RELATION BETWEEN THE SHAPLEY VALUE AND NULL GROUP COHOMOLOGY

ANDRZEJ MADRECKI

The purpose of this paper is to give an application of homological methods to game theory. The main theorems give conditions of a homological nature for the existence and uniqueness of the Shapley value for games with continuum players.

Introduction

The Shapley value for *n*-person games was introduced in [3]. In [1] Aumann and Shapley have given the following definition of the Shapley value for games of continuum players. Let I = [0, 1] be the set of players, let *BV* denote the space of all bounded variation set functions defined on Borel sets *B* of *I*, and let *FA* denote the set of all bounded finitely additive set functions on (I, B). Finally, let *G* be the group of all Borel automorphisms of the interval *I*. Then a Shapley value is a map $\varphi : Q \mapsto FA$, where *Q* is a *G*-invariant subspace of *BV*, and φ is linear, positive and it satisfies the following conditions:

(I) $\varphi g_* = g_* \varphi$ for all $g \in G$;

(II) $(\varphi v)(I) = v(I)$ for all $v \in Q$.

(Here $(g_*\varphi)(S) := \varphi(g(S))$ for $g \in G$ and $S \in B$.)

In [1] there were investigated the subspaces Q of BV for which

Received 22 June 1983.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/83 \$A2.00 + 0.00.

there exists the Shapley value φ and also those for which φ is uniquely determined. A natural question arises: how many Shapley values exist for a given linear space and how it depends on the group G. In this paper we give a partial answer to this question using the homological methods.

Since axioms (I) and (II) state a functor property in the category of G-modules, it apparently leads to the algebraic approach to the problem of existence and uniqueness of the Shapley value.

In Section 1 we define the action of a group G on the Banach algebra BV, where G is a group of the Borel automorphisms of a Polish space; and we introduce special cohomological spaces. Section 3 contains the main result of this paper (Theorem 3.1). If the null cohomological space, $H^{O}(G, FA)$ is nontrivial, then there exist G-Shapley value on every subspace $Q \supset FA$ with $Q \subseteq BV$.

From the proof of Theorem 3.1 it also follows how many distinct Shapley values are available. A necessary condition for the existence exactly one *G*-Shapley value is established in Theorem 3.2.

For basic notions of homological algebra we refer to [2].

1. Preliminaries and notations

Let (X, B) be any measurable space, that is, B is a σ -algebra of subsets of X. By BV we denote the Banach space of all real valued set functions of bounded variation defined on (X, B). By FA (respectively FA^+) we denote the subspace of all bounded finitely additive (respectively nonnegative) set functions in BV (see [1]).

By Aut(X, B) we denote the group of all automorphisms of the space (X, B), where the multiplication is defined as follows:

(1.1)
$$(g_1 \cdot g_2)(S) := g_2(g_1(S))$$
 for all $g_1, g_2 \in Aut(X, B)$, and $S \in B$.

Let G be any subgroup of Aut(X, B). The action of the group G on the space BV, that is, the map

$$(1.2) \qquad \qquad G \times BV \ni (g, v) \mapsto g \cdot v \in BV$$

is defined by

(1.3)
$$(gv)(S) = v(g(S))$$
 for all $g \in G$, $v \in BV$ and $S \in B$.

It is easy to verify that the following hold:

(1.4) (i)
$$g(\alpha v_1 + \beta v_2) = \alpha g v_1 + \beta g v_2$$
,

(ii) $(g_1g_2)v = g_1(g_2v)$,

(iii) ev = v, where e is the neutral element of G, for each g, g_1 , $g_2 \in G$, v, v_1 , $v_2 \in BV$ and α , $\beta \in \mathbb{R}$.

Let $\mathbb{R}[G]$ be the group algebra of the group G over real numbers, that is, the elements of $\mathbb{R}[G]$ have the form

(1.5)
$$\sum_{g} r_{g}g, r_{g} \in \mathbb{R}, g \in G \text{ and } r_{g} = 0$$

for all but finitely many $g \in G$, and the multiplication is defined by

(1.6)
$$\left(\sum_{g} r_{g} \cdot g\right) \left(\sum_{h} r_{h} \cdot h\right) = \sum_{g,h} (r_{g} \cdot r_{h}) \cdot (g \cdot h)$$

Let us define the action of $\mathbb{R}[G]$ on BV as follows:

(1.7)
$$\mathsf{R}[G] \times BV \ni \left(\sum_{g} r_{g} \cdot g, v\right) \mapsto \sum_{g} r_{g}(gv) \in BV$$

By (1.4), (1.7) and the definition of R[G], it follows that *BV* may be regarded as R[G]-module. Moreover, the additive group R of real numbers also is a R[G]-module (it is called trivial R[G]-module), when the action of R[G] in R is given by

(1.8)
$$h \cdot r = r$$
 for each $r \in \mathbb{R}$ and $h \in \mathbb{R}[G]$.

For each subgroup G of Aut(X, B) we define the sequence $\{H^{q}(G, \cdot)\}$, $q = 0, 1, 2, 3, \ldots$, of q-dimensional cohomology groups by setting

(1.9)
$$H^{q}(G, A) := \operatorname{Ext}_{\mathbf{R}[G]}^{q}(\mathbf{R}, A)$$

for any R[G]-module A (see [2]). Clearly, each $H^{q}(G, A)$ is a linear space over R. From the definition it follows that $H^{q}(G, \cdot)$ is the covariant functor from the category $Mod_{R[G]}$ of all R[G]-modules to the category $Vect_{R}$ of all vector spaces over R.

We note that $\{H^{q}(G, \cdot)\}_{q}$ has the following properties:

(1.10)
$$H^{O}(G, A) = \operatorname{Hom}_{\mathbb{R}[G]}(\mathbb{R}, A)$$
 for each $\mathbb{R}[G]$ -module A ,

(1.11) every short exact sequence $0 \mapsto A \mapsto B \mapsto C \mapsto 0$ of $\mathbb{R}[G]$ -modules induces the long exact sequence

$$0 \longmapsto H^{0}(G, A) \longmapsto H^{0}(G, B) \longmapsto H^{0}(G, C) \longmapsto H^{1}(G, A) \longmapsto H^{1}(G, B) \longmapsto \dots$$

of the vector spaces.

LEMMA 1.1.
$$H^{O}(G, A) \doteq A^{G}$$
, where
 $A^{G} = \{a \in A : ga = a, \text{ for every } g \in G\}$.

Proof. If $\varphi \in H^0(G, A) = \operatorname{Hom}_{\mathbb{R}[G]}(\mathbb{R}, A)$, then φ is a function from \mathbb{R} into A such that $\varphi(r) = r\varphi(1)$ for all $r \in \mathbb{R}$. Moreover, for each $g \in G$ we have

$$\varphi(1) = \varphi(g \cdot 1) = g \cdot \varphi(1)$$
, hence $\varphi(1) \in A^G$.

Finally, we observe that the map

$$\operatorname{Hom}_{\mathsf{R}[G]}(\mathsf{R}, A) \ni \varphi \mapsto \varphi(\mathsf{l}) \in A^{\mathcal{G}}$$

is the isomorphism of the vector spaces and this completes the proof.

2. Definition of the *G*-Shapley value in the framework of cohomology

Let $: BV \mapsto BV$ denote the set function defined by

(2.1)
$$|v|(S) = |v(S)|$$
 for every $S \in B$, $v \in BV$.

For every $g \in G$ we denote by g_* the linear map from BV to BV defined by formula

$$(2.2) g_*(v)(S) = v(g(S)) for all v \in BV, g \in G, S \in B$$

Following [1], a G-Shapley value φ on Q is the R-linear map $\varphi : Q \mapsto FA$ satisfying the following conditions:

(2.3) (i) for every
$$g \in G$$
, $g_* \varphi = \varphi g_*$ (the symmetry);

(ii) $(\varphi v)(X) = v(X)$ for each $v \in Q$ (the Pareto optimality);

(iii) $\varphi(|v|) = |\varphi(v)|$ for each $v \in Q$.

The condition (2.1) (i) and linearity of φ imply that $\varphi \in \operatorname{Hom}_{\mathbb{R}[G]}(Q, FA)$. Now we define the $\mathbb{R}[G]$ -homomorphism $I : BV \mapsto \mathbb{R}$ (where \mathbb{R} is regarded as the trivial $\mathbb{R}[G]$ -module), by the formula (2.4) I(v) = v(X) for each $v \in BV$,

where (X, B) is a given measurable space.

For every $Q\subseteq BV$ we denote by I_Q the restriction of I to Q. Now we are ready for the cohomological definition of the Shapley value.

DEFINITION 1. We shall say that $\varphi \in \operatorname{Hom}_{\mathbb{R}[G]}(Q, FA)$ is the *G*-Shapley value on the linear *G*-invariant subspace $Q \subseteq BV$ if φ satisfies two conditions:

(SVI) $I_{FA} \circ \varphi = I_Q$;

(SVII) $\phi \circ | = | \circ \phi$.

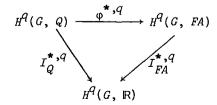
 $I_Q,\ I_{F\!A}$ and $|\ |$ are mappings defined above, and \circ denotes the composition of the maps.

3. Cohomological conditions for the existence of the *G*-Shapley value when $H^{0}(G, FA)$ is nontrivial.

Necessary condition for the uniqueness of the *G*-Shapley value

Let φ be a *G*-Shapley value on *Q*. For any $q \ge 0$, we denote by $\varphi^{\star,q}$, $I_Q^{\star,q}$ and $I_{FA}^{\star,q}$ the homomorphisms induced by φ , I_Q and I_{FA} , respectively. Then we have the following:

LEMMA 3.1. If φ is the G-Shapley value on Q then for each $q \ge 0$ the following diagram



(SVI)

commutes.

The lemma follows immediately from the cohomological definition of the G-Shapley value, and from the functional properties of the cohomology theory.

COROLLARY 3.1. If for some $q \ge 0$ and for each *R*-linear map $h : H^{q}(G, Q) \mapsto H^{q}(G, FA)$ the diagram $(SVI)_{q}$ does not commute, then there is no G-Shapley value on Q.

Since we always assume that Q is a fixed G-invariant subspace of BV, $FA \subseteq Q$, and G is a group such that $H^0(G, FA) \neq \{0\}$, it also follows that $H^0(G, Q) \neq \{0\}$.

Let A be any subset of BV , and let $v \in BV-A$. Then by A_v we denote the R-linear subspace of BV containing A and $\{gv : g \in G\}$, that is,

$$(3.1) A_v := \lim_{\mathbb{R}} \{gv : g \in G\} \lor A\}$$

It is easy to see that if A is the G-invariant subset of BV then the sets $\{gv : g \in G\}$ and A are disjoint, and the space A_v is a G-invariant subspace of BV.

LEMMA 3.2. Each G-Shapley value ϕ on Q can be extended to a G-Shapley value ϕ_v defined on the G-invariant space Q_v , when $v \in \text{BV-Q}$.

Proof. Let $v \in BV-Q$. Then, for each $g \in G$, $gv \notin Q$. Indeed, if for some $g_1 \in G$, $u = g_1 v \in Q$, then $v = g_1^{-1}u \in Q$, because Q is *G*-invariant, but it yields a contradiction.

Let $v = v_1 - v_2$ be the Jordan decomposition of v. By G_v we denote the subgroup of G defined by the formula

(3.2)
$$G_v = \{g \in G : gv = v\}$$

Now we extend φ to the R-linear map φ_{η} : $Q_{\eta} \mapsto FA$ by setting

https://doi.org/10.1017/S0004972700020864 Published online by Cambridge University Press

(3.3)
$$\varphi_{v}(u) = \begin{cases} \varphi(u) & \text{for } u \in Q, \\ \\ \\ g\left(\mu_{v}^{1} - \mu_{v}^{2}\right) & \text{for } \mu = gv, g \in G \end{cases}$$

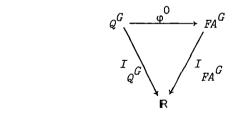
where μ_v^1 and μ_v^2 are any elements of FA^+ satisfying two conditions: (3.4) μ_v^1 , $\mu_v^2 \in H^0(G_v, FA^+)$,

(3.5)
$$\mu_v^1(X) = v_1(X) \text{ and } \mu_v^2(X) = v_2(X);$$

such elements exist because $H^0(G_v, FA^+) \supset H^0(G, FA^+) \neq \{0\}$.

It is easy to verify that the mapping φ_v defined above satisfies the condition (SVI) and (SVII) on Q_v . Thus φ_v is a *G*-Shapley value on the *G*-invariant space $Q_v \supseteq Q$.

LEMMA 3.3. A G-Shapley value φ on the subspace Q exists if and only if there exists a linear map $\varphi_0 : Q^G \mapsto FA^G$ such that the following diagram



commutes and

(SVI)

$$(SVII)_{0} \qquad | \quad | \quad \circ \quad \phi_{0} = \phi_{0} \quad \circ \quad | \quad |$$

 $(\phi_0 \text{ is the G-Shapley value on } Q^G).$

Proof. If φ is the *G*-Shapley value on Q, then $\varphi(Q^G) \subset FA^G$, and φ_0 defined by $\varphi_0 = \varphi | Q^G = \varphi_0^*$ satisfies $(SVI)_0$. Indeed, it follows from Lemma 3.1, because $H^0(G, \mathbb{R}) = \operatorname{Hom}_{\mathbb{R}[G]}(\mathbb{R}, \mathbb{R}) = \mathbb{R} = \mathbb{R}$ (*G* acts on \mathbb{R} trivially). The condition $(SVII)_0$ is obviously satisfied. Conversely, let

 $\varphi_0 : Q^G \mapsto FA^G$ be a R-linear map satisfying $(SVI)_0$ and $(SVII)_0$. We shall construct the G-Shapley value φ on Q. If $Q^G = Q$, then we put $\varphi = \varphi_0$. Now let us assume that $Q \neq Q^G$. Let $v \in Q-Q^G$. Applying Lemma 3.2 for φ_0 , Q^G and v we obtain the G-Shapley value $(\varphi_0)_v$ on the G-invariant space $Q_v^G \neq Q^G$. Now we apply Lemma 3.2 for $(\varphi_0)_v$, Q_v^G and $v' \in Q-Q_v^G$ we obtain a G-Shapley value $((\varphi_0)_v)_v$, on the space $(Q_v^G)_{v'}$, and so on. Proceeding by the transfinite induction finally we obtain a G-Shapley value on Q.

THEOREM 3.1. Let Q be G-invariant subspace of BV. Assume further that $Q \supseteq FA$ and $H^{0}(G, FA)$ is nontrivial. Then there exists at least dim $H^{0}(G, FA)$ -distinct G-Shapley values on Q.

Proof. If $Q \supseteq FA$ and $FA^G \neq \{0\}$, then $Q^G \neq \{0\}$ and FA^G contains the R-linear subspace isomorphic with (R, +). Indeed, FA^G is the R-linear vector space and if $v \in FA^G$ then v^+ and v^- (in the Jordan decomposition of v) both are in $(FA^+)^G$. Since

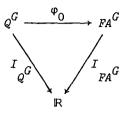
$$v^{+}(S) = \text{supremum} \sum_{i=1}^{k} \max(v(S_{i}) - v(S_{i-1}), 0) ,$$

$$\phi = S_{0} \subset \ldots \subset S_{k} = S \text{ and } v^{-} = v^{+} - v .$$

Thus there exists $\lambda \in (FA^+)^G$ such that $\mathbb{R} \cdot \lambda \subset FA^G$ and $\lambda(X) = 1$. If we put

(3.6) $\varphi_0(v) = v(X) \cdot \lambda \text{ for all } v \in Q^G$,

then the diagram



commutes.

From (3.6) we have $\varphi_0 \circ | = | \circ \varphi_0$. Hence by Lemma 3.3 there is a *G*-Shapley value on *Q*. Finally there are at least dim $H^0(G, FA)$ many different *G*-Shapley values. For it suffices to put for every element *u* of the basis of $H^0(G, FA)$ over **R**,

(3.7)
$$\varphi_u(v) = v(X) \frac{u}{u(X)}$$

PROPOSITION 3.1. If $H^0(G, FA) = \{0\}$ and $H^0(G, Q) \neq \{0\}$ then there is no G-Shapley value on Q.

Proof. Suppose there is a *G*-Shapley value φ on *Q*. Then there is $v \in H^0(G, Q)$, $v(X) \neq 0$, so that, for every $g \in G$, $g\varphi(v) = \varphi(gv) = \varphi(v)$. Hence $\varphi(v) \in H^0(G, FA)$, that is, $\varphi(v) = 0$ which is a contradiction with $\varphi(v)(X) = v(X) \neq 0$.

THEOREM 3.2. There exists a unique G-Shapley value on the space Q if and only if for each $v \in Q^+$ the space $H^0(G_n, FA)$ is one-dimensional.

REMARK. If $v \in Q^G$ then $G_v = G$ and $H^0(G_v, FA) = H^0(G, FA)$.

Proof. Necessity. Suppose dim $H^0(G, FA) > 1$. Let $\{u_i\}_{i \in I}$,

|I| > 1, be an algebraic base of the linear space $H^{0}(G, FA)$. Without loss of generality we can assume that $u_{i}(X) = 1$ for every $i \in I$. Put $\varphi_{i}^{0}(v) = v(X)u_{i}$ for every $i \in I$ and $v \in Q^{G}$. Obviously $\varphi_{i}^{0} \neq \varphi_{j}^{0}$ for $i \neq j$, $i, j \in I$.

By virtue of Lemma 3.3 we may extend each $\varphi_{u_i}^0$ $(i \in I)$ to distinct

Shapley values.

Similarly, suppose that dim $H^0(G_v, FA) > 1$ for some $v \in Q^+ - Q^G$. Then there are $\mu_1, \mu_2 \in H^0(G_v, FA^+)$ such that $\mu_1(X) = \mu_2(X) = v(X)$ and $\mu_1 \neq \mu_2$. We have already proved in Theorem 3.1 that there exists the *G*-Shapley value φ_0 over Q^G if $H^0(G, FA)$ is nontrivial.

Denote by φ_1, φ_2 two distinct extensions of φ_0 over Q_v , where $\varphi_i(v) = v(X)\mu_i$ for i = 1, 2. They exist by Lemma 3.2.

Sufficiency. Let $H^{0}(G_{v}, FA)$ be one-dimensional vector space for every $v \in Q$. Let φ and ψ be two *G*-Shapley values on Q. We claim that $\varphi = \psi$. Indeed, let $v \in Q^{+}$ be arbitrary. It follows immediately from the definition of the *G*-Shapley value, that $\varphi(v), \psi(v) \in H^{0}(G_{v}, FA^{+})$. Since dim $H^{0}(G_{v}, FA) = 1$, we have $\varphi(v) = c_{1}\mu$, $\psi(v) = c_{2}\mu$, for some $c_{1}, c_{2} \in \mathbb{R}$. Here μ is a base of the space $H^{0}(G_{v}, FA)$. But $c_{1}\mu(X) = \varphi(v)(X) = v(X) = \psi(v)(X) = c_{2}\mu(X)$. Hence $c_{1} = c_{2}$ and $\varphi(v) = \psi(v)$. Since v was arbitrary then $\varphi = \psi$.

References

- [1] R.J. Aumann and L.S. Shapley, Values of non-atomic games (Princeton University Press, Princeton, New Jersey, 1974).
- [2] Henry Cartan and Samuel Eilenberg, Homological algebra (Princeton University Series, 19. Princeton University Press, Princeton, New Jersey, 1956).

 [3] L.S. Shapley, "A value for n-person games", Contributions to the theory of games, Volume II, 307-317 (Annals of Mathematics Studies, 28. Princeton University Press, Princeton, New Jersey, 1953).

Institute of Mathematics, Technical University of Wrocław, 50-370 Wrocław, Wybrzeże Wyspiańskiego 27, Poland.