilon I, b f_{1}=b b_{o}=0$, corresponds to the canonical matrix

$$
\left(\begin{array}{ll}
f_{1} & 0 \\
b & f_{2}
\end{array}\right)
$$

where $f_{2}=b \dot{U} b_{o}$. Now N contains M if and only if

$$
e_{1} \leq f_{1}, a_{0} \leq b_{0} \text { and } a \leq b \dot{\cup} f_{1} b_{0},
$$

or what is equivalent,

$$
e_{1} \leq f_{1}, e_{2} \leq f_{2}, a \leq b \cup f_{1} f_{2} \text { and } a_{0} b=0 .
$$

In general given two modules M and N defined by (1) and (2)
$\mathrm{M} N=\left\{\left(\mathrm{e}_{1} \cup \mathrm{f}_{1}, 0\right)\right\}+\{(\mathrm{a} \cup \mathrm{b}, \mathrm{a} \cup \mathrm{b})\}+\left\{\left(0, \mathrm{a}_{\mathrm{o}} \cup \mathrm{b}_{\mathrm{o}}\right)\right\}=$ $=\left\{\left(e_{1} \cup f_{1} \cup b a_{o} \cup b_{o} a, 0\right)\right\} \oplus\{(c, c)\} \oplus\left\{\left(0, a_{o} \cup b_{0} \cup b e_{1} \cup a f_{1}\right)\right\}$
where $c=a f_{1}^{\prime} b{ }_{o}^{\prime} \cup e_{1}^{\prime} a_{o}^{\prime} b \leqq a \cup b \varepsilon I$. Hence $M \cup N \varepsilon L$. By duality $\mathrm{M} \frown \mathrm{N} \varepsilon \mathrm{L}$. Therefore L is a sublattice of a modular lattice and is itself modular. Since

$$
M^{\prime}=\left\{\left(e_{1}^{\prime} a^{\prime}, 0\right)\right\} \oplus\left\{\left(0, a_{0}^{\prime}\right)\right\}
$$

is a complement of the module M, L is a complemented modular lattice.

Our next step is to show that if \mathcal{B} is $\mathcal{S} \mathcal{S}$-complete then $\bar{L}_{B_{2}}$ is S-complete. It is sufficient to show that $\bar{L}_{B_{2}}$ is upper $\&$-complete, because the lower \mathcal{H}-completeness follows by duality.

$$
\text { Let } A^{\beta}=\left(\begin{array}{cc}
e_{1}^{\beta} & 0 \\
a^{\beta} & e_{2}^{\beta}
\end{array}\right) \quad \varepsilon \quad \bar{L}_{B_{2}} \quad \text { for all } \beta \varepsilon J \text {, }
$$

where $\bar{J} \leq \mathcal{S}$. It is immediate that if \mathcal{B} is \mathcal{S}-complete, the union of the corresponding modules
$M_{\beta}=\left\{\left(e_{1}^{\beta}, 0\right)\right\} \oplus\left\{\left(a^{\beta}, a^{\beta}\right)\right\} \oplus\left\{\left(0, a_{0}^{\beta}\right)\right\} \quad$ where $a_{0}^{\beta}=e_{2}^{\beta}\left(a^{\beta}\right)^{\prime}$ is the module

$$
M=\left\{\left(\cup e_{1}^{\beta}, 0\right)\right\}+\left\{\left(\cup a^{\beta}, \cup a^{\beta}\right)\right\}+\left\{\left(0, \cup a_{0}^{\beta}\right)\right\}
$$

which corresponds to the canonical matrix

$$
A=\left(\begin{array}{ccc}
\cup e_{1}^{\beta} & \cup\left(\left(\cup a^{\beta}\right) \cdot\left(\cup a_{0}^{\beta}\right)\right) & 0 \tag{3}\\
& d & \left|\cup a^{\beta}\right| \cup\left|\cup a_{0}^{\beta}\right|
\end{array}\right)
$$

where

$$
d=\left(\cup a^{\beta}\right) \cdot\left(\cup e_{1}^{\beta} \cup\left(\left(\cup a^{\beta}\right) \cdot\left(\cup a_{0}^{\beta}\right)\right)\right)^{\prime} .
$$

Now we are ready to prove the equivalence of conditions (i), (ii), (iii).
(i) implies (ii). This is a consequence of the additivity of upper \mathcal{S}-continuity in complemented \mathcal{S}-complete modular lattices. For, if

$$
X=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad Y=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

the intervals $[0, \mathrm{X}]$ and $[0, \mathrm{Y}]$ are both isomorphic to \mathcal{G};
hence $L=[0, X \cup Y]$ is upper \mathcal{S}-continuous. Using duality we get that L is -continuous.
(ii) implies (iii). Since \mathcal{B} is isomorphic to the interval $[0, X]$, if L is s_{α}-complete then B is s_{α}-complete.
Now let

$$
C^{\beta}=\left(\begin{array}{cc}
0 & 0 \\
a^{\beta} & a^{\beta}
\end{array}\right) \varepsilon L
$$

for all $\beta \varepsilon J$ and $\bar{J} \leq$ ss $_{\alpha}$. Then

$$
v c^{\beta}=\left(\begin{array}{cc}
0 & 0 \\
v a^{\beta} & \cup_{a}^{\beta}
\end{array}\right) \varepsilon L,
$$

which implies that $\cup{ }_{a}^{\beta}{ }_{\varepsilon} \mathscr{L}$ and therefore \mathscr{L} is S_{α}-complete.
(iii) implies (i). Let

$$
A^{\beta}=\left(\begin{array}{cc}
e_{1}^{\beta} & 0 \\
a^{\beta} & e_{2}^{\beta}
\end{array}\right) \varepsilon L \text { for all } \beta \varepsilon J \text {, }
$$

and $\bar{J} \leq s_{\alpha}$. Then (3) implies that $\cup A^{\beta}{ }_{\varepsilon} L$, hence (i) holds.

COROLLARY 1. Let L be as in Theorem 1. Suppose \mathcal{B} is complete and \mathscr{U} is an S_{α}-ideal which is not an \&s $\alpha+1^{\text {-ideal. Then }}$
(a) L contains two elements X and Y such that the intervals $[0, X]$ and $[0, Y]$ are complete and continuous and $\mathrm{L}=[0, \mathrm{X} \cup \mathrm{Y}]$.
is
(b) L is δ_{α}-complete and \mathcal{S}_{α}-continuous but not $\alpha+1$-complete.

Proof. The only thing which has to be proved is that L is not $S_{\alpha+1}$-complete.

Suppose L is $\mathcal{S}_{\alpha+1}$-complete. Then, since $L=[0, X \cup Y]$, by the additivity of $\mathcal{S}_{\alpha+1}$-continuity in $\aleph_{\alpha+1}$-complete lattices, L is $s_{\alpha+1}$-continuous. Let Ω be the first ordinal such that $\bar{\Omega}={\underset{\alpha}{\alpha+1}}_{\alpha+1}$ and $\left\{a^{\beta}\right\}_{\beta<\Omega}$ an increasing chain of elements of such that $\cup a^{\beta} \notin$. Take

$$
C^{\beta}=\left(\begin{array}{cc}
0 & 0 \\
a^{\beta} & a^{\beta}
\end{array}\right)
$$

Then

$$
C=\cup C^{\beta}=\left(\begin{array}{cc}
0 & 0 \\
\cup_{a}^{\beta} & \cup_{a}^{\beta}
\end{array}\right) \notin L .
$$

If $C^{\prime}=\left(\begin{array}{ll}e_{1} & 0 \\ b & *\end{array}\right)$ is the supremum of the C^{β} in L then $b \nsupseteq \mathrm{a}^{\beta}$, since $\mathrm{b} \varepsilon I$. On the other hand $C<C^{\prime}$ implies that $\cup a^{\beta} \leq b \cup e_{1}$, hence $e_{1} \neq 0$. Now $D=\left(\begin{array}{ll}e_{1} & 0 \\ 0 & 0\end{array}\right) \varepsilon L . \quad D \cap C^{\beta}=0$ for all $\beta<\Omega$, but $D \cap C \neq 0$, which contradicts the $S_{\alpha+1}$-continuity of L.

COROLLARY 2. Let L be as in Theorem 1. Then L is a Non Neumann geometry if and only if \mathcal{B} is a complete Boolean algebra and \varnothing is a principal ideal, that is, $I=[0, x], x \in B$. In this case the center of L is isomorphic to $[0, x] \times\left[0, x^{\prime}\right] \times\left[0, x^{\prime}\right]$.

Proof. When $\ell=[0, x]$, L is the lattice direct sum of the intervals $\left[0, Y_{0}\right],\left[0, Y_{1}\right],\left[0, Y_{2}\right]$, where $Y_{0}=\left(\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right), \quad Y_{1}=\left(\begin{array}{ll}x^{-} & 0 \\ 0 & 0\end{array}\right), \quad Y_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & x^{-}\end{array}\right)$. Hence its center is isomorphic to $[0, x] \times[0, x] \times[0, x]$

THEOREM 2. If $\mathcal{\beta}$ is a complete Boolean algebra, then the Lattice $\bar{L}_{B_{n}}$ is a Von Neumann geometry whose center is isomorphic to \mathcal{B}.

Remark. For $n=2$ this theorem is contained in Theorem 1.
Proof. Because of the dual isomorphism between $\bar{L}_{B_{n}}$ and $\bar{R}_{B_{n}}$ we only need to prove that $\bar{L}_{B_{n}}$ is upper complete and upper continuous. Now $\bar{L}_{B_{n}}=\left[0, X_{1} \cup X_{2} \cup \ldots \cup X_{n}\right]$, where X_{i} is the canonical matrix with 1 in the (i,i) place and zeros elsewhere, and the interval $\left[0, X_{i}\right]$ being isomorphic to \mathcal{Q}, is continuous. Therefore, by the theorem of Amemiya and Halperin quoted in the introduction, if $\bar{L}_{B_{n}}$ is upper complete it is also upper continuous. So it is sufficient to prove that $\bar{L}_{B_{n}}$ is upper complete.

We use induction on n. If $n=1, \bar{L}_{B} \approx \mathcal{B}$ and there is nothing to prove. Assume then that the theorem is true for $\mathrm{n}-1$. Let A^{β} be an increasing chain, where $\beta<\Omega, \Omega$ any limit ordinal, and

$$
E=\left(\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
0 & \ldots & \ldots & . & 0 \\
0 & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & 0
\end{array}\right) \quad \varepsilon \bar{L}_{B_{n}} .
$$

Then the elements $A^{\beta} \cap E$ form an increasing chain. To the elument $A^{\beta} \cap E$ there corresponds a finitely generated submodule N^{β} of the left B-module of n-tuples and the elements of this submodule have the last component equal zero.
Therefore, because of the induction assumption, the increasing chain of submodules N^{β} has a supremum which is also a submodule whose elements have the last component equal to zero. Let $A^{\prime} \varepsilon \bar{L}_{B_{n}}$ be the left canonical matrix corresponding to this submodule,

$$
A^{\prime}=\left(\begin{array}{llll}
e_{1} & 0 & \cdots & 0 \\
c_{21} & e_{2} & \cdots & 0 \\
c_{n-1,1} & c_{n-1,2} & \cdots & 0 \\
c_{n-1} & 0 \\
0 & 0 & \cdots & 0
\end{array}\right)
$$

If C is an upper bound of the $A^{\beta}, \beta<\Omega$, then $C \geq A^{\beta} \cap E$. Hence $C \geq A^{\prime}$, and $C \geq A^{\beta} \cup A^{\prime}$. That is, any upper bound of the A^{β} is an upper bound of the chain of $A^{\beta} \cup A^{\prime}$ and conversely, Let $B^{\beta}=A^{\beta} \cup A^{\prime}$, since $B^{\beta} \cap E=\left(A^{\beta} \cup A^{\prime}\right) \cap E=A^{\prime}$,

$$
B^{\beta}=\left(\begin{array}{cccc}
e_{1} & 0 & \cdots & 0 \\
c_{21} & e_{2} & \cdots & 0 \\
\cdots & \cdot & \cdots & 0 \\
c_{n-1,1} & c_{n-1,2} & \cdots & e_{n-1} \\
b_{1}^{\beta} & b_{2}^{\beta} & \cdots & 0 \\
n-1 & e_{n}^{\beta}
\end{array}\right)
$$

Moreover, if $\alpha<\beta, B^{\alpha} \leq B^{\beta}$ and this implies $B^{\alpha} B^{\beta}=B^{\alpha}$, which is equivalent to $e_{n}^{\alpha} b_{i}^{\beta}=b_{i}^{\alpha}, i=1,2, \ldots, n-1$, $e_{n}^{\alpha} e_{n}^{\beta}=e_{n}^{\alpha}$. Now it is easily seen that

is the supremum of the chain of B^{α}. For, $e_{n}^{\alpha} b_{i}^{\beta}=b_{i}^{\alpha}$ and $e_{n}^{\alpha} e_{n}^{\beta}=e_{n}^{\alpha}$ for $\alpha<\beta$ imply that the b_{i}^{β} and e_{n}^{β} form increasing chains. Consequently, $e_{n}^{\alpha}\left(\cup b_{i}^{\beta}\right)=b_{i}^{\alpha}$, $e_{n}^{\alpha}\left(\cup e_{n}^{\beta}\right)=e_{n}^{\alpha}$ and $\left(\cup e_{n}^{\alpha}\right)\left(\cup b_{i}^{\beta}\right)=\cup_{\alpha}\left(e_{n}^{\alpha}\left(\cup_{\beta}^{b} i_{i}^{\beta}\right)\right)=\cup b_{i}^{\alpha}$, Therefore B is a canonical matrix such that $B^{\alpha} B=B^{\alpha}$, which implies $B^{\alpha} \leq B$, and it is clear that B is the supremum.

REFERENCES

1. I. Amemiya and I. Halperin, Complemented modular lattices. Can. J. Math. Vol. 11, pp. 481-520.
2. K. D. Fryer and I. Halperin, The von Neumann coordinatization theorem for complemented modular lattices. Acta Szeged 1956, pp. 203-249.
3. J. von Neumann, Continuous Geometry. Princeton University Press, 1960.

Hungarian Academy Queen's University

