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ULTIMATE BOUNDEDNESS OF THE SYSTEMS GOVERNED BY
STOCHASTIC DIFFERENTIAL EQUATIONS

YOSHIO MIYAHARA

§1. Introduction.

The stability of the systems given by ordinary differential equations
or functional-differential equations has been studied by many mathemati-
cians. The most powerful tool in this field seems to be the Liapunov’s
second method (see, for example [6]).

In this paper we study the stability of a system governed by a
stochastic differential equation such that

dX(@®) = f(@, X@)dt + G, X(O)AW (@) , (1)

where W(t) is a Wiener process. The system governed by such an
equation arises in such a way that the stochastic noise perturbs a deter-
ministic system. In order to investigate the equation (1), it is natural
to generalize the method for deterministic cases, where the investigation
heavily depends on the use of a Liapunov function.

W. M. Wonham called a system given by a temporary homogeneous
stochastic differential equation to be weakly stable if the equation is
non-degenerate and if the corresponding process is positive recurrent
(cf. [6]). R. Z. Khas’minskii studied the stability at origin of the system
which is given by (1) and which has a solution X(f) = 0 with probability
one. Being inspired by those results, we wish to treat more general
cases. For this purpose we take the concept of wultimate boundedness
of the moment of order p > 0 to describe stability of the system (Defini-
tion 2.1, 2.2). This concept was first introduced by Zakai in [4]: We
mention that this concept has come from that of ultimate boundedness
in the theory of ordinary differential equation where the global stability
is discussed. Many of our results develop the R. Z. Khas’minskii’s
results ([2], [3]) for the ultimate boundedness problem.

Received November 24, 1971.

111

https://doi.org/10.1017/5S0027763000014951 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014951

112 YOSHIO MIYAHARA

In §2 we give definitions of the stability and we prove lemmas which
play the basic role in the proofs of the theorems in § 3 and §4. Lemma
2.1 is an improvement of Zakai’s result [4, Theorem 1], however the
proof requires a method used in [3].

In § 3 we prove criterion theorems for the ultimate boundedness in
terms of the Liapunov functions. Theorem 3.1 is our main theorem,
which asserts that if a Liapunov function V(f,x) of the system governed
by (1) exists, then the system is p-th ultimately bounded. More precisely,
if there exists a smooth function V(¢,x) which satisfies

V(tyx)zcllxlp_ay cl’p,a>0, (2)
ZV(tx)§—CzV(t,x)+,3, 02,,8>0, (3)

where % is the generator of the Markov process corresponding to (1),
then the system is p-th ultimately bounded. If V(¢,x) is of order |x|?
for large |x|, then the system is exponentially p-th ultimately bounded.
Theorem 3.3 gives a criterion for the system to be p-th ultimately bound-
ed for all p > 0.

Three examples illustrate how these theorems are used in order to
check the ultimate boundedness of systems. In particular example 3.3
shows an interesting property that a system with a certain stable drift
and a small diffusion is stable.

In §4 we treat converse theorems to the theorems in §3. We have
not succeeded to establish complete converse theorems, but we have gotten
many interesting results in this direction. For example, Corollary 4.1
shows that a temporary homogeneous system must have coefficients of
order 1 for large |x| in order that the system be exponentially p-th
ultimately bounded.

In §5 we prove that the ultimate bounded process has a certain
kind of recurrence property. This fact suggests us that the ultimate
boundedness is a suitable concept to illustrate stability.

The author wishes to thank Professor H. Kunita for his advice in
preparing the manuscript.

§2. Definitions and lemmas.

We consider a system governed by the stochastic differential equation

dX@® = f@¢, X@®)dt + G¢, X@Hdwe), t=0, 2.1

https://doi.org/10.1017/50027763000014951 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014951

STOCHASTIC DIFFERENTIAL EQUATIONS 113

where X(f) and f(t, X(t)) are n-vectors, G(t,X(f)) is an nXn-matrix, and
W(t) is the m-dimensional standard Wiener process. The coefficients
f@,x) and G(t,x) are always assumed to satisfy

@ 2)] + 1GE, 2)| < e(1 + |z (A)
where |z| is the vector norm of z, and

|G, ®)| = (Zj 19:,;P)"  with  G(, %) = (9,,(¢, 2)) .

Under the assumptions (A,;) and (A,), we are given the Markov process
X(t) which is the unique solution of (2.1) (see, [1, Chapter 8]).

DEFINITION 2.1. Let p be a positive number. The process X(t)
which is given by (2.1) is said to be p-th wultimately bounded if there
exists a constant K such that for any (Z,2)c[0,0) X R* the following
inequality holds:

lim M, ,|X(s)? < K,

§—00

where M, , stands for the conditional expectation under the initial con-
dition X(t) = x.

DEFINITION 2.2. The process X(f) is said to be exponentially p-th
ultimately bounded if there exist positive constants K, ¢ and « such that
for any (¢,2) € [0,00) X R*, s = t, the following inequality holds:

Mt,xIX(S)lp <K+ clx|pe=t=b |

Remark 1. If X(t) is exponentially p-th ultimately bounded, then
X(t) is p-th ultimately bounded.

Remark 2. If X(t) is (exponentially) p-th ultimately bounded for
some p, then X(t) is (exponentially) g-th ultimately bounded for ¢ < p.

DEFINITION 2.3. The process X(f) is said to be g-th ultimately un-
bounded if there exists a constant K such that

lim M, ,|X(s)|? = oo for each (t,z), |z|=K .

§—00

DEFINITION 2.4. The process X(t) is said to be exponentially q-th
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ultimately unbounded if there exist positive constants ¢, @, K and K’
such that the following inequality holds:

M, .| X)) = clx|ess~» — K, for [x| = K, s=>t.

Let # be the infinitesimal generator of the Markov process X(t).
Since X(f) is the diffusion process which is the solution of (2.1), 2V (¢, ),
V being assumed to be smooth, is expressed in the form

|4

0 vV
ox;

0%,0%

2Vt0 = 260 + DA T o) + 3 Dot ) (9,

where (0;(¢, 2)) = G, 2)-G*(t, ©).
We now prove lemmas which will be used to prove the theorems in

§3 and §4. The first one is a generalization of Theorem 4.1 in
Khas’minskii [3] p. 113.

LEMMA 2.1. Let X(t) be the process which s given by (2.1). As-
sume that there is a function V(t,x) on [0,c0) X R® which satisfies the
following conditions:

i) V(t,x) is bounded from below, of C*class with respect to x and
of C'-class with respect to t.
i) LV(E,») £k + EVQE 2,

where k, and k, are some constants.
Then

i) M,.V(s,z(s) < V(E, x)e" + \—I;;“—(e’“‘s“’ -1, if k+#0,

2

s V@) + ks =), if k=0,
for any s > t.

Proof. First we discuss the case where k, is not equal to zero.
Set

W(s,x) = V(s,x)e k2670, (2.2)

Let 7, be the first exit time of X(¢) from {xeR";|z|< n}, n>1, and
put 7,(t) = min {t,z,}. Then z,({) is a Markov time. Using the Dynkin-
Ito formula, we obtain :

M, W (z(5), X(24())) — W(t, @) = M;,IJZ"(S)XW(u, Xe)du, (2.3)
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which is expressed, by (2.2), in the form
M., f :"‘” {(— I,V (u, X @0 + 2V (u, X(w))e~ 0}y, .
By the use of (ii), this is bounded above by

Mt'zjr"(S) kle-kz(u—t)du é Isik1|e~k2(u~t)du Ikll (1 kz(s—t)) .
¢ ¢ k,

Since W(u,z) is bounded from below on [¢,s] X R*, we can apply the
Fatou lemma to the left side of (2.3) to get

M, W(s, X(s) < W(t, z) + ‘,’?‘ (1 — gm0y | 2.4)

2

The inequality (iii) is derived immediately just by recalling that W(s, x)
= V(s, x)e k-0,
In case k, = 0, we can easily prove

Mt,zW(Tn(s)’ X(Tn(s))) é W(ts x) + lkxl(s - t) ’
from which (iii) follows. (Q.E.D.)

LEMMA 2.2. Let X(t) be as in Lemma 2.1. Let p be any positive
number, and let n(x) be a function of C’-class on R™ such that

Mx) = |x? for || = 1. (2.5)
Then
| Zh@)| < ks + k(@) , (2.6)
where k, and k, are constants depending only on h(x).

Proof. By the definition of the operator %,

hi@) = 5 i, x) (x) + = z 044t @) @) .
07,07
Using (A, and (2.5), we have
[ fit, 2)| < e + |2)) , ldu(t )| < e+ |z,

| oh (x)l < ¢ + |z, (x)] < o + |z .

a 0%
Conseqently | Zh(x)| < ¢”’(A + |x/?). By the assumption (2.5), we get
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|z < ¢’ + h(x). These two inequalities imply (2.6). (Q.E.D.)
COROLLARY 2.1.
M. | X($)P < e + |z,  p=0. 2.7
Proof. We choose such i(x) that
lzf —2 < h(x) < |zlP + 1.

Applying Lemma 2.1 to R(x), it holds that

M, h(X($)) < h(x)eksv %(em—w —1) 2.9)

4

Therefore, we have

M, | X©)P < M, X)) + 2 < h(w)ek=0 + 2 + %em_n
' 2.9)
< (P + Desev 4 2 4 _Z_ gFaGs=0 |
4
The inequality (2.9) is nothing but the rephase of (2.7). (Q.E.D.)

LEMMA 2.3. Let V(t,x2) be a function on [0, o) X R™ which satisfies
the condition (i) in Lemma 2.1 and the following conditions:

(iv) £V, 2) =k, + kEV(E, 2)
where k, and k, are constants.
(V) Mol Vs, X)), M| 2
%
02,0%
[0, 0) for any fixed (t,x).

oV
0x;

Ji(s, X(8))=—(s, X(s))| and

(s,X(s»],Mt,x

Mt,a: Uij(S, X(9)

(s, X(s))l are bounded on any s-compact-subset of

Then

M, ,V(s, X(s)) = V(t, x)etse0 + %(1 — M) if £ 0 (2.10)

4

M, . V(s, X)) = V(t,x) + k(s — t) if k,=0. (2.11)
Proof. First we discuss the case where k, is not equal to zero. Set

W(s,x) = V(s,x)e k=0 |
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By the assumption (v) of Lemma 2.3, we can apply the Dynkin-Ito
formula to W(s,x), and we have

M, W(s, X(8) — W(t, X) = Mt,zfgwm, X(w)du .

Using the assumption (iv), we get
LW, X(w)) = ke *s6-0

We therefore have an inequality

M, W(s, X(s) — W(t,z) = —%(e"“‘s—“ —D,

4

which is equivalent to (2.10).
In case k, = 0, the proof is easy and is omitted. (Q.E.D.)

COROLLARY 2.2. Let h(x) be the function defined in Lemma 2.2.
Then we have

M, . mX()) = Mx)e "¢~ — C (2.12)

Proof. We can apply Lemma 2.3 to A(x), since Corollary 2.1 and
Lemma 2.2 assure the conditions (v) and (iv), respectively. The inequality
(2.12) follows directly from (2.10). (Q.E.D.)

§3. Criterions for ultimate boundedness or unboundedness.

First we establish a theorem which gives a sufficient condition for
a process X(t) determined by (2.1) in §2 to be p-th ultimately bounded.

THEOREM 3.1. Let X(t) be the process which is given as the unique
solution of (2.1) in §2, and let p be a given positive number.

(A) If there exists a function V(t,x) defined on [0,00) X R™® which
satisfies the following conditions:

(i) V(,x) is of C'-class w.r.t. t, and of C*’-class w.r.t. x.

(ii) —a + alzlP £ V(E, ),
where ¢,(>0) and «, are constants.

i) £V, x) £ —cV({E,x) + b,
where & is the same as defined in Lemma 2.1, ¢,(>0) and p, are con-
stants,
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then the process X(t) is p-th wultimately bounded.

(B) If V(t,x) satisfies the conditions (i), (i), (iii) in (A) and
i) V(i 2) = ¢l P + a,
where ¢,(>0) and a, are constants,

then the process X(t) is exponentially p-th ultimately bounded.

©) If V(t,x) satisfies (i), (ii), (iii) in (A) and in addition
Gy Vi, x) < W(x) for any (t,z)e[0,00) X R,

then for the function T(t,x) given by
TG, 2) =inf{c; M, | XC+c+WPLK =K+1, ©vu=0},
it holds that
T, x) < c,log W(x) + ¢ for any (t,x),

where K is the constant which appeared in the definition of p-th ulti-
mately boundedness, and ¢, and ¢, are some constants.

Proof. (A) By (i) and (iii), we can apply Lemma 2.1 to V(¢,2) by
putting &, = g, k, = —¢,, so that we have

Mt zV(S,X(S)) é V(t’x)e—cz(s—t) + f_gl(l — e—cz(s—t)) — E}_
' C C, B.1)

(a8 s — o0) .

Using (ii) and (3.1), it is proved that

Mo XeP < LM, VE6X6o) + 8- P 18 assow). 3.2
3

cl 1v2 cl

With the choice of K = A + % (8.2) shows that X(f) satisfies the
€0, ¢

condition of Definition 2.1.
(B) Using (3.2), (3.1) and (ii), we have

Mt,-th(S)P’ =< _c_i|xipe—cz(s-t) + (K + _C_YZ) .
¢ ¢,

This inequality shows that X(¢) is of exponential type.

(C) Using (3.1), (38.2) and (ii)”, we have
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Mt,xlX(S)Ip é lW(x)e-‘(?z(s-t) _|_ K .
G
If we.define 7, by

Ty = llog W(x) — 1 loge, ,

2 02

then T'(t,x) < z,, which implies
T(t,x) < c,log W(x) + ¢ .

(Q.E.D.)

A function V(¢,x) which appears in Theorem 3.1 is called a Liapunov
function of the process X(t).

Remark 3.1. The assertion (A) in Theorem 3.1 tells that we do not
need to pay any attention about the integrability of V(¢,x). (cf. Zakai
4D

Remark 3.2. If the process X(¢) satisfies the conditions in (B), then
T(t,z) is estimated in the form

T, 2) < d log(1 + |z + d,,

where d, and d, are constants. While, if e*'#* + a, can be taken as
W(x) in (C), then

T, 2) < dy|z|* + d, .

We then see a sufficient condition for the process X(¢) to be ultimately
unbounded by means of Liapunov function.

THEOREM 3.2. Let X(t) be the process which is given by (2.1) in
82, and let q be a positive number.

(A) If there exists a function V(¢,x) defined on [0,c0) X R™ which
satisfies the following conditions:
(i) V(t,x) is of C'-class with respect to t and of C’-class with

2
respect to x. Further |V(t, )|, ‘aV , ‘QK and ‘ v are dominated
ot ox, 01,07

by a certain polinomial of x.
(ii) lim V(t,2) = oo, and V(t,2) < ci|a|? + a5, where ¢; and o, are
|z |-

positive constants.
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(i) 2V, z) =z e, V(E,2) — B,
where ¢, and B, are positive constants,
then X(t) is q-th ultimately unbounded.
(B) If V(t,x) satisfies all conditions in (A) and further the following
condition :
()Y —a, + elef < V),
where o, and ¢, are positive constants,

then X(t) is exponentially q-th ultimately unbounded.

Proof. The proof is nearly the same as that of Theorem 3.1, how-
ever in this case we need Lemma 2.3 in place of Lemma 2.1.

(A) By (i) and (iii), we can apply Lemma 2.3 to V(t,x) by putting
ky, = — P k= c:

Mo V(s, X@) 2 Vit @) — ) 4 Br (3.3)
¢, ¢
Using the condition (ii) and (8.3), we have
Mool X 2 (Vi 2) = Bleros 4 B &, 3.4)
Cq ¢y CeCq Cq
In view of lim V(¢,2) = oo, we see that (3.4) shows ¢-th ultimate un-

x|

boundedness of the process X(t).

(B) Using (3.4) and condition (ii)’, we have

Mo X@OF 2 = (afalt — o — D)oo+ B _ % @)
Cq ¢ CeCr Ce
With the choice of K such that ¢,K? — o, — & = —;—CSK", we know that
¢
(3.5) shows the exponentially p-th ultimate unboundedness of the process
X(@). (Q.E.D.)

We now introduce a new concept which implies the p-th ultimate
boundedness for all p > 0.

DEFINITION 3.1. We call X(t) w-th ultimately bounded if there exists
a function ¢(x) = e*'*"” such that

lim M, ,o(X(s)) < K for any (¢, %),
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where a, b and K are positive constants.

DEFINITION 3.2. We call X(t) exponentially w-th ultimately bounded
if there exists a functions ¢(x) = ¢*'*" such that

M, o(X(8) £ cp(x)e =" + K’ for any (¢,2),

where a, b, ¢, r, « and K’ are positive constants. If, in particular, we
can take r = 1, then we call X(¢) strongly exponentially w-th ultimately
bounded.

Remark 3.3. Evidently the following relations can be verified:
strongly exponentially w-th ultimately bounded

= exponentially w-th ultimately bounded

= o-th ultimately bounded

= oo-th ultimately bounded (i.e. p-th ultimately bounded for any
p > 0).

Later we will see that if the process X() is exponentially p-th ultimately
bounded for some p > 0 and if it satisfies some additional assumptions,
then X(¢) is strongly exponentially o-th ultimately bounded (cf. Corollary
4.2 in §4). But Example 3.2, as will be illustrated later, shows that
the process X(f) which is exponentially p-th ultimately bounded for some
p > 0 is not necessarily w-th ultimately bounded.

THEOREM 3.3. Let X(t) be as in Theorem 3.1.

(A) Assume that there exists a Liapunov function V(t,x) of X(t)
which satisfies the condition (i) and (iii) in Theorem 3.1 and the follow-
ing condition:

(v)  cel2” — a5 < V(¢, ),
where ¢, >0, a >0, b >0 and o are constants.

Then X(t) is w-th ultimately bounded.

B) If V(t,x) satisfies the conditions (i), (iii) and @(v) in (A) and
the following condition:

(iV)/ V(t, x) é cloea’ixlb + g
where ¢, >0, o/ > 0 and «, are constants,

then X(t) is exponentially w-th ultimately bounded.
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(B) If V(t,x) satisfies the conditions (i), (iii), (iv) and @(v)’, and if
we can choose o in (iv)Y to be equal to a in (iv), then X(t) is strongly
exponentiolly o-th ultimately bounded.

Proof. (A) Using (iv) and (3.1) in the proof of Theorem 3.1, we
have

C9Mt,zea|X(s)lb < V(t, 2)e 60 + o + _.31(1 — gcals=)
62

Hence we prove

M, enxor < Lyt gyemen-o 4 & 4 B %, B 3.6
’ A Cy CC, (8—) ¢, CoC,

The last inequality shows that X(¢) is o-th ultimately bounded.
(B) Using (3.6) and condition (iv)’ we have

C ’ —Cals— [44 (44
Mt’memX(s)lb é 0 pa Izlbe ea(s~t) + 5 + 6 + 131 . (3.7)
Cy Gy CyC,

The inequality (8.7) shows that X(f) is exponentially o-th ultimately
bounded.

(BY With a particular choice of constants a’ = a¢ we obtain the
result immediately. (Q.E.D.)

The following examples serve to illustrate the role of Theorem 3.1,
3.2 and 3.3 in observing the stability of the system.

ExAaMPLE 3.1. We consider an n-dimensional system
dX(t) = A@X@®dt + f(&, X@)dt + G(¢, X(@&)AW () , t=0, (3.8

where A(t) is an n X » matrix, and f(¢,z) and G(i,x) satisfy the con-
ditions (A,) and (A, in §2.
If the solution xz(¢) = 0 of the corresponding deterministic system

dx(t)
dt

= A(®)xz(t) 3.8y

is uniformly asymptotically stable, and if f(¢,2) and G(t,x) satisfy

fim & - gy GG (3.9)
lzlse |2 [Ediaded |2]
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then X(¢t) is exponentially p-th ultimately bounded for any positive
number p.

Proof. It is known that there is a Liapunov function V(¢, z) of the
system (3.8) which has the following properties:

a) V(ta x) = (V(t)x’ x)’
where V(t) is an » X n-matrix,
b) plzf < V(E,x) < Mix|?, where ¢ and M are positive constants,

¢) there exists an n X n-matrix-valued function W(t) = (W,;(¢)) such
that

dv(t, o) _
dt

Al < (W, ) < Alzf,

(W), x) , and

where %(t,x) is the derivative along the trajectory of (3.8)’ and 1 and

A are positive constants.

We now prove that this function V(t,x) satisfies the assumptions of
Theorem 3.1 (B).

First we consider a particular case p = 2. Then the conditions (i),
(ii) and (ii) are clearly satisfied. Let us examine the condition (ii).

FV(t,x) = —(Wtz, 2) + Zi:_‘?z_a(t:_@_

Xy

Ft®) + 5 D out, W ), (3.10)

where g;,(t, v) = G, ) - G(t, ©)*.
Since we have assumed (3.9), the second and the third terms of (3.10)

are at most of order two for large |#|. Together with the property c)
we have

LV, x) < —%Mxlz , |¢| large enough,

which implies the condition (iii).

We then consider the case p = 2m. It can easily be seen, by the
same way as the case p = 2, that V™(¢,x) satisfies the conditions in
Theorem 3.1 (B). Thus, as we mentioned in Remark 2.2, X(t) becomes
exponentially p-th ultimately bounded for any p < 2m. Since m can be
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taken as large as we wish, X(¢) is exponentially p-th ultimately bounded
for any p > 0. (Q.E.D.)

ExXAMPLE 3.2. We give an example which is exponentially p-th
ultimately bounded for any 0 < p < p, and is exponentially ¢-th ultimately
unbounded for any g > p, (it is, therefore, not ¢-th ultimately bounded).

For simplicity, we discuss the case » = 1. Consider a linear system

dX(t) = aX(@)dt + bX@®)AW(t) 3.11)

where a(<0) and b are constants. We take V(¢, ) = h(x) as a Liapunov
function of (3.11), where Z(x) is the function introduced in Lemma 2.2.
Then we have

LV(t,v) = Ph(x) = axp|z|P?x + %-b%cz(p(p — 2)|xPtx? 4+ plaPd)
. (3.12)
= o+ 20— Dlpjep  forjz/>1.

If a+ %(p — 1) < 0, then all the conditions in Theorem 3.1 (B) are

satisfied. While if o + g(p — 1) > 0, then all the conditions in Theorem

3.2 (B) are satisfied. Thus we are led to the required conclusion by

taking p, = _2a + 1. Since we may choose ¢ and b arbitrarily, we

b,
can give a suitable example for any given 0 < p, < co.

In the same manner, we can construct n-dimensional examples, as
well.

ExXAMPLE 3.3. We consider the process X(¢) given by
dX(@®) = f(¢, X@®)dt + G, X@)Aw (@) , (3.13)

where f(t,x) and G(t,x) satisfy the conditions (A,) and (A,) in §2. Let
us take a function V (¢, «) which is of C%*class on R" and is equal to e'*!*
for |2|=1, « >0, as a Liapunov function of the process X(t). Then
we have

LV, 2) = 3] fult, Daw| x|
+ —%—iz oy )|z trx; + ale — 2)|x|*~txx; + |2]*7%5;,)}e' "'
»J

= F(t, x)e'*" for || = 1.
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Therefore, if there exist positive constants 4, and 4, such that
F(t,x) < —¢, for |z| >4, , (3.14)

then the condition (iii) in Theorem 8.1 (A) is fulfilled. Since the other
conditions in Theorem 3.3 (B)’ are satisfied by V(¢, z), it is sufficient to
find the conditions assuring (8.14) in order to apply Theorem 3.3 (B)Y
to the process X(?).

Let us assume that there exist positive constants p, and g, such that

lim & S o i GG (3.15)

1Ze x| lzloe | 2]P2
The condition to be assumed next is the following:
(f(t, @), x) £ —d,|x)fr*? for || =4, , (3.16)

where 9, and §, are positive constants. (This condition indicates the
stability property of the corresponding deterministic system). The func-
tion F(t,x) defined above is expressed in the form

F(t,2) = F\(t, ) + Fy(¢, )

With Fl(t, x) = O((f(t, x)’ x)lxlamz'
Using the assumptions (3.15) and (38.16), we have

Fit,2) £ —d6a|x)frre! for |xz| = 4, 3.17
[Fy(t, 2)| £ 05(a) | x|phrria—? for || = 4, . (3.18)

Thus we have two sufficient conditions which assure the inequality (3.14);

(I) Existence of a positive constant « such that g, + e« —1=0,
B+ a—1>28,+ 20— 2.

(II) Existence of a positive constant « such that g+« —-1=0,
B+ a—1= 28, + 2« — 2, and validity of the inequality §;-« > d5().

We may choose a function d(w) = n’c{e? + ala — 2) + 1} as d(a) in
(3.18), where c is the constant in Assumption (A). If we put é(a) = d(e)
and ¢« =1 — B, then the inequality &,-« > d;(a@) changes into the follow-
ing form:

(1 — B3, > nte(l — §, + @) . (3.19)

We can now state the conditions (I) and (II) in terms of §;, ¢ = 1,2,
and have
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PROPOSITION 3.1. Let the process X(t) be given by (3.13) and assume
that there exist positive constants B, B, 0; and 5, which satisfy (3.15) and
(3.16).

(i) If 1= B, > B, then the process X(t) is strongly exponentially
wo-th ultimately bounded (therefore it is p-th ultimately bounded).

) If 1> p, = p, and the inequality (3.19) is satisfied, then the
process X(t) is strongly exponentially w-th ultimately bounded.

ExXAMPLE 3.3’. Let X(¢) be the process given by (3.13) in Example
3.3, and take log (1 + |«[) as a Liapunov function of the process X(?).
In this case we can discuss the ultimate unboundedness in the same
manner as Example 3.3, by applying Theorem 3.2, and we can get
the alternative proposition to Proposition 8.1. The details are omitted,
because our interest is not in the ultimate unboundedness.

§4. Converse theory

Generally speaking, the main problem of the stability theory is to
find a method how to construct Liapunov functions. In approaching this
problem, it is most desirable to establish the converse theorems to
Theorem 3.1 and Theorem 3.8. We have not succeeded completely, but
we can give a partial answer to this problem.

THEOREM 4.1. Let us consider the system (2.1) in §2. We assume,
i addition to (A)) and (A,), that f(t,x) and G(t,x) are of C’-class in x
and that fis fez Gz and G, are all bounded. Under these assumptions,
if the process X(t) given by (2.1) is exponentially p-th ultimately bounded
for some p > 0, then there is a function V(t,x) which satisfies the con-
ditions (i), (ii), (iii) and (i) in Theorem 3.1 (B).

Proof. Let h(x) be the function defined in Lemma 2.2, and put
Vit,z) = IHTMt,Ih(X(u))du, “.1)
t

where T is a certain positive constant which is to be determined later.
a) Proof of (ii). Since X(¢) is exponentially p-th ultimately bounded,
there exists positive constants ¢, and K such that

M, | X)) £ K + clape 0,
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Therefore we have

V(t,z) < JHTMW(L + 1 X@)P)du

t+ T
t

<@L+ BT + c1x|vj e-as=0 gy 4.2)
< (L + KT + Sz,
44

where L = sup h(z). With T fixed the inequality (4.2) proves (ii)’.

|zl<1

b) Proof of (ii). By Corollary 2.2, it holds that
M, ,M(X(s) = W(x)e *~» — C, (4.3)

where k& and C are positive constants. We can choose a positive number
o so small that e % > % for 0 <7 <46. Then we have

M, W(X(s)) = %h(m) —C fort<s<t+s. .49

Choose T large than 6 and use (4.4) to obtain

Vit, @) = ImMmh(X(u))du + f L
t t+é (45)
> %5h(m) —Co+ LT,

where L’ = inf i(x). This inequality (4.5) proves (ii).

¢) Proof of (i) and (iii). If &(x) is bounded, the differentiability
of M, h(X(s)) in ¢t and = is well-known. (cf. Gikhman-Skorokhod [1]).
If h(x) is polynomial, the following lemma follows from Lemma 6.2 in
[3] p. 230 with a slight modification. But, in order to prove Theorem
4.3, we shall establish it in the following generalized form.

LEMMA 4.1. Consider a system (2.1) in §2, where we assume, in
addition to (A) and (A,), that f(t,x) and G(t,x) are of C*class in ¥ and
Sos Joor Gz and G, are all bounded. Let ¢(x) be a function of C*-class
defined on R*. Then, if o(x), ¢, () and ¢..(x) are locally uniformly r-th
integrable for some r > 1, the function

u(t, x) = M,,p(X(s)) t<s
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is of C'-class w.r.t. t and of C’-class w.r.t. x, and satisfies
Lult,x) =0 t<s. (4.6)

Remark 4.1. We say ¢(x) is locally uniformly r-th integrable (more
precisely, r-th integrable with respect to the process X(f)) if ¢(y) satisfies

M, . loX() < Clty, 8,D) < oo, for any {, <t<s, xzeDCR",

where D is any compact subset of R”.

We will prove Lemma 4.1 only in the case n = 1. The proof for the
case n > 2 can be given similarly.

We use the following facts which are easily shown under the as-
sumption of Lemma 4.1 (for details see Khas’minskii [3] pp. 225~227,
Gikhman-Skorokhod [1] pp. 403 ~412):

1) If we put
Y (8) = L [Xteta(s) — Xta(s)]
Ax
then
MY ,,(8))'™] < ekt=v @.n

where % is a constant depending on sup|f,|, sup|G,| and m.
2) If we put

oxXte o .. . C
P (s) = lim X¢, ,,(s) (in L’-sense) , (4.8)

4z-0

&(s) =

then &.(s) is well-defined and satisfies

MI(E ()] < erem? (4.9)

where k is the constant given in 1).

3) If we put
¢i(s) = g X (s) = 985(5) (in L’-sense) , (4.10)
ox* o
then ¢%(s) is well-defined and satisfies
MICL(®)I™] < cefe? (4.11)
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where ¢, and k are constants depending on sup|f,|, sup|fz.l, sup |G|,
sup |G,,| and m.

Proof of Lemma 4.1 in the case n =1. Let I, (x) be a smooth
function on R! satisfying

I(x)=0 2| =n + 1
L@ =1, L =4, |[I[;@|<{, (£ constant),

and put ¢, (®) = o(@)-1,(x). Clearly ¢,(®) — p(x) as n— oo, and |p,(2)]|
= o(®).

If we define u,(t, x) by
Ua(l, @) = M, 000(X(s)), T <s (s fixed),
then we obtain
U, ) — u(t, v) = M, ,0o(X(s)) (n — o0) . 4.12)

We see that u,(¢,x) is of C'-class in ¢ and of C’-class in x, because ¢,(x)
is bounded. To show that u(f,x) is of C'-class in ¢ and of C’-class in
x it suffices to prove that w, ,, %, .. and u,, are uniformly convergent
on any compact subset of (¢, x)-space. Put

w*(t, x) = Mlg/(X>2(s))&(s)] .

This is well-defined because of the r-th integrability of ¢'(x) and (4.9).
By the definition of ¢,(x), we have

@) = ¢'(@)  (n— o0).
Therefore we obtain
Un,o(t, @) = M@l (X"7(8))E4()] — u* = M/ (X*=()§L(s)]
where we have assumed that the equality
Un, (8, ) = Mlgh(X**(5))§5(5)]

holds. (ef. Gikhman-Skorokhood [1]).
We are now ready to prove that the convergence is uniform on
compact.
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|t 2) — tn,ot, )| < MI{p' — TupY HX=(9)]1€4()]]
= MI1 — I,_(X**()]|(¢" + L) X"=(s))]|&5(sN)]]
< {MIQA — I,_(X*=(s))) |&4(3) I}/ (4.13)

X {MI(¢’ + ﬂgo)(X"x(S))]r}W’% + % =1,
< C'(ty, 8, D)Y{MI|1 — I,_(X*2(s)||EL(s) 17}/,

where the constant C’(¢,,s,D) in the last inequality is to be determined
by the local uniform integrability of ¢(x) and ¢/(x). Using the Schwartz
inequality, we have

M — I, _)(X*=(s)[ €))7

4.14
= MIA — L, _)( X)) PHM|E() 2. (4.14)
The Chebyshev inequality proves that
MIA — L, )(X"*(s)P” < P(X"*(9)|=zn—1) < - 1 1M[IX‘"(S)I]
4.15)
< Y ony,s, D).
n—1
Combining (4.13), (4.14), (4.15) and (4.9), we obtain
[u*(t, x) - un,z(t, x)l
1 (4.16)

< Oty 8, D)1 C"(ty, 5, Dy erxe-to)

The inequality (4.16) shows that u, , converges to u*(f,«) uniformly on
[t,,s] X D. As a consequence, u,(t,«) is continuous and

Uy(t, %) = w*(t, 2) = Mlp'(X**())&,(s)] . 4.17)

By the same way, using (4.11) in place of (4.9), we can prove that
Uy.(t, ) is continuous and

Uga(8, @) = Ml (X()EL()] + Mg/ (X**())Li(9)]
=lim u,,;, = lim Mg, (X"*()§4()] + Mg (X**(s)TE()] .

N =00 n—0o0

(4.18)

Finally we prove that u,(t,x) exists and that u(t,x) itself satisfies
Lu(t,x) =0 for t <s. 4.19)

Here we note that (4.19) holds for u,(t,x). That is
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un,t(t’ .’,U) = _f(t, x)un,x(t, x) - %GZ(t, x)un,zm(ty x) .
The right side converges to
— St st 3) = LG, Dhaalt, )

uniformly on [f,,s] X D. Thus we have proved that u,(¢,z) exists and
that

w(t, ) = limwu, ,(t,2) = — f¢, ©)ult, x) — %Gz(t,x)uw(t,x) )

n—co

which was to be proved. (Q.E.D))

We now return to the proof of Theorem 4.1. If we take the above
function Z(z) as ¢(x) in Lemma 4.1, then all the assumptions in Lemma
4.1 are satisfied. Thus we see that the function u(¢,x,s) given by

w(t, z,8) = M, m(X(s))
satisfies
L, ut, x,8) =0 t<s,xeR".

With this, we obtain

PVt 7)) = & IHTu(t,x,s)ds
t

a t+T a t+T
= 9 (", @, 9)ds + 3 fult, @) j u(t, @, s)ds
at 7 ox;J¢e

2

1 (t ) J‘Z+T (t )d
- i X u\t, x, 8)as
T3 Z; ! ia

+T au

=ult,z, t + T) — ult,x,t) + J.z
(4.20)

[ s

1 ou
- 11 (s t, x,s)ds
+J-ZZ'0]( x)axaxj( )

T
= ut,z,t + T) — ult, x,t) + f” 2, ut, @, s)ds
13

=u(t,z,t + T) — u(t,x,t)
=M, MX({t+ T)) — () .
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This is bounded above by

L+ M | Xt+ DP —x) L+ K+ clzpe = — wx). (4.21)
Taking T large enough, we obtain from (4.21)

LVt o) <L+ K + %le” — ()

(4.22)

1 1
<2L+ K4+ = — —jzp.
+ +2 lel

The inequalities (4.22) and (4.2) show that the condition (iii) is satisfied.
(Q.E.D.)

COROLLARY 4.1. Let X(t) satisfy the assumptions of Theorem 4.1,
and let f(t,x) and G(,x) be independent of t; denote them by f(x), G(x)
respectively. Then

Lim | f(@)] + |G()| >0.

15T-e ||

Proof. Since the system is temporally homogeneous, the correspond-
ing Liapunov function given by (4.1) is also independent of ¢. In fact,
V(t,x) and LV(t,x) are of the forms

Vi, 2) = V@) = j "M X @)de (4.23)
N 1w o PV
FV(, ) = Zi:f () o, (x) + 5 %30“(90) Ty (=) . (4.24)
Let us prove
1 ov (x)| < bylaft + b, (4.25)
or;
v -2
] e (x)\ < byjaP~ + b, , (4.26)

where b, b,,b, and b, are positive constants. For simplicity, we consider
the case »=1. Using (4.17) with ¢(x) = h(x) and the Schwartz in-
equality, we obtain
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V.l _|[*d (T 0
%(x)\ - \j 20, 2,9) ds\ - U M H(X(8)E(s)ds
< j:{Mxh'(X(s))Z}1/2{Mzsz<s>2}*ﬂds .

From the inequality (4.9), we have {M,£,(s)}"* < b for 0 < s < T, where
b is a constant. Therefore it holds that

[i‘i(x)‘ <b f ML X (s))eds 4.27)
ox 0

The obvious inequality
K@) < o/|2Fo + b
and Corollary 2.1 prove
M (X)) < CA + |x|P)erT for 0<s<T.

Combining this inequality with (4.27), we obtain (4.25).

The inequality (4.26) can be proved by the same way, using (4.9),
(4.11) and (4.18).

On the other hand V(x) satisfies the conditions in Theorem 3.1 (B)
by a consequence of Theorem 4.1. Thus the following inequality must
be satisfied:

LV@) < —bilalP + B (4.28)

Observing (4.24), (4.25), (4.26) and (4.28), we see that the conclusion of
Corollary is a necessary condition in order that the conditions (4.25),
(4.26) and (4.28) are all satisfied. (Q.E.D))

COROLLARY 4.2. Let X(t) be the process which satisfies all the as-
sumptions in Theorem 4.1 for p = 4/3 and the following condition:

G, 2)| < e + |2, (4.29)

where 0 < r < 1/3. Then the process X(t) is strongly exponentially w-th
ultimately bounded.

Proof. Let V(t,x) be the Liapunov function which is given by (4.1)
with p = 4/3 in the proof of Theorem 4.1. We will show that the func-
tion W(t,x) = e"“® gatisfies all the conditions in Theorem 3.3 (B). It
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is clear that W(t,z) satisfies the conditions (i), (iv) and (iv)”. Taking
derivatives of W(t,‘x), we have

LW, @) = @D ($V(t, 2) + L5 6t 00 (t,0) 0V, x)) .
2 %7 ax,; axj

As V(t,x) satisfies the condition (iii) in Theorem 3.1, there are two
constants ¢;, and 8 such that

LV, x) < "‘Clzlxlm + 8.
Therefore we have

LW, x) < W(t,x)
(4.30)

X (—ealal” + B+ & 5ot 2 ¢, 0027
2 % awz axj

(t,x)().

Using (4.25) in the proof of Corollary 4.1 and (4.29), the inequality
(4.30) is changed into

LW, ) < W(m){— Culz + B+ % > |00 \By @ + bz)ﬂ}
]

4.31)
< W(t,x){~ Culal + B + %anm 42 + bz)Z} .
Since r is smaller than 1/3, we obtain from (4.31)
LWt 2) < W(t,x){—-;—cmmr“ + ﬁ'} , (4.32)

where g is a constant. The inequality (4.32) is equivalent to the condi-
tion (iii). Now it is easy to check that W(t,x) satisfies the other con-
ditions in Theorem 3.3 (B)’. (Q.E.D.)

THEOREM 4.2. Consider a system (2.1) in §2. We assume that
f(t,x) and G(t,x) are of C*-class in x and f, and f,, are bounded and
that G(t,x) has a compact carrier as a function of x. If the process
X(t) governed by (2.1) is p-th ultimately bounded, then there exists a
Liapunov function V(t,x) which satisfies the conditions (i), (ii) and (iii)
in Theorem 3.1 (A).

Proof. Since the process X(t) is p-th ultimately bounded, there is
a constant K such that
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Iim M, ,|z(s)|?P < K for any (¢,x) .
oo

Taking two constants K, and K, with K < K, < K,, we define a smooth
function G() on R' by G(r) =r— K, + 1, for r = K,, G(r) =0, for
r<K,0<Gr <1, for K, <r <K, Set

V(t, x) = j “Gult, x, e de, 1> 0,

where u(t,x,s) = M, ,h(X(s)).

a) Proof of (ii). We can carry out the proof by the same way as
that of b) in Theorem 4.1.

b) Proof of (i) and (iii). The smoothness of V(¢,x) is trivial. To
find the expression for #V(t,x) we proceed as follows.

aa‘t’ ¢, 2) = — Gt 8) + j "Gt ¢, D, z, e 0ds
t

— IJNG(u(t, x,7))er "t dr
[

= e+ K, — 1+ J.wG’(u(t,x,r))ut(t,x,r)e“"”dr — IV, @)
t

for || = K, .
oV (t,x) = ij,(u(t, &, D)y (t, &, D) 0dr |
axi t
i = |6 (e —t)
(t; .7/') —_ G (u(ta x, T))uxz(t, x, T)uxj(t’ x, T)e d’Z'
690,@%,- ¢

+ IwGl(u(t’ X, T))uzixj(ty X, 7)e' " Pdr .
¢

Therefore we have, for || > K,,

PV, 0) = —|af + K, — 1 — 2V(t, 2) + rG'(u(t,x,r))Jt,zu(t, @, D)o de

+ 150, x)j”G"(u(t, @y Ol (£, B, g (1, @, D)0

2 £
! (4.33)

= —jap — V() + K, — 1+ %zaw
]

X fWG/,(u(tr Zz, T))u.zi(t, X, T)u_zj(t, X, r)e“"“dz- ,
t

where we have used ¥, u(t,x,7) =0. By the assumption that G(t, )
has a compact carrier,
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g, x) =0, for (2| = K, . (4.34)
From (4.33) and (4.34) we obtain
LV(t,x) £ —AV(t,x) — 2P + K, — 1 for |z| = max {K,, K} .
Thus the condition (iii) has been verified. (Q.E.D.)

THEOREM 4.3. Consider a system (2.1) in §2, and assume that the
coefficients f(t,x) and G(t,x) satisfy the same assumptions as those of
Theorem 4.1. If the process X(t) governed by (2.1) is strongly ex-
ponentially w-th ultimately bounded, then there exists a Liapunov func-
tion V(t,x) which satisfies the conditions (i), (ii), (iv) and Gv) in
Theorem 3.3 (B).

Proof. From the definition of strongly exponentially w-th ultimate
boundedness there is an associated function ¢(x) = e?!*” satisfying

M, p(X(9) < C-p(x)e~=¢"" + K . (4.35)
We introduce a C’-class function #(x) such that
a(2) = o(x) for |z| > 1.

The inequality (4.35) still holds for ¢(x) by replacing, if necessary, K
with a new constant K’:

M, ,5(X(s) < C-p(x)e ¢~ + K’ . (4.36)
a) Put
Y(@) =vVo(x) . 4.37)

We will first show that (x) satisfies the assumption in Lemma 4.1. It
is clear that v(x) is locally uniformly square integrable by (4.86) and
(4.37). Take a constant #, such that 2 > v > 1. Then we have

Ve ()| < 0 for |z|< 1,

4.38
Ve@) S $@(Rabizp 40)  forz1,

where ¢ is a constant. The Holder inequality proves that
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M, (X)) < Mo, WX (S) %ale(s)P“‘ + a) "4

< (ML X7 Mo S ab| X P + 3] " (4.39)

o, L4 loa,
roor

The inequality (4.39) means the locally uniform 7»-th integrability of
A, (@) if b =1, because (x) is locally uniformly 73-th integrable and
|xP~* is locally uniformly r7-th integrable by Corollary 2.1. While, if
b <1, we have [{,,(2)| < |¥(2x)|0’ with some constant & > 0 by (4.38), so
that ¥,,(x) is locally uniformly 7,-th integrable.

We take a constant 7, such that 1 <7 <7 < 2. Then

N’xzz,(x)[ <d for 2| <1,

[V (@)] < W(yc)[(-i_aquxlz(b—n + 5/,) (4.40)

+ 4@ (Fab® — Diap +37) |
where 0" is a positive constant.
Thus the locally uniform 7,-th integrability of v .,(x) can be proved as

before.
b) Put

u(t, z,8) = M, (X(s)) ,
then, by the use of Lemma 4.1, we have
P, ut,x,8) =0 for t <s. (4.41)
By using (4.36), (4.37) and the Schwartz inequality we obtain

u(t, z,8) < [M,,.p(X(s))]"”

< (C¢(x)e-a<s-z> + K < Cl/zw(x)e(—l/Z)a(s—t) + K" (4.42)

c) Put
t+ T
V(t,x):L ult, z, Dde

where T is a constant which is to be determined later. We will show
that the V(¢,2) has the desired properties. The Jessen inequality and
Corollary 2.2 show that
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u(t, €, 7) = M, ,9(X(2)) = M, lelaix@r-al]

> el/2aM 51 X (1) 1P-da}
> elnalalle=be=O-ds}) — ¢ U/Dalzite=k(=0
> ¢ el fort<ct<t+ T,

where d, and d, are constants and c; = e %, d, = (1/2)e"**. Thus the
condition (iv) is satisfied. As for the condition (iv)’ we proceed as
follows :

Vit z) < cvwf(x)j”Te<—1/2>a<f-~df + KT (by (4.42))
t
< e gy, (s> 0,¢4 >0) . (4.43)

The properties that V(¢,x) is of C'-class in ¢ and of C’-class in x are
inherited from wu(t, x, 7).

We finally prove that V(¢,x) satisfies the condition (iii). By the use
of (4.41) as in (4.20),

LV, x) = uwt,x,t + 1) — ult,z,t)
c”zx[f(x)e(“/z’” + KN 1[f(90) (4.44)
_C”e(llzmlzlb + K"z

A IA

Here we choose the constant T, which has been kept undefinite, so large
that the last inequality holds with positive constant ¢,;. The inequalities
(4.43) and (4.44) assure the condition (iii). (Q.E.D.)

§5. Recurrence property.

W. M. Wonham ([5]) has discussed on the positive recurrence
property of a temporary homogeneous system given by a stochastic
differential equation by means of Liapunov functions. He studied the
system given by

dX(@) = f(X@)dt + GX@)AW (@) , (6.1)

where the coefficients f(x) and G(x) satisfy Lipchitz condition and G(z)
is non-degenerate, i.e. G(x)G(x)* is a strictly positive definite matrix.
One of his results is that the existence of a Liapunov function V(x),
which satisfies the condition #V(x) < —1 for |x| large enough, is neces-
sary and sufficient in order that the system is positive recurrent (cf.
Lemma 2 and Theorem 2 in [5]).
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Our results in §4 assert the existence of Liapunov functions. Com-
bining Theorem 4.1 and the Wonham’s result, we conclude that if the
system governed by (5.1) is non-degenerate and if it is exponentially
p-th ultimately bounded for some p > 0, then it is positive recurrent.
If we replace Theorem 4.1 with Theorem 4.3, we have again a similar
conclusion.

We note that Ex. 3.2 shows that the system which is exponentially
p-th ultimately unbounded may be positive recurrent. From this fact
we know that, in the case where the system is temporary homogeneous
and non-degenerate, the concept of exponentially »-th ultimate bounded-
ness expresses stronger stability than positive recurrence.

For further development we should investigate the recurrence prop-
erties of systems even if the system is not temporary homogeneous or
may not be non-degenerate. Either case is interesting in many aspects.

Let us first introduce definitions of recurrence property which are
suitable for possibly degenerate cases.

DEFINITION 5.1. A process X(¢), t = 0, is said to be weakly recur-
rent if there exists a constant K such that

P, fo;| Xt + s)| < K for some s > 0} =1 for any (¢,2),

where P, , stands for the conditional probability under the initial con-
dition X(¢) = «. The set {x;|x| < K} is said to be a recurrent region.

DEFINITION 5.2. A process X(t), t = 0, is said to be weakly positive
recurrent if there exists a constant K and the following condition is
satisfied for the first hitting time c(w) to the region {x;|z| < K};

M, (o) < oo for any (¢,x) .

THEOREM 5.1. The process X(t) defined by (2.1) is weakly recurrent
if it is p-th wltimately bounded for some p > 0.

Before we prove this theorem, let us prepare a lemma.

LEMMA 5.1. Let X(t) be a Markov process. If there are a positive
Borel measurable function p(t, x) defined on [0, c0) X R™ and two positive
constants K and o such that

P, f0;|XE + o, 2),0)| S K} Za>0  for any (¢, 2), (5.1
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then the process X(t) is weakly recurrent and {x;|x| < K} is the recur-
rent region.

Proof. For a fixed (t,x), let us define subsets 2;, 1=1,2,-.-,c0,
of 2 as follows;

2, ={we2;|X(® + p(t, 1), w)| > K},
2, ={we ;| X + pt,x) + p(t + p(t, x), X[ + o, 2)), )| > K},

.Qm = m AQZ .
121
Since {w;|X( + s,0)| > K, for any s = 0} C 2., it is sufficient to prove
P, (2.) =0. Form the assumption of Lemma 5.1,
P,2)<1l—a<1. (5.2)

By the use of the Markov property and the measurability of p(t,x), we
have

Pt,x(gz) = Mt,x{X!Jl(w)Pt+p(t,x),X(Hp(t,z),m)(Q/)}

2 ={o;|XE + p@, 2) + p(t + p(t, ), X(¢ + p(t, 2))))| > K} . ©3
The inequality (5.2) is true for any (¢, %), i.e.
Ptz xtsnit,zr,0l@; | X(E + o, 2) + ot + o, 2), X(E + p(t, 2))))| > K} 5.4)

<l—a.
From (5.3) and (5.4), we get
P (2)=(1—-0a).
In the same manner,
P, (2)=1—-a)—0 as §— oo .

This proves P, ,(2.) = 0. (Q.E.D.)

Proof of Theorem 5.1. It is clear that M, ,|X(s)|? is continuous in
(t,x) for a fixed s and is continuous in s for a fixed (¢, ). (cf. Lemma
4.1, where it has been proved that if the coefficients of (2.1) are smooth,
then M, .|X(s)|? is smooth.) From this fact we are able to define a
Borel function p(¢, ) such that

M, .| Xt + ot )P < KP = (1 + 9K, (5.5
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where K’ is the constant determining the ultimate boundedness of X(?)
and ¢ is a positive constant.

We will next determine constants K and « so that the inequality
(5.1) is satisfied. Put K = K, + . Then the following inequality is
valid by (5.5),

P, {0;|X@ + o, 2)| > K} = P, {0; | X(E + o, 2)? > K?}

1 K? (5.6)
é ’Iz—pMz,xlX(t + P(t’x))lp é fl =1- a < 1.

»

This proves that the process X(¢) is weakly recurrent. (Q.E.D.)
In the case of exponential type, more precise result is obtained.

THEOREM 5.2. The process X(t) defined by (2.1) is weakly positive
recurrent if it is exponentially p-th ultimately bounded for some p > 1.

This theorem is obtained as a corollary of the following lemma.

LEMMA 5.2. Let X(t) be a Markov process. If there exist a positive
non-decreasing function W(r) defined on [0, co) and two positive constants
K and p such that

M, | X+ 9)P < K?  for any (t,2) and s = W(x)) , 5.7

and

|

;_;“1 W + DN) < oo for any N=0, (5.8)

»

N

then X(t) is weakly positive recurrent.
Proof. Let us first notice the following inequality

P, {o; |1 X1 + W(x))| = kK}

1 1
< —
< “(kK)p M, | X+ W) < R

56.9)

Set K’ = (1 + ¢)K, where ¢ is a positive constant to be determined later.
We will show that X(t) is a weakly positive recurrent process with the
recurrent region E, = {x;|z| < K'}.

Put B, = {z; (K’ <|2| < (4 + 1K'} and W'(¢) = WK, £ =1,2,---,
and fix the starting point (¢,2). We define a sequence {x,(@)}m_1,,..., fOT
almost all w(P,,) as follows;
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xo(m) =27 ’
(o) = X(¢ + W(=z), ),
Tw) = X0 + W(z) + W + D,0) if z(@ekE,,

Tp(w) = X@E + W(z) + W+ 1D+ -+ + W(lp_, + 1,0
if v(wek,, -, Tp.ckE

m—1 *

Then 2 is represented as
Q=3 0.mod. 0(P,,),
m=1

where 2, ={weQ;x(weE,, - -, Cn_ (0)e Ey,z,(0ckE}. This is true
because X(t) is weakly recurrent by Lemma 5.1 and E, is a current
region for any ¢ > 0. Let us further devide 2, as follows;

th = Z 'Qm,el,n

*sém—1 ?
£1,y8m—121

where 2,400, ={0; (@) eE,, -, Zn_(0) e E,,_,, Tx(0) € E}.
Define z(w) as the hitting time to E,, then the following inequality

is satisfied
(w) = W(x|) on 2,
é W(lxl) + W/(Zl -+ 1) on Ql,zl ’
SW(laD+ W+ D+ - + Wln+ 1 on Qe tmey -

Therefore we have

Mt,x[T(m)]
< 2 Poo@mein JIW(E) + W+ D+ oo + W(ln, + DI

My 81,00y Em—~121

(5.10)

To evaluate the right hand side of the above, we proceed as follows.

1 1 1 .
P, (Qn,i,... cee . 5.11)
t, ( )01, ,lm—x) < (1 + e)p(m—l) (el)p (gm—l)p (

This inequality is proved inductively by the use of
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Pt,x{‘QmH,l; ----- zm} = Pz,z{ Z Qm+1,zl.~~~,em_1,e}
2l

= Mt.Z{X-Om,el,---,z,,,_IPs,Xm(w){a); xm+1(w) > ngl}} ’
E=W(z) + W, + D+ - + W(ln,+ 1)
= Mz,x{X!?m,:p"’:tm—xPs,Xm(m){m; T (@) > £n(1 + K}}

1
=M,, Xﬂm,gl,---,gm_lm} (by (5.9)

1
= P T Qm rvenbm—1)TT T e w9
t, ( sl1seessbm )(ﬂm)p(l + E)p

and
P, (2)<1.
Using (5.10) and (5.11), we get

M, .[z(»)]
o 1
< o
= W(zD + 2} A5 rmd
x W(x) + W, + 1)+ -« + W, + 1)
b1, 000, 8m—121 (ﬂl)p' . ‘(gm—l)p
= W(=z]) + i ——L—{W(lx]) 2 1
=1 1 opoy N AN T (5.12)
- W', + 1)
R P Y 75 ey T }
= W(z) + 3 L w(zpam + (m — DA™B)

=2 (1 + ¢)pm-D

_ =( A\, B & A \mioo
=W+ W Sl Slate) oY

where A = 271;7 and B = i} %p—W’(é + 1) which converge by the as-
4=1 £=1

sumption (5.8). The right side of (5.12) converges if we choose ¢ large
enough. (Q.E.D.)

Proof of Theorem 5.2. Let K, be the constant determining the
ultimate boundedness of X(¢) and let K = K, + 1. As we mentioned after
Theorem 3.1 (cf. Remark 3.2), the condition (5.7) is fulfilled putting
W) =d, log(1 + ) + d,. The condition (5.8) is valid since p > 1 and
W(r) is a logarithmic function. Therefore Lemma 5.2 can be applied
to this process and we get the conclusion. (Q.E.D))
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