
Lo
v

e
T

h
e R

o
le o

f Sym
m

etry in
 th

e D
evelo

p
m

en
t o

f th
e Stan

d
ard

 M
o

d
el

To Come

About the Series
This Elements series presents novel 
atomic and molecular systems as  
a platform to study physics beyond the 
Standard Model, based on the synergy 
between high energy physics and atomic, 
molecular, and optical physics. The series 
covers several key areas of interest in this 
emerging field.

Series editors
David Cassidy 
University College 
London (UCL)

Rouven Essig 
Stony Brook 
University

Jesús Pérez-Ríos 
Stony Brook 
University

Physics beyond the  
Standard Model with  
Atomic and Molecular Systems

ISSN 2754-4621 (online)
ISSN 2754-4613 (print)

The Role of 
Symmetry in the 
Development of the 
Standard Model

Sherwin T. Love

Cover image: diyun Zhu/Moment/Getty Images

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

84
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009238427


ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

84
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009238427


Elements in Physics beyond the Standard Model with Atomic
and Molecular Systems

edited by
David Cassidy

University College London (UCL)
Rouven Essig

Stony Brook University
Jesús Pérez-Ríos
Stony Brook University

THE ROLE OF SYMMETRY IN THE
DEVELOPMENT OF THE
STANDARD MODEL

Sherwin T. Love
Purdue University

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

84
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009238427


Shaftesbury Road, Cambridge CB2 8EA, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,

New Delhi – 110025, India
103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment,
a department of the University of Cambridge.

We share the University’s mission to contribute to society through the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781009478601

DOI: 10.1017/9781009238427
© Sherwin T. Love 2024

This publication is in copyright. Subject to statutory exception and to the provisions
of relevant collective licensing agreements, no reproduction of any part may
take place without the written permission of Cambridge University Press.

First published 2024
A catalogue record for this publication is available from the British Library.

ISBN 978-1-009-47860-1 Hardback
ISBN 978-1-009-23845-8 Paperback

ISSN 2754-4621 (online)
ISSN 2754-4613 (print)

Cambridge University Press & Assessment has no responsibility for the persistence
or accuracy of URLs for external or third-party internet websites referred to in this
publication and does not guarantee that any content on such websites is, or will

remain, accurate or appropriate.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

84
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://www.cambridge.org
http://www.cambridge.org/9781009478601
http://dx.doi.org/10.1017/9781009238427
https://doi.org/10.1017/9781009238427


The Role of Symmetry in the Development
of the Standard Model

Elements in Physics beyond the Standard Model with Atomic
and Molecular Systems

DOI: 10.1017/9781009238427
First published online: January 2024

Sherwin T. Love
Purdue University

Author for correspondence: Sherwin T. Love, loves@purdue.edu

Abstract: Symmetry and its various realizations have played a pivotal role
in the development of the extremely well-tested Standard Model of the
strong, weak and electromagnetic interactions. In this Element, the author
traces the development of the model through the interplay of the different
symmetries realized in the various components of the model as well as in

other sub-fields of physics.

Keywords: symmetry, standard model of particle physics, Higgs mechanism,
QED, QCD

© Sherwin T. Love 2024
ISBNs: 9781009478601 (HB), 9781009238458 (PB), 9781009238427 (OC)

ISSNs: 2754-4621 (online), 2754-4613 (print)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

84
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:loves@purdue.edu
https://doi.org/10.1017/9781009238427


Contents

1 Introduction 1

2 Wigner–Weyl Realization of Global Symmetries 2

3 Local U(1) Invariance and QED 5

4 Global Symmetry Structure of the Strong Interactions 9

5 Fermi Theory of the Weak Interactions 11

6 Nambu–Goldstone Realization of SU(2)A 12

7 Yang–Mills Theory 16

8 Quantum Chromodynamics 17

9 SU(2)L × U(1) Invariant Lepton Couplings to the
Electroweak Vectors 22

10 Abelian Higgs Model 27

11 Standard Electroweak Model 29

12 The Higgs Boson 37

13 Global Symmetries versus Local Invariance 39

14 Limitations and Challenges of the Standard Model 41

Appendix

A.1 Notations and Conventions 53

A.2 The SU(2)L × U(1) Electroweak Model 55

References 67

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

84
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009238427


The Role of Symmetry in the Development of the Standard Model 1

1 Introduction
In July 2012, the CMS and Atlas collaborations working at the Large Hadron
Collider (LHC) at CERN in Geneva, Switzerland jointly announced [1],[2] the
detection of a scalar boson of mass roughly 125 GeV decaying into two pho-
tons and exhibiting the properties of the Higgs boson, the particle remnant of
the electroweak symmetry-breakingmechanism of the StandardModel (SM) of
particle physics. For their theoretical work describing this mechanism, P. Higgs
and F. Englert were jointly awarded the 2013 Nobel Prize in Physics. This
prize was really all about the role of symmetry, its form and its realization, in
the electroweak interactions. Symmetry has also played a crucial role in the
development of the theory of strong interactions, Quantum Chromodynamics
(QCD), the other component of the Standard Model. In fact, one might argue
that the deeper understanding of symmetry in many ways underlies much of
the physics of the past century. In this Element we discuss the role symme-
try played leading to the construction of the SM. The treatment makes no real
attempt to strictly follow the chronological development of the SM. However,
we try to indicate some of the important hurdles encountered along the way and
how they were overcome. In addition, this approach gives us the opportunity
to introduce in a natural fashion some of the basic concepts that underlie the
Standard Model. We then briefly discuss some of the model’s successes and
limitations as well as some open questions that appear to require extensions
beyond the model.
The modern view of the role of symmetry originated with Albert Einstein,

whose general theory of relativity [3],[4] related gravitational interactions to
the principle of general coordinate invariance. The use of a symmetry principle
as the primary feature of nature that constrains and even dictates the allowable
dynamical laws lies at the heart of the Standard Model. The Standard Model is
designed to describe the strong, weak and electromagnetic interactions while
treating gravity as a classical (flat) background. Thus it must respect the prin-
ciples of special relativity. In addition, the dynamics needs to conform to the
postulates of quantum theory. Since special relativity allows for particle pair
production, any formulation must be able to account for arbitrary and vary-
ing numbers of particles. The only consistent way to achieve this is using a
relativistic quantum field theory, with the textbook of Peskin and Schroeder
[5] being one commonly used for reference. Here the particle modes arise as
excitations of operator quantum fields ζa(x), labeled by the space-time point
xµ and an index a that distinguishes the various fields. (Appendix A.1 details
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2 Physics beyond the Standard Model with Atomic and Molecular

the notations and convention employed.) The dynamics is encoded within the
action functional

S[ζ] =
∫

d4xL(x), (1.1)

where the local Lagrangian density L(x) is a function of the quantum fields
and their space-time derivatives. This Lagrangian will also depend on various
parameters. To fully define the theory, these parameters need to be fixed by cer-
tain normalization conditions. Using the Lagrangian, one extracts the various
Feynman rules that can be employed in perturbative calculations. Some of the
radiative corrections that arise from Feynman graphs containing closed loops
can be included by defining scale-dependent (running) couplings to replace the
couplings appearing in the Lagrangian. The form of the running coupling can
be most easily secured using the renormalization group [5–9].

2 Wigner–Weyl Realization of Global Symmetries
Symmetries are represented by transformations of the fields that leave the
action functional invariant. Included within this class are the space-time
Poincaré transformations (space-time translations, spatial rotations and Lorentz
boosts) of special relativity.
In addition to space-time symmetries, the action is constructed to be invar-

iant under various transformations of the fields that depend on continuous
parameters, {ωi}, which do not alter the space-time point. When the parameters
themselves are independent of space-time, such symmetries are referred to as
continuous global internal symmetries. In this case, a symmetry of the action
is necessarily a symmetry of the Lagrangian density. Wigner’s theorem [10]
then dictates that these symmetries can be implemented on the Hilbert space
of states by unitary operators, U({ωi}), depending on parameters characteriz-
ing the transformation. Here i = 1, . . . ,n, with n being the number of group
parameters. The invariance is then the statement that the Lagrangian density
commutes with the unitary operator U:

U−1({ωi})L(x)U({ωi}) = L(x). (2.1)

We shall primarily focus on continuous global transformations that form a Lie
group. (See, for example, the text by H. Georgi [11].)
Although the Lagrangian L is constructed to be invariant under a certain

set of transformations, the quantum fields will, in general, transform among
themselves under these same transformations. We shall concentrate on quan-
tum fields ζa(x) that transform irreducibly under the symmetry. The concept of
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The Role of Symmetry in the Development of the Standard Model 3

irreducibility is simply that, under the transformation, a set of fields ζa will go
into a linear combination of themselves. That is, one has

U−1({ωi})ζa(x)U({ωi}) = Rab({ωi})ζb(x). (2.2)

Here Rab({ωi}) are matrix elements of the representation matrices describing
the given symmetry transformation.
Because we are dealing with continuous symmetries, it is possible and

convenient to restrict attention to infinitesimal transformations. Finite trans-
formations can then be obtained by simply compounding these infinitesimal
transformations using the group property. For an infinitesimal transformation
characterized by a set of dimensionless parameters {δωi}, with |δωi | � 1, one
can write the operator U({δωi}) as

U({δai}) = 1 + iδωiGi. (2.3)

The operators Gi are known as the generators of the transformation. For each
independent infinitesimal parameter δωi there is one generator associated with
it. With no loss of generality, one can take these parameters to be real. The
unitarity of the U({δωi}) then dictates that the generators Gi are Hermitian:
Gi = G†i . The group composition property associated with the symmetry
transformations is encoded in the Lie algebra obeyed by the generators and
characterized by a set of structure constants cijk so that

[Gi,Gj] = icijkGk. (2.4)

The structure constants are obviously antisymmetric in i and j. Moreover, by
suitably defining the generator basis, they can also be made totally antisymmet-
ric in i, j and k. For infinitesimal transformations, the representation matrices R
have a similar decomposition to Eq. (2.3) involving Hermitian matrices τi:

Rab({δωi}) = δab + iδωi(τi)ab. (2.5)

These matrices provide a representation for the generators Gi and thus obey
Eq. (2.4). Using Eqs. (2.4) and (2.5). It is easy to check that the transforma-
tion law for the fields ζα, given in Eq. (2.2), specifies the commutator of the
generators Gi with the quantum fields being

[Gi, ζa(x)] = −(τi)abζb(x). (2.6)

A general consequence of having a Lagrangian density L invariant under
some global symmetry group is that associated with each of the independent
symmetry transformations there exists a conserved operator (Noether) cur-
rent [12] and a related time-independent operator charge. In fact, the operator
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4 Physics beyond the Standard Model with Atomic and Molecular

charges are just the generatorsGi, which for any given theory can be expressed
in terms of the quantum fields ζa. The Noether current is given by

Jµi (x) =
∂L

∂∂µζa(x)
1
i
(τi)abζb(x), (2.7)

which after application of the Euler–Lagrange field equation

∂L
∂ζa(x)

− ∂µ
∂L

∂∂µζa(x)
= 0 (2.8)

is found to be conserved:

∂µJµi (x) = 0. (2.9)

The associated time-independent charge is

Gi =

∫
d3xJ 0i (x). (2.10)

Provided that the vacuum state of the theory is left invariant by all of the
symmetry transformations so that

U({ωi})|0〉 = |0〉, (2.11)

or equivalently

Gi |0〉 = 0, (2.12)

there are mass degenerate multiplets of states in the physical spectrum. When
both the Lagrangian and the vacuum state are invariant under the global sym-
metry transformation, the symmetry is said to be realized à la Wigner–Weyl
[13, 14].
To establish that in the case of a Wigner–Weyl realized global symme-

try there are mass degenerate multiplets of states in the theory, we need to
recall some properties of single-particle states. For each of the quantum fields
ζa(x), one can effectively associate a single-particle state |p;α〉, with pµ =
(
√
®p 2 + m2

α, ®p), by the Lehmann, Symanzik, Zimmermann (LSZ) prescription
[15]. For a scalar field ζa, for example, one writes

|p; a〉 = lim
x0→±∞

−i
√
Z

∫
d3xeipx

↔
∂ 0 χa(x)|0〉, (2.13)

where |0〉 is the vacuum state and 〈0|χa(0)|p;α〉 =
√
Z. (Since for single-

particle states, there is no distinction between in and out states, one can take the
limit either as x0 goes to +∞ or −∞.) The notation px here is a shorthand for
pµxµ, while A

↔
∂ 0B ≡ A∂0B − (∂0A)B. Acting with U−1({ωi}) on the preceding

expression gives
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The Role of Symmetry in the Development of the Standard Model 5

U−1({ωi})|p; a〉 = lim
x0→±∞

−i
√
Z

∫
d3xeipx

↔
∂ 0U−1({ωi})χa(x)|0〉. (2.14)

If one assumes that the vacuum state is invariant under the symmetry transfor-
mation, so that

U({ωi})|0〉 = |0〉, (2.15)

then the unitary operator U({ωi}) can be inserted with impunity between the
vacuum state and χa(x). In this case, one can use Eq. (2.2) to immediately
deduce that the single-particle states |p; a〉 transform as

U−1({ωi})|p; a〉 = Rab({ωi})|p; β〉. (2.16)

That is, these states transform irreducibly among themselves when acted upon
by the unitary operator U−1.
The Hamiltonian of the theory, H, because of the invariance of L under the

symmetry transformations, commutes with U−1({ωi}):

[H,U−1({ωi})] = 0. (2.17)

By definition, the action of H on a single-particle state at rest gives the mass of
that state

H|p; a〉rest = ma |p; a〉rest. (2.18)

Using the preceding equations, it follows that

0 =
[
H,U−1({ωi})

]
|p; a〉rest = Rab({ωi})(ma − mb)|p; b〉rest. (2.19)

Because the preceding must hold for all transformations Rab({ωi}), it follows
that

ma = mb. (2.20)

Thus, provided that the vacuum state is invariant under the symmetry, then each
irreducible representation corresponds to a multiplet of single-particle states
degenerate in mass.

3 Local U(1) Invariance and QED
An explicit example of a continuous global invariance is afforded by the free
field Dirac action

SDirac[ψ,ψ] =
∫

d 4xLDirac(x), (3.1)

with associated Lagrangian

LDirac(x) = −ψ(x)
(
γ µ

1
i
∂µ + m

)
ψ(x), (3.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

84
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009238427


6 Physics beyond the Standard Model with Atomic and Molecular

whose Euler–Lagrange equations are simply the free Dirac equation(
γ µ

1
i
∂µ + m

)
ψ(x) = 0 (3.3)

and its Hermitian conjugate. Said Lagrangian is invariant under the global,
continuous phase transformation

ψ(x) → eiqψωψ(x); ψ(x) → e−iqψωψ(x), (3.4)

which corresponds to aU(1)Abelian group. (In this case, the structure constants
vanish: cijk = 0.) Hereω is a real space-time–independent parameter and qψ is a
real number that for electrons is chosen by convention (which can be traced to
Benjamin Franklin) as qe = −1. For infinitesimal parameter δω, ψ(x) → ψ(x)+
δψ(x)with δψ(x)= iqψδωψ(x). Similarly δψ(x)= −iqψδωψ(x). This invariance
and the application of the field equations leads via Noether’s theorem to the
conserved electromagnetic current operator

JµEM(x) = qψψ(x)γ µψ(x) = −ψ(x)γ µψ(x), (3.5)

with ∂µJµEM(x) = 0 and the time-independent electric charge operator

QEM =

∫
d3rJ0EM(x). (3.6)

Since the vacuum carries zero electric charge so thatQEM |0〉 = 0, it follows that
this symmetry is realized à la Wigner–Weyl and results in a mass degeneracy.
In this case, the degeneracy is between the electron and positron masses.
Now suppose one allows the transformation parameter to vary from point to

point in space-time so that ω = ω(x). Under this local or gauged U(1) phase
transformation,

ψ(x) → eiqψω(x)ψ(x); ψ(x) → e−iqeω(x)ψ(x), (3.7)

the free Dirac Lagrangian is no longer invariant:

L → L − JµEM∂µω. (3.8)

In order to restore the invariance, one simply replaces the derivative by a
covariant derivative

∂µ → Dµ = ∂µ − ieAµ(x), (3.9)

where the four-vector potential Aµ(x) transforms as

eAµ(x) → eAµ(x) + ∂µω(x). (3.10)

Here we have introduced the QED coupling e. Demanding local or gauge
invariance then results in the action of Quantum Electrodynamics (QED).
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The Role of Symmetry in the Development of the Standard Model 7

(For selected fundamental papers in the development of QED, see, for example,
reference [16].)

SQED[ψ,ψ,Aµ] =
∫

d4xLQED(x), (3.11)

where

LQED(x) = LDirac(x) + eJµEM(x)Aµ(x) + LMaxwell(x). (3.12)

Here the Maxwell Lagrangian

LMaxwell(x) = −
1
4
Fµν(x)Fµν(x), (3.13)

with gauge-invariant field strength

Fµν(x) = ∂µAν(x) − ∂νAµ(x), (3.14)

provides the kinetic term for the photon field. Thus we extract the main lesson
that the interaction term between the electron field and the photon field arises
as a consequence of the imposition of the local or gauge invariance. For QED,
the interaction is the coupling of the conserved electromagnetic vector current
to the vector photon field: eJµEM(x)Aµ(x). Any field carrying an electric charge
contributes to the current and directly couples to the photon. Note that since
photons themselves carry zero electric charge, they do not have any direct self-
interactions. By the late 1940s, R. P. Feynman, J. Schwinger, S. I. Tomonaga
and F. Dyson established [16] that QED could be consistently interpreted order
by order in perturbation theory once the coupling and mass of the electron were
fixed as inputs.
Theoretical calculations in QED can be performed perturbatively in powers

of the fine structure constant α= e2
4π , whose numerical value at the electron

mass scale is experimentally extracted as [17] α−1 = 137.035999206(81). At
present, these calculations have been carried out with exquisite precision and
exhibit remarkable agreement with electrodynamic measurements, which have
been performed with incredible accuracy. For example, consider the single-
electron matrix element of the electromagnetic current

〈e−( p1)|JµEM(0)|e
−( p2)〉 = Ue( p1)

(
γ µF1(q2) + σ µνqνF2(q2)

)
Ue( p2),

(3.15)

which encodes the electron electromagnetic properties. This decomposition is
a general consequence of Lorentz invariance and the fact that the electromag-
netic current JµEM is conserved. Here |e−( p1)〉 and |e−( p2)〉 are single-electron

states with energy-momentum pµ1 =
(√
®p 21 + m2, ®p1

)
and pµ2 =

(√
®p 22 + m2, ®p2

)
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8 Physics beyond the Standard Model with Atomic and Molecular

respectively and qµ = pµ2 − p
µ
1 is the momentum transfer. Note that the form

of this decomposition holds if the electron is replaced by any single fermion
state. Moreover, it is applicable in any theory where there is a conserved elec-
tromagnetic current. This is true if the electromagnetic current is associated
with a gauged symmetry as in QED or is an external current as, for example,
in the theory of strong interactions, QCD. All that will change are the form
factors F1(q2) and F2(q2). In some cases, such as QED, these form factors can
be computed perturbatively. In other cases, like the theory of strong interac-
tions, the computation of the form factors, in general, requires a nonperturbative
analysis.
The physical interpretation of the form factors at zero momentum transfer is

secured by further coupling the electron to an external static electromagnetic
field. From the coupling to the external electric field, one deduces that F1(0) is
the charge on the electron. Since QEM generates the electric charge symmetry,
it follows that

[QEM,ψ(x)] = ψ(x), (3.16)

which acting on the vacuum gives

QEMψ(x)|0〉 − ψ(x)QEM |0〉 = ψ(x)|0〉. (3.17)

Using QEM |0〉 = 0, it follows that

QEM |e−( p1)〉 = |e−( p1)〉. (3.18)

Taking the matrix element with 〈e−( p1)| and using the preceding decom-
position, Eq. (3.15), in conjunction with the fact that the electromagnetic
current is conserved so the time-independent electric charge operator isQEM =∫
d3rJ 0EM(x), then yields

F1(0) = qe = −1, (3.19)

which is the experimentally observed value. Note that if the electron states
are replaced by muon states, one again finds F1(0)= − 1, while if electron
states are replaced by proton states, F1(0)= 1, which gives the electric charge
of the proton. Note that the value of F1(0) for the electron is unchanged by
the higher-order perturbative QED interactions or in the proton case by elec-
tromagnetic or strong interactions. That is, the charge form factor at zero
momentum transfer does not get renormalized. This is a consequence of elec-
tromagnetic current conservation. Moreover, the fact that F1(0) has the same
magnitude for electrons, muons and protons reflects a universality of the QED
interaction.
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The Role of Symmetry in the Development of the Standard Model 9

On the other hand, the coupling to an external magnetic field dictates that
the magnetic moment operator for the electron is

®µe = −µBge
1
2
®σ, (3.20)

where the ®σ are the three 2 × 2 Pauli matrices. Here

µB =
e
2m

(3.21)

is the Bohr magneton and the electron ge factor is

ge = 2
(
1 + F2(0)

)
(3.22)

so that

F2(0) =
1
2
(ge − 2) ≡ ae. (3.23)

Free Dirac theory (coupled to the external EM field) gives F2(0)|Dirac =
ae |Dirac = 0, thus accounting for the dominant contribution ge |Dirac = 2, which
was one of its major successes. However, radiative (loop) corrections due to
QED modify this result, producing a nontrivial anomalous magnetic moment
ae. The 1-loop O(α) theoretical calculation giving a1 loop

e = α
2π was first per-

formed by J. Schwinger [18] in 1948. Subsequently the calculation has been
extended to include terms analytically [19] of O(α3) and numerically through
O(α5) yielding [20]

athe = 0.001 159 652 181 61 (23). (3.24)

(Note that this value includes the contributions from the weak and strong inter-
actions in addition to the pure QED result.) Experimentally, the anomalous
magnetic moment of the electron has been measured [21] as

aexpe = 0.001 159 652 180 73 (28), (3.25)

so there is agreement to 10 significant figures. Both the experimental meas-
urement and theoretical calculation of this anomalous magnetic moment of
the electron are truly monumental achievements. Their agreement certainly
provides credence to the validity of QED.

4 Global Symmetry Structure of the Strong Interactions
While no viable theory of the strong nuclear force holding the nucleus together
yet existed, nonetheless, shortly after the 1932 J. Chadwick discovery [22]
of the neutron with a mass nearly degenerate with that of the proton, W.
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10 Physics beyond the Standard Model with Atomic and Molecular

Heisenberg [23] proposed that this near-mass degeneracy could be accounted
for if the interactions exhibit an SU(2)V global vector symmetry realized à
la Wigner–Weyl with the proton and neutron transforming as a doublet. The
charge operators, Ti i = 1,2,3, of this non-Abelian strong isotopic symmetry
satisfy the SU(2) Lie algebra

[Ti,Tj] = iϵijkTk, (4.1)

where ϵijk is the Levi–Civita tensor satisfying ϵ123 = 1. The associated con-
served vector currents are SU(2)V generalizations of the conserved electro-
magnetic current except now the currents carry a net electric charge. The
small explicit breaking of the isospin symmetry producing the relatively
small neutron-proton mass difference is today recognized as resulting from
a combination of the up-down quark mass differences and the perturbative
electromagnetic interactions, which affects differently the charged and neutral
components of the multiplet. The origin of each of these effects lies outside the
strong interaction. Thus the strong interaction itself respects the global SU(2)V
isospin symmetry. After the introduction of a new conserved quantum num-
ber dubbed strangeness following the discovery of the neutral and charged
spin zero kaons and the baryonic Λ, this global classification symmetry was
extended to an SU(3)V symmetry independently by M. Gell-Mann [24] and Y.
Ne’eman [25] in 1961. (There is far largermass splitting among the components
of mesonic and baryonic SU(3)V multiplets relative to that within the SU(2)V
multiplets. Today, this is recognized as due to the s quark mass being larger
than the u and d masses.)
The charged and neutral pions are the lowest-mass hadronic states. They

transform as a triplet under the global SU(2)V isospin symmetry, which explains
the near-degeneracy of the π± and π0 masses. It was established that many of
the pion properties could be accounted for by assuming there existed partially
conserved axial vector currents (PCAC) [26] with the small explicit symme-
try breaking being proportional to the square of the pion mass. The origin of
this small explicit breaking mass is due to the up and down quark masses and
thus again lies outside the strong interaction. Consequently, the strong interac-
tions have a conserved global SU(2)A axial symmetry and associated conserved
axial vector currents. However, since no near-mass-degenerate opposite parity
states exist, it follows that this symmetry is not realized à la Wigner–Weyl. The
understanding of the way this symmetry is realized proved pivotal to the under-
standing of the weak interaction and hence the construction of the Standard
Model.
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The Role of Symmetry in the Development of the Standard Model 11

5 Fermi Theory of the Weak Interactions
Attempting to model the short-ranged (∼10−18 m) weak nuclear force respon-
sible for nuclear beta decay data, E. Fermi [27–29] introduced in 1933 a local
current-current coupling. The currents were taken as vector currents in analogy
with the current appearing in electrodynamics, but they were electric-charge-
carrying currents. The Fermi model conserved parity. However in 1956, C. N.
Yang and T. D. Lee raised [30] the possibility that parity might be violated
by the weak interactions. The experiment they proposed to test this hypothesis
was successfully performed by C.-S. Wu and her collaborators [31] in 1957
with the conclusion that parity was indeed violated by the weak interactions.
To account for this parity violation, R. Feynman and M. Gell-Mann [32] and
independently R. Marshak and E. C. G. Sudarshan [33] modified the Fermi
model so that charged currents were of a vector-axial vector (V-A) form

Jµcc = Vµcc − Aµcc (5.1)

and the modified Fermi theory interaction Lagrangian reads

LFermi = GFJµccJcc µ . (5.2)

Here GF ∼ 10−5 GeV−2 is the Fermi constant, which sets the scale of the
weak interactions, and the currents were composed of a sum of hadronic and
leptonic pieces. Moreover, they and independently S. Gershtein and Ya. B.
Zeldovich [34] proposed that the hadronic piece of the vector current is the
conserved vector current of the global isotopic spin SU(2)V symmetry of strong
interactions introduced by Heisenberg. This is referred to as the conserved
vector current (CVC) hypotheis. A bit later, M. Gell-Mann further proposed
[26] that the hadronic piece of the axial vector current is the conserved axial
vector current of the global SU(2)A symmetry of the strong interaction. The
current-current interaction could account reasonably well at the time for the
nuclear beta decay data using lowest-order perturbation theory since the ampli-
tudes varied as GFE2 and the energies were less than 1 GeV. However, the
model was internally inconsistent once higher-order (loop) corrections were
included.
As early as 1948, attempting to more closely mimic the successful QED

interaction, O. Klein [35] suggested replacing the local current-current Fermi
model with a model that coupled the charged weak interaction currents to
charged intermediate vector boson fields,W±µ , as

Lcc = gW(JµccW+µ + J
†µ
cc W−µ). (5.3)
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12 Physics beyond the Standard Model with Atomic and Molecular

The vector particle excitations,W±, of the vector fields need to be far moremas-
sive than the momentum exchanged to account for the short-range nature of the
weak interaction processes probed at that time. To reproduce the results of the
Fermi theory, one simply approximates the massive vector (Proca) propagator
by its ultralocal form (M2

W � q2),

∆µν(q) =
ηµν +

qµqν
M2

w

q2 +M2
W − iϵ

→
ηµν

M2
W
, (5.4)

while identifying GF ∼
g2W
M2

W
. Here, ηµν is the Minkowski space metric tensor.

Taking gW ∼ 10−1, which is the strength of the electromagnetic coupling, gives
MW ∼ 100 GeV. Unfortunately, simply mimicking the form of the QED inter-
action is not enough to cure the model of its sicknesses. The root of the problem
lies in the origin of the vector mass. Simply adding a direct W± mass term to
the model Lagrangian yields a Proca vector propagator, which does not fall off
at large energies as does the massless photon propagator in QED. Thus, as in
the local current-current Fermi theory, unitarity is violated at energies of the
order of 300 GeV.

6 Nambu–Goldstone Realization of SU(2)A
A significant advance in the understanding of the realization of the global
SU(2)A symmetry of the strong interactions was achieved by Y. Nambu [38]
who was inspired by the J. Bardeen, L. Cooper, R. Schrieffer (BCS) theory
[36],[37] of superconductivity, which accounts for the attractive force leading
to bound Cooper pairs of electrons in a spin singlet state as arising from their
interaction with phonons in the lattice. Due to the condensate of Cooper pairs,
the BCS ground state does not exhibit the full symmetry structure of the BCS
Hamiltonian. In 1960, Nambu suggested that the vacuum state of the strong
interactions, in analogy to the superconducting ground state, might not respect
the full symmetries of the theory, and the elementary particles might acquire
mass in a manner analogous to the energy gap of the quasiparticle excitations of
BCS theory. To study this conjecture, Nambu and G. Jona-Lasinio [39] intro-
duced a Lorentz invariant model, the NJL model, in which the Lagrangian is
invariant under independent vector and axial vector globalU(1) phase transfor-
mations. This is tantamount to having independent phase transformations for
the left-handed and right-handed components of the fermion field:

fL(x) =
1
2
(1 − γ5) f (x),

fR(x) =
1
2
(1 + γ5) f (x). (6.1)
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The Role of Symmetry in the Development of the Standard Model 13

Invariance under the axial transformation forbids a direct fermion mass term.
This NJL model, whose interaction term was a chirally invariant four-fermion
coupling, was self-consistently analyzed in mean field approximation. A
nontrivial vacuum fermion-antifermion condensate emerged, which broke the
axial symmetry and resulted in a nonzero fermion mass. Thus while the model
Lagrangian is invariant under the axial symmetry, the vacuum state is not. The
symmetry is said to be spontaneously broken. (The nomenclature was intro-
duced by S. Glashow and M. Baker [41]. Unfortunately it is not an accurate
description of what is going on, as the symmetry is not really broken. A better
name is hidden or secret symmetry as coined by S. Coleman [42]. Nonethe-
less, the spontaneous symmetry breakingmoniker stuck.) In addition, themodel
predicted the appearance of a massless composite pseudoscalar particle whose
interactions were derivatively coupled.
A very useful phenomenological description of superconductivity predating

BCS is the Ginzburg–LandauModel [43]. The model introduces an electrically
charged scalar order parameter field ϕ(®r) representing the wavefunction of the
condensate of Cooper pairs whose Hamiltonian,

HGL = ϕ
∗(®r) 1

2m

(
1
i
∇ − 2e®A(®r)

)
+ V(ϕ∗ϕ), (6.2)

with potential

V(ϕ∗ϕ) = βϕ∗ϕ + 1
2
γ(ϕ∗ϕ)2 (6.3)

respects a U(1) gauge invariance. The coefficients, β and γ, are temperature
dependent with β changing sign at the critical temperature, Tc, going negative
for T < Tc. Thus for these temperatures the potential minimum is at ϕ∗ϕ = − βγ .
The magnitude of the order parameter is fixed, but the phase is arbitrary corre-
sponding to a family of degenerate ground states. The selection of a particular
ground state corresponds to a spontaneous breaking of the U(1) symmetry of
the Hamiltonian by the ground state. Thus this nonrelativistic model exhibits
a spontaneous symmetry breaking and is a precursor to the Lorentz–invariant
U(1) Goldstone and Higgs models we shall soon address.
An earlier example of a spontaneously broken global symmetry is afforded

by the W. Heisenberg description [44] of ferromagnetism using a Hamiltonian,

HHeisenberg = −
1
2

∑
x,y

Jx−y®Sx · ®Sy, (6.4)

where ®Sx denotes the spin at site x and J is the strength of the interaction, which
depends on the distance between the sites x and y and is assumed to fall rapidly
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14 Physics beyond the Standard Model with Atomic and Molecular

as the distance becomes large. The model is invariant under a simultaneous
rotation of all the spins. For positive J, the lowest energy state is one with all
spins aligned; the particular direction is arbitrary. Thus there is a degeneracy
of ground states. From one such ground state, one can make a rotation of all
the spins and get another ground state degenerate in energy. Once a particular
ground state is chosen, the rotational symmetry of the Hamiltonian is sponta-
neously broken. The model exhibits an excitation, the spin wave, whose energy
vanishes in long wavelength limit.
While the Nambu–Jona–Lasinio model yielded a nonzero fermion mass,

it did not prove to be the correct theory of strong interactions. In fact, the
model was actually inconsistent when higher-order radiative corrections were
taken into account. (It is nonrenormalizable.) An alternative model exhibiting a
global SU(2)V × SU(2)A symmetry where the axial symmetry is spontaneously
broken, resulting in a nonzero fermion mass was suggested by J. Schwinger
[40]. He studied aspects of what later would be called the Gell-Mann–Levy
σ model [45]. The model degrees of freedom consisted of an SU(2)V nucleon
doublet N (proton and neutron), the three pions, ®π, forming an SU(2)V triplet
and a hypothetical SU(2)V singlet field σ. The SU(2)V × SU(2)A symmetry is
realized as

N(x) →
(
1 + iδ ®ωV

®σ
2
+ iδ ®ωA ·

®σ
2
γ5

)
N(x),

σ(x) → σ(x) + δ ®ωA · ®π(x),
®π(x) → ®π(x) − δ ®ωV × ®π(x) − δ ®ωAσ(x), (6.5)

and forbids a fermion mass term. Here the ®σ are the three 2× 2 Pauli matrices.
The chirally invariant interaction is of the Yukawa form:

LYukawa = gYukawaN(σ + i®σ · ®πγ5)N. (6.6)

If the σ field develops a nontrivial vacuum expectation value, 〈σ〉 , 0, the
fermion mass mN = gYukawa〈σ〉 is generated. This Schwinger mechanism of
fermion mass generation is basically how fermion masses are produced in the
standard electroweak theory.
At roughly the same time as Nambu’s work, J. Goldstone [46] studied

the simplest Lorentz-invariant model exhibiting a spontaneous global contin-
uous symmetry breaking. It consisted of a single complex scalar field ϕ(x)
whose dynamics is invariant under a global U(1) phase transformation ϕ(x) →
eiωϕ(x). The invariant Lagrangian is

LGoldstone = −∂µϕ†(x)∂ µϕ(x) − V(ϕ) (6.7)
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The Role of Symmetry in the Development of the Standard Model 15

Figure 6.1 Sombrero potential: massless mode rolls along bottom of well;
massive mode sloshes up and down wall. The colorbar represents the value of
the potential value ranging from its minimum (dark blue) to its maximum

(yellow).

with

V(ϕ) = µ2ϕ†(x)ϕ(x) + 1
2
λ

(
ϕ†(x)ϕ(x)

)2
. (6.8)

So long as µ2 > 0, the potential is minimized at ϕ= 0 and the spectrum consists
of a charged scalar and its antiparticle degenerate in mass, namely a Wigner–
Weyl realization. But for µ2 < 0, the potential takes the form of a sombrero as
displayed in Figure 6.1. In this case, the potential is minimized for ϕ†ϕ = v2

2 ,
where v2 = −µ

2

λ . Hence the lowest energy states are such that ϕ has magnitude
v√
2
but arbitrary phase and the vacuum state is infinitely degenerate. Once the

phase is fixed (the particular value is physically unobservable), the global sym-
metry is spontaneously broken. Choosing the phase to vanish so 〈ϕ〉 = v is real
and expanding about that point as

ϕ(x) = 1
√
2
(v + ϕ1(x) + iϕ2(x)) (6.9)

with ϕ1, ϕ2 Hermitian fields, the model describes two spin zero particles,
one with mass mϕ1 =

√
λv, while the other is massless, mϕ2 = 0. Once again,

there is a massless spin zero particle associated with a spontaneously bro-
ken continuous global symmetry. The massless particle is referred to as a
Nambu–Goldstone boson (NGB) and the spontaneously broken symmetry con-
stitutes a Nambu–Goldstone realization of the continuous global symmetry. In
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16 Physics beyond the Standard Model with Atomic and Molecular

Nambu–Goldstone realizations, the action is still invariant under the symmetry
transformations, which continue to be represented by unitary operators so that

U−1({ωi})L(x)U({ωi}) = L(x). (6.10)

Now, however, the vacuum state does not respect the symmetry, so

U({ωi})|0〉 , |0〉. (6.11)

J. Goldstone, A. Salam and S. Weinberg [47] provided a general proof of
a theorem which dictates the appearance of a massless, spin zero, Nambu–
Goldstone boson (NGB) for every spontaneously broken continuous global
internal symmetry in any model with manifest Lorentz invariance. The proof is
independent of the particular dynamics employed to spontaneously break the
symmetry. This constituted an apparent death knoll for all such models, as no
such massless spin 0 particles were observed.

7 Yang–Mills Theory
C. N. Yang and R. Mills [48] were the first1 to construct a mathematically
consistent four space-time dimensional theory containing spin-one particles
which carry nontrivial gauge group quantum numbers. To do so requires a
non-Abelian gauge theory that generalizes the Abelian U(1) gauge theory of
QED to non-Abelian gauge groups. (In their original paper, they focused on an
SU(2) group. The more general case soon followed.) This involves promoting
the local phase invariance of the Abelian model to a matrix-valued local phase
invariance. Consider a non-Abelian gauge group with Lie algebra of dimension
n, which is also the number of group generatorsGi, group parametersωi(x) and
vector gauge fields Aµi where i = 1,2, . . . ,n. It proves convenient to define the
matrix-valued fieldAµ = Aµi τi, where τi arematrix representations of the group
generators Gi that satisfy the non-Abelian algebra

[Gi,Gj] = icijkGk (7.1)

with group structure constants cijk. It follows that the Aµ transformation takes
the form

Aµ(x) → R(ω(x))Aµ(x)R−1(ω(x)) −
i
g
R(ω(x))∂µR−1(ω(x)), (7.2)

where R(ω(x)) = eiωi(x)τi is a matrix representation of the non-Abelian group
element.

1 In 1954, R. Shaw, a graduate student of A. Salam at the University of Cambridge, performed
similar work to Yang–Mills. However, this work was unpublished and appears only in Shaw’s
Ph.D. thesis.
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Yang and Mills constructed the invariant Lagrangian

LYM(x) = −
1
4
Fµν i(x)Fµνi (x), (7.3)

where

Fµνi (x) = ∂
µAνi (x) − ∂νA

µ
i (x) + gcijkA

µ
j (x)A

ν
k (x) (7.4)

is the Yang–Mills field strength, which transforms as the adjoint representation.
Contrary to the QED photon field, the non-Abelian vectors are self-coupled and
the Yang–Mills Lagrangian contains three- and four-point vector interactions
whose couplings are related in a definite way.
Note, however, that the mass term Aµi (x)Aµ i(x) is not invariant under the

above gauge transformation and thus is forbidden. Consequently, it would
appear that to maintain the non-Abelian gauge symmetry, the non-Abelian vec-
tors are necessarily massless. Thus the theory was initially considered a failure
since it seemed incapable of explaining the short-ranged weak interactions nor
did it seem relevant for the strong interactions. As it turned out, Yang–Mills the-
ories provide the proper framework to describe both the strong and electroweak
interactions.

8 Quantum Chromodynamics
Quantum Chromodynamics (QCD) as the theory of strong interactions was
introduced in the early 1970s by M. Gell-Mann, H. Fritzsch, W. Bardeen, and
H. Leutwyler [49], [50–52]. It is an unbroken SU(3)c gauge theory where the
local symmetry involves transformations in the space of a new quantum number
dubbed color. The Yang–Mills fields mediating the interaction are the mass-
less self-interacting vector gluon fields, Aµi (x), i= 1,2, . . . 8, which transform
as in Eq. (7.2) and also interact with the fermionic spin 1/2 quark fields which
transform as the fundamental (triplet) representation. The QCD Lagrangian is

LQCD =
∑
α

L(qαa ,Dµqαa ) −
1
4
Gµν
i Gµνi, (8.1)

where

L(qαa ,Dµqαa ) = −qαa γ µ
1
i
Dµqαa − mαqαa qαa , (8.2)

with covariant derivative

Dµqαa =
(
δab∂µ − ig3

(
λi
2

)
ab
Aµi

)
qαb . (8.3)

The gluon field strength,

Gµν
i = ∂

µAνi − ∂νA
µ
i + g3 fijkA

µ
j A

ν
k, (8.4)
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18 Physics beyond the Standard Model with Atomic and Molecular

transforms as the adjoint (octet) representation under SU(3)c. In the preced-
ing equations, α= {u,d,c, s, t,b} is a quark flavor label, while a= 1,2,3, and
i= 1,2, ..,8, are color labels. The λi are the Gell-Mann matrices, which form
the 3 × 3 fundamental representation for SU(3)c, while the fijk are the SU(3)c
group structure constants and g3 is the SU(3)c gauge coupling.
While the role of a color quantum as a necessary property for the spin 1/2

quarks was emphasized very early [53–56] in order for the quark model for
baryons to be consistent with the spin-statistics theorem, the dynamical impor-
tance of having a non-Abelian local symmetry describing the interactions of
quarks did not really become manifest until the discovery of asymptotic free-
dom by D. Gross and F. Wilczek [57] and independently by H. D. Politzer [58]
in 1973 who demonstrated that due to the non-Abelian QCD vector gluon self-
couplings, the interaction strength (logarithmically) decreases at shorter and
shorter distances or equivalently at higher and higher energies. Note that this
running of the QCD coupling is opposite to the case of the Abelian QED where
the interaction strength decreases at longer distances due to electric charge
screening.
Explicitly, D. Gross, F. Wilczek and H. D. Politzer computed the 1-loop run-

ning of the gauge coupling in a Yang–Mills theory with gauge group G and nR
fermions carrying gauge representation R and showed that asymptotic freedom
emerges provided∑

R
nRT(R) <

11
4
C2(G). (8.5)

Here C2(G) is the value of the quadratic Casimir operator for the adjoint
representation of the gauge group G and T(R) is given by

rT(R) = d(R)C2(R), (8.6)

with C2(R) is the value of the quadratic Casimir operator for the representation
R, d(R) the dimension of the representation R and r the dimension (number of
generators) of the group G. For an SU (N) group, C2(SU (N)) = N and d =
N2 − 1, while for fermions transforming as the fundamental representation of
SU (N) with dimension d(N) = N, the Casimir operator is C2(N) = N2−1

2N so that
T (N) = 1

2 . In this case, the condition for asympotic freedom, Eq. (8.5) is

ng
2
<
11
4
N, (8.7)

which dictates that QCD with gauge group SU(3) will be asympotically free,
provided that there are less than 33

2 quark flavors transforming as the fundamen-
tal representation. This condition is clearly satisfied by the currently observed
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Figure 8.1 Summary of measurements [62] of the running αs as a function of
the energy scale Q. The agreement between the data and the QCD

expectations is apparent. The order of QCD perturbation theory used in the
extraction of αs is indicated in brackets (NLO: next-to-leading order; NNLO:
next-to-next-to-leading order; NNLO+res.: NNLO matched to a re-summed

calculation; N3LO: next-to-NNLO).

six such flavors. On the other hand, SU(3) Yang–Mills theory with more than
two octets of fermions is not asymptotically free.
Note that an analogous running of the gauge coupling had previously been

observed in quantum electrodynamics coupled to a charged vector field, by
V. S. Vanyashin and M. V. Terent’ev [59] in 1965 and in pure Yang–Mills
theory by I. Khriplovich [60] in 1970 and G. ’t Hooft [61] in 1972, but its
physical significance was not fully realized until the work of Gross, Wilczek
and Politzer.
Figure 8.1 displays a plot of the observed running of the strong coupling

αs =
g23
4π as a function of probed energy for a wide range of processes and energy

scales and its comparison to the QCDprediction. The agreement with the exper-
iment results is well established and the running of the QCD coupling is quite
apparent.
The ramifications of asymptotic freedom were immediate and far reaching.

Starting in 1968, SLAC began a series of experiments on the inelastic scatter-
ing of an electron from a proton: e−(ℓ) + p( p) = e−(ℓ′) + X, where X can be
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20 Physics beyond the Standard Model with Atomic and Molecular

anything. Here ℓ µ(ℓ′ µ) are the 4-momentum of the incident (final) electron
and pµ is the 4-momentum of the incident proton. Using general properties of
Lorentz covariance and electric charge conservation, the differential cross for
this inelastic process due to a single photon exchange in the rest frame of the
incident proton where pµ = (M, ®0), ℓ µ = (E, ®ℓ), ℓ′ µ = (E′, ®ℓ′) and θ is the
scattering angle between the initial and final state electrons takes the form

d2σ
dE′dΩ

=
α2EM

4E2 sin4
(
θ
2
) 1
ν

(
F2(x,q2) cos2

(
θ

2

)
+
2ν
M

F1(x,q2) sin2
(
θ

2

))
.

(8.8)

Here qµ = (ℓ′ − ℓ)µ is the momentum transfer, ν = qp
M and 0 < x = q2

2Mν < 1.
The F1,2(x,q2) are the structure functions. In the rest frame, ν = E − E′ gives
the electron energy loss.
It was observed [63, 64] (for a review, see [65]) that in the deep inelastic

limit (sometimes referred to as the Bjorken limit) where q2, ν → ∞ at fixed
x, the structure functions were independent of q2 and dependent only on the
dimensionless scaling variable x so F1,2(x,q2) = F1,2(x). This behavior was
previously suggested byBjorken [66] and is consistent with scattering off point-
like constituents of the proton. Similar scaling behavior was also observed in
deep inelastic muon- and neutrino-scattering experiments conducted at FNAL.
This scaling behavior could be accounted for by the parton model intro-

duced by Feynman [67],[68] in his study of hadron–hadron collisions. The
“naive” parton model describes the proton as a collection of point-like con-
stituents called partons. At high momentum (“infinite momentum frame”) the
partons are taken as free. Therefore, the interaction of one parton with the
electron does not affect the other partons and this leads to scaling in x. Today
these partons are understood to be identical with the quarks postulated by Gell-
Mann [69] in 1964 and independently by G. Zweig [70]. The quark-parton
model was successfully applied by Bjorken and Paschos [71] to reproduce the
observed scaling in deep inelastic electron-proton scattering. The observation
of Bjorken scaling in deep inelastic scattering was instrumental in providing
the first dynamical evidence of quarks and then gaining their acceptance as
constituents of the proton. While the quark-parton model produced the scaling
behavior observed at the time, the model itself lacked a firm theoretical foun-
dation. It was not a quantum field theory and could not account for the strong
interquark forces needed to account for the nonobservation of the partons in
remnants of the collision. Due to its asympototic freedom, QCD interaction
strength falls at large momentum transfers as 1

ℓn q2 and thus behaves in a man-
ner similar to the parton model. In fact, in subsequent experiments, deviations
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from the exact scaling behavior of the structure functions appeared. The scaling
violations were precisely detected in a muon scattering experiment at FNAL in
1975 [72]. The observed q2 dependence of the structure functions was accu-
rately accounted for by QCD as reviewed in [73], marking a major success of
the theory.
In a grander sense, the concept of asymptotic freedom provided a sensible

interpretation of a quantum field theory at extreme ultraviolet energies. For
nonasymptotically free theories, the running coupling increases with increas-
ing energy diverging at the Landau pole2 [74]. Asymptotic freedom in QCD
also played an important role in theoretical work in early Universe cosmology.
In the first few microseconds after the big bang, the Universe was comprised
of a hot soup of quarks, leptons, gauge bosons and Higgs particles, which, as a
consequence of asymptotic freedom, interacted very feebly and thus had prop-
erties amenable to calculation. This success in applying particle physics ideas
to addressing puzzles in cosmology has led to a deep connection between the
two disciplines, sometimes referred to as astroparticle physics, and has had a
far-ranging influence on how one thinks about and treats cosmological prob-
lems. See [75] for a readable introduction. Asymptotic freedom has also been
displayed in a variety of condensed matter systems. For a discussion of various
such systems, see, for example, reference [151].
Motivated by the property of asymptotic freedom, it is suggestive that the

attractive coupling grows at longer distances, leading to the confinement of all
colored objects. Thus the quarks and gluons can never appear as physical states
in the spectrum. Only net colored singlet hadrons (and glueballs) are physical
states. Through the confinement mechanism, the potential long-range force that
would naively arise from the massless gluons is obviated. This nonperturbative
confinement mechanism has been demonstrated in lattice QCD [77], which is a
well-established nonperturbative approach to solving QCD. The lattice gauge
theory is formulated on a grid or lattice of points in space and time. When the
size of the lattice is taken infinitely large and its sites infinitesimally close to
each other, the continuum QCD is recovered. Additional details can be found
in [78–80]. Lattice QCD has been used to compute the masses of the various
hadrons as explicitly shown in reference [81].
In the limit of massless up and down quarks, QCD exhibits the continu-

ous global SU(2)V × SU(2)A chiral symmetry, which is dynamically broken

2 For pure QEDwith nonzero renormalized charge at the electronmass scale and using the 1-loop
renormalization group running, one finds a Landau pole at 10227 GeV whose numerical value
should certainly be questioned due to the approximation employed. For the weak hypercharge
coupling in the SM model, using the analogous approximation, the Landau pole appears at
1034 GeV, which is still much larger than the Planck mass 1019 GeV.
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to SU(2)V via the formation of a nonvanishing quark-antiquark vacuum con-
densate, which in turn gives mass to the nucleons. The pions are the pseudo
Nambu–Goldstone bosons of the spontaneously broken axial SU(2)A. (The
pions develop a small mass as a consequence of the up and down quark mass,
which provides a small explicit breaking of the SU(2)A symmetry). Thus QCD
automatically displays the global symmetry structure of the strong interactions.
QCD has been very well tested and proven highly successful [62]. It

constitutes one of the components of the Standard Model.

9 SU(2)L × U(1) Invariant Lepton Couplings to the Electroweak
Vectors

As we have seen, simply adding a vector mass term to the Lagrangian violates
the gauge invariance. However, in 1962, J. Schwinger argued that the gauge
invariance might not preclude a vector mass once the radiative corrections are
included, provided the current coupling to the vector is sufficiently strong that
it can create a massless pole in the current-current correlation function, Π(q2).
In that case, the full vector propagator varies as

1
q2

1
1 − Π(q2)

→ 1
q2

1

1 + M2
V

q2

=
1

q2 +M2
V
, (9.1)

which corresponds to a massive particle. The nonzero mass is said to be dynam-
ically generated. While he was unable to demonstrate the existence of such
a pole in any Lorentz-invariant model containing vectors in four space-time
dimensions, he showed it was possible in a two space-time dimensional model,
the Schwinger Model. In a very short, but extremely elegant paper [82], he
studied a version of QED but in one space and one time dimension and with
massless fermions. Since the fermions were massless, the QED2 Lagrangian
exhibits separate phase invariances for vector and axial vector transformations.
Schwinger analytically solved the model and found a dynamically generated
fermion-antifermion condensate that spontaneously breaks the axial symmetry
and moreover the vacuum polarization function does indeed develop a mass-
less pole so that the “photon” gets a nonvanishing mass. Although one can
legitimately argue that the mass-generatingmechanism is an artifact of the 1+1-
dimensional nature of the model, this paper nonetheless was (and continues to
be) extremely influential in that it showed that “vector” masses were possible
in gauge theories.
A further elucidation of this idea was provided by P. Anderson [83] in 1963

who argued that the gauging of the spontaneously broken global continuous
U(1) symmetry in BCS theory essentially leads to a massive vector photon,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

84
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009238427


The Role of Symmetry in the Development of the Standard Model 23

which was then unable to penetrate the superconductor (Meissner effect [84]).
Here the massless pole is provided by the massless phonons mediating between
the Cooper pairs in the superconductor. The model provided a mechanism for
vector mass generation in a nonrelativistic setting. Much discussion in the
literature followed regarding the general applicability of Anderson’s ideas to
relativistic theories without any definitive resolution at the time.
Actually, there is an even earlier realization of the vector mass generation

mechanism. In 1938, E. Stueckelberg [85] proposed a model of massive quan-
tum electrodynamics using an additional scalar field that nonlinearly realized
the symmetry. Like much of his work, it was well ahead of its time and largely
ignored.
While the simple mimicking of QED by introducing vector bosons with

direct mass terms was not an accurate description of the weak interactions,
there was still considerable motivation for believing that the correct description
should involve vector and axial vector fields. For one thing, the parity-violating
extension of the Fermi theory was quite successful in describing low-energy,
weak-interaction processes using lowest-order perturbation theory. A nice
description of the phenomenological theory of the weak interactions before the
advent of the electroweak gauge theory is contained in the monograph [86]. In
addition, the Fermi description involved currents as did QED, albeit electric-
charge-carrying currents that were both of a vector and an axial vector nature
and moreover the hadronic piece of the vector current was conserved as is the
vector current in QED. Finally, another property of the weak interactions where
the resemblance toQED is striking is its universality [87],[88]. That is, theweak
processes of β decay, muon decay and muon capture all had basically the same
strength. This is reminiscent of the common magnitude of the electromagnetic
charge of electrons, muons and protons.
J. Schwinger [40] was the first who attempted (unsuccessfully) to combine

weak and electromagnetic interactions together in an SU(2) Yang–Mills gauge
theory using the charged massive W± and massless photons as the gauge vec-
tors. His student S. Glashow [89] and independently A. Salam and J. Ward
[90] did arrive at a model of leptons based on the gauge group SU(2)L × U(1),
which includes the correct couplings of the leptons to the electroweak gauge
bosons. The model has two independent coupling constants g2,g1 associated
with the SU(2)L and U(1) gauge groups respectively. The product group has
four generators and four associated vector bosons. To reproduce the V-A struc-
ture of charged weak interaction, the left-handed electron and its associated

neutrino transform as a doublet, LL(x) =
[
νe(x)
eL(x)

]
, under SU(2)L, while the

right-handed electron, eR(x), is an SU(2)L singlet. Here we focus on the first
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generation of leptons consisting of the electron and its associated neutrino.
The inclusion of the other lepton families is straightforward and will be dis-
cussed shortly. The model includes no right-handed neutrino field. To secure
the couplings to the vector bosons, one follows the usual procedure of replac-
ing ∂µLL(x) → DµLL and ∂µeR(x) → DµeR in the leptonic kinetic terms. Here
the covariant derivatives are

DµLL(x) =
(
∂µ − ig2

σa
2
Waµ (x) + ig1

1
2
Yµ(x)

)
LL(x),

DµeR(x) =
(
∂µ + ig1Yµ(x)

)
eR(x), (9.2)

where σa ; a = 1,2,3 are the three Pauli matrices. The resultant locally
invariant SU(2)L × U(1) Lagrangian is

Le = −LLγ µ
1
i
DµLL − eRγ µ

1
i
DµeR. (9.3)

The electron and its associated neutrino couplings to the gauge fields are thus
dictated by the local SU(2)L × U(1) invariance to be

Linte = g2JµaeWµa + g1J
µ
YeYµ, (9.4)

where the SU(2)L and U(1) electron family currents are

Jµae = LLγ µ
σa
2
LL, (9.5)

JµYe = −
1
2
LLγ µLL − eRγ µeR. (9.6)

Two of the conserved currents of SU(2)L,

Jµ±e = 2(J
µ
1e ± iJ

µ
2e), (9.7)

are identified with the weak-interaction charged currents, which couple to the
associated vectors

Wµ
± =

1
√
2

(
Wµ

1 ± iW
µ
2

)
(9.8)

as

Lcce =
g2
2
√
2

(
Jµ−eWµ+ + Jµ+eWµ−

)
. (9.9)

There are two neutral generators: the third component T3 of the weak isospin
SU(2)L and the weak hypercharge generator Y of the U(1). One combination is
identified as the electric charge generator

QEMe = T3e + Ye, (9.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

84
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009238427


The Role of Symmetry in the Development of the Standard Model 25

thus fixing the weak hypercharges with their values appearing in the covariant
derivatives so that the electron has electric charge−1 and the neutrino is neutral.
The photon is identified as

Aµ = sin θWWµ
3 + cos θWY

µ, (9.11)

which is the combination of vector bosonswhich couples to the electromagnetic
current

JµEMe
= Jµ3e + J

µ
Ye (9.12)

as

LEMe = eJµEMe
Aµ . (9.13)

Here θW, the Weinberg angle, is a weak mixing angle (the angle θW was orig-
inally introduced by Glashow as the weak mixing angle but has subsequently
been universally referred to as the Weinberg angle), satisfying

e = g1 cos θW = g2 sin θW. (9.14)

In addition, the model predicted a novel weak neutral current

JµNCe
= 2(Jµ3e − sin

2 θWJµEMe
), (9.15)

which couples to a novel vector boson

Zµ = cos θWWµ
3 − sin θWY

µ (9.16)

as

LNCe =
e

2 cos θW sin θW
JµNCe

Zµ . (9.17)

The muon and its associated neutrino and the tau and its neutrino have iden-
tical SU(2)L × U(1) quantum numbers as the electron and its neutrino (see
Table 9.1). Thus their invariant couplings to the electroweak gauge bosons have
the same structure as the electron and its neutrino and the model exhibits a

Table 9.1 Weak isospin and weak
hypercharge of the leptons.

Lepton SU(2)L U(1)

LL =
[
νL
eL

]
2 −1/2

eR 1 −1
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lepton universality. The full lepton-gauge interaction is then a sum of the three
generations of leptons:

Lint =
∑

l=e,µ,τ

(
eJµEMl

Aµ +
2

2
√
2 sin θW

(Jµ−lWµ+ + J
µ
+l
Wµ− )

+
e

2 cos θW sin θW
JµNCl

Zµ
)
. (9.18)

The model introduced by Glashow, Salam and Ward is very incomplete:

• There is no consistent mechanism for generating theW± and Z vector masses.
• All leptons are massless, which is experimentally inaccurate.
• The model does not include quarks. The reason was that at the time the only
known quark flavors were u, d, and s and the model extended to include them
predicted far too large a rate for flavor (strangeness) changing neutral current
(FCNC) processes such as KL → µ+µ−.

The model was successfully extended to include quarks in 1970 after the
implementation of the S. Glashow, J. Iliopoulos, L. Maiani (GIM) mechan-
ism [91], which introduced the c quark with the appropriate Cabibbo angle
[93] mixing to provide a cancellation mechanism suppressing the dangerous
FCNC processes. The c quark was subsequently discovered independently at
the Brookhaven National Laboratory [94] and at SLAC [95] through the obser-
vation of the J/ψ meson. This mechanism was later extended by M. Kobayashi
and T. Maskawa [96] to allow for the inclusion of the third-generation t and b
quarks, which could further account for the observed CP-symmetry violation
[92] in the electroweak interactions. The left-handed quark fields transform
as doublets under SU(2)L while the right-handed quark fields are SU(2)L sin-
glets. The weak hypercharge assignments lead to the electric charges qu = 2/3,
qd = −1/3 as shown in Table 9.2.
Identical quantum numbers are assigned to the other generations of quarks

by simply replacing (u,d) with (c, s) and (t,b).

Table 9.2 Weak isospin and weak
hypercharge of quarks.

Quark SU(2)L U(1)

QL =

[
uL
dL

]
2 1/6

uR 1 2/3
dR 1 −1/3
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10 Abelian Higgs Model
It was clear that the symmetry of the electroweak model had to be realized
à la Nambu–Goldstone. What remained a major stumbling block was how to
circumvent the theorem which mandated the presence of unobserved massless
Nambu–Goldstone bosons. The solutionwas inadvertently arrived at in 1964 by
R. Brout and F. Englert [97] and independently by P. Higgs [98]. Slightly later,
G. Guralnik, C. R. Hagen and T. Kibble [99] also discussed in more detail how
the massless NGBmode could be obviated. Another independent version of the
mechanism was provided by A. Migdal and A. Polyakov [100]. (Although the
time line of this publication is significantly behind the other work, it has been
said that this was due to an initial rejection by the journal JETP to which it was
submitted. No date has ever been substantiated for the original submission.)
The basic idea is to gauge the spontaneously broken global symmetry. The

mechanism was actually initially presented in a simplified U(1) toy model.
Recall the global U(1) symmetry of the Goldstone model and now promote
it to a local Abelian U(1) symmetry, which yields the so-called Abelian Higgs
Model. The model Lagrangian

LHiggs(x) = −(Dµϕ(x))†Dµϕ(x) − V(ϕ) − 1
4
Fµν(x)Fµν(x)

with

Dµϕ(x) = ∂µϕ(x) − iqAµ(x)ϕ(x) (10.1)

Fµν(x) = ∂µAν(x) − ∂νAµ(x) (10.2)

and

V(ϕ) = µ2ϕ†ϕ + 1
2
λ(ϕ†ϕ)2 (10.3)

is invariant under the local U(1) transformations

ϕ(x) → eiqω(x)ϕ(x)
Aµ(x) → Aµ(x) + ∂µω(x). (10.4)

If µ2 < 0, the potential has the sombrero form displayed previously and is
minimized for ϕ†ϕ = v2

2 with v2 = − 2µ
2

λ . Once again parametrizing

ϕ(x) = 1
√
2
(v + ϕ1(x) + iϕ2(x)) (10.5)

with Hermitian ϕ1,2(x), the model Lagrangian (neglecting any field-
independent terms) takes the form

LHiggs = −
1
2
(∂µϕ1)2 −

(qv)2
2

(
Aµ +

1
qv
∂µϕ2

)2
− 1
2
λv2ϕ21 −

1
4
FµνFµν + . . . ,

(10.6)
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with the ellipses denoting cubic and quartic interaction terms. Performing the
gauge transformation

Bµ(x) = Aµ(x) +
1
qv
∂µϕ2(x),

the second term is recognized as a mass term for the vector Bµ with mass
MV = qv. The scalar ϕ1 is also massive, with mϕ1 =

√
λv. On the other hand,

there is no kinetic term nor mass terms for ϕ2, so its dynamics appears to have
vanished. The apparently massless vector gauge field Aµ and the apparently
massless scalar field ϕ2 (the erstwhile Nambu–Goldstone mode) have com-
bined to produce the massive vector field Bµ. The Nambu–Goldstone mode
has become the longitudinal degree of freedom needed to provide the vector its
mass. The number of degrees of freedom has not changed. In the vernacular,
one says the NGB is eaten by the massless vector giving it mass. This is the
celebrated Higgs mechanism. (Although it might be more properly called the
Stuekelberg–Schwinger–Anderson–Brout–Englert–Higgs–Guralnik–Hagen–
Kibble–Migdal–Polyakov–Weinberg–Salam–. . . mechanism.)
For every spontaneously broken global symmetry which is made locally

(gauge) invariant, the erstwhile NGB is absorbed by the vector to become its
longitudinal component, rendering the vector massive. This is true independent
of the dynamics responsible for spontaneously breaking the global symmetry.
The massive scalar mode (which in this toy model is the analog of the physi-
cal Higgs scalar) remains. The mechanism was extended by Brout, Englert and
Higgs to non-Abelian models. Brout and Englert also mentioned the possibil-
ity of having a composite fermion-antifermion condensate be responsible for
the symmetry breakdown. In all the papers, the motivation for the vector mass
generation mechanism was that it be used in the strong interactions. None of
the original authors foresaw its application to the weak interactions. Brout and
Englert do not evenmention the massive scalar mode in their 1964 paper. Higgs
submitted two papers in 1964. The second paper was initially rejected, and the
revised version does indeed mention the possible experimental implication of
such a massive scalar in the spectrum. Guralnik, Hagen and Kibble also fail to
discuss the massive scalar in their 1964 paper. So how is it possible to avoid
the physical massless scalar degree of freedom when the spontaneously broken
symmetry is gauged?
As alluded to previously, Goldstone, Salam and Weinberg [47] provided a

proof of a theorem that mandates the emergence of a NGB mode in any theory
each time the following three conditions are met:

(i) The appearance of a continuous global internal symmetry and correspond-
ing conserved Noether current.
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(ii) Said symmetry is spontaneously broken so there is a degenerate family of
vacuum states and there exists a field (possibly composite) which carries
a nontrivial charge of the spontaneously broken symmetry and whose
vacuum expectation value is nontrivial.

(iii) The theory is manifestly Lorentz invariant.

Note that this last requirement is needed to guarantee the appearance of the
Nambu–Goldstone bosons. While NGBs may also appear in theories with
spontaneously broken global space-time symmetries or spontaneously broken
global internal symmetries in Galilean invariant theories, they are not man-
dated to do so in all such cases while they are for manifestly Lorentz-invariant
theories.
What fails in the case of gauge theories? To quantize a gauge theory, one

must choose a gauge and impose a gauge-fixing condition. For the U(1) gauge
theory, a massless vector field has four components, but only two of them are
physical (the transverse modes). One type of gauge choice, the Coulomb gauge
defined by ∇· ®A = 0 and A0 = 0, explicitly eliminates the unphysical degrees of
freedom. But the price one pays for this is the loss of manifest Lorentz invari-
ance and an evasion of the theorem ensues. Alternatively, one could choose
a manifestly Lorentz-covariant, gauge-fixing term such as a Landau gauge
∂µAµ = 0. In this case, the Hilbert space necessarily contains the unphysical
longitudinal and scalar degrees of freedom. Here the theorem does apply, but
the contribution of the Nambu–Goldstone degrees of freedom to any physical
process precisely cancels against the unphysical photon modes, so effectively
these modes are uncoupled from the physical particles in the theory. Note that
even though one must fix a gauge to quantize the model, the theory is very
clever and all physical quantities are gauge and Lorentz invariant.

11 Standard Electroweak Model
In 1967, S. Weinberg [101] and A. Salam [102] independently developed a
model of the electroweak interactions of leptons based on the gauge group
SU(2)L × U(1) using the Glashow and Salam–Ward model quantum number
assignments and current identifications, but now exploiting the Higgs mechan-
ism to give mass to the charged and neutral weak vector bosons while keeping
the photon massless. Moreover, they exploited the Schwinger mechanism to
generate the charged lepton masses. Explicitly, they introduced an SU(2)L
doublet of scalar fields (four degrees of freedom), which also carries weak
hypercharge (−1/2). The scalars had a self-interacting potential function of the
Brout–Englert, Higgs, Goldstone, Ginzburg–Landau form
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V(Φ) = λ
(
Φ
†
Φ − v2

2

)2
. (11.1)

A nonzero vacuum expectation value, v, is generated for the neutral compo-
nent of the scalar doublet spontaneously breaking the SU(2)L ×U(1) symmetry
while leaving a residual unbroken electromagnetic symmetry U(1)EM so that
SU(2)L × U(1) → U(1)EM. These scalars were coupled to the gauge fields via
the covariant derivatives. The gauge vector of this unbroken symmetry was
identified with the massless photon. The three erstwhile NGBs of the spon-
taneously broken symmetries became, via the Higgs et al. mechanism, the
longitudinal components of theW± and Z vectors endowing them with masses,
which satisfies

1 =
MW

MZ cos θW
. (11.2)

(For details, the reader is directed to Appendix A.2.) Note that this relation fol-
lows as a consequence of using a scalar SU(2)L doublet to spontaneously break
the symmetry. Let us focus on the preceding Higgs potential. Said potential
actually exhibits a global SU(2)L×SU(2)R symmetry, which contains the global
SU(2)L × U(1) as a subgroup with the third generator of the SU(2)R identified
with the weak hypercharge generator Y. This larger symmetry of the Higgs
potential is not respected by the full electroweak Lagrangian, as it is explicitly
broken by the gauging of the hypercharge and the differing Yukawa couplings
between the upper and lower components of the SU(2)L fermion doublets so
that the full Lagrangian has the SU(2)L×U(1) symmetry. When the scalar dou-
blet acquires its nontrivial VEV, the global SU(2)L × SU(2)R symmetry of the
Higgs potential is spontaneously broken to a residual global SU(2) symmetry.
This residual SU(2) symmetry is the diagonal subgroup of the SU(2)L×SU(2)R
and is referred to as a custodial symmetry [103]. Note the unbroken electric
charge generator, QEM, is the third component of the custodial SU(2). If the
spontaneous symmetry breaking is engendered by scalar fields transforming
other than as doublets acquiring nontrivial VEV, the resulting Higgs poten-
tial will not exhibit the custodial SU(2) symmetry and Eq. (11.2) will have no
longer be satisfied.
The electroweak model has two independent gauge couplings whose val-

ues are extracted from experiment. The particular experiments employed to do
so are often chosen to be those which are very accurately measured. One such
choice is the electromagnetic fine structure constant. Two independent methods
have been used. One uses the electron anomalousmagneticmoment [62] to give
α−1 = 137.035999150(33), while an independent determination [17] employs
atomic interferometry in rubidium atoms to yield α−1 = 137.035999206(81).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

84
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009238427


The Role of Symmetry in the Development of the Standard Model 31

Note that using the latter measure allows for a comparison between theory
and experiment in the ge − 2 determination. The second coupling is fixed by
the Fermi constant, which is best secured today by comparing the calcula-
tion of the muon lifetime with the experimentally measured result [62] giving
GF = 1.1663787(6) × 10−5 GeV−2. Thus while the theory is such that weak
and electromagnetic interactions have a common origin, it is not technically a
unified theory, which would have only a single coupling. The nontrivial VEV
is then fixed by the Fermi scale as

v = (
√
2GF)−1/2 ' 246.22 GeV. (11.3)

Very little attention was paid to the Glashow–Salam–Weinberg (GSW)
model when it was first introduced. The turning point came in 1971, when G.
‘t Hooft [104] (see also [105–109]) proved that the model was renormalizable
and hence consistent order by order in perturbation theory. The key was that
the vector mass generation mechanism arose in a non-Abelian gauge theory
using the Higgs mechanism. Since it is a Yang–Mills gauge theory, the vector
propagator can be taken to have the same type of large momentum falloff as
the photon propagator in QED even though the electroweak gauge bosons are
massive.
A major breakthrough in the experimental verification of the model came

with the discovery of the neutral current interactions in neutrino experiments
using the Gargamelle bubble chamber at CERN in 1974 [110, 111]. The results
of this experiment were consistent with the structure of the neutral current
interactions as detailed in the GSW model.
In fact, long before the neutral current was observed, it was conjectured that

they could exist and have parity-violating effects that could be detected [112]
in both electron scattering experiments and via atomic spectra measurements.
More than 20 years after this proposal, parity violation in the weak neutral cur-
rent was indeed measured in polarized electron-deuteron scattering at SLAC
[113, 114]. The agreement of this experiment with the predictions of the GSW
model firmly established it as the leading candidate to describe electroweak
interactions. The dominant contribution to the atomic bound state energy lev-
els arises from the parity-conserving electromagnetic interaction between the
electrons and the protons mediated by photon exchange. In addition, there will
also be a contribution from the weak neutral current arising from the Z boson
exchange. Since the neutral current interactions in the GSW model contain a
parity-violating component, the interference term of these two contributions
results in the various levels receiving a small admixture of the opposite parity.
While an accurate quantitative estimate (for a general review see, for exam-
ple, [115]) of this admixture requires detailed atomic physics calculations, for
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atomic number Z, the effect is roughly of order Z3α2m2
e

M2
Z
∼ Z3 × 10−15. The

Z3 enhancement factor for large Z was first pointed out in [116]. Additional
enhancement mechanisms can be employed to make the effect in cesium as
large as 10−6. The first such parity-violating signal was observed in 1978 by
L. Barkov and M. Zolotorev [117] in Bi atoms. Over the following decades,
parity violation has been observed in a variety of atoms, with the most accurate
measurements made in Cs [118] by the Wieman group at Boulder.
In 1983, theW± and Z vector bosons were discovered by the UA1 and UA2

collaborations at CERN [119–122]. The world average of the measured masses
is currently [62]

MW± = 80.379 ± 0.012 GeV,
MZ = 91.1875 ± 0.0021 GeV. (11.4)

Using these measured masses, the weak mixing angle defined as sin2 θW =
1 − M2

W
M2

Z
is determined as sin2 θW = 0.22337 ± 0.00010.

In Appendix A.2, the full SU(2)L × U(1) electroweak model Lagrangian is
presented in detail.
Tables 11.1 and 11.2 are taken from the particle data book [62] and provide

a global fit to a variety of electroweak processes and the comparison to the
Standard Model expectation. The agreement with the SM expectation is very
good and the global electroweak fit describes the data very well. As of today,
the electroweak model has been very precisely tested experimentally in a huge
variety of different experiments covering a range of energy scales from the
atomic level (eV) to the scale of the LHC (TeV) and its success constitutes a
remarkable achievement.
One present potential outlier is the measurement of the anomalous mag-

netic moment of the muon aµ = 1
2 (gµ − 2). The muon anomalous magnetic

moment is a particularly promising quantity to investigate since any beyond-
the-Standard-Model contribution scales like aµ ∼ ( mµ

MBSM
)2, where MBSM is the

mass scale of the beyond-the-Standard-Model physics. Hence, the sensitivity
of aµ is enhanced relative to ae by a factor (mµ/me)2 ∼ 4 × 104. Moreover, aµ
has beenmeasuredwith a precision of 0.46 ppm [124], which is muchmore pre-
cise than what can currently be achieved experimentally for aτ , which would,
in principle, be an even more sensitive measure.
The SM expectation aSMµ = 116591810(43) × 10−11 has been reported in

a 2020 White Paper [123] by the Muon g − 2 Theory Initiative. The quoted
overall precision of 0.37 ppm is limited by contributions due to the strong
interaction, notably the contributions from hadronic vacuum polarization and
to a lesser extent by the hadronic contribution to light-by-light scattering. This
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Table 11.1 Standard Model prediction compared with experimental results
secured using the LEP detector at CERN, which precisely measured various
parameters in the e+e− collisions with total incident energy tuned to be near
the Z mass. σhadron is total cross section to hadrons and ΓZ is the total Z decay
width. Rl =

Γhadron
Γl+ l−

; Rq =
Γqq
Γhadron

for l = e, µτ and q = b,c where Γhadron is the
partial width for Z decays to hadrons and Γff are the partial widths for Z→ f f

with f = e, µ, τ,u,d, s,c,b; A f
FB is the forward-backward asymmetry for

fermion f; Af is the left-right asymmetry for fermion f. Note that the three
values for Rl are consistent with lepton universality. The column denoted by

Pull gives the standard deviation from the SM prediction.

Quantity Experiment Standard Model Pull

MZ [GeV] 91.1876 ± 0.0021 91.1882 ± 0.0020 −0.3
ΓZ [GeV] 2.4955 ± 0.0023 2.4942 ± 0.0009 0.6
σhadron [nb] 41.481 ± 0.033 41.482 ± 0.008 0.0
Re 20.804 ± 0.050 20.736 ± 0.010 1.4
Rµ 20.784 ± 0.034 20.735 ± 0.010 1.4
Rτ 20.764 ± 0.045 20.781 ± 0.010 −0.4
Rb 0.21629 ± 0.00066 0.21581 ± 0.00002 0.7
Rc 0.1721 ± 0.0030 0.17221 ± 0.00003 0.0
AFB (e) 0.0145 ± 0.0025 0.01619 ± 0.00007 −0.7
AFB(b) 0.0996 ± 0.0016 0.1030 ± 0.0002 −2.1
AFB(c) 0.0707 ± 0.0035 0.0736 ± 0.0002 −0.8
AFB (s) 0.0976 ± 0.0114 0.1031 ± 0.0002 −0.5
Ae 0.15138 ± 0.00216 0.1469 ± 0.0003 2.1
Ab 0.923 ± 0.020 0.9347 −0.6
Ac 0.670 ± 0.027 0.6677 ± 0.0001 0.1
As 0.895 ± 0.091 0.9356 −0.4

recommended value for aSMµ is based on the “data-driven” evaluation of the
hadronic vacuum polarization contribution, which is determined using dis-
persion relations and the experimentally measured hadronic cross sections
in e+ − e− collisions. Combining the run 1 data of the Fermilab Muon g-2
experiment [124–126] reported in 2021 and the previous measurement at the
Brookhaven National Laboratory E821 Collaboration [127] results in a world
average of aexptµ = 116592061(41) × 10−11, which differs from the previ-
ously mentioned SM prediction of aSMµ = 116591810(43) × 10−11 by ∆aµ =
251 ± 59 × 10−11, which constitutes a 4.2σ discrepancy. If this result persists,
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Table 11.2 Standard Model prediction compared with experimental results
for non-Z pole observables. mt is the top quark mass,MH is the Higgs boson
mass,MW is theW± mass and ΓW is theW± width; gνeV,A are the leptonic vector
and leptonic axial vector couplings and τ is the lepton lifetime, ττ . The weak

charges QW (Cs) and QW (Tl) are extracted from atomic physics parity
violation experiments in Cs and Tl. The column denoted by Pull gives the

standard deviation from the SM prediction.

Quantity Experiment Standard Model Pull

mt [GeV] 172.89 ± 0.59 173.19 ± 0.55 0.5
MH [GeV] 125.30 ± 0.13 125.30 ± 0.13 0.0
MW [GeV] 80.370 ± 0.019 80.361 ± 0.006 1.6
ΓW [GeV] 2.195 ± 0.083 2.090 ± 0.001 −0.9
gνeV −0.040 ± 0.015 −0.0398 ± 0.0001 0.0
gνeA −0.507 ± 0.014 −0.5064 0.0
QW (Cs) −72.82 ± 0.42 −73.23 ± 0.01 1.0
QW (Tl) −116.4 ± 3.6 −116.88 ± 0.02 0.1
ττ [fs] 290.75 ± 0.36 288.90 ± 2.24 0.8

it indicates a violation of electron-muon universality beyond just the differences
in their masses.
Lattice QCD provides an alternative theoretical calculational scheme to the

data-driven methodology. Using an average of the lattice results available at the
time, theMuon g-2 Theory InitiativeWhite Paper [123] reported a higher value
of aSMµ than that found using the data-driven method, but still consistent within
the uncertainties. Subsequently, a lattice QCD result [128] for the hadronic vac-
uum polarization was published that reduced the difference between the SM
and the experimental result to 1.5σ. They also estimated a 2 − 3σ tension in
the hadronic contribution to the running of α than that determined using the
e+ − e− data. Clearly, an independent cross-check of the [128] lattice result is
sorely needed.
Occasionally, other hints of deviations from the model have arisen. But thus

far, none have stood the test of time.
A very nice demonstration of how the various elements of the Standard

Model are required in order to have agreement with experiment is provided
by the LEP measurement at CERN of the e+e− → W+W− cross section. At
leading (second) order in perturbation theory, various Feynman graphs con-
tribute: neutrino exchange, photon exchange and Z exchange, as shown in
Figure 11.1. (There is also a Higgs exchange graph, which gives a contribu-
tion of O(me

v ) ∼ 10−6 relative to the other graphs and can be safely ignored.)
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W+
W+ W+

Zγ
ν

W–
W– W–

e+e–

e+e– e+e–

Figure 11.1 Leading-order Feynman graphs contributing to e+e− → W+W−.

Figure 11.2 Measurements from LEP of the production cross-section
e+e− → W+W− compared to the SM calculation of the RACOONWW [130],
YFS [131] and GENTLE [132] collaborations. The plot is secured from the
ALEPH, DELPHI, L3, OPAL and LEP Electroweak Collaborations [129].

Figure reproduced with permission from Ref. [129].

The neutrino exchange graph arises from the charged current interaction, while
the photon exchange and Z exchanges mediate the electromagnetic and neu-
tral current interactions respectively. Note that the Z exchange graph involves
the triple gauge vector ZW+W− vertex, which is mandated by the non-Abelian
gauge structure. Plotted in Figure 11.2 is the LEP measurement as well as the
predicted cross section with only neutrino exchange, no ZWW vertex and with
all three as required by the Standard Model. Clearly all three interactions are
required for agreement.
In the SM, the Z vector boson couples directly via the neutral current inter-

action to f f where f is any fermion and to W+W−. It also couples to HH with
H the Higgs boson. Note there is no direct coupling of the Z to a pair of pho-
tons. Using the LEP detector at CERN, the e+e− beam energy was tuned to scan
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the region in the vicinity of the Z mass. In that case, the W+W− and HH final
states do not contribute since theW± and H have masses well in excess of MZ

2 .
Thus the only final states that contribute are f f , where f can be any of the three
charged leptons, any quark (which will fragment into hadrons) other than the t
quark and any possible neutrino whose mass is less than MZ

2 .
The annihilation cross section [133] for e+e− → Z → f f is generally fit to

the Breit–Wigner form

σf =
12π
M2

Z

sΓeΓf

(s −M2
Z)2 + s2

Γ2Z
M2

Z

; s ' MZ, (11.5)

which accounts for a process in which a spin one particle is produced in e+e−

collisions and then annihilates into an f f channel in the resonance region for
the case where the resonance width is much less than the vector mass. This
typical resonance shape peaks around the Z mass,

√
s = MZ, and has a total

width ΓZ. If the Z decays a fraction Bf of the time into a final state f f , the corre-
sponding partial width is defined as Γf = BfΓZ. For the moment, we assume that

0
88 89 90 91 92 93 94 95

5

10

15

20

ALEPH Ny = 2

Ny = 3

Ny = 4

Energy (GeV)

σ 
(n

b)

25

30

35

Figure 11.3 The e+e− annihilation cross section as a function of
center-of-mass energy in the vicinity of the Z pole, as measured by the LEP
experiments [133]. The curves represent the Standard Model predictions for
two, three and four species of light neutrinos. It is clear from this picture that

there is no further light neutrino species with couplings identical to the
first three.
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there are Nν neutrino species that contribute. In that case, the total Z width is
simply

ΓZ = 3Γe + Γhadron + NνΓν . (11.6)

The LEP detector separately measured the total width ΓZ from the shape of
the resonance curve as well as the hadronic width, Γhadron (∼0.7 ΓZ) and each
charged leptonic width Γe (∼0.03 ΓZ). Using the Standard Model calculation of
Γν , the only unknown is Nν , the number of light neutrino species. Figure 11.3
displays the line shape for Nν = 2,3,4. The fit to the data yields Nν = 3.0026±
0.0061, which is in excellent agreement with the observed number of fermion
generations: N = 3.

12 The Higgs Boson
By 2012, the only as yet undetected ingredient of the Standard Model was the
Higgs scalar H. As detailed in Appendix A.2, it couples to all massive bosonic
particles in proportion to the square of the bosonmass and to fermionic particles
linearly in the fermion mass. Furthermore, the generalized Yukawa couplings
to the fermions also allow for the observed flavor-changing charged weak
interactions parametrized by the Cabibbo–Kobayashi–Maskawa (CKM)matrix
[93, 96]. (For the experimentally determined CKM parameters, see [62].) The
Higgs scalar is self-coupled and massive M2

H =
1
2λv

2. The model, however,
does not fix the value of this mass, which must be determined experimen-
tally. This was achieved in 2012 when the CMS and Atlas collaborations at the
CERN LHC announced the discovery [1, 2] of a scalar particle with mass ∼125
GeV whose properties were consistent with that of the Standard Model Higgs
boson.
The dominant decay channel of a Higgs scalar with such a mass is into bb

with a branching fraction [62]: BR(H → bb) = 0.58. However, at hadron col-
liders such as the LHC, this mode is masked by the presence of very large
backgrounds, making the identification of a Higgs boson signal in these chan-
nels quite challenging. Hence the CMS and Atlas collaborations focused on
the decay of the Higgs scalar into two photons: H → γγ. Since the photon is
massless, there is no direct coupling to the Higgs field. The leading contribu-
tion to this process comes from the 1-loop diagrams, with the more massive
charged particles traversing the loop giving the dominant contributions. This
corresponds to the top quark and theW boson as shown in Figure 12.1.
Consequently, the branching fraction [62] for this mode is small: BR(H →

γγ)= 2.27 × 10−3. Nonetheless, an unambiguous signal was successfully
detected. Subsequently, additional decay channels including bb have been
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f W +

W –

W +

W –

h0 h0h0

γ

γ

γ

γ

γ

γf

Figure 12.1 Examples of Feynman graphs contributing to H→ γγ. In the
first diagram, f can be any charged, massive fermion with the dominant

contribution coming from the top quark traversing the loop.

observed and analyzed. In all cases, consistency with the properties of the
Standard Model Higgs boson persists. As of this writing, the mass of this scalar
is measured [62] as

MH = 125.30 ± 0.09 ± 0.09 GeV. (12.1)

A few comments are in order.

• One really needs to distinguish between the existence of the Higgs et al.
mechanism and the particular way it is engendered. The Higgs mechanism
that gives mass to the weak interaction vector bosons results whenever a
spontaneously broken global continuous symmetry is made locally invari-
ant independent of the dynamics responsible for the spontaneous symmetry
breakdown. It was actually validated in 1983 with the discovery of the mas-
sive W± and Z vector bosons. With the discovery of a light Higgs scalar
particle, it appears this mechanism arises in the electroweak model through
the interactions of a perturbatively coupled scalar field sector based on the
type proposed by Brout–Englert and Higgs and others. The physical dynam-
ics implementing the vector mass generation mechanism did not necessarily
have to be of this form. For example, it could have been some new interac-
tion leading to a fermion-antifermion condensate breaking the electroweak
symmetry more in analogy to what happens in BCS or to the chiral symme-
try breaking in QCD. In that case, the “Higgs scalar” would not be nearly as
light as it turned out.
• The Higgs mechanism as implemented in the Standard Electroweak Model
is extremely economical. With the addition of one novel scalar physi-
cal degree of freedom, one generates nonzero masses for the weak gauge
vectors and the fermions as well as incorporates the observed Cabibbo–
Kobayashi–Maskawa quark flavor mixings and CP-symmetry violation in
a mathematically consistent framework. Nature apparently has chosen the
highly economical and simplest, albeit arguably not themost satisfying route.
While all the rest of the dynamics in the Standard Model is determined via
interactions with the gauge bosons, the scalar self-couplings responsible for
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the symmetry breaking and the Yukawa couplings to the scalar fields are
not.
• Contrary to what sometimes appears in the literature, the Higgs mechanism
is not responsible for most of the visible (i.e. nondark matter) mass in the
Universe. The predominance of visible mass is protons and neutrons. Most
of their mass results from the QCD binding of their quark and gluon con-
stituents. Up and down quarkmasses do arise from theHiggsmechanism, but
their contribution to the proton mass is very small (a few parts in a thousand).
However, the fermion masses generated via the Higgs/Schwinger mechan-
ism are crucial. Without it, QCD still confines quarks into protons so the
nucleon mass would be basically unchanged. However, now the electroweak
symmetry would be broken by the formation of QCD vacuum chiral conden-
sates at a much lower scale (∼250MeV). TheW and Z bosons would acquire
mass of this order by absorbing the Nambu–Goldstone boson pions. Because
the electron would be massless in the absence of the Higgs/Schwinger mech-
anism, the atomic Bohr radius would be infinite. There would be nothing
recognizable as an atom, no chemistry as we know it, no stable composite
structures like solids or liquids. None of us would exist!

13 Global Symmetries versus Local Invariance
We have traced the development of the Standard Model of particle physics by
following how its various symmetries were uncovered and implemented.While
recognizing that global symmetries played a crucial role in this story, as it turns
out, the global symmetry structure is actually an automatic consequence of the
local invariance. That is, once the gauge group and transformation properties
of the matter fields under said group are specified, the dynamics is determined
and so is the global symmetry structure, which does not have be separately
mandated and enforced.
The case of gauge invariance is somewhat more subtle. Calling an invariance

under local transformations a symmetry (gauge symmetry) is actually a misno-
mer. When one speaks of a symmetry in a quantum theory, what one really
means is the invariance under transformations of the quantum states that lie in
a Hilbert space. However, a gauge transformation does not change the quantum
states (it acts trivially on the Hilbert space) and hence it really should not be
called a symmetry. Rather the gauge invariance dictates that the excitations of
certain fields appearing in the action functional do not really produce physical
states. Thus the gauge symmetry actually corresponds to a redundancy of the
theoretical description, which is introduced to insure that the theory is local.
This is why the gauge invariance of the underlying action functional must be
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exact3 and cannot be broken by the inclusion of additional non–gauge-invariant
local operators without destroying the consistency of theory. With the inclu-
sion of such non–gauge-invariant terms in the action, the unphysical degrees
of freedom would not be eliminated, leading to a violation of some basic prin-
ciple such as Lorentz invariance or positivity of the state space norm, which
corresponds to a breakdown of causality or unitarity (probabilities exceeding
unity).
The same argument applies to the casewhere one attempts to gauge a symme-

try of the Lagrangian which is broken by quantum radiative corrections arising
from fermion loops. In such a case, the symmetry is said to be anomalous.
Anomalies [134, 135] reflect an intrinsic breaking, which cannot be compen-
sated by adding local counterterms in higher orders of perturbation theory. Thus
any potential anomalies associated with the dynamical gauge currents need to
be canceled if the dynamical gauge invariance is to be preserved.
Since the anomalies depend only on the charge structure of the dynamical

fermions traversing the loops, their cancellation constrains the fermion matter
content of many gauge field theories. The nonrenormalization theorem [136]
guarantees that this cancellation will be preserved to all orders. From the form
of the non-Abelian anomaly [137], it can be shown that models with vector-
like gauge couplings, such as QED or QCD, do not have dynamical anomalies.
Only theories where the fermions have chiral gauge couplings can have non-
trivial anomalies. If the standard electroweak model is based on a chiral gauge
theory, the individual fermions propagating in the loop produce anomalies, but
are canceled between the various quark and lepton contributions.
This is contrary to the case of global symmetries where globally nonvariant

local terms can be added to the action without destroying the consistency of
the theory. The only way to “break” a gauge symmetry is by making the spon-
taneously broken global theory locally invariant. But this operation is not a
deformation of the theory (as is the case of adding globally noninvariant terms
to an otherwise globally invariant theory), but rather corresponds to a different
theory altogether. There is also no restriction on having anomalous global sym-
metries. In fact, the existence of an anomaly in the axial vector global current
is responsible for the experimentally observed decay mode of the neutral pion
to two photons.

3 Strictly speaking, it is the classical action that must be gauge invariant. To quantize the theory,
a gauge must be chosen that does indeed break the gauge invariance. However, said gauge
fixing terms (and accompanying Faddeev–Popov ghost terms) are of just such a nature that all
physical observables are gauge invariant. See Appendix A.2 for some additional discussion.
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14 Limitations and Challenges of the Standard Model
Despite being the most successful theory of particle physics to date, the Stand-
ard Model is still neither complete nor totally satisfying. Here we briefly
address shortcomings of the model.
• Standard Model parameters: Various parameters appear in the Standard

Model. The form of the gauge groups and the quantum numbers of the fermions
and scalars under said gauge groups are taken as given a priori. The same can
be said of the 3+1 dimensionality of space-time. In addition, as in any quantum
field theory, the Lagrangian must be supplemented by various normalization
conditions before it is completely defined and used to make unambiguous
predictions. The Standard Model depends on 19 parameters, each of which
requires a normalization condition that can be fixed by experiment. These
include the three gauge couplings, the three charged lepton masses, the six
quark flavor masses, the three CKM mixing angles, one CKM phase and two
parameters from the scalar sector that can be taken as the Higgs boson mass
and the electroweak scale. In the Standard Model, only massless left-handed
neutrinos appear.
A variety of beyond-the-Standard-Model proposals have been forwarded in

an attempt to reduce the number of said parameters. Thus far, none have suc-
cessfully achieved this goal. One approach posits the existence of a unified
gauge group with a single gauge coupling that spontaneously breaks at a very
high energy scale to the Standard Mode direct product gauge groups. While
these Grand Unified Theories (GUTS) replace the three gauge couplings of the
SMwith one unified gauge coupling, all such models need to introduce a pleth-
ora of new particles and a large number of additional couplings both to achieve
the unification and to engender the appropriate spontaneous symmetry break-
ing. Thus far, none of these have been observed. In addition, one experimental
consequence of many GUTS is the finite lifetime of the proton and, as yet, all
experimental searches have yielded null results. A review of GUTS is provided
in [138].
In addition, there is another hitherto neglected parameter in the QCD

Lagrangian, θ, which is the coefficient of the gauge-invariant Lagrangian term

Lθ = θ
g23
32π2

Gµν
i (x)G̃µν i(x) (14.1)

where Gµν
i is the gluon field strength and

G̃µν i =
1
2
ϵµνλρGλρi (14.2)
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is the field strength dual. This gauge-invariant CP-symmetry-violating product
is a total divergence [140],

Lθ = θ
g23
32π2

∂µKµ(x), (14.3)

of the gauge-variant combination

Kµ = ϵ µαβγAαi
(
Gβγ i −

g3
3
fijkAβ jAγ k

)
. (14.4)

Being a total divergence, Lθ never contributes in any perturbative calcula-
tion. However, the QCD vacuum has a nontrivial structure, and nonperturbative
effects can become important. Experimentally, the size of θ is constrained by
measurements of the CP-symmetry-violating electron dipole moment (EDM)
of the neutron. So far, no neutron EDM has been observed and the current
experimental limit [139] is dn < (0.0± 1.1) × 10−26 e cm. The violation of CP-
symmetry in the SM through the CKM phase gives |dn | ∼ 10−31 e cm, which
is far smaller than the error bars on the current bound. Since the θ parameter
provides another possible source of CP-symmetry violation, the measurement
of the EDM of the neutron restricts it to satisfy θ < 10−10. The origin of
the smallness of this dimensionless parameter is referred to as the strong CP
problem. One possible solution is afforded by the Peccei–Quinn mechanism
[141],[142], which introduces some additional degrees of freedom and an addi-
tional U(1)PQ spontaneously broken anomalous symmetry, which allows this
parameter to be effectively removed. There is a residual effect in the form of
a novel pseudoscalar particle, the axion [143],[144], which is actively being
hunted experimentally [62]. The pseudo-NGB axion mass is model depend-
ent but is roughly given by ma ∼

m2
EB
fa , where fa is the scale associated with

the U(1)PQ spontaneous breaking and mEB is the mass scale set by the explicit
U(1)PQ breaking. For so-called QCD axions, mEB ∼ 〈ψψ〉1/3 ∼ 250 MeV,
where 〈ψψ〉 is the QCD chiral symmetry-breaking condensate and provides
the mass scale associated with the chiral anomaly in QCD. To avoid adversely
impacting stellar cooling rates, there are stringent constraints (see, for example,
[147–149]) highly suppressing axion–SM interactions. Allowedmodels tend to
favor a small axion mass (≤ 10−3 eV) whose couplings to SM particles vary
as f−1a ≤ 10−10 GeV −1 and hence are very feeble. If axions exist, they are a
possible component of cold dark matter.
• Neutrinos: In the Standard Model, neutrinos are massless particles. How-

ever, neutrino oscillation experiments have shown that neutrinos do have
nonzero masses [145, 146]. The possibility of neutrino oscillations was first
proposed by B. Pontecorvo [150] in 1957, in analogy with neutral kaon mix-
ing. Nonvanishing neutrino masses can be accounted for in a variety of ways by
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suitably modifying the Standard Model. The actual mechanism(s) of this mass
generation is still unknown and constitutes a very active area of investigation.
For spin 1/2 fermions, Lorentz invariance allows two type of mass terms.

A Dirac mass couples the left-handed and right-handed components of the fer-
mion. In the StandardModel, the charged lepton and quarkmasses are all of this
type. It is also possible, however, to have a Lorentz-invariant mass term using
only a single handedness. This requires that said fermion field be self-conjugate
so that its particle excitations are their own antiparticles. As such, so long as
electric charge is conserved, only electrically neutral particles can have this
property and neutrinos are possible candidates. The possibility of such a mass
term for fermions was introduced in 1937 by E. Majorana in his last published
work [151] and they are referred to as Majorana fermions.
Only left-handed neutrinos have thus far been observed experimentally.

If one insists on using only Standard Model particles, which has only left-
handed neutrinos, the only possibility is for these left-handed neutrinos to have
Majorana masses. This can be achieved by adding a nonrenormalizable mass
dimension-five interaction of the lepton doublet with the scalar doublet bilin-
ear [152]. However, since the neutrino masses are considerably smaller than
the rest of the known particles (at least 500,000 times smaller than the mass of
an electron), it follows that the coefficient of this operator is the inverse of a
very large mass scale, which must originate from outside the SM.
Another possible mechanism involves the introduction of right-handed neu-

trino fields as SU(2)L × U(1) singlets. They can then be coupled to the
left-handed lepton doublet by introducing additional Yukawa couplings to the
Standard Model scalar doublet. Following an analogous procedure to the CKM
mixing in the charged current quark interactions (see Appendix A.2) leads to
neutrinos with Dirac masses as well as the Maki–Nakagawa–Sakata (MNS)
mixing matrix [153] in the lepton charged current interaction. (For the exper-
imentally allowed range of MNS parameters, see [62].) Once again, because
the observed neutrino masses are so much lighter than all the other fermions,
use of the Higgs mechanism to generate their masses requires extremely small
Yukawa couplings, which is not particularly attractive.
Currently, a popular conjectured approach for generating very light neutrino

masses is the seesaw mechanism [154, 155], where the right-handed neu-
trinos have very large Majorana mass terms. Note that this new mass scale
is allowable, since the right-handed neutrinos are SU(2)L × U(1) singlets.
These right-handed neutrinos can also couple to the left-handed lepton dou-
blets through the Yukawa interactions with the scalar doublet. Assuming these
Yukawa couplings are of the order unity, then after the electroweak spontaneous
symmetry breaking and diagonalization of the neutrino mass matrix, one finds
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two sets of massive Majorana neutrinos. One set have very large masses and
are composed mostly of the right-handed neutrinos with a small admixture of
the left-handed ones, while the other have masses inversely proportional to the
heavy mass parameters and hence are very light. These are composed mainly
of the original left-handed neutrinos with a small admixture of the right-handed
neutrinos. To obtain the correct order of magnitude of the observed light neu-
trino masses, the Majorana mass scale of the right-handed neutrinos is required
to be around 1014 GeV.
• Dark matter: The hypothesis of the necessity of dark matter (DM) in the

Universe has a long history (For a discussion of the early history of dark matter
proposals, see, for example, [156]), including a talk given by Lord Kelvin in
1884 in which he stated his estimate of the mass of the visible stars in theMilky
Way was insufficient to account for the observed velocity dispersion of the
stars orbiting around the center of the galaxy. Further indications came in the
1930s by F. Zwicky’s observation that themass-to-light ratio was not unity from
measurements of galaxy rotation curves [157, 158].While the numerical values
of the estimates weremore than an order ofmagnitude inaccurate, mainly due to
an incorrect value of theHubble constant, they did lead to the correct conclusion
that the bulk of the matter was dark.
By the 1980s, studies of these galactic rotation rotation curves [159, 160]

provided stronger evidence for the existence of dark matter. In addition, more
recently there have been a plethora of observations substantiating the hypothe-
sis. These include the analysis of the power spectrum of the cosmic microwave
background (CMB) [161], which indicates that about 24 percent of the energy
density present in the Universe is in the form of dark matter. For a review, see,
for example, [162]. Additional evidence for dark matter comes from observa-
tions of gravitational lensing [163] along with astronomical observations of
the motion of galaxies within galaxy (bullet) clusters [164, 165]. Dark matter
also plays a crucial role in structure formation because it predominantly feels
only the force of gravity. Thus, the gravitational Jeans instability, which allows
compact structures to form, is not countered by any other interaction, such as
radiation pressure. Consequently, dark matter begins to collapse into a complex
network of dark matter halos well before ordinary matter, which is impeded by
the pressure forces. Without dark matter, the epoch of galaxy formation would
occur substantially later in the Universe than what is observed [166, 167]. As
such, it has became clear that the bulk of matter holding galaxies together is in
extended halos of nonluminous dark matter.
To date, dark matter has been observed only astrophysically via its gravi-

tational interaction and has eluded any direct laboratory detection. Thus it is
a form of matter that interacts very feebly with the Standard Model fields, in
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particular with the electromagnetic field. The Standard Model itself does not
supply any good dark matter candidates. Cold dark matter (CDM) [169, 170]
offers the simplest explanation for most cosmological observations. Cold refers
to the fact that the dark matter moves slowly compared to the speed of light.
It is dark matter composed of constituents with a free streaming length much
smaller than a protogalaxy. This is the focus for most dark matter research, as
hot dark matter does not seem capable of supporting the observed galaxy or
galaxy cluster formation. At present, a variety of experiments probing the so-
called direct, indirect and collider channels are underway [168]. Themain focus
of these searches has been to identify cold dark matter as weakly interacting
massive particles (WIMPs). The appeal of WIMP dark matter is due in part to
the suggestive coincidence between the thermal abundance of WIMPs and the
observed dark matter density (WIMP miracle). Many particle physics theories
beyond the Standard Model provide natural candidates for WIMPs and there is
a huge range in the possible WIMP masses (1 GeV to 100 TeV) and interaction
cross sections with normal matter (10−40 cm2 to 10−50 cm2). As the allowed
parameter space for WIMPs continues to shrink, there has been growing atten-
tion to other, generally much lighter (sub GeV), dark matter candidates. In
general, since lighter DM particles have less available kinetic energy, achieving
a kinematic match between the DM and the target requires a proper treatment
of collective excitations such as charged quasi-particles and phonons in the
condensed matter systems, hence necessitating an interdisciplinary approach.
While most such light DM proposals lack specific well-motivated candidates
nor have the appeal provided by the WIMP miracle, there is one very light DM
candidate in the form of the axion whose existence is independently motivated
by the Peccei–Quinn solution to the strong CP problem.
• Dark energy: In physical cosmology and astronomy, dark energy is an

unknown form of energy that affects the Universe on the largest scales. (For
reviews, see, for example, [171, 172].) The first direct evidence for its existence
came in 1998 from the High-Z Supernova Search Team observations [173] of
Type Ia supernovae. In 1999, the Supernova Cosmology Project [174, 175] fol-
lowed by suggesting that the expansion of the Universe is accelerating. Using
observed data, the first paper that made this claim was [176]. Without introduc-
ing a new form of energy, there was no way to explain how such an accelerating
Universe could arise. Since the 1990s, dark energy has been the most accepted
premise to account for the accelerated expansion. The best current measure-
ments indicate that dark energy contributes 71 percent of the total energy in the
present-day observable Universe. Note that for a flat Universe with critical den-
sity given by WMAP [161] and Planck [177, 178], this corresponds to a dark
energy density of only (10−12 GeV)4 ∼ 2× 10−10 erg/cm3, which is much less
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than the density of ordinary matter or dark matter within galaxies. However, it
dominates the energy of the Universe because it is uniform across space. The
introduction of a cosmological constant,Λ, [179] into the Einstein action is one
way to account for dark energy, and theΛCDMmodel is supported by a wealth
of cosmological data.
The energy density of the vacuum is notoriously difficult to calculate in

quantum field theory [180]. There are at least two distinct contributions to
said vacuum energy which arise in the SM during the evolution of the Uni-
verse. In the standard electroweak model, the phases of broken and unbroken
symmetry are distinguished by a potential energy difference of approximately
∼250 GeV (where 1 GeV = 1.60 ×10−3 erg = 5.06 ×1013 cm−1). The Uni-
verse is in the broken-symmetry phase during our current low-temperature
epoch, and is believed to have been in the symmetric phase at sufficiently high
temperatures at early times. Unless there is a very fine tuning, the effective
cosmological constant is therefore different in the two epochs and one would
naturally expect a contribution to the vacuum energy density today of order
∼(250 GeV)4 ∼ 7.3 × 1047 erg/cm3. Similarly, another contribution can arise
due to quark-antiquark vacuum condensate formation in QCD, which sponta-
neously breaks the chiral symmetry breaking: 〈|qq|0〉 ∼ (0.25 × 10 GeV)3.
The associated contribution to a vacuum energy density is then expected to be
∼(0.25 GeV)4 ∼ 7.2 × 1035 erg/cm3. There could be even larger contributions
coming from unknown transitions occurring earlier in the Universe’s evolution.
The ratio of the energy scale (the energy density to the 1/4 power) of these
contributions differs by some 12 to 14 orders of magnitude from the observed
cosmological constant scale. Clearly this difference constitutes a (cosmologi-
cal constant) problem of enormous import. In principle, one could impose an
extreme fine-tuning at a very high scale (before any of the transitions) where the
unknown quantum theory of gravity would be operational, to miraculously can-
cel these various contributions. This is not a very satisfactory explanation, as
the various contributions arise at different scales and have a different physical
origin.
• Naturalness: Naturalness is a concept that has emerged in recent years as a

discriminator of various theoretical models. It has taken on a variety of differ-
ent meanings. Crudely, the notion of naturalness is that one prefers not to have
to fine-tune the various parameters in a model in order to generate a physical
observable that is much smaller than it would otherwise be. In principle, there
is nothing wrong with such a fine-tuning, as it does not violate any physical
principle or tenet. It is just that such a fine-tuning leavesmost physicists uncom-
fortable and they would prefer models where it is unnecessary. One example
of a naturalness problem is the value of the cosmological constant discussed
previously.
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Here we focus on the SM Higgs boson mass. Quantum loop corrections can
affect the value of this mass. For example, the 1-loop top quark graph provides
an O(m2

t ) contribution to the Higgs mass. Assuming the SM gives an accurate
description of the physics up to a large energy scale, it is often stated that the
quadratic divergences of the loop amplitude shift the Higgs mass by a large
amount. The fine-tuning of the bare mass term required to keep the physical
Higgs mass at its experimentally measured value and not at the high mass scale
then constitutes a naturalness problem in the SM. A more precise definition of
naturalness due to G. ’t Hooft [196] is that a parameter is natural if by setting
it to zero, one increases the symmetry of the model, which, when enforced,
keeps the parameter zero. For the case of the naturalness of the Higgs mass, the
most commonly invoked symmetry is supersymmetry (SUSY). (For an intro-
duction, see [197].) Here one adds additional degrees of freedom to the model
such that there are equal numbers of bosonic and fermionic fields and more-
over the couplings of these fields are related in a well-defined way. If such a
supersymmetry exists, then the quadratic divergence of the Higgs mass due to
a Fermi field propagating the loop is identically canceled by a quadratic diver-
gence arising from a loop of its bosonic partner field. The relative minus sign
is a reflection of the opposite statistics. Thus in supersymmetric theories, quan-
tum corrections do not renormalize the superpotential that contains the Higgs
mass term. Of course, SUSY is not an exact symmetry of nature and it must
be broken. In these models, the electroweak symmetry breaking is generated
by terms that are a soft, explicit breaking of the SUSY. As such, as long as the
SUSY breaking scale is not too large, the Higgs mass is protected.
Rather than introducing all the additional, as yet unobserved, degrees of free-

dom and new interactions required to produce a softly broken SUSY extension
of the SM, the standard electroweak model Lagrangian already possesses a
scale symmetry broken only by the negative squared mass term for the scalar
doublet which can act as a protection mechanism of the Higgs mass [198]. Just
as in the SUSY case, soft symmetry breaking will set the scale of the elec-
troweak symmetry breaking and generate the Higgs mass. This mechanism is
completely consistent at tree level. Perturbative loop corrections will introduce
an explicit scale symmetry breaking through the scale anomaly related to the
logarithmic running of the couplings. Since the quadratic divergences are unre-
lated to the coupling runnings, they represent a separate explicit breaking of the
tree-level scale symmetry which is generated by the introduction of an explicit
momentum space cutoff procedure. In other cases where the cutoff procedure
breaks a global symmetry, counter-terms are added to restore the original sym-
metry structure of the theory. This does not constitute a fine-tuning issue, but
merely is an artifact of the specific computational scheme used to regular-
ize the loop amplitudes. One can make a similar argument that the quadratic
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divergences in the SM are the spurious effects of a particular regularization
scheme. Counter-terms must be added to preserve the structure of the anoma-
lous scale symmetry Ward identity. This argument can be used to remove the
explicit quadratic divergences order by order in perturbation theory without
the need to fine-tune. Note that the usual dimensional regularization procedure
would generate only the logarithmic running of the couplings and not quadratic
divergences.
Of course, it is still possible that a fine-tuning might be required due to

nonperturbative effects such as the presence of a Landau pole, which appears
in the scalar self-coupling and weak hypercharge gauge coupling or when the
SM is embedded in a more all-encompassing model, which could have physi-
cal mass scales at far-ultraviolet energies. Whether scale invariance can still be
used to protect the electroweak scale depends on the scaling properties of the
more underlying model. Of course, the softly broken scale symmetry does not
explain the origin of the electroweak scale, just as is the case in SUSY exten-
sions where the SUSY breaking scale must be adjusted by hand to produce the
correct electroweak scale.
•Matter-antimatter asymmetry or Baryogenesis: The Big Bang should have

created equal amounts of matter and antimatter in the early Universe. Today,
however, all nondark matter observed is made almost entirely of matter or
baryons. There is comparatively very little antimatter or antibaryons to be
found. The observed abundance of baryons today implies that when the uni-
verse was much hotter than a GeV the ratio of antibaryons to baryons must have
been about one part in 108. Something must have happened to create this asym-
metry. (For a review, see, for example, [181].) In 1967, A. Sakharov showed
that to generate such an asymmetry, any model requires several necessary con-
ditions [182]: (i) baryon number violation; (ii) C-symmetry and CP-symmetry
violation; (iii) interactions out of thermal equilibrium. Each of these conditions
can arise in the Standard Model.
Baryon number symmetry is anomalous as a consequence of instantons

[183]. At zero temperature, the amplitude of the baryon-number-violating pro-
cesses varies as e−

8π
e2 , which is too small to have any observable effect. At high

temperatures such as in the early Universe, these transitions become unsup-
pressed [184]. Theweak interactions of the SMviolate Cmaximally and violate
CP via the Kobayashi–Maskawa mixing. The CP violation, when appropriately
normalized, is of order 10−20 and there are practically no kinematic enhance-
ment factors in the thermal bath. Thus it is impossible to generate the required
baryon asymmetry with such a small amount of CP violation. Consequently,
baryogenesis implies that there must exist new sources of CP violation beyond
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the Kobayashi–Maskawa phase of the Standard Model. Within the Standard
Model, departure from thermal equilibrium occurs at the electroweak phase
transition [185]. However, this transition is not strongly first order, as required
for successful baryogenesis. Thus, a different kind of departure from ther-
mal equilibrium is required, which could result either from new physics or,
alternatively, via a modification to the electroweak phase transition.
While the baryon number symmetry is anomalous in the SM, the difference

of baryon number and lepton number (B-L) remains unbroken. Leptogenesis
[186] is a class of scenarios where the baryon asymmetry of the Universe is
produced from a lepton asymmetry generated in the decays of CP-violating
interactions of the lightest of the heavy Majorana neutrinos, the seesaw part-
ners of the ordinary neutrinos. An added bonus of this mechanism is that it ties
the baryon asymmetry with neutrino properties. The rate of these CP-violating
Yukawa interactions can be slow enough (that is, slower than theHubble param-
eter, the expansion rate of the Universe, at the time that the asymmetry is
generated) that departure from thermal equilibrium occurs. Lepton number vio-
lation comes from theMajorana masses of these new particles. For reviews, see
[187, 188].
• Vacuum stability bound: The Standard Model scalar sector potential is

rendered unstable if the 4-scalar coupling goes negative. The running of this
coupling depends very sensitively onMW,mt andMH. Using the currentlymeas-
ured values ofmt,MW andMH, the electroweak vacuum of the Standard Model
becomes metastable at energy scales of the order of ∼1011 GeV decaying into
a lower-energy vacuum at a higher energy with a lifetime larger than the age
of the Universe [189, 190]. Appropriate modifications of the SM can stabi-
lize the electroweak vacuum. This can be achieved in a wide variety of ways
ranging from embedding the model in a more fundamental theory at a higher
scale to simply adding a new heavy scalar singlet that acquires a large vacuum
expectation value and has a quartic interaction with the ordinary Higgs doublet
[191].
•Model for inflation: Cosmological inflation, or more simply inflation, is a

theoretical framework that proposes an exponential expansion of space-time
in the very early Universe [192, 193]. The inflationary epoch is posited to
have lasted for 103–104 seconds. The slow roll inflationary paradigm (see, for
example, [194] for a review) accounts for many of the observed properties of
the Universe. It explains the large-scale isotropy, homogeneity and flatness of
the Universe as well as accounting for the absence of any observed magnetic
monopole. Furthermore, it provides a mechanism for the origin of the large-
scale structure of the cosmos. Quantum fluctuations in a microscopic region
get magnified to a cosmic size and become the seeds for the growth of structure
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in the Universe. Following the inflationary period, the Universe continued to
expand, but at a slower rate. The new regions that come into view during this
normal expansion phase are exactly the same regions that were pushed out
of the horizon during inflation, and so they are at nearly the same tempera-
ture and curvature, because they come from the same originally small patch
of space-time. Thus inflation explains why the temperatures and curvatures of
different regions are so nearly equal. It also predicts that the total curvature of a
space-slice at constant global time is zero. This prediction implies that the total
ordinary matter, dark matter and residual vacuum energy in the Universe have
to add up to the critical density, and the evidence supports this. Evenmore strik-
ing is that inflation allows calculation of the minute differences in temperature
of different regions from quantum fluctuations during the inflationary era, and
many of these quantitative predictions have been confirmed [195].
However, the particle physics model responsible for slow roll inflation is

still lacking. Most models invoke a novel scalar degree of freedom, the infla-
ton, whose potential must be very flat to accommodate the observed size of said
fluctuations (for a review, see [199]). In these models, this flatness is achieved
by introducing extremely small couplings. Alternatively, attempts have been
made to identify this scalar with the StandardModel Higgs boson. Such models
require [200, 201] an extremely large nonminimal coupling of the Higgs bilin-
ear to the Ricci scalar. Furthermore, the energy range in which these models
represent a valid effective field theory is bounded above by a cutoff scale, which
is found to be higher than the relevant dynamical scales throughout the whole
history of the Universe, including the inflationary epoch and reheating [202].
Thus the extrapolation of the pure SM potential up to this scale is unwarranted
and the scenario is analogous to other models of inflaton potentials afflicted
with significant fine-tuning [203].
• Quantum theory of gravity: The minimal Standard Model ignores all

gravitational interactions and treats space-time as flat. Nontrivial gravitational
interactions can be introduced as a classical background in the Einstein–Hilbert
action [3, 4, 204]

SEH =
∫

d4x
√−g (4πGNR + LM) , (14.5)

where g is the determinant of the background metric tensor, R is the Ricci
scalar and LM contains the matter fields. Here GN = 6.67 × 10−39 GeV−2
is the Newton gravitational constant. A deeper understanding of the origin of
the Newton gravitational constant is at present lacking. In addition, there are
other invariant terms containing additional space-time derivatives as well as a
cosmological constant term. Using this action, amplitudes for processes with
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relevant energy scale Emediated by gravity can be expanded in a power series
with an effective coupling strength of order GNE2. Thus at all presently acces-
sible energies, the gravitational effects are very highly suppressed and can be
safely ignored. However, as the Planck mass scale MPl ∼ 1√

GN
∼ 1019 GeV

is approached, this effective description breaks down as an infinite number
of operators will all contribute nontrivially. To go beyond the classical back-
ground field approximation requires a quantum theory of gravity. The quest to
secure a consistent quantum theory of gravity has plagued physicists since the
advent of the quantum theory.
The quantization approach, which proved so successful in the development

of QED and later of the Standard Model, which for the case of gravity requires
adding fields with massless spin-2 graviton excitations coupled to the Standard
Model, leads to internal inconsistencies [205–208] in conventional perturbation
theory. Thus the current view is that general relativity and quantum mechanics
are incompatible and, as yet undiscovered, further modifications are required.
(An interesting effective field theory perspective is given in [209].) While there
have been numerous attempts to find such extensions, none has yet proven sat-
isfactory. For reviews of the theoretical landscape, see [210, 211]. On the other
hand, techniques developed in some of these extensions have proven extremely
useful in the allowing for the efficient computation of perturbative scattering
amplitudes in gauge theory, in particular tree and one-loop multileg amplitudes
in QCD. For reviews, see [212, 213].
• Outlook: At present, we are at a somewhat awkward time for theoreti-

cal particle physics. Encoded within the Standard Model, our current level of
understanding has reached an unprecedented level. Many of the model con-
sequences can be successfully extracted using perturbation theory. In some
cases, such as QCD at low energies, a nonperturbative analysis is required.
While lattice techniques have proven most useful for this vector gauge theory
where the left- and right-handed quarks couple the same way to the gauge vec-
tors, their utility is still somewhat limited when applied to chiral gauge theories
such as the electroweak model, which have different couplings for the left- and
right-handed fermions. As such, a nonperturbative definition of the SM is still
lacking. Moreover, a nonperturbative understanding of strongly coupled chiral
gauge theories could open potentially rich windows on possible extensions of
the SM.
While the LHC continues to function excellently, providing ever more strin-

gent tests of the Standard Model, nature has proven somewhat unkind in that
the LHC has not revealed any novel particle states nor significant deviations
from the SM. As such, much of the theoretical attention has shifted focus to
questions that are very often far removed from possible experimental scrutiny.
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These include structural issues regarding the nature of space-time, the origin of
the gauge interactions accounting for the fundamental dynamics and properties
in extreme environments inaccessible to experimental exploration as well as
inquiries into multiverse theories and environmental selection. Ideally, any new
physics resulting from such speculations should address the SM imperfections
by predicting non–Standard Model outcomes of new proposed experiments
while being consistent with existing data. Unfortunately, far too many of the
proposals fail to meet this benchmark. On the other hand, there remain a vari-
ety of phenomena unanswered within the SM discussed in this Element, which
(if nature allows) could be addressed using high-energy colliders, low-energy
precision tests, observational cosmology, cosmic rays, dark-matter searches,
gravitational waves, terrestrial and cosmic neutrinos and so on, which also
merit further theoretical attention. In such enterprises, many currently diverse
subfields of physics will need to share theoretical insights and experimental
techniques. I am confident that symmetry will continue to play an instrumental
role in any future advances.
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Appendix

A.1 Notations and Conventions
We work in a system of units in which ℏ = c = 1. Thus energy, mass, inverse
length and inverse time all carry the same dimension with conversion factors
1 GeV ' 2 × 10−14 cm−1 ' 6.57 × 10−25 sec−1 ' 1.45 × 1018 gram.
We will consistently employ a summation convention where repeated indices
are summed over.
A space-time point is denoted by

xµ = (t,®r) (A.1)

so that the space-time derivative is

∂µ ≡
∂

∂xµ
= ( ∂

∂t
,∇). (A.2)

Greek indices µ, ν, . . . = 0,1,2,3 label the space-time dimensions, while Latin
indices i, j, . . . = 1,2,3 label only the spatial dimensions.
The (covariant) contravariant metric tensors (ηµν) η µν are used to (lower) raise
vector indices and are given by

η µν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, (A.3)

with ηµν having the identical form.
The free Dirac equation and its conjugate are given by

(γ µ 1
i
∂µ + m)ψ(x) = 0,

ψ(x)(−γ µ 1
i
←
∂ µ +m) = 0, (A.4)

where

ψ(x) = ψ+(x)γ0. (A.5)

The four 4 × 4 γ µ matrices satisfy

{γ µ, γν} = −2η µν, (A.6)
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with

γ0† = γ0 , γ†i = −γi,
γ20 = 1 , γ21 = γ

2
2 = γ

2
3 = −1. (A.7)

It proves convenient to also define the matrix

γ5 = iγ0γ1γ2γ3 = − i
4!
ϵµνλργµγνγλγρ, (A.8)

which has the properties

{γ5, γ µ} = 0,
γ†5 = γ5,

γ25 = 1. (A.9)

Here ϵµνλρ is the Levi–Civita tensor density defined to be antisymmetric under
the interchange of any two indices with ϵ0123 = 1. Using the γ5, the left-handed
and right-handed projections of any Dirac field are

ψL(x) =
1
2
(1 − γ5)ψ(x),

ψR(x) =
1
2
(1 + γ5)ψ(x). (A.10)

Finally, we define the matrices

σµν =
i
2
[γµ, γν] = −σνµ . (A.11)

The 16 matrices

Γ = {1, γ5, γ µ, γ µγ5,σ µν} (A.12)

form a linearly independent set of 4 × 4 matrices.
The solution to the free Dirac equation has the spinor decomposition

ψ(x) =
∑
±s

∫
d3p

(2π)32p0
(
eipxb( p, s)U( p, s) + eipxd†( p, s)V( p, s)

)
, (A.13)

where px = −p0x0 + ®p · ®x with p0 =
√
®p 2 + m2.

The four-component spinors U( p, s) and V( p, s) obey

(γp + m)U( p, s) = 0 = U( p, s)(γp + m), U( p, s) = U†( p, s)γ0, (A.14)
(−γp + m)V( p, s) = 0 = V( p, s)(−γp + m), V( p, s) = V†( p, s)γ0, (A.15)

and

− γ5γsU( p, s) = U( p, s), (A.16)

− γ5γsV( p, s) = V( p, s). (A.17)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
23

84
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009238427


Appendix 55

It follows that the projectors

Σ(s) = 1 − γ5γs
2

(A.18)

satisfy the covariant spin eigenvalue equations

Σ(s)U( p, s) = U( p, s),
Σ(s)U( p,−s) = 0,
Σ(s)V( p, s) = V( p, s),
Σ(s)V( p,−s) = 0, (A.19)

and consequently projects out the single helicity component +s. The polariza-
tion vector sµ and the momentum vector pµ are obtained from their rest frame
values ŝµ = (0, ŝ) , p̂µ = (m,0) via the Lorentz transformation. The unit vector
ŝ points in the direction of the spin of the particle. It follows that, in any Lorentz
frame,

sµsµ = 1,

sµpµ = 0,

pµpµ = −m2. (A.20)

The spinors also satisfy the orthogonality relations

U( p, s)U( p, s′) = 2mδss′,
V( p, s)V( p, s′) = −2mδss′,
U( p, s)V( p, s′) = 0, (A.21)

and the completeness relations

1
2m

∑
±s

U( p, s)U( p, s) = −γp + m
2m

,

1
2m

∑
±s

V( p, s)V( p, s) = −γp − m
2m

. (A.22)

A.2 The SU(2)L × U(1) Electroweak Model
The specification of the SU(2)L × U(1) transformation properties completely
fixes the possible renormalizable interactions. These can be classified into five
categories:

a): Gauge Sector
b): Scalar Sector
c): Gauge-Scalar Sector
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d): Gauge-Fermion Sector
e): Fermion-Scalar Sector

We now consider each in turn.
a) Yang–Mills Lagrangian and Gauge Boson Self-Interactions
The SU(2)L×U(1)Yang–Mills theory with gauge couplings g2 and g1 respec-

tively is constructed using the SU(2)L gauge fields Wµ
a , a = 1,2,3, and the

U(1) gauge field Yµ. Under the local SU(2)L ×U(1) gauge group, these fields,
besides rotating appropriately, also have inhomogeneous pieces that allow
for the establishment of the local symmetries. Specifically, their infinitesimal
transformations take the form

Wµ
a → Wµ

a − g2ϵabcδωbWµ
c + ∂

µδωa,

Yµ → Yµ + ∂µδy. (A.1)

Here ϵabc is the Levi–Civita tensor, while δωa, a = 1,2,3 and δy are the infin-
itesimal parameters associated with the SU(2)L and U(1) groups. The locally
invariant SU(2)L×U(1) Yang–Mills Lagrangian is then constructed in terms of
the gauge covariant field strengths

Wµν
a = ∂

µWν
a − ∂νW

µ
a + g2ϵabcW

µ
b W

ν
c ,

Yµν = ∂µYν − ∂νYµ, (A.2)

as

LYM = −
1
4
Wµν

a Waµν −
1
4
YµνYµν . (A.3)

Note that to guarantee that Wµν
a transforms as an SU(2)L vector requires the

inclusion of terms quadratic inWµ
a . This in turn leads to self-interactions among

the gauge fields in LYM. This is a characteristic feature of non-Abelian gauge
theories.
b) Scalar Sector and Spontaneous Symmetry Breaking
In the StandardModel, the spontaneous SU(2)L×U(1) symmetry breakdown

is engendered by introducing a complex SU(2) doublet of scalar fields,

Φ =

[
ϕ0

ϕ−

]
. (A.4)

Here the subscripts denote the electric charges of the components of the
doublet. Through its self-interactions, Φ acquires a nonvanishing vacuum
expectation value for the neutral component so that

〈Φ〉 = v
√
2

[
1
0

]
, (A.5)

thus spontaneously breaking the symmetry.
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To achieve this vacuum structure, it suffices to choose an SU(2)L × U(1)
invariant potential, V(Φ), of the form

V(Φ) = λ
(
Φ
†
Φ − v2

2

)2
. (A.6)

Since Ta〈Φ〉 , 0 and Y〈Φ〉 , 0, the SU(2)L × U(1) symmetry is spontane-
ously broken. However, because only the neutral component ofΦ develops the
vacuum value, it follows that

QEM〈Φ〉 = (T3 + Y)〈Φ〉 =
[
0 0
0 −1

]
v
√
2

[
1
0

]
= 0 (A.7)

and electromagnetism remains unbroken.
c) Gauge-Scalar Sector and Vector Mass Generation
The electric charge generator (see Eq. (9.10))

QEM = T3 + Y (A.8)

dictates the infinitesimalU(1) transformation properties assignments of the sca-
lar fields so as to produce the electric charges of the various components as
indicated by the subscripts in Eq. (A.4) so that

Φ→
(
1 + ig2

σa
2
δwa − ig1

1
2
δy

)
Φ, (A.9)

where σa are the Pauli matrices. Defining the Φ covariant derivative as

DµΦ =
(
∂µ − ig2

σa
2
Waµ + ig1

1
2
Yµ

)
Φ, (A.10)

a locally SU(2)L × U(1) invariant Lagrangian is constructed as

LG−H = −(DµΦ)†(Dµ
Φ) − V(Φ), (A.11)

where V(Φ) is the scalar potential of Eq. (A.6).
The SU(2)L × U(1) → U(1)em spontaneous symmetry breakdown results

in three of the gauge fields acquiring mass via the Higgs mechanism. This is
readily established by replacingΦ by its vacuum value 〈Φ〉 in Eq. (A.11) giving

Lvector
mass
= −

(
Dµ 〈Φ〉

)† (Dµ 〈Φ〉)

= −〈Φ†〉
(
g2
σa
2
Wµ

a − g1
1
2
Yµ

) (
g2
σb
2
Wbµ − g1

1
2
Yµ

)
〈Φ〉. (A.12)

It proves convenient to define the complex fields

Wµ
± =

1
√
2
(Wµ

1 ± iW
µ
2 ) (A.13)
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and the real orthogonal combinations

Zµ = cos θWWµ
3 − sin θWY

µ,

Aµ = sin θWWµ
3 + cos θWY

µ, (A.14)

where the weak mixing angle θW, the Weinberg angle, satisfies

tan θW =
g1
g2
. (A.15)

These transformations diagonalize the vector mass term, giving

Lvector
mass
= −M2

WW
µ
+W−µ −

1
2
M2

ZZ
µZµ, (A.16)

with

MW =
g2v
2

; MZ =
g2v

2 cos θW
. (A.17)

Thus, theW± and Z fields describe massive vector modes. Note that the vector
masses satisfy the simple relation

MW = MZ cos θW, (A.18)

which is a consequence of implementing the symmetry breaking using a dou-
blet of scalar fields. Since the Aµ fields has nomass term, it is natural to identify
it with the photon field.
The gauge boson self-interactions arising in the Yang–Mills Lagrangian Eq.

(A.3) can be written in terms of the physical Wµ
± , Zµ and Aµ degrees of free-

dom. It is convenient to split these interactions into terms that are trilinear and
quadrilinear in the gauge fields. One finds

Ltrilinear = ie
{
ηµν

[
−∂λ(Aµ + cot θWZµ)(Wν

+Wλ
− −Wλ

+Wν
−)

+ (Aµ + cot θWZµ) (∂λWν
+Wλ
− −Wλ

+∂λWν
−)

]
+ ηνλ(Aµ + cot θWZµ)(Wν

+∂µWλ
− − ∂µWν

+Wλ
−)}, (A.19)

Lquadrilinear =
e2

4 sin2 θW

{
(2ηµληνρ − ηµρηνλ − ηµνηλρ)Wµ

+Wν
−Wλ
+W ρ
−

− 2 sin2 θW(2ηµνηλρ − ηµληνρ − ηµρηνλ)
× (Aµ + cot θWZµ)(Aν + cot θWZν)Wλ

+Wρ
−} . (A.20)

The complex doublet field Φ is composed of four real fields. Of these, three
are absorbed into the longitudinal components of the W± and Z fields. The
remaining real scalar field describes the physical Higgs boson H. To make the
physical content manifest, the Φ doublet can be parameterized in terms of the
real fields ®ξ and H as
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Φ = exp

(
i
®σ · ®ξ
v

)
1
√
2

[
v + H
0

]
. (A.21)

The ®ξ fields, however, are unphysical and can be completely eliminated by
making an appropriate gauge choice referred to as the unitary gauge. This fol-
lows since exp(i ®σ · ®ξ2 ) is an SU(2)L group element. Thus, after making the finite
SU(2)L gauge transformation

Φ→ e−i
®σ · ®ξ
v Φ =

1
√
2

[
v + H
0

]
, (A.22)

the ®ξ fields have completely disappeared. Substituting this unitary gauge rep-
resentation forΦ into Eq. (A.11) gives the Higgs scalar kinetic term, the vector
mass term and the Higgs-vector interaction term

LHV = −g2MWWµ
+W−µH −

g2MZ
2 cos θW

ZµZµH

−
g22
4
Wµ
+W−µH2 −

g22
8 cos2 θW

ZµZµH2. (A.23)

Note that there is no direct coupling of the Higgs scalar H to the photon field
Aµ. Finally, the scalar potential, Eq. (A.6), reduces to

V(H) = λv2H2 + λvH3 +
λ

4
H4. (A.24)

While the unitary gauge introduced here directly allows one to glean the
physical degrees of freedom, it is not very useful for performing higher radia-
tive (loop) corrections. For one thing, the massive vector propagator is of the
Proca form, which does not exhibit falloff at large momenta. However, since
we are dealing with a gauge theory, other gauge choices can be employed which
do have better falloff. A particularly useful class for performing higher-order
calculations and proving the renormalizability of the theory is the Rξ gauge.
Here one parametrizes the Higgs doublet as

Φ =
1
√
2

[
v + χ1 + iχ2

χ3 + iχ4

]
≡

[
1√
2
v + s0

s−

]
, (A.25)

with the χi Hermitian fields. One next adds the gauge-fixing Lagrangian

Lgauge fixing =
ξA
2

(
∂µAµ

)2
+
ξZ
2

(
∂µZµ +

MZ
ξZ

χ2

)2
+ ξW

(
∂µWµ

+ +
iMW
ξW

s+
) (
∂νWν

− −
iMW
ξW

s−
)
. (A.26)

When used in the path integral formulation of the QFT [5], the addition of
this gauge-fixing term also gives rise to a functional Jacobian, which must
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be correctly taken into account. This functional determinant can be cast into
a local Lagrangian contribution by introducing the fictitious anticommuting
scalar Faddeev–Popov ghost fields [214]. Thus the Rξ gauge fixed electro-
weak Lagrangian contains many unphysical degrees of freedom. One can show
that all these unphysical degrees of freedom cancel when calculating S-matrix
elements of the physical degrees of freedom. For any ξ , 0, all the field prop-
agators have a 1/k2 falloff for large k2. For example, the vector propagators in
Rξ take the form

∆
(W)
µν (k) =

1
k2 +M2

W − iϵ

(
ηµν +

kµkν(1 + ξW)
M2

W − k2ξW

)
,

∆
(Z)
µν (k) =

1
k2 +M2

Z − iϵ

(
ηµν +

kµkν(1 + ξZ)
M2

Z − k2ξZ

)
,

∆
(A)
µν (k) =

1
k2 − iϵ

(
ηµν −

kµkν(1 + ξA)
k2ξA

)
. (A.27)

Unitary gauge formally corresponds to the limit ξ → 0.
The Rξ gauge-fixing term and ghost Lagrangian clearly break the gauge

invariance of the underlying gauge-invariant action. However, they do so in
just such a way that the S-matrix elements of the physical degrees of freedom
are gauge invariant. In fact, while the gauge invariance is broken, there remains
an unbroken global symmetry of the effective action comprised of the original
gauge-invariant action, the Rξ gauge-fixing term and ghost Lagrangian. This
is the BRST symmetry [215, 216]. The BRST transformations of the gauge
fields, scalars and fermions take the same form as their gauge transformations,
except the gauge parameters are replaced by the product of the anticommuting
ghost fields and space-time–independent anticommuting (Grassmann) param-
eters of the BRST transformation. In addition, the gauge-invariant ghost fields
themselves have nontrivial BRST transformation properties so constructed as
to render the effective action BRST invariant. Since the Grassmann parameters
are space-time independent, the BRST transformation is global. But it is not a
conventional global symmetry, due to the Grassmann nature of the parameters.
This BRST global symmetry is the underlying symmetry of the action com-
prised of the sum of the orginal gauge-invariant action and the gauge-fixing
and ghost terms and can be used to show that all the unphysical degrees of
freedom cancel in the physical S-matrix elements.
d) Gauge-Fermion Sector and the Low-Energy Effective Lagrangian
The infinitesimal SU(2)L × U(1) transformations of the fermions follow

immediately from their quantum numbers, which are given in Tables 9.1
and 9.2:
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LiL =

[
νiL

eiL

]
→

(
1 + ig2

σa
2
δwa − ig1

1
2
δy

)
LiL

eiR → (1 − ig1δy) eiR

QiL =

[
uiL
diL

]
→

(
1 + ig2

σa
2
δwa − ig1

1
6
δy

)
QiL

uiR →
(
1 + ig1

2
3
δy

)
uiR

diR →
(
1 − ig1

1
3
δy

)
diR . (A.28)

Here the subscript i = 1,2,3 labels the generation. Defining the covariant
derivatives for the lepton and quark fields as

DµLiL =
(
∂µ − ig2

σa
2
Waµ + ig1

1
2
Yµ

)
LiL,

DµeiR =
(
∂µ + ig1Yµ

)
eiR,

DµQiL =

(
∂µ − ig2

σa
2
Waµ − ig1

1
6
Yµ

)
QiL,

DµuiR =
(
∂µ − ig1

2
3
Yµ

)
uiR,

DµdiR =
(
∂µ + ig1

1
3
Yµ

)
diR, (A.29)

a locally SU(2)L × U(1) invariant Lagrangian which generalizes the fermionic
kinetic terms is simply obtained as

LF−G =
∑
i

(
− LiLγ µ

1
i
DµLiL − eiRγ µ

1
i
DµeiR

− QiLγ
µ 1
i
DµQiL − uiRγ µ

1
i
DµuiR − diRγ µ

1
i
DµdiR

)
. (A.30)

The fermion coupling to the gauge fields is thus dictated by the local SU(2)L ×
U(1) invariance to be

Lint = g2Wµ
a Jaµ + g1YµJYµ , (A.31)

where the SU(2)L and U(1) fermionic currents are

Jµa =
∑
i

(
LiLγ

µ σa
2
LiL + QiLγ

µ σa
2
QiL

)
, (A.32)

JµY =
∑
i

(
−1
2
LiLγ

µLiL − eiRγ µeiR

+
1
6
QiLγ

µQiL +
2
3
uiRγ

µuiR −
1
3
diR γ

µdiR

)
. (A.33)
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Using Eqs. (A.13)–(A.15), Lint can be rewritten as

Lint = eJµEMAµ +
e

2
√
2 sin θW

(Wµ
+ J−µ +Wµ

− J+µ)

+
e

2 cos θW sin θW
ZµJµNC. (A.34)

Here we have identified the electric charge

e = g1 cos θW = g2 sin θW (A.35)

as the coupling of the photon to the electromagnetic current

JµEM = Jµ3 + J
µ
Y

=
∑
i

(
−eiγ µei +

2
3
uiγ µui −

1
3
diγ µdi

)
, (A.36)

whose form is consistent with the electric charge definition QEM = T3 +Y. The
weak charged currents are

Jµ± = 2(J
µ
1 ± iJ

µ
2 ) (A.37)

so that

Jµ+ =
∑
i

(
eiLγ µνiL + diLγ µuiL

)
,

Jµ− =
∑
i

(
νiLγ

µeiL + diLγ µuiL
)
, (A.38)

while the weak neutral currents

JµNC = 2(J
µ
3 − sin

2 θWJµem)

=
∑
i

(
νiLγ

µνiL − (1 − 2 sin2 θW)eiLγ µeiL + 2 sin2 θWeiRγ µeiR

+ (1 − 4
3
sin2 θW)uiLγ µuiL −

4
3
sin2 θWuiRγ µuiR

− (1 − 2
3
sin2 θW)diLγ µdiL +

2
3
sin2 θWdiRγ µdiR

)
(A.39)

have also been identified through their couplings to the vector bosons W∓ and
Z respectively.
For weak interaction processes whose relevant momentum transfer qµ is

such that q2 � M2
W,M

2
Z, the effects of Lint can be well approximated

using second-order perturbation theory, leading to the current-current effective
Lagrangian

Lweak
eff =

(
e

2
√
2 sin θW

)2 1
M2

W
Jµ+ J−µ
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+
1
2

(
e

2 cos θW sin θW

)2 1
M2

Z
JµNCJ

NC
µ . (A.40)

Thus in this limit, the Glashow–Salam–Weinberg model reduces to the Fermi
theory plus an additional neutral current contribution. This allows the identifi-
cation of the Fermi constant GF as

GF√
2
=

e2

8 sin2 θWM2
W
. (A.41)

Thus Eq. (A.34) takes the form

Lweak
eff =

GF√
2

(
Jµ+ J−µ + J

µ
NCJ

NC
µ

)
. (A.42)

e) Fermion-Scalar Sector, Fermion Mass Generation, and Quark Flavor
Mixing
Besides giving mass to theW± and Z vector bosons, the same scalar doublet

can also provide mass terms for the fermions. To appreciate this point, note that
the (Dirac) fermion mass term connects right and left fields. Since the quark
and lepton fields of opposite chirality transform differently under SU(2)L ×
U(1), no such mass terms are permitted before the symmetry is spontaneously
broken. However, since Φ is an SU(2)L doublet, it can have SU(2)L × U(1)
invariant couplings with the right- and left-handed fermion fields via Yukawa
interactions.
It proves convenient to introduce the charge conjugate fields

Φ̃ = iσ2Φ∗ =

[
ϕ+

−ϕ∗0

]
. (A.43)

It is easy to check that Φ̃ transforms under an infinitesimal SU(2)L × U(1)
transformation as

Φ̃→
(
1 + iδωa

σa
2
+ iδy

1
2

)
Φ̃. (A.44)

That is, it is also an SU(2)L doublet, but it has weak hypercharge equal to
+ 12 . The most general SU(2)L × U(1) invariant Yukawa interaction is then
constructed as

LYukawa =
∑
i,j

(
Γ
e
ijLiLΦ̃ejR + Γ

e∗
ij ejRΦ̃

†LiL

− ΓuijQiLΦujR − Γu
∗

ij ujRΦ
†QiL

+ ΓdijQiLΦ̃djR + Γd
∗

ij djRΦ̃†QiL

)
, (A.45)
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where the Γ fij are generalized Yukawa couplings. (Here i, j= 1,2,3 are genera-
tion labels.) Using the unitary gauge representations

Φ =
1
√
2

[
v + H
0

]
; Φ̃ = − 1

√
2

[
0

v + H

]
, (A.46)

this yields mass terms for the fermions of the same charge, as well as couplings
of the Higgs boson H with the fermions. The fermion mass term reads

Lfermion
mass
=

∑
i,j

(
−eiLM e

ijejR − uiLM u
ijujR − diLM d

ijdjR
)
+ h.c., (A.47)

with

M f
ij =

1
√
2
Γ
f
ijv , ( f = e,u,d). (A.48)

Since there is no right-handed neutrino included in the model, no neutrino mass
term ensues. Note that since the Yukawa couplings Γ fij are arbitrary parameters,
so are the entries in the mass matricesM f

ij. Because these mass matrices are not
in general diagonal, it is necessary to perform a basis change in order to obtain
the physical, mass diagonal, fermion fields. This basis change leads to a mixing
of states between different families, which is probed by the weak interactions.
This is the origin of the Cabbibo–Kobayashi–Maskawa (CKM) weak mixing
angles [93, 96] in the Standard Model.
The matrices M f can be diagonalized by the bi-unitary transformation

((U f
L)†U

f
L = I; (U f

R)†U
f
R = I) as

(U f
L)
†M fU f

R = (M
f)diag, ( f = e,u,d), (A.49)

which corresponds to the fermion field change of basis

ψ
f
L,R → U f

L,Rψ
f
L,R , ( f = e,u,d). (A.50)

(The transformation is unitary ifM f is a Hermitian matrix.)
In addition to diagonalizing the fermion mass matrix, these replacements leave
the neutral and electromagnetic currents unaltered, but introduce a mixing
matrix for the charged currents. This is readily established. Focusing on the
three-generation case, the charged current Jµ− before the basis change is

Jµ− = 2[νe, νµ, ντ]Lγ µ1

e
µ

τ

L + 2[u,c, t]Lγ
µ1


d
s
b

L . (A.51)
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After the basis change of Eq. (A.50), this current becomes

Jµ− = 2[νe, νµ, ντ]Lγ µU e
L


e
µ

τ

L + 2(u,c, t)Lγ
µ(U u

L )†(U d
L )


d
s
b

L . (A.52)

Because the neutrinos are massless, the matrix U e
L can be eliminated by a

redefinition of the neutrino fields. On the other hand, the unitary matrix

VCKM =
(
U u
L
)† U d

L (A.53)

appearing in the quark sector remains. It is the 3 × 3 unitary, V†CKMVCKM = I,
mixing matrix of the charged weak current: the Cabbibo–Kobayashi–Maskawa
mixing matrix. It is also clear that the basis change, Eq. (A.50), does not alter
the form of the neutral or electromagnetic currents since they always connect
fermions of the same charge and

(Uf
L)
†Uf

L = (U
f
R)
†U f

R = 1. (A.54)

Since diagonalizing the mass matricesM f is equivalent to diagonalizing the
Yukawa couplings Γ f, it follows that after the basis change to the physical
fermion fields, the coupling of the Higgs boson H to the fermions is purely
diagonal and the Higgs-fermion Lagrangian is simply given by

LHF = −
∑
i
(meieiei + muiuiui + mdididi)

(
1 +

H
v

)
). (A.55)

Note that the Higgs-fermion couplings are proportional to the mass of the fer-
mionwithwhich it interacts. Thus the only remnant of any nondiagonal Yukawa
interaction appearing in Eq. (A.45) is through the unitary mixing matrix V
entering in the charged weak current

Jµ− = 2
[
νe, νµ, ντ

]
γ µ


e
µ

τ

L + 2
[
u,c, t

]
L γ

µVCKM


d
s
b

L . (A.56)

The combination of a diagonal neutral current and charged weak current
with unitary mixing automatically guarantees the GIM [91] mechanism. It is
extremely pleasing to see that this mechanism, which was invented to enforce
the experimentally mandated suppression of flavor-changing neutral current
processes, emerges in so natural a fashion in the standard electroweak theory.
It is straightforward to count the number of independent parameters charac-

terizing the Cabbibo–Kobayashi–Maskawa mixing matrix. In general, an n× n
unitary matrix is specified by n2 parameters. Of these, 12n(n−1) are real angles
and 1

2n(n + 1) are phases. For the n family case, 2n − 1 of these phases can be
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removed by diagonal phase redefinitions of the 2n quark fields. (Only 2n−1 and
not 2n phases can be eliminated, since an overall phase has no physical con-
tent.) Thus for n families, the Cabbibo–Kobayashi–Maskawa mixing matrix
V is parameterized by 1

2n(n − 1) real angles and
1
2 (n − 1)(n − 2) phases. For

two generations, there is only one angle involved, which is the Cabibbo angle.
For the three-generation case, which describes the world as we now know it,
this counting gives three real angles and a single phase. This phase allows for
CP-symmetry-violating processes.
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