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ULTIMATE BOUNDEDNESS OF THE SYSTEMS GOVERNED BY

STOCHASTIC DIFFERENTIAL EQUATIONS

YOSHIO MIYAHARA

§ 1. Introduction.

The stability of the systems given by ordinary differential equations
or functional-differential equations has been studied by many mathemati-
cians. The most powerful tool in this field seems to be the Liapunov's
second method (see, for example [6]).

In this paper we study the stability of a system governed by a
stochastic differential equation such that

dX(t) = f(t, X(t))dt + G(t, X(t))dW(t) , (1)

where W(t) is a Wiener process. The system governed by such an
equation arises in such a way that the stochastic noise perturbs a deter-
ministic system. In order to investigate the equation (1), it is natural
to generalize the method for deterministic cases, where the investigation
heavily depends on the use of a Liapunov function.

W. M. Wonham called a system given by a temporary homogeneous
stochastic differential equation to be weakly stable if the equation is
non-degenerate and if the corresponding process is positive recurrent
(cf. [5]). R. Z. Khas'minskii studied the stability at origin of the system
which is given by (1) and which has a solution X(t) = 0 with probability
one. Being inspired by those results, we wish to treat more general
cases. For this purpose we take the concept of ultimate boundedness
of the moment of order p > 0 to describe stability of the system (Defini-
tion 2.1, 2.2). This concept was first introduced by Zakai in [4]: We
mention that this concept has come from that of ultimate boundedness
in the theory of ordinary differential equation where the global stability
is discussed. Many of our results develop the R. Z. Khas'minskii's
results ([2], [3]) for the ultimate boundedness problem.
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In § 2 we give definitions of the stability and we prove lemmas which

play the basic role in the proofs of the theorems in § 3 and § 4. Lemma

2.1 is an improvement of Zakai's result [4, Theorem 1], however the

proof requires a method used in [3],

In § 3 we prove criterion theorems for the ultimate boundedness in

terms of the Liapunov functions. Theorem 3.1 is our main theorem,

which asserts that if a Liapunov function V(t, x) of the system governed

by (1) exists, then the system is p-th ultimately bounded. More precisely,

if there exists a smooth function V(t, x) which satisfies

) ^ cάxΫ-a, Ci,P,a>0, (2)

) ^ -c2V(t,x) + β , c 2,/3>0, (3)

where Jδf is the generator of the Markov process corresponding to (1),

then the system is p-th ultimately bounded. If V(t,x) is of order \x\p

for large \x\, then the system is exponentially p-th ultimately bounded.

Theorem 3.3 gives a criterion for the system to be p-th ultimately bound-

ed for all p > 0.

Three examples illustrate how these theorems are used in order to

check the ultimate boundedness of systems. In particular example 3.3

shows an interesting property that a system with a certain stable drift

and a small diffusion is stable.

In § 4 we treat converse theorems to the theorems in § 3. We have

not succeeded to establish complete converse theorems, but we have gotten

many interesting results in this direction. For example, Corollary 4.1

shows that a temporary homogeneous system must have coefficients of

order 1 for large \x\ in order that the system be exponentially p-th

ultimately bounded.

In § 5 we prove that the ultimate bounded process has a certain

kind of recurrence property. This fact suggests us that the ultimate

boundedness is a suitable concept to illustrate stability.

The author wishes to thank Professor H. Kunita for his advice in

preparing the manuscript.

§2. Definitions and lemmas.

We consider a system governed by the stochastic differential equation

dX(f) = fit, X(t))dt + Git, X(t))dW(t) , t ^ 0 , (2.1)
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where X(t) and f(t,X(t)) are n-vectors, G(t,X(t)) is an n x n-matrix, and

W(t) is the m-dimensional standard Wiener process. The coefficients

f(t,x) and G(t,x) are always assumed to satisfy

)\ + \G(t,x)\<c(l + \x\) (A,)

\f(t,x) - f(t,y)\ + \G(t,x) - G(t,y)\ ^ c\x - y\ , (A2)

where \x\ is the vector norm of x, and

I Git, x) I - ( Σ I ft.; I2)172 with G(ί, x) = (gitj(t, x)) .

Under the assumptions (Ax) and (A2), we are given the Markov process

X(t) which is the unique solution of (2.1) (see, [1, Chapter 8]).

DEFINITION 2.1. Let p be a positive number. The process X{t)

which is given by (2.1) is said to be p-th ultimately bounded if there

exists a constant K such that for any (£, x) e [0, oo) x Rπ the following

inequality holds:

where Mt>x stands for the conditional expectation under the initial con-

dition X(t) — x.

DEFINITION 2.2. The process Xit) is said to be exponentially p-th

ultimately bounded if there exist positive constants K, c and a such that

for any (£, x) e [0, oo) x Rn, s^t, the following inequality holds:

Mt,x\X(s)\p ^ K + clαpe-*'-" .

Remark 1. If X(t) is exponentially p-th ultimately bounded, then

X(t) is p-th ultimately bounded.

Remark 2. If X(t) is (exponentially) p-th ultimately bounded for

some p, then X(t) is (exponentially) q-th ultimately bounded for q ^ p.

DEFINITION 2.3. The process X(t) is said to be q-th ultimately un-

bounded if there exists a constant K such that

lim MttX \X{s)\q = oo for each (£, x) , |α| ̂  X .
S->°o

DEFINITION 2.4. The process X(0 is said to be exponentially q-th
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ultimately unbounded if there exist positive constants c, a, K and Kr

such that the following inequality holds:

Mt>x\X(s)\« ^ c|a?|«ββC -" - Kr , for μ | ^ Z , 0 ^ t .

Let J£? be the infinitesimal generator of the Markov process X(t).

Since X(t) is the diffusion process which is the solution of (2.1), «£?V(£, x),

V being assumed to be smooth, is expressed in the form

) (^^)

where (σ,/ί,α)) = G(ί, a) G*(ί,a).

We now prove lemmas which will be used to prove the theorems in

§3 and §4. The first one is a generalization of Theorem 4.1 in

Khas'minskii [3] p. 113.

LEMMA 2.1. Let X(t) be the process which is given by (2.1). As-

sume that there is a function V(t, x) on [0, oo) x Rn which satisfies the

following conditions:

i) V(t, x) is bounded from below, of C2-class with respect to x and

of Cι-class with respect to t.

ii)

where kλ and k2 are some constants.

Then

iii) Mt XV(89 x(s)) ^ 7(ί, x)eM~t) + JM.( β * < -« _ 1), if k2 Φ 0 ,
k2

^ V(t, x) + (fcjίβ - ί ) , if k2 = 0 ,

for any s > t.

Proof. First we discuss the case where k2 is not equal to zero.

Set

8f x) Ξ Y(s, x)e~M-ι) . (2.2)

Let τn be the first exit time of X(t) from {x e Rn \x\ ̂  n}9 n>ly and

put τn(t) ΞΞ min {ί, τn}. Then τn(t) is a Markov time. Using the Dynkin-

Ito formula, we obtain

MtiXW(τn(s), X(τn(s))) - W(t, x) = Mt>x ^W(u, X(u))du , (2.3)
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which is expressed, by (2.2), in the form

115

By the use of (ii), this is bounded above by

he-w-vdu ̂  [Ίk^e-^-ndu
it

du (i e ) .
k2

Since W(u9 x) is bounded from below on [t, s] x Rn, we can apply the

Fatou lemma to the left side of (2.3) to get

Mt xW(s,X(s)) ^ W(t,x)
K

(2.4)

The inequality (iii) is derived immediately just by recalling that W(s,x)

In case k2 = 0, we can easily prove

Mt>xW(τn(s),X(τn(s))) ^ W(t,x)

from which (iii) follows.

- ί) ,

(Q.E.D.)

LEMMA 2.2. Let X(t) be as in Lemma 2.1. Let p be any positive

number, and let h{x) be a function of C2-class on Rn such that

h(x) = \X\P for \x\^ 1 .

Then

\SPh(x)\ ^ fc3 + kjiix) ,

where kz and &4 are constants depending only on h(x).

Proof. By the definition of the operator J*f,

(2.5)

(2.6)

9χ)^(χ) + ~ Σ
dXi 2 i,j

Using (At) and (2.5), we have

I/<(«,») I ̂  c(l + I a? I) , \x\

3a:,
-(aθ ^ c'd + i^r1), d2h

dxίdxύ

(X) ^ c'(l + |*Γ 2 ) .

Conseqently \J?h(x)\ ^ c/7(l + |«|p). By the assumption (2.5), we get
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\x\p ^ c" + h(x). These two inequalities imply (2.6). (Q.E.D.)

COROLLARY 2.1.

MtJX(s)\p ^ c(l + lαpOe*"-" , P ̂  0 . (2.7)

Proof. We choose such /&(#) that

\x\* - 2 ^ fe(ίc) ̂  |ίcp + 1 .

Applying Lemma 2.1 to ft(cc), it holds that

Mt xh(X(s)) ^ fei»)e**(i-i} + A(e**< -« - 1) (2.8)

Therefore, we have

^ ilίί#J.Λ(X(s)) + 2 ^ Λί^e*^'-" + 2 + Ae**"" "

(2.9)

+ 2 + Ae**(*-» .
K

The inequality (2.9) is nothing but the rephase of (2.7). (Q.E.D.)

LEMMA 2.3. Let V(t,x) be a function on [0, oo) x Rn which satisfies

the condition (i) in Lemma 2.1 and the following conditions:

\ί V ) <=>£/ V \0 f ιΛ// — Λ/J ~\ IV ̂  V \l/ y iλ/J

where k3 and kt are constants.

dV

dt

Mt,a

(v) Mt,x\V(8,X(8))\,Mt.x ΞL.(β,X(β)) ,Mt,a M8,X(.8ygU.8,X(8)) and

d2V
σij(s,X(s)) (β,X(s)) are bounded on any s-compact-subset of

[0, oo) for any fixed (t9 x).

Then

MttXV(s9X(s)) ^ V(t,x)e*«'-» + A ( l - e**( -») if fc4 ψ 0 (2.10)

K

MttXV(s, X(s)) ^ V(t, x) + kz(s -t) if K = 0 . (2.11)

Proof. First we discuss the case where fc4 is not equal to zero. Set

W(s, x) =
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By the assumption (v) of Lemma 2.3, we can apply the Dynkin-Ito

formula to W(s, x), and we have

Mt>xW(s,X(s)) - W(t,X) = M

Using the assumption (iv), we get

We therefore have an inequality

MttXW(s,X(s)) - W(t,x) ^ - ( e 1) ,

K
which is equivalent to (2.10).

In case k4 — 0, the proof is easy and is omitted. (Q.E.D.)

COROLLARY 2.2. Let h(x) be the function defined in Lemma 2.2.

Then we have

MttXh(X(s)) ^ h(x)e-k(s~t) - C (2.12)

Proof. We can apply Lemma 2.3 to h(x), since Corollary 2.1 and

Lemma 2.2 assure the conditions (v) and (iv), respectively. The inequality

(2.12) follows directly from (2.10). (Q.E.D.)

§ 3 . Criterions for ultimate boundedness or uiibowidedness.

First we establish a theorem which gives a sufficient condition for

a process X(t) determined by (2.1) in §2 to be p-th ultimately bounded.

THEOREM 3.1. Let X(t) be the process which is given as the unique

solution of (2.1) in §2, and let p be a given positive number.

(A) If there exists a function V(t, x) defined on [0, co) x Rn which

satisfies the following conditions:

( i ) V(t,x) is of Cι-class w.r.t. t9 and of C2-class w.r.t. x.

( i i ) - α i + cx\x\*^ 7(ί,a?),

where cxθ>ϋ) and ax are constants.

(iii) &V(fi, x) ^ -c2V(t, x) + βlf

where 3? is the same as defined in Lemma 2.1, c2(>0) and βx are con-

stants.
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then the process X(t) is p-th ultimately bounded.

(B) // V(t9 x) satisfies the conditions (i), (ii), (iii) in (A) and

(ii)' V(t,x)^c3\x\v + a2,

where c3(>0) and a2 are constants,

then the process X(t) is exponentially p-th ultimately bounded.

(C) // V(t,x) satisfies (i), (ii), (iii) in (A) and in addition

(ii)" V(t, x) ^ Wix) for any (ί, x) e [0, oo) x Rn ,

then for the function T(t, x) given by

T(fi,x) = inf {τ; Mt>x\X(t + τ + u)\* ̂  Kλ - K + 1 , ^ 0 } ,

it holds that

Tit, x) ^ c4 log TF(a ) + c5 /or αni/ (ί, x) ,

where K is the constant which appeared in the definition of p-th ulti-

mately boundedness, and c4 and c5 are some constants.

Proof. (A) By (i) and (iii), we can apply Lemma 2.1 to V(t,x) by

putting fcj = βl9 k2 = — c2, so that we have

Mt xV(s,X(s)) < ( , ) + H )
c2 c2 (3.1)

(as s -> oo) .

Using (ii) and (3.1), it is proved that

MttX\X(8)\* ^ - Mt,xV(s, X(s)) + ^1 -> -A- + ^ (as s - oo) . (3.2)
Cχ Cγ CγC z Cγ

With the choice of K = -A_ + ^i, (3.2) shows that Z(t) satisfies the
^ 1 ^ 2 1

condition of Definition 2.1.

(B) Using (3.2), (3.1) and (ii)', we have

Mt ,|X(s)|* ^ ^ l a IPe-^-" + lκ + *) .
Cγ \ C1 I

This inequality shows that X{t) is of exponential type.

(C) Using (3.1), (3.2) and (ii)", we have
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Mt x\X(s)\p ^ — K .

If we. define τ0 by

τQ = _ log W(x) — — log cγ ,
c2 c2

then T(tf x) <Ξ τ0, which implies

T(t, a?) ^ c4 log TF(a?) + c5 .

(Q.E.D.)

A function V(t, x) which appears in Theorem 3.1 is called a Liapunov

function of the process X(t).

Remark 3.1. The assertion (A) in Theorem 3.1 tells that we do not

need to pay any attention about the integrability of V(t, x). (cf. Zakai

[4])

Remark 3.2. If the process X(t) satisfies the conditions in (B), then

T(t,x) is estimated in the form

T(t,x) ^ ^ I a? |) + d29

where dλ and d2 are constants. While, if ek{x{q + az can be taken as

W(x) in (C), then

We then see a sufficient condition for the process X(t) to be ultimately

unbounded by means of Liapunov function.

THEOREM 3.2. Let X(t) he the process which is given by (2.1) in

§ 2, and let q be a positive number.

(A) // there exists a function V(t, x) defined on [0, oo) x Rn which

satisfies the following conditions:

( i ) V(t, x) is of Cι-class with respect to t and of C2-class with

respect to x. Further \V(t,x)\, dV
dt

dV and are dominated

by a certain polinomial of x.
(ii) lim V(t,x) = oo, and V(t,x) <; cQ\x\q + a3, where c6 and a3 are

|J?|-OO

positive constants.
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(iii) &V(t,x)^ c7V(t,x)-β2,

where c7 and β2 are positive constants,

then X(t) is q-th ultimately unbounded.

(B) // V(t, x) satisfies all conditions in (A) and further the following

condition:

(ii)' -aA + c8|af ^ V(t,x) ,

where #4 and c8 are positive constants,

then X(t) is exponentially q-th ultimately unbounded.

Proof. The proof is nearly the same as that of Theorem 3.1, how-

ever in this case we need Lemma 2.3 in place of Lemma 2.1.

(A) By (i) and (iii), we can apply Lemma 2.3 to V(ί, x) by putting

h = -β2, K = c7:

) A . (3.3)

Using the condition (ii) and (3.3), we have

Mt§x\X(s)\* ^ (—V(ί,aO - A]eβτ(.-» + _h_ _ «s β (3#4)
\ CQ C 7 l CQC7 CQ

In view of lim V(t,x) — oo, we see that (3.4) shows g-th ultimate un-
|a?|-*oo

boundedness of the process X(t).

(B) Using (3.4) and condition (ii)', we have

MttXV(s,X(s)) ^ (V(t,x) - A)ecT(.- +

\ c7l c7

MttX\X(8)\* ^ -L\x\^ -aA- ^)e^-ί> + ^ ^ _ ^i . (3.5)
CQ \ Cγl CQC7 CQ

With the choice of K such that c8K
q — a4 — ^ = — c8Z^ we know that

c7 2

(3.5) shows the exponentially p-th ultimate unboundedness of the process

X(t). (Q.E.D.)

We now introduce a new concept which implies the p-th ultimate

boundedness for all p > 0.

DEFINITION 3.1. We call X{t) ω-th ultimately bounded if there exists

a function φ(x) = eα U | δ such that

lim Mt>xφ(X(s)) ^ K for any (ί, a?) ,
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where a, b and K are positive constants.

DEFINITION 3.2. We call X(t) exponentially ω-th ultimately bounded
if there exists a functions φ{%) = ealx]b such that

Mt>xφ(X(s)) £ cφtxYe-*8-" + Kf for any (t, a) ,

where α, &, c, r, a and 2J7 are positive constants. If, in particular, we
can take r = 1, then we call X(£) strongly exponentially ω-th ultimately
bounded.

Remark 3.3. Evidently the following relations can be verified:
strongly exponentially ω-th ultimately bounded

==> exponentially ω-th ultimately bounded
=> ω-th ultimately bounded
=> oo-th ultimately bounded (i.e. p-th ultimately bounded for any

p>0).

Later we will see that if the process X(t) is exponentially p-th ultimately
bounded for some p > 0 and if it satisfies some additional assumptions,
then X(t) is strongly exponentially ω-th ultimately bounded (cf. Corollary
4.2 in §4). But Example 3.2, as will be illustrated later, shows that
the process X(t) which is exponentially p-th ultimately bounded for some
p > 0 is not necessarily ω-th ultimately bounded.

THEOREM 3.3. Let Xit) be as in Theorem 3.1.

(A) Assume that there exists a Liapunov function V(t, x) of X(t)
which satisfies the condition (i) and (iii) in Theorem 3.1 and the follow-
ing condition:

(iv) c9e
α l* | δ - a5 ^ V(t,x),

where c9 > 0, a > 0, b > 0 and a5 are constants.

Then X(t) is ω-th ultimately bounded.

(B) // V(t,x) satisfies the conditions (i), (iii) and (iv) in (A) and
the following condition:

(ivy
where cίQ > 0, ar > 0 and a6 are constants,

then X(t) is exponentially ω-th ultimately bounded.
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(By // V(t, x) satisfies the conditions (i), (iii), (iv) and (iv)', and if
we can choose af in (iv)' to be equal to a in (iv), then X(t) is strongly
exponentially ω-th ultimately bounded.

Proof. (A) Using (iv) and (3.1) in the proof of Theorem 3.1, we
have

c9Mt xe
a]Xω{b ^ V(t9x)e-c^s-t) + a5 + £ ( 1 - e-<*<*-ί>) .

Hence we prove

Mt xe^X{^b ^ iy(ί,a?)e-e ( -4) + ^ + -& > ̂  + -A. . (3.6)
Cg Cg CQC2 (S->Oθ) Cg CgC2

The last inequality shows that X{t) is ω-th ultimately bounded.

(B) Using (3.6) and condition (iv)' we have

MttXe
a^s){b ^ ^ e α ' i a i V«,<*-ί> + a* + a« + -&- . (3.7)

The inequality (3.7) shows that X(t) is exponentially ω-th ultimately
bounded.

(B)' With a particular choice of constants af — a we obtain the
result immediately. (Q.E.D.)

The following examples serve to illustrate the role of Theorem 3.1,
3.2 and 3.3 in observing the stability of the system.

EXAMPLE 3.1. We consider an ^-dimensional system

dX(t) = A(t)X(t)dt + /(«, X(t))dt + G(ί, X(t))dW(t) , t ^ 0 , (3.8)

where A(t) is an ^ x n matrix, and f(t, x) and G(t, x) satisfy the con-
ditions (Ax) and (A2) in §2.
If the solution x(t) Ξ O of the corresponding deterministic system

= A(t)x(t) (3.8)'

is uniformly asymptotically stable, and if f(t,x) and G(t,x) satisfy

B E L 2 * ^ = I Ϊ E I ^ 8 > I = o , (3.9)
1*1-00 | α ; | u i - o o \χ\
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then X(t) is exponentially p-th ultimately bounded for any positive
number p.

Proof. It is known that there is a Liapunov function V(t, x) of the
system (3.8)' which has the following properties:

a)
where V(t) is an n x n-matrix,

b) μ\x\2 < V(t, x) < M\xfy where μ and M are positive constants,

c) there exists an n x n-matrix-valued function W(t) = (W^ (ί)) such
that

dV{t>χϊ = -(W(t)x, x) , and
dt
λ\xf <(W(t)x,x) < Λ\x\2 ,

where (t,x) is the derivative along the trajectory of (3.8)' and λ and
dt

A are positive constants.
We now prove that this function V(t, x) satisfies the assumptions of
Theorem 3.1 (B).

First we consider a particular case p = 2. Then the conditions (i),
(ii) and (ii)7 are clearly satisfied. Let us examine the condition (iii).

&V(t,x) = -(W(t)x,x) + Σ dV(t'x) ft(t,x) + ^Σ*ij(t,x)Wu(t), (3.10)
i dXi 2 i,j

where aia{t9 x) = G(t, x) G(t, »)*.

Since we have assumed (3.9), the second and the third terms of (3.10)
are at most of order two for large \x\. Together with the property c)
we have

&V(t9x) < - — λ\xf , \x\ large enough,

which implies the condition (iii).

We then consider the case p = 2m. It can easily be seen, by the
same way as the case p = 2, that Vm(t, x) satisfies the conditions in
Theorem 3.1 (B). Thus, as we mentioned in Remark 2.2, X(t) becomes
exponentially p-th ultimately bounded for any p ^ 2m. Since m can be
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taken as large as we wish, X(t) is exponentially p-th ultimately bounded

for any p > 0. (Q.E.D.)

EXAMPLE 3.2. We give an example which is exponentially p-th

ultimately bounded for any 0 < p < p0 and is exponentially g-th ultimately

unbounded for any q > p0 (it is, therefore, not q-th ultimately bounded).

For simplicity, we discuss the case n = 1. Consider a linear system

dXif) = aX(t)dt + bX(t)dW(t) (3.11)

where α(<0) and b are constants. We take V(t, x) = h(x) as a Liapunov

function of (3.11), where h{x) is the function introduced in Lemma 2.2.

Then we have

= axp\x\v~2x + —b2x2(p(p — 2)\x\p~Ax2 + p\x\p~2)

(3.12)

= \a + ^(p - l ) | p . | « l p for \x\ > 1 .

b2

If a + —(p — 1) < 0, then all the conditions in Theorem 3.1 (B) are

b2

satisfied. While if a + — (p — 1) > 0, then all the conditions in Theorem
Lt

3.2 (B) are satisfied. Thus we are led to the required conclusion by

taking p0 = —-^- + 1. Since we may choose a and b arbitrarily, we

can give a suitable example for any given 0 < p0 < oo.

In the same manner, we can construct ^-dimensional examples, as

well.

EXAMPLE 3.3. We consider the process X(t) given by

dXit) = f(t,X(t))dt + G(t,X(t))dW(t) , (3.13)

where f(t, x) and G(t, x) satisfy the conditions (A^ and (A2) in § 2. Let

us take a function V(t, x) which is of C2-class on Rn and is equal to elx[a

for \x\ ̂  1, a > 0, as a Liapunov function of the process X(t). Then

we have

= [Σfi(tfX)ctXi\xr2

+ ~2

i)eXxχa for
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Therefore, if there exist positive constants 8χ and δ2 such that

F(t,x) ^ -δ1 for I a; I > δ2 , (3.14)

then the condition (iii) in Theorem 3.1 (A) is fulfilled. Since the other

conditions in Theorem 3.3 (B)' are satisfied by V(t, x), it is sufficient to

find the conditions assuring (3.14) in order to apply Theorem 3.3 (B)'

to the process X(t).

Let us assume that there exist positive constants β1 and β2 such that

\G(t,x)\ < o Q >

The condition to be assumed next is the following:

(f(t,x),x) ^ -δ3\x\^+1 for \x\ ^ δ4 , (3.16)

where δz and δA are positive constants. (This condition indicates the

stability property of the corresponding deterministic system). The func-

tion F(t, x) defined above is expressed in the form

F(t, x) = Ftf, x) + F2(t, x)

with Fxit,x) = a(f(t,x),x)\x\a-2.

Using the assumptions (3.15) and (3.16), we have

Fx(t,x) ^ -δza\x\^+a-1 for \x\ ̂  ^4 (3.17)

\F2(t,x)\ ^ δ5(a)\x\2^+2a-2 f o r \x\ ̂  S4 . (3.18)

Thus we have two sufficient conditions which assure the inequality (3.14)

( I ) Existence of a positive constant a such that β1 + a — 1 ^ 0,

β1 + a - 1 > 2β2 + 2a - 2.

(II) Existence of a positive constant a such that βλ + a — 1 ^ 0,

βx + a — 1 ;> 2β2 + 2a — 2, and validity of the inequality δz-a > 35(α).

We may choose a function δ(a) — n2c{a2 + a(a — 2) + 1} as δb(a) in

(3.18), where c is the constant in Assumption (Ax). If we put δ5(a) = δ(a)

and a = 1 — βu then the inequality δ3-a > δ5(a) changes into the follow-

ing form:

(1 - βjδz > n2c(l - ft + βl) . (3.19)

We can now state the conditions (I) and (II) in terms of ft, i = 1,2,

and have
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PROPOSITION 3.1. Let the process X(t) be given by (3.13) and assume

that there exist positive constants βι,β29δz and δ4 which satisfy (3.15) and

(3.16).

(i) If 1 ^ βλ > β2, then the process X(t) is strongly exponentially

ω-th ultimately bounded (therefore it is p-th ultimately bounded).

(ii) // 1 > βι = β2 and the inequality (3.19) is satisfied, then the

process X(t) is strongly exponentially ω-th ultimately bounded.

EXAMPLE 3.3'. Let X(t) be the process given by (3.13) in Example

3.3, and take log(l + \x\2) as a Liapunov function of the process X(t).

In this case we can discuss the ultimate unboundedness in the same

manner as Example 3.3, by applying Theorem 3.2, and we can get

the alternative proposition to Proposition 3.1. The details are omitted,

because our interest is not in the ultimate unboundedness.

§4. Converse theory

Generally speaking, the main problem of the stability theory is to

find a method how to construct Liapunov functions. In approaching this

problem, it is most desirable to establish the converse theorems to

Theorem 3.1 and Theorem 3.3. We have not succeeded completely, but

we can give a partial answer to this problem.

THEOREM 4.1. Let us consider the system (2.1) in § 2. We assume,

in addition to (Aλ) and (A2), that f(t, x) and G(t, x) are of C2-class in x

and that fx,fxx,Gx and Gxx are all bounded. Under these assumptions,

if the process X(t) given by (2.1) is exponentially p-th ultimately bounded

for some p > 0, then there is a function V(t, x) which satisfies the con-

ditions (i), (ii), (iii) and (ii)' in Theorem 3.1 (B).

Proof. Let h(x) be the function defined in Lemma 2.2, and put

V(t, x) = ^+TMt>xh(X(u))du , (4.1)

where T is a certain positive constant which is to be determined later,

a) Proof of (ii)'. Since X(t) is exponentially p-th ultimately bounded,

there exists positive constants c,a and K such that
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Therefore we have

V(t,x) ^ ft

+TMt,x(L + \X(u)\*)du

^ (L + K)T + c\x\> ΓTe-^-vdu (4.2)

^ (L + K)T + ±\x\> ,
a

where L = sup h(x). With T fixed the inequality (4.2) proves (ii)'.

b) Proof of (ii). By Corollary 2.2, it holds that

Mt>xh(X(s)) ^ h(x)e-^s-t) - C , (4.3)

where k and C are positive constants. We can choose a positive number

δ so small that e~kτ > — for 0 < τ < δ. Then we have
2 ~~ ~~

Mt>xh(X(s)) ^ -̂Λ(») - C for t < s < t + δ . (4.4)

Choose T large than 5 and use (4.4) to obtain

V(t,x) ^ ΓδMtxh(X(u))du + \t+TL'

^ λδh(x) -Cδ + L'T ,
- 2

where ΊJ = inf h(x). This inequality (4.5) proves (ii).
x

c) Proof of (i) and (iii). If h(x) is bounded, the differentiability
of MttXh(X(s)) in t and x is well-known, (cf. Gikhman-Skorokhod [1]).
If h(x) is polynomial, the following lemma follows from Lemma 6.2 in
[3] p. 230 with a slight modification. But, in order to prove Theorem
4.3, we shall establish it in the following generalized form.

LEMMA 4.1. Consider a system (2.1) in §2, where we assume, in
addition to (Aλ) and (A2), that f(t, x) and G(t, x) are of C2-class in x and
fx, fxx, Gx and Gxx are all bounded. Let φ(x) be a function of C2-class
defined on Rn. Then, if φ(x), ψx{χ) and φxx(x) are locally uniformly r-th
integrable for some r > 1, the function

u(t, x) ΞΞ Mtxφ(X(s)) t < s

https://doi.org/10.1017/S0027763000014951 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000014951


128 YOSHIO MIYAHARA

is of Cι-class w.r.t. t and of C2-class w.r.t. x, and satisfies

t, x) = 0 t < s . (4.6)

Remark 4.1. We say φ(x) is locally uniformly r-th integrable (more

precisely, r-th integrable with respect to the process X{t)) if <p(y) satisfies

Mt>x\φ(X(s))\r ^ C(t0, s,D) < oo , for any ί0 < t < s , x e D c Rn ,

where Z) is any compact subset of Rn.

We will prove Lemma 4.1 only in the case n = 1. The proof for the

case n > 2 can be given similarly.

We use the following facts which are easily shown under the as-

sumption of Lemma 4.1 (for details see Khas'minskii [3] pp. 225 — 227,

Gikhman-Skorokhod [1] pp. 403-412):

1) If we put

Y U ( s ) = ι χ ( s ) χ

Δx

then

M[(Y^x(s))2m] ^ β*<-» , (4.7)

where & is a constant depending on sup|/^|, sup|G^| and m.

2) If we put

ξx(s) - °±—(8) = lim X'Xt4M (in L2-sense) , (4.8)
OX Jχ-*o

then ξx(s) is well-defined and satisfies

M[(^00)2m] ^ e^s-» , (4.9)

where k is the constant given in 1).

3) If we put

ζ',(8) = 4 F r - ( β ) = - % ^ - On L*-sense) , (4.10)
dxι dx

then ζl(s) is well-defined and satisfies

M[(ζ'x(s)Ym] ^ c^* ' 8 "" , (4.11)
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where cx and k are constants depending on sup|/^|, sup|/^ | , sup|G^|,
sup I Gxx I and m.

Proof of Lemma 4.1 in the case n = 1. Let In(x) be a smooth

function on R1 satisfying

7n(a0 = l \x\<n

In(x) = 0 \x\^n + l

\In(x)\ ^ 1, |J'n(a0| ^ i , |/ϊ(a?)| < i , U constant),

and put φn(x) = φ(x)Ίn(x). Clearly φn(x) —> φ(x) as ^->oo, and \φn(x)\

If we define un(t, x) by

wn(ί, x) = Mίfa.pn(A:(s)) , t < s (s fixed),

then we obtain

un(t, x) -* u(t, x) = MttX<pίX(s)) (n-> oo) . (4.12)

We see that ^n(ί, α;) is of CLclass in ί and of C2-class in x9 because φn(x)

is bounded. To show that u(t,x) is of C^-class in t and of C2-class in

x it suffices to prove that un>X9 un>xx and uUtt are uniformly convergent

on any compact subset of (t, #)-space. Put

This is well-defined because of the r-th integrability of φ\x) and (4.9).

By the definition of <pn(x), we have

φ'niP) -> φ'(χ) (n -> oo) .

Therefore we obtain

where we have assumed that the equality

un.x(t,x) =

holds, (cf. Gikhman-Skorokhood [1]).

We are now ready to prove that the convergence is uniform on

compact.
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|iί*(t,aθ - unιX(t,x)\ ^ M[\{φ' - (I1,φ)'}(.Xt '(β))\\ςtM\ϊ

X {M[{φ' +

^ C'(to,s,D){M[\1 - 7»_I(

where the constant C'{ta,s,D) in the last inequality is to be determined

by the local uniform integrability of ψ{x) and ψ'{x). Using the Schwartz

inequality, we have

s))]^}^{M|IUs)|2'"}1/2 .

The Chebyshev inequality proves that

^(s)| ^ n - 1) ̂  L
n — 1

(4.15)
^ C ( t o , s , ) .

n — 1

Combining (4.13), (4.14), (4.15) and (4.9), we obtain

\u*(t,x) - uUtX(t,x)\

V2r'eα/2r'>*<.-ί >\ (4.16)^ C\t,, s, D) I—1—C"(U, 8, Z))V2r'eα/2r'
V^ — 1

The inequality (4.16) shows that un>x converges to u*(t, x) uniformly on

[to,s] x D. As a consequence, ux(t,x) is continuous and

ux(t, x) - u*(t, x) - Mίφ'ίX^ίsWM] . (4.17)

By the same way, using (4.11) in place of (4.9), we can prove that

uxx(t, x) is continuous and

uxx(t,x) = MVφf\X^{8))ξx(β)-\ + M[φ'(X>>*(s)Kx(s)]

= lim untXX - Km M[<(Z^(s))ίL(s)] + M[φ^X^(s))ζi(s)] ( 4 1 8 )

Finally we prove that ^ ( ί , x) exists and that u(t, x) itself satisfies

&u(t, x) = 0 for t < s . (4.19)

Here we note that (4.19) holds for un(t,x). That is
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un,t(t9%) = —f(t,x)untX(t,x) — —G2(t,x)un>xx(t,x) .

The right side converges to

-f(t,x)ux{t,x) - ^G\t,x)uxx(t,x)

uniformly on [tQ, s] x D. Thus we have proved that ut(t, x) exists and
that

ut(t,x) = \imun>t(t,x) = —f(t,x)ux(t,x) - —G2(t,x)uxx(t,x) ,

which was to be proved. (Q.E.D.)

We now return to the proof of Theorem 4.1. If we take the above
function h(x) as φ(x) in Lemma 4.1, then all the assumptions in Lemma
4.1 are satisfied. Thus we see that the function u(t,x,s) given by

u(t, x, s) ΞΞ MttXh(X(s))

satisfies

&t,χU(t, x,s) = 0 t <Ls,xeRn .

With this, we obtain

d Ct + T d Ct + T

= — u(t,x, s)ds + 2 /,(*, x)— u(t, x, s)ds
dtit i dXiJt

+ — Σ dAt, x) y \t+Tu(t, x, s)ds
2 tj dXidXjit

ί
t + T rsn.

^Ut, x, s)ds
t dt

(4.20)
fit + T fi

+
h

i dxt

1 Σ σti(t, x)-^-(jt, x, s)ds
2 oXiOXj

= u(t, x,t + T) — u(t, x,f) + &ttXu£t9 x, s)ds

= u(t, x,t + T) - u(t, x, t)

= MttXh(X(t + D) - h{x) .
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This is bounded above by

L + MttX\X{t + D | p - h(x) ̂  L + K + c\x\pe~aT - h(x) .

Taking T large enough, we obtain from (4.21)

J2?7(ί,αO ^ L + K + —\x\v - h(x)

(4.21)

(4.22)

The inequalities (4.22) and (4.2) show that the condition (iii) is satisfied.

(Q.E.D.)

COROLLARY 4.1. Let X(t) satisfy the assumptions of Theorem 4.1,

and let f(t,x) and G(t,x) be independent of t; denote them by f(x), G(x)

respectively. Then

i m \f(x)\ + \G(x)\ > Q

* Proof. Since the system is temporally homogeneous, the correspond-

ing Liapunov function given by (4.1) is also independent of t. In fact,

V(t, x) and J*?F(ί, x) are of the forms

V(t,x) = V(x) =

Let us prove

-(x)

-(X) bt,

(4.23)

(4.24)

(4.25)

(4.26)

where bu b2, b3 and 64 are positive constants. For simplicity, we consider

the case n = 1. Using (4.17) with ψ(x) = h{x) and the Schwartz in-

equality, we obtain
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= I ΓJL
1 Jo dx

Jo

From the inequality (4.9), we have {Mxξx(s)ψ2 ^ b for 0 < s < T, where

b is a constant. Therefore it holds that

dV<χ) ^ b [T{Mxh'2(X(s))}1/2ds . (4.27)
Jodx

The obvious inequality

\h'{x)f ^a'\x\^-l) + 6'

and Corollary 2.1 prove

Mxh\X(8))2 ^ C(l + \x\ηekT for 0 < s < T .

Combining this inequality with (4.27), we obtain (4.25).

The inequality (4.26) can be proved by the same way, using (4.9),

(4.11) and (4.18).

On the other hand V(x) satisfies the conditions in Theorem 3.1 (B)

by a consequence of Theorem 4.1. Thus the following inequality must

be satisfied:

&V(x) ^ -b5\x\v + β . (4.28)

Observing (4.24), (4.25), (4.26) and (4.28), we see that the conclusion of

Corollary is a necessary condition in order that the conditions (4.25),

(4.26) and (4.28) are all satisfied. (Q.E.D.)

COROLLARY 4.2. Let X(t) be the process which satisfies all the as-

sumptions in Theorem 4.1 for p — 4/3 and the following condition:

\GKt,x)\£cna + \x\r), (4.29)

where 0 ^ r < 1/3. Then the process X(t) is strongly exponentially ω-th

ultimately bounded.

Proof. Let V(t, x) be the Liapunov function which is given by (4.1)

with p — 4/3 in the proof of Theorem 4.1. We will show that the func-

tion W(t,x) = eVit'x) satisfies all the conditions in Theorem 3.3 (BY. It
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is clear that W(t, x) satisfies the conditions (i), (iv) and (iv)". Taking
derivatives of W(t,x), we have

&W{t, x) = ev«>x) (seVit, a) + — Σ <*utt> *0-^(*> &)—(«, x)\ .
V 2 ti dXi dxj I

As V(t, x) satisfies the condition (iii) in Theorem 3.1, there are two
constants c12 and β such that

Therefore we have

, x) ^ Wit, x)

x ί-cl2W
/3 + β^ 1 ^

2ti

Using (4.25) in the proof of Corollary 4.1 and (4.29), the inequality
(4.30) is changed into

&W(t,x) ^ Wit,x)[ — cn\xf/z + β + — Σ k t f|(&i|α?|1/3 + δ2)
2j

I 2 i,j J

l ( 4 ' 8 1 )

= » I 121 -g- Cu 1̂ 1 ! | ^ | 2 j

Since r is smaller t h a n 1/3, we obtain from (4.31)

(4.32)
where βf is a constant. The inequality (4.32) is equivalent to the condi-
tion (iii). Now it is easy to check that W(t,x) satisfies the other con-
ditions in Theorem 3.3 (£)'. (Q.E.D.)

THEOREM 4.2. Consider a system (2.1) in §2. We assume that
f(t, x) and G(t, x) are of C2-class in x and fx and fxx are bounded and
that G(t,x) has a compact carrier as a function of x. If the process
X(t) governed by (2.1) is p-th ultimately bounded, then there exists a
Lίapunov function V(t, x) which satisfies the conditions (i), (ii) and (iii)
in Theorem 3.1 (A).

Proof. Since the process X(t) is p-th ultimately bounded, there is

a constant K such that
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lim MttX\x(s) \p <; K for any (ί, x) .

Taking two constants Kλ and K2 with K <KX< K2, we define a smooth

function G(r) on Rι by G(r) = r - K2 + 1, for r ^ Z 2, G(r) = 0, for

r ^ Ku 0 ^ G(r) ^ 1, for K, < r < Z 2 . Set

, a;) = ΓG(u(t, x, 8))eP*-»dτ , ^ > 0 ,
Jί

where %(£, α;,s) = MtfXh(X(s)).

a) Proof of (ii). We can carry out the proof by the same way as

that of b) in Theorem 4.1.

b) Proof of (i) and (iii). The smoothness of V(t,x) is trivial. To

fin<d the expression for ^V(t,x) we proceed as follows.

<t¥-(t,x) = -G(u(t,x,f))
dt

for |x| ^ K2

= -\x\p + K2 - 1 + ΓG/(^α,x,τ)K(ί,^,τ)e ; (r- ί )dτ - λV(t9x)

!!L(t, X) = ΐ°Gf(u(t, x, τ))uXi{t, x, τ)eλ'τ-s)dτ .
dxt Jί

W (t, x) = ΓG ; /(%(ί, a;, r))wΛ<(ί, x, τ)ux.(t, x, τ)eX{τ-ι)dτ
idXj J t

'(vίt, x, τ))uXiX.(t, x, τ)e^-

Therefore we have, for \x\> K2,

t,x) = -\x\p + K2 - 1 -

+ —Σ>«(*» :

2 ''' ' (4.33)
= -\x\* - λV(t, x) + K2 - 1 + ± Σ σu

X G'/(u(t,x,τ))ua:.(t,x,τ)ux(t,x9τ)eHτ~t)dτ ,
it z J

where we have used J!ftpXu(t,x,τ) = O. By the assumption that G(t,x)

has a compact carrier,
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σtj(t, x) = 0 , for I a; I ̂  K3 . (4.34)

From (4.33) and (4.34) we obtain

&V(t, x) ^ -λV(t, x) - \x\p + K2 - 1 for \χ\ ^ max {K2,K3} .

Thus the condition (iii) has been verified. (Q.E.D.)

THEOREM 4.3. Consider a system (2.1) in §2, and assume that the

coefficients f(ty x) and G(t, x) satisfy the same assumptions as those of

Theorem 4.1. // the process X{t) governed by (2.1) is strongly ex-

ponentially ω-th ultimately bounded, then there exists a Liapunov func-

tion V(t, x) which satisfies the conditions (i), (iii), (iv) and (iv)' in

Theorem 3.3 (B).

Proof. From the definition of strongly exponentially ω-th ultimate

boundedness there is an associated function φ(x) = ea]xl* satisfying

MttXφ(X(s)) ^ C-pίaOβ-' -" + K . (4.35)

We introduce a C2-class function φ(x) such that

φ(x) = φ(x) f o r \X\ ̂  1 .

The inequality (4.35) still holds for φ(x) by replacing, if necessary, K

with a new constant K;:

Mt>xφ(X(s)) ^ C-φ(x)e-a(s-t) + Kf . (4.36)

a) Put

ψ(x) ΞΞVW)- (4.37)

We will first show that ψ(x) satisfies the assumption in Lemma 4.1. It

is clear that ψ(x) is locally uniformly square integrable by (4.36) and

(4.37). Take a constant rx such that 2 > r\ > 1. Then we have

for | & | < 1 ,

- α δ ^ r 1 + a) for |a?| ^ 1, - ( 4 ' 8 8 )

where 5 is a constant. The Holder inequality proves that
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Mt,x\(X(8))\*> ^ M^lψiXisV^^ablXis)?-1 + a)'1 + 3"

^ {MtfX\ψ(X(s))\rψn JM^^Aα&IZίs)!6"1 + ^ ί } ^ (4.39)

The inequality (4.39) means the locally uniform r Γ th integrability of
ψXi(x) if b ^ 1, because ψ(x) is locally uniformly rHh integrable and
l^l6"1 is locally uniformly rxrί-th integrable by Corollary 2.1. While, if
b < 1, we have |ψ^0r)| <: Iψfe)^' with some constant δ' > 0 by (4.38), so
that ψXt(x) is locally uniformly r r t h integrable.

We take a constant r2 such that 1 < r\ < rx < 2. Then

(4.40)

where δ" is a positive constant.
Thus the locally uniform r2-th integrability of ψXiXj(x) can be proved as
before.

b) Put

u(t, x, s) ΞΞ M

ς δ" for \x\ <

^ |ψ(^) | ί lα 2 & 2 | x | 2 ( δ - 1 ) + δ"

then, by the use of Lemma 4.1, we have

&t,χUίt, x, s) = 0 for t < s . (4.41)

By using (4.36), (4.37) and the Schwartz inequality we obtain

1/2)α(s-ί} + Kn/2 .

c) Put

V(t, x) = u(t, x, τ)dτ ,

where T is a constant which is to be determined later. We will show
that the V(t,x) has the desired properties. The Jessen inequality and
Corollary 2.2 show that
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u(t,x,τ) = M

|»e-^-ί)-(ί2} ^ Λ(l/2)αU|δe-*(r-0

^ c14β
ώ4αl* |δ for ί < r < t + T ,

where dλ and cZ2 are constants and c13 = e"d% d4 = (l/2)e~fc7T. Thus the

condition (iv) is satisfied. As for the condition (iv)' we proceed as

follows:

rt + τ

V(t,x) £ cι/2ψ(x)\ e

{-ι/2)a{τ-ι)dτ + Kn/2T (by (4.42))

<g Cl5ed/2)αuι» + Ci8 ? ( C i 5 > o, Clβ > 0 ) . (4.43)

The properties that V(ί, α?) is of C -̂class in t and of C2-class in x are

inherited from u(t,x,τ).

We finally prove that V(t,x) satisfies the condition (iii). By the use

of (4.41) as in (4.20),

&V(t, x) = u{t, x,t + T) - u(t, x, t)

^ c1/2ψ(x)e(-ί/2)aT + Kn/2 - ψ(x) (4.44)

< —c e(1/2)alx]b + Kn/2

Here we choose the constant T, which has been kept undefinite, so large

that the last inequality holds with positive constant c17. The inequalities

(4.43) and (4.44) assure the condition (iii). (Q.E.D.)

§ 5 . Recurrence property.

W. M. Wonham ([5]) has discussed on the positive recurrence

property of a temporary homogeneous system given by a stochastic

differential equation by means of Liapunov functions. He studied the

system given by

dXit) = f(X(t))dt + G(X(t))dW(t) , (5.1)

where the coefficients f(x) and G(x) satisfy Lipchitz condition and G(x)

is non-degenerate, i.e. G(x)G(x)* is a strictly positive definite matrix.

One of his results is that the existence of a Liapunov function V(x),

which satisfies the condition &V(x) ^ — 1 for \x\ large enough, is'neces-

sary and sufficient in order that the system is positive recurrent (cf.

Lemma 2 and Theorem 2 in [5]).
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Our results in § 4 assert the existence of Liapunov functions. Com-
bining Theorem 4.1 and the Wonham's result, we conclude that if the
system governed by (5.1) is non-degenerate and if it is exponentially
p-th ultimately bounded for some p > 0, then it is positive recurrent.
If we replace Theorem 4.1 with Theorem 4.3, we have again a similar
conclusion.

We note that Ex. 3.2 shows that the system which is exponentially
p-th ultimately unbounded may be positive recurrent. From this fact
we know that, in the case where the system is temporary homogeneous
and non-degenerate, the concept of exponentially p-th ultimate bounded-
ness expresses stronger stability than positive recurrence.

For further development we should investigate the recurrence prop-
erties of systems even if the system is not temporary homogeneous or
may not be non-degenerate. Either case is interesting in many aspects.

Let us first introduce definitions of recurrence property which are
suitable for possibly degenerate cases.

DEFINITION 5.1. A process X{t), t ^ 0, is said to be weakly recur-
rent if there exists a constant K such that

PttX{ω; \X(t + s)\ < K for some s > 0} = 1 for any (t,x) ,

where PttX stands for the conditional probability under the initial con-
dition X(t) = x. The set {x; \x\ < K} is said to be a recurrent region.

DEFINITION 5.2. A process X(t), t ^ 0, is said to be weakly positive
recurrent if there exists a constant K and the following condition is
satisfied for the first hitting time τ(ω) to the region {x; \x\ < K};

MtfXτ(ω) < oo for any (t,x) .

THEOREM 5.1. The process X(t) defined by (2.1) is weakly recurrent
if it is p-th ultimately bounded for some p > 0.

Before we prove this theorem, let us prepare a lemma.

LEMMA 5.1. Let X(t) be a Markov process. If there are a positive
Borel measurable function p(t, x) defined on [0, oo) x Rn and two positive
constants K and a such that

Pt>x{ω \X(t + p(t, x),ω)\^K}^a>0 for any (ί, x) , (5.1)

https://doi.org/10.1017/S0027763000014951 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000014951


140 YOSHIO MIYAHARA

then the process X(t) is weakly recurrent and {x; \x\ < K} is the recur-

rent region.

Proof. For a fixed it, x), let us define subsets Ωi9 i = 1,2, , oo,

of Ω as follows;

Ω1 = {ωeΩ; \X(t + pit,x),ω)\ > K} ,

Ω2 = {ω e Ωλ \X(t + pit, x) + pit + pit, x), X(t + pit, x))),ω)\ > K) ,

Ceo = n fl*.

Since {ω; \X(t + s,ώ)\> K, for any s ^ 0} c 42̂ , it is sufficient to prove

Pt.xiΩoJ = 0. Form the assumption of Lemma 5.1,

Pt>x{Ωd ^ 1 - a < 1 . (5.2)

By the use of the Markov property and the measurability of p(t,x), we

have

Pt.xWά = MtfX{χΩl(ω)Pt+p(t,x)tXit+pittX)>ω)(Ω')}

Ωf = {ω\ \Xit + p{t9 x) + pit + pit, x),Xit + pit, x))))\ > K} .

The inequality (5.2) is true for any it, x), i.e.

Pt+βit.x).xit+Pit.χ)tΛ){ω;\X(t + pit,x) + pit + pit, x),Xit + pit,x))))\ > K]

. 1 (5.4)
^ 1 — a .

From (5.3) and (5.4), we get

In the same manner,

PttX(Ωi) ^ (1 - α)* -> 0 as i -> oo .

This proves P M ( f l J = 0. (Q.E.D.)

Proof of Theorem 5.1. It is clear that MtfX\Xis)\p is continuous in

it, x) for a fixed s and is continuous in s for a fixed it, x). (cf. Lemma

4.1, where it has been proved that if the coefficients of (2.1) are smooth,

then MttX\Xis)\v is smooth.) From this fact we are able to define a

Borel function pit, x) such that

Mt>x\Xit + pit,x))\* ^ Kf = (1 + εW , (5.5)
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where K' is the constant determining the ultimate boundedness of Xit)
and ε is a positive constant.

We will next determine constants K and a so that the inequality
(5.1) is satisfied. Put K = Kx + ε. Then the following inequality is
valid by (5.5),

PttX{ω\\X{t + p(t,x))\ >K} = PttX{ω;\X(t + p(t,x))\> > K>]
1 KP (5.6)

£ -±-Mt>x\X(t + pit, x))\* ̂  φ- = 1 - a < 1 .

This proves that the process Xit) is weakly recurrent. (Q.E.D.)
In the case of exponential type, more precise result is obtained.

THEOREM 5.2. The process X(t) defined by (2.1) is weakly positive
recurrent if it is exponentially p-th ultimately bounded for some p > 1.

This theorem is obtained as a corollary of the following lemma.

LEMMA 5.2. Let X{t) be a Markov process. If there exist a positive
non-decreasing function W(r) defined on [0, oo) and two positive constants
K and p such that

MttX\X(t + s)\v ̂  Kp for any (t,x) and s ^ W(\x\) , (5.7)

and

f; A-W((£ + ΐ)N) < oo for any N^O , (5.8)

then X(t) is weakly positive recurrent.

Proof. Let us first notice the following inequality

PttX{ω\\X(t + W(\x\))\^kK}
X -MttX\X{t + W(\x\))\p ^ J L . ( 5 > 9 )

Set K! = (1 + ε)K, where ε is a positive constant to be determined later.
We will show that Xit) is a weakly positive recurrent process with the
recurrent region Eo = {x; \x\ < K'}.

P u t Et = {x £Kf < \x\ ^ (£ + l)K'} and W'{t) = W(£K0, £ = 1,2,-..,

and fix the starting point (t,x). We define a sequence {xm(ω)}m=h2t..., for
almost all ωiPttX) as follows;
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xo(ω) = x ,

- W(\x\),ω),

x2(ω) = χ(f + W(\x\) + W'{i + 1),ω) if ^(ω) e Es ,

χm(ω) = Z(ί + W(\x\) + W<Jtx + 1) + + W'Wm-i + D»ω)

if φ)eB< ι,. , ^ i 6 V i

Then β is represented as

Ω = Σi Ωm mod. 0(P ί > x) ,
m = l

where β m = {ω e Ω ^(ω) g β o , , ̂ m_i(ω) 6 £Ό> ^m(^) e 2£0}. This is true

because X(t) is weakly recurrent by Lemma 5.1 and Eo is a current

region for any ε > 0. Let us further devide Ωm as follows

where Ωmtiu...timί_x = {ω ^(ω) e £7,,, , a^^fa) e S^,,, xm(ω) e Eo}.

Define τ{ώ) as the hitting time to EQ, then the following inequality

is satisfied

τ(ω) ^ WQx\) on Ω1

^ TF(|«|) + W\βλ + 1) on fllf/l ,

^ T7(|OJ|) + Tf^! + 1) + + W\βm_x + 1) on ΩmMt...ttfΛ_x .

Therefore we have

Mt>x[τ(ω)]

Σ Λ ,(flm Λ ... emJlW(\x\) + WVi + ! ) + • • • + W(£m^ + 1)1 .

(5.10)

To evaluate the right hand side of the above, we proceed as follows.

P U f i ) < (5 n )

This inequality is proved inductively by the use of
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t,x{Ωm + l,eu --.<!vJ = Pt,x{ Σ Ωm + l,tι, ,tΛ-i,t}

(β = TPflαp + W(A + 1) + + WV^ + D)

om,h,...,tn_Ps,xm^ ^m,M > tnXl + e)K}}
( b y ( 5 9 ) )

and

PUΩύ < 1

Using (5.10) and (5.11), we get

^ W(\x\) +
ί=i( l +

x T,

(5.12)

1) + Σ 7̂  ί-—{W(|a;|)A™+1 + (m -

oo / Λ \ m-1 D °° I A \ m = 1

= W(\x\) + W(|a;|)Σ + Σ (m-ΐ),
1 ' ' ' ^ 1 ( 1 + e)» / (1 + e)v £t\0. + εyi

oo -4 oo "1

where A — f]-— and B = y\—W'(£ + 1) which converge by the as-

sumption (5.8). The right side of (5.12) converges if we choose ε large
enough. (Q.E.D.)

Proof of Theorem 5.2. Let Kx be the constant determining the
ultimate boundedness of X(t) and let K = Kλ + 1. As we mentioned after
Theorem 3.1 (cf. Remark 3.2), the condition (5.7) is fulfilled putting
W(r) = dx log (1 + r) + d2. The condition (5.8) is valid since p > 1 and
TF(r) is a logarithmic function. Therefore Lemma 5.2 can be applied
to this process and we get the conclusion. (Q.E.D.)
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