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Abstract

In this paper, we study the stationary distributions for reflected diffusions with jumps
in the positive orthant. Under the assumption that the stationary distribution possesses
a density in R

n+ that satisfies certain finiteness conditions, we characterize the Fokker–
Planck equation. We then provide necessary and sufficient conditions for the existence of
a product-form distribution for diffusions with oblique boundary reflections and jumps.
To do so, we exploit a recent characterization of the boundary properties of such reflected
processes. In particular, we show that the conditions generalize those for semimartingale
reflecting Brownian motions and reflected Lévy processes. We provide explicit results
for some models of interest.
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1. Introduction

Reflected diffusions with jumps arise in a wide variety of applications, such as finance,
queueing and risk theory, and models of manufacturing plants. For example, in [7] the authors
have shown that, in heavy traffic, the process corresponding to the number of customers in
queues subject to service interruptions can be approximated by a reflected Brownian motion
(RBM) with jumps. This was generalized to open queueing networks in [15], where convergence
to a multidimensional reflected Lévy process was shown. More recently, such processes have
also been shown to arise in diffusion limits involving jumps with heavy-tailed distributions
[16]. In addition, reflected diffusion models with jumps are natural generalizations of the class
of so-called piecewise-deterministic Markov processes [3], the generalization being that the
diffusive component adds to the randomness of the evolution of the process between jumps,
and reflections guarantee that the components of the process stay within a given region (for
example in queueing networks where the processes are nonnegative). These models are also
of interest in the risk and insurance context, where the jumps could be the claims while the

Received 28 April 2004; revision received 13 October 2004.
∗ Postal address: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907-1285,
USA. Email address: fpieraug@purdue.edu
∗∗ Postal address: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada. Email address: mazum@ece.uwaterloo.ca
∗∗∗ Postal address: France Télécom R&D, 2 Avenue Pierre Marzin, 22300 Lannion, France.
Email address: fabrice.guillemin@francetelecom.com

212

https://doi.org/10.1239/aap/1113402406 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1113402406


Product-form stationary distributions for reflected diffusions 213

diffusion arises due to volatility of the interest rates, etc. They also play an important role in
mathematical finance; in the context of barrier options, for example.

A special case of reflected diffusions, namely semimartingale reflecting Brownian motion
(SRBM), has been studied quite extensively due to its importance in models of queueing
networks in heavy traffic [4], [17], [18]. In [12], necessary conditions for the existence of
SRBM in the positive orthant were given, in terms of a special condition on the reflection
matrix called the completely-S property. In [14], the sufficiency and uniqueness under this
condition were established. Moreover, in [12] it was also shown to be a boundary property, in
that the reflection map does not charge the set of times spent by SRBM in the intersection of
two or more faces. More recently, in [13] the authors used this property to develop numerical
methods for computing the stationary distribution of queueing networks in the heavy traffic
limit.

In [9], one-dimensional reflected diffusions with jumps, and their corresponding stationary
distributions (when they exist), were studied. It was shown that not only is the Lebesgue
measure of the set of times that the process spends at the origin equal to zero, but also that there
is no probability mass at that point, Lebesgue almost everywhere in time. Recently, in [10], a
characterization of the boundary properties of multidimensional reflected diffusions with jumps
was obtained, generalizing those in [9]. The boundary characterization is essential in studying
the properties of the stationary distribution of the process, when it exists.

There has been much interest in the particular case of when the marginal distributions are
independent – so-called product-form distributions. Product-form distributions for stationary,
reflected Lévy processes (i.e. with constant drift and diffusion matrix) have been exploited in [1],
for example; however, no conditions guaranteeing this separability property were given. In [4],
the authors provided necessary and sufficient conditions for the separability of the distribution
in the stationary regime of SRBM, where there are no jumps and the drift, as well as the diffusion
matrix, are constant. Negative results for queueing models with general nondecreasing, and
possibly dependent, Lévy inputs were given in [6]. More recently, negative results in the context
of Lévy stochastic networks were given in [8].

In this paper, we exploit the boundary characterization in [10] to study the stationary
distributions of reflected diffusions with jumps in R

n+. In particular, we derive the forward,
or Fokker–Planck, equation. We then study the conditions for the existence of product-form
stationary distributions, assuming that the stationary setting exists, obtaining the necessary
and sufficient conditions in the case of nonconstant drift and diffusion coefficients, and so
generalizing the conditions found in [4] for the simpler case of SRBM, and in [6] and [8] for
reflected Lévy processes.

The organization of the paper is as follows. In Section 2, we introduce the model and obtain
preliminary results. In Section 3, we specialize these to the case where the stationary density is
separable. In Section 4, we obtain our main result, regarding necessary and sufficient conditions
for product-form distributions of reflected diffusions with jumps in the positive orthant in the
stationary regime, assuming that the stationary setting and its corresponding density exist.
In Section 5, we consider some examples of interest. Finally, Section 6 offers some further
comments on the scope of our results.

2. Problem formulation and preliminary results

Let n > 1 be a positive integer, let (�,F , (Ft )t≥0,P) be a filtered probability space
satisfying the usual hypotheses (see, e.g. [11]), and let R

n+ = {(x1, . . . , xn) ∈ R
n : xi ≥ 0

for all i = 1, . . . , n} (a corresponding definition applies for R+, i.e. it includes 0). Note that,
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even though when explicitly writing elements in R
n or R

n+ we write them as row vectors (for
simplicity of notation), they are treated as column vectors in all the equations in which they
appear.

We consider a problem of reflection in R
n+:

dXt = b(Xt−) dt + σ(Xt−) dWt +
∫

R
n+
z�(dt, dz)+ R dZt . (1)

Our notation is as follows.

1. (Xt ) = (X1
t , . . . , X

n
t ) is an (Ft )-adapted, càdlàg, R

n+-valued semimartingale and (Xt−) =
(lims↑t Xs), with X0− = X0 by convention.

2. (Wt ) = (W 1
t , . . . ,W

n
t ) is an n-dimensional, (Ft )-adapted, standard Brownian motion.

3. (Zt ) = (Z1
t , . . . , Z

n
t ) is an (Ft )-adapted, continuous, R

n+-valued process such that for all
i ∈ {1, . . . , n}, (Zit ) is nondecreasing and null at zero, and

∫
R+ X

i
s dZis = 0.

4. b = (bi)i∈{1,...,n} and σ = (σi,j )i,j∈{1,...,n} are Borel-measurable mappings from R
n+ into R

n

and R
n2

, respectively. We set a := σσ�, where σ� corresponds to the transpose of matrix σ .
Furthermore, denoting by ai,i(0i ) the ith diagonal element of matrix a when its ith coordinate
has been set to 0, we assume that for all i ∈ {1, . . . , n}, ai,i(0i ) > 0 everywhere in R

n−1+ .

5. �(dt, dz) is an (Ft )-adapted, {0, 1}-valued random measure over R+ × R
n+. Further-

more, we assume that �(dt, dz) admits a predictable compensator �p(dt, dz) of the form
λ(ω)K̄(ω, t, dz) dt , such that

(i) K̄(ω, t, dz) is a Markovian, predictable transition kernel of (� × R+,P ) into (Rn+,
B(Rn+)) taking the formK(Xt−(ω), dz), where P denotes the corresponding predictable
σ -field on�× R+, B(Rn+) the collection of Borel sets in R

n+, andK(x, dz) a transition
kernel of (Rn+,B(Rn+)) into itself such that for all x ∈ R

n+, it admits (with respect to the
Lebesgue measure) a density k(x, z);

(ii) in the stationary setting (assuming that it exists), the intensity λ(ω) is jointly distributed
with Xt−(ω) as ψ(dr, dx), where the variables r ∈ R+ and x ∈ R

n+ refer to λ and Xt−,
respectively, and the joint law ψ(dr, dx) admits (with respect to the Lebesgue measure)
a density ϕ(r, x). Moreover, for all x ∈ R

n+, we write �(x) := ∫
R+ rϕ(r, x) dr .

6. R is an n × n P-matrix. Recall that a square matrix with real coefficients is said to be a
P-matrix if every principal minor is strictly positive. (Note that this condition is satisfied, for
example, by any real triangular matrix R with strictly positive diagonal elements and, more
generally, by positive-definite matrices.) Hence, in particular, R has strictly positive diagonal
elements and is invertible. Also, note that P-matrices are completely-S (in the terminology of
[12]) and, in addition, that their principal submatrices are invertible. (In a discrete-time setting,
this invertibility condition guarantees that the linear complementarity problem associated with
defining the reflection map has a unique solution (see, e.g. [2]).)

In addition, we assume hereafter that b, σ,�, and R are such that (1) has a unique
strong solution. In particular, σ and b satisfy the usual local Lipschitz and linear growth
conditions [5].
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The following notation will be used throughout the paper. Let N be the set of strictly
positive integers. Then, for k ∈ N, f : R

k+ → R, and i ∈ {1, . . . , k}, we write f (0i ) to
indicate that the ith coordinate in f has been set to 0, f (0+

i ) to denote limxi↓0 f (x), and
Lk[f ](·) to denote the k-dimensional Laplace transform of function f . Furthermore, whenever
we write ‘almost everywhere in R

k+’ or ‘for almost every x ∈ R
k+’, without specifying the

measure, we mean it with respect to the Lebesgue measure in R
k+. Of course, when k = 1, the

indices i and k in all the previous notation are not necessary, and will be omitted. Moreover,
for i, j ∈ {1, . . . , n}, ([Xi,Xj ]ct ) denotes the path-by-path continuous part of the quadratic
covariation process ([Xi,Xj ]t ), or of the quadratic variation process if i = j , and (Lit ) denotes
the local time at level 0 for the semimartingale (Xit ). In addition, for l, k ∈ N, we write Cl (Rk+)
or Clb(R

k+) to indicate the set of all functions f : R
k+ → R that, along with all their partial

derivatives up to and including order l, are continuous or, respectively, bounded and continuous
in R

k+. Of course, when no superscript l is specified in this last notation, we refer to f itself,
excluding its derivatives. Also, to simplify the expressions, for k ∈ {1, . . . , n} we write dx �=k
to indicate dx1 · · · dxn with the kth differential omitted, as well as x �=k or x+ zk to indicate that
the kth coordinate in x ∈ R

n+ is omitted or incremented by z ∈ R+, respectively. Furthermore,
we write 	n to denote the boundary faces of R

n+, i.e.
⋃n
i=1{x ∈ R

n+ : xi = 0}. Finally, since
throughout the paper we will just need to consider the index set {1, . . . , n}, from now on we
will omit it, writing, for example, ‘for all i’ instead of ‘for all i ∈ {1, . . . , n}’.

Henceforth, we will assume that the stationary regime exists and that, in this regime, the law
ofXt in R

n+ admits a density (with respect to the Lebesgue measure), denoted by p(x), x ∈ R
n+.

Note that, since for all i, ai,i(0i ) > 0 everywhere in R
n−1+ , by [10, Lemma 2.1] applied to the

stationary version of semimartingale (Xt ), there is no probability mass in the boundary faces
of R

n+ (i.e. there is no probability mass in 	n) and, therefore, it is enough to consider a density
with respect to the Lebesgue measure (in R

n+). Furthermore, we will assume that the following
four conditions are satisfied for all i and j .

(c1)
∫
R

2n+ zi�(x)k(x, z) dz dx = ∫
R
n+1+
zi�(x)ki(x, zi) dzi dx < ∞, where ki(x, zi) denotes

the ith one-dimensional marginal density extracted from k(x, z), for all x ∈ R
n+.

(c2)
∫
R
n+ |bi(x)|p(x) dx < ∞.

(c3)
∫
R
n+ |ai,j (x)|p(x) dx < ∞.

(c4) p(0+
i ) exists almost everywhere R

n−1+ , and
∫
R
n−1+

supxi≤ηi {ai,i(x)p(x)} dx �=i < ∞ for
some ηi > 0. Note that if p is separable (i.e. if for almost every x ∈ R

n+, p(x) =∏n
k=1 pk(xk), where, for all k, pk is the kth one-dimensional marginal density extracted

from p) and if, furthermore, ai,i(x) = ai,i(xi) for all x ∈ R
n+, then this condition reduces

to the existence and finiteness of pi(0+).

Condition (c1) guarantees that [11, p. 173, HypothesisA] is satisfied in the stationary regime;
conditions (c2) and (c3) allow the use of Fubini’s theorem in subsequent proofs in the paper, as
well as guaranteeing that the Laplace transforms of bip and ai,jp exist for all i, j ; and, finally,
condition (c4) allows the use of some previously stated results of [10].

We define the operator T : C2(Rn+) → C(Rn+) as follows:

T f (x) :=
n∑
i=1

bi(x)
∂f

∂xi
(x)+ 1

2

n∑
i,j=1

ai,j (x)
∂2f

∂xi∂xj
(x).
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The following lemmas will be used in subsequent sections of the paper.

Lemma 1. The following relationship holds for all f ∈ C2
b (R

n+):

0 =
∫

R
n+

T f (x)p(x) dx + 1

2

n∑
i,j=1

Ri,j

Rj,j

∫
R
n−1+

∂f

∂xi
(0j )aj,j (0j )p(0

+
j ) dx�=j

+
∫

R
2n+

{f (x + z)− f (x)}�(x)k(x, z) dz dx. (2)

Proof. Let f ∈ C2
b (R

n+). Using Itô’s formula [11, p. 74, Theorem 33], (1), and the fact that
d[Xi,Xj ]cs = ai,j (Xs−) ds, we find that

f (Xt )− f (X0) =
n∑
i=1

∫ t

0+
∂f

∂xi
(Xs−)bi(Xs−) ds +

n∑
i,j=1

∫ t

0+
∂f

∂xi
(Xs−)σi,j (Xs−) dWj

s

+ 1

2

n∑
i,j=1

∫ t

0+
∂2f

∂xi∂xj
(Xs−)ai,j (Xs−) ds +

∑
0<s≤t

�f (Xs)

+
n∑

i,j=1

∫ t

0+
∂f

∂xi
(Xs−)Ri,j dZjs ,

where �f (Xs) := f (Xs)− f (Xs−). Assuming that we are working in the stationary regime,
by taking expectations in the equation above we obtain

0 = t

∫
R
n+

T f (x)p(x) dx +
n∑

i,j=1

E
∫ t

0+
∂f

∂xi
(Xs−)Ri,j dZjs + E

∑
0<s≤t

�f (Xs), (3)

where, along with conditions (c2) and (c3) and Fubini’s theorem, we have used the facts that
(Xs) is càdlàg (P almost surely (P-a.s.)), that the Lebesgue measure is diffuse, that f ∈ C2

b (R
n+),

and that the stochastic integrals involved are centred, continuous local martingales. Note that
the remaining expectations in (3) are to be taken in the stationary regime. Now, by condition
(c4) and [10, Theorem 3.2 and Corollary 2.1], we have

n∑
i,j=1

E
∫ t

0+
∂f

∂xi
(Xs−)Ri,j dZjs =

n∑
i,j=1

E
∫ t

0+
∂f

∂xi
(Xs−)

Ri,j

2Rj,j
dLjs

= t

2

n∑
i,j=1

Ri,j

Rj,j

∫
R
n−1+

∂f

∂xi
(0j )aj,j (0j )p(0

+
j ) dx�=j .

Note thatXs− can be replaced byXs in the right-hand side of the first equality above since, for
all j , the random measure induced by (Ljs ) in R+ is diffuse, and (Xs) is càdlàg, P-a.s. Finally,
since

E
∑

0<s≤t
�f (Xs) = t

∫
R

2n+
{f (x + z)− f (x)}�(x)k(x, z) dz dx,

(2) follows after dividing all the previous expressions by t > 0. The lemma is now proved.

https://doi.org/10.1239/aap/1113402406 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1113402406


Product-form stationary distributions for reflected diffusions 217

From Lemma 1, we can easily obtain the Fokker–Planck equation in the stationary setting,
as stated in the following corollary.

Corollary 1. Assume that � is continuous in R
n+, that for all i and j , bip ∈ C1(Rn+) and

ai,jp ∈ C2(Rn+), and that the n-dimensional Laplace transform of ∂(ai,ip)/∂xi exists. Then,
for all x ∈ R

n+, we have

0 = −
n∑
i=1

∂(bip)

∂xi
(x)+ 1

2

n∑
i,j=1

∂2(ai,jp)

∂xi∂xj
(x)+

∫ x1

0
· · ·

∫ xn

0
�(ξ)k(ξ, x − ξ) dξ−�(x). (4)

Proof. From Lemma 1, and denoting by 〈·, ·〉 the usual inner product in R
n, by considering

f (x) = exp{−〈ν, x〉}, with ν = (ν1, . . . , νn) and νi > 0 for all i, which belongs to C2
b (R

n+),
we obtain

0 = 1

2

n∑
i=1

νiLn[ai,ip](ν)− Ln−1[ai,i(0i )p(0+
i )](ν �=i )∏n

k=1,k �=i νk
+ Ln[h](ν)∏n

k=1 νk
− Ln[�](ν)∏n

k=1 νk

−
n∑
i=1

Ln[bip](ν)∏n
k=1,k �=i νk

− 1

2

n∑
i,j=1
i �=j

Ri,j

Rj,j

Ln−1[aj,j (0j )p(0+
j )](ν �=j )∏n

k=1,k �=i,j νk
1

νj

+ 1

2

n∑
i,j=1
i �=j

Ln[ai,jp](ν)∏n
k=1,k �=i,j νk

,

where, for all x ∈ R
n+, h(x) := ∫ x1

0 · · · ∫ xn0 �(ξ)k(ξ, x − ξ) dξ . By making the n-dimensional
inverse Laplace transform of the equation above, and applying ∂n/∂x1 · · · ∂xn to the equation
that results, the corollary follows.

3. Stationary equations for the separable case

In this section, we specialize all the previous results to the case where the stationary density
p is separable – i.e. it can be expressed as the product of its one-dimensional marginals – and
obtain some new ones. These results will lead us to necessary and sufficient conditions for this
factorization to be possible, as will be stated in Theorem 1 of Section 4.

From now on, we will assume, in addition to all the assumptions already stated, the follow-
ing.

1. For all i and j and for all x ∈ R
n+, bi(x) = bi(xi) and ai,j (x) = ai,j (xi, xj ). Note

that the latter relation holds if, for example, σi,j (x) = σi,j (xi) for all i and j and for all
x ∈ R

n+.

2. For all x ∈ R
n+, the density k(x, z) is separable, taking the form

∏n
i=1 ki(xi, zi). That

is, for all x ∈ R
n+, the density k(x, z) is written as the product of its one-dimensional

marginals and, in addition, its ith one-dimensional marginal depends on the parameter x
only through its ith coordinate xi , for all i.

3. The intensity λ is independent of (Xt−) and takes the form
∑n
i=1 λi , where, for all i, λi

is the intensity associated with the jumps in the ith coordinate of (Xt ), and the λi are
independent.
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Remark 1. Note that, since the jumps associated with different coordinates of (Xt ) are inde-
pendent, no two (or more) of its coordinates will jump simultaneously at any given time t , P-a.s.
Since, furthermore, λj is independent of (Xjt−) and aj,j (0j ) = aj,j (0) for all j , equations (2)
in Lemma 1 and (4) in Corollary 1 now take the form

0 =
∫

R
n+

T f (x)p(x) dx + 1

2

n∑
i,j=1

Ri,j

Rj,j
aj,j (0)

∫
R
n−1+

∂f

∂xi
(0j )p(0

+
j ) dx�=j

+
n∑
i=1

E[λi]
∫

R
n+1+

{f (x + zi)− f (x)}p(x)ki(xi, zi) dzi dx (5)

and

0 = −
n∑
i=1

∂(bip)

∂xi
(x)+ 1

2

n∑
i,j=1

∂2(ai,jp)

∂xi∂xj
(x)

+
n∑
i=1

E[λi]
∫ xi

0
p(ξi, x�=i )ki(ξi, xi − ξi) dξi − p(x), (6)

respectively, where, for all i, E[λi] in (5) and (6) denotes the expected value of the intensity
λi , and p(ξi, x�=i ) in (6) denotes p(x1, . . . , xi−1, ξi , xi+1, . . . , xn), i.e. the stationary density p
when its ith coordinate xi has been replaced by the integration variable ξi . Moreover, (5) holds
for all f ∈ C2

b (R
n+).

Remark 2. Note that, if p̃ is another density in R
n+ satisfying (5) for all f ∈ C2

b (R
n+), then

p̃(x) = p(x) for almost every x ∈ R
n+. Moreover, this conclusion still holds if p̃ is another

density in R
n+ satisfying (5) for all f = ∏n

i=1 fi , where, for all i, fi is any function in C2
b (R+).

We now define the operators Ti : C2(R+) → C(R+) for all i, as follows:

Tif (x) := bi(xi)
df

dxi
(xi)+ 1

2ai,i(xi)
d2f

dx2
i

(xi).

Corollary 2. Assume that the stationary density p is separable, i.e. that for almost every
x ∈ R

n+, p(x) = ∏n
i=1 pi(xi), where pi is the ith one-dimensional marginal density extracted

from p, for all i. Then pi satisfies the following relationship, for all i and all f ∈ C2
b (R+):

0 = 1

2

df

dxi
(0)ai,i (0)pi(0

+)+ E[λi]
∫

R
2+

{f (xi + zi)− f (xi)}pi(xi)ki(xi, zi) dzi dxi

+
∫

R+
Tif (xi)pi(xi) dxi + 1

2

∫
R+

df

dxi
(xi)pi(xi) dxi

n∑
j=1
j �=i

Ri,j

Rj,j
aj,j (0)pj (0

+). (7)

Proof. The proof follows in a straightforward manner from (5), by taking f (xi) ∈ C2
b (R+)

for each i and using the product-form of the stationary density p.
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Lemma 2. Under the same assumptions as in Corollary 2, for all i we have

−1

2

n∑
j=1

Ri,j

Rj,j
aj,j (0)pj (0

+) =
∫

R+
bi(xi)pi(xi) dxi + E[λi]

∫
R

2+
zipi(xi)ki(xi, zi) dzi dxi.

(8)

Proof. First, for each Xi , we apply the Meyer–Itô formula [11, p. 167, Theorem 51] with
convex function f (xi) = (xi)

+ = max{0, xi}, and use (1). Then, in the stationary regime,
by taking expectations and using the fact that the stochastic integrals involved are centred,
continuous local martingales, together with conditions (c2) and (c4), Fubini’s theorem, and
[10, Theorem 3.2 and Corollary 2.1], we find that

− 1

2

∫
R+

1{xi>0} pi(xi) dxi

n∑
j=1
j �=i

Ri,j

Rj,j
aj,j (0)pj (0

+)

= 1
2ai,i(0)pi(0

+)+
∫

R+
1{xi>0} bi(xi)pi(xi) dxi + E[λi]

∫
R

2+
zipi(xi)ki(xi, zi) dzi dxi,

where 1{·} denotes the usual indicator function of the event in braces. The lemma now follows.

Remark 3. Note that, sinceR is nonsingular, from Lemma 2 we obtain that pi(0+) > 0 for all
i if and only if R−1� < 0 (componentwise), where � is the column vector whose ith entry is
given by

∫
R+ bi(xi)pi(xi) dxi + E[λi]

∫
R

2+ zipi(xi)ki(xi, zi) dzi dxi , i.e. if and only if the net
drift in each dimension is strictly negative. This gives us a stability condition, as will be seen
in Section 5.

Corollary 3. Under the same assumptions as in Corollary 2, for all i and all f ∈ C2
b (R+), pi

satisfies

0 =
∫

R+
Tif (xi)pi(xi) dxi + E[λi]

∫
R

2+
{f (xi + zi)− f (xi)}pi(xi)ki(xi, zi) dzi dxi

−
∫

R+

df

dxi
(xi)pi(xi) dxi

{
1
2ai,i(0)pi(0

+)+
∫

R+
bi(xi)pi(xi) dxi

+ E[λi]
∫

R
2+
zipi(xi)ki(xi, zi) dzi dxi

}

+ 1

2

df

dxi
(0)ai,i (0)pi(0

+). (9)

Proof. The proof follows in a straightforward manner, by combining the results of Corol-
lary 2 and Lemma 2.

Remark 4. Note that, as in Remark 2 for p, Corollaries 2 and 3 uniquely characterize each
one-dimensional marginal densitypi extracted fromp (almost everywhere, and in the separable
setting, of course).

Lemma 3. Under the same assumptions as in Corollary 2, and if, for all i, pi is continuous
in R+ and ai,ipi ∈ C1(R+) such that the Laplace transform of d(ai,ipi)/dxi exists,
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pi satisfies (9), for all i and all f ∈ C2
b (R+), if and only if it satisfies

0 = 1

2

d(ai,ipi)

dxi
(xi)+ E[λi]

{∫ xi

0

∫ u

0
pi(ξ)ki(ξ, u− ξ) dξ du−

∫ xi

0
pi(ξ) dξ

}

+ pi(xi)

{∫
R+
bi(ξ)pi(ξ) dξ − bi(xi)+ 1

2ai,i(0)pi(0)

+ E[λi]
∫

R
2+
zipi(ξ)ki(ξ, zi) dzi dξ

}
for all xi ∈ R+. (10)

Proof. The ‘only if’ part follows in a straightforward manner from Corollary 3, by con-
sidering, for each i, f (xi) = exp{−νixi} with νi > 0, which belongs to C2

b (R+), and then
taking the inverse of the resulting Laplace transform. For the ‘if’ part, consider, for each i,
f (xi) ∈ C2

b (R+). Then, by multiplying (10) by −df/dxi , integrating over R+, and using the
fact that, by condition (c3) with i = j , ai,i(xi)pi(xi) → 0 as xi → ∞, we obtain (9). The
lemma is now proved.

Remark 5. Assuming that pi , bipi ∈ C1(R+) and ai,ipi ∈ C2(R+) for all i, and that the
Laplace transform of d(ai,ipi)/dxi exists, by applying d/dxi to (10) we obtain the Fokker–
Planck equation for each coordinate, when we work in the stationary regime with a product-form
density. That is,

0 = dpi
dxi

(xi)

{∫
R+
bi(ξ)pi(ξ) dξ + 1

2ai,i(0)pi(0)+ E[λi]
∫

R
2+
zipi(ξ)ki(ξ, zi) dzi dξ

}

− E[λi]pi(xi)− d(bipi)

dxi
(xi)+ 1

2

d2(ai,ipi)

dx2
i

(xi)+ E[λi]
∫ xi

0
pi(ξ)ki(ξ, xi − ξ) dξ .

Remark 6. Note that if, for all i and for all xi ∈ R+, bi(xi) = bi (a constant) and ki(xi, zi) =
ki(zi) (independent of xi), then (10) has no anticipative terms (in space). It can therefore be
solved numerically using, in this case, the known boundary conditions {pi(0)}ni=1 given by (8)
(also see Remark 3).

4. The main result: necessary and sufficient conditions

Using the results of the previous sections, we are now in position to state and prove the main
result of the paper, concerning necessary and sufficient conditions for product-form distributions
in the stationary regime, assuming that this regime and its corresponding density p, satisfying
conditions (c1) to (c4), exist. (Note that we have not shown that the existence of a solution to
(5) is sufficient for the existence of a stationary regime.)

Theorem 1. Let {pi}ni=1 be the family of one-dimensional marginals extracted from the sta-
tionary density p. Then p is separable, i.e. p(x) = ∏n

i=1 pi(xi) for almost every x ∈ R
n+, if

and only if, for all i and j , i �= j , we have

ai,j (xi, xj ) = gi,j (xi)+ gj,i(xj ) (11)

for (Fi ×Fj )-almost-every (xi, xj ) ∈ R
2+. Here, for all k, Fk denotes the law in R+ associated

with pk and, for all k and l, k �= l, the entries of the tuple (gk,l, gl,k) are defined, Fk × Fl
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almost everywhere, by

gk,l(xk) := Rl,k

2Rk,k

ak,k(0)pk(0+)
pk(xk)

∫ ∞

xk

pk(ξ) dξ (12)

and, for gl,k(xl), the expression obtained by interchanging k and l in this expression.

Proof. We assume that p is separable. Then, using (7) and (5) with f = ∏n
i=1 fi , where,

for all i, fi is any function in C2
b (R+), we obtain

0 =
n∑

i,j=1
i �=j

�i,j (fi, fj )

n∏
k=1
k �=i,j

∫
R+
fk(xk)pk(xk) dxk, (13)

where

�i,j (fi, fj ) := 	i,j (fi, fj )+
∫

R
2+

dfi
dxi

(xi)
dfj
dxj

(xj )ai,j (xi, xj )pi(xi)pj (xj ) dxi dxj

and

	i,j (fi, fj ) := Ri,j

Rj,j
aj,j (0)pj (0

+)
∫

R+

dfi
dxi

(xi)pi(xi) dxi

{
fj (0)−

∫
R+
fj (xj )pj (xj ) dxj

}
.

Now, (13) holds for any f of the considered form if and only if�i,j (fi, fj )+�j,i(fj , fi) = 0
for all i and j , i �= j , and all fi, fj ∈ C2

b (R+). Thus, for i �= j , ai,j must be such that, for all
fi, fj ∈ C2

b (R+),

2
∫

R
2+

dfi
dxi

(xi)
dfj
dxj

(xj )ai,j (xi, xj )pi(xi)pj (xj ) dxi dxj = 	i,j (fi, fj )+ 	j,i(fj , fi), (14)

where we have used the fact that the diffusion matrix a is symmetric. Thinking of the above
expression as an equation for ai,j , with i �= j , we immediately obtain uniqueness in the
(Fi×Fj )-almost-everywhere sense. Therefore, for i �= j , we may look for a solution of the form
ai,j (xi, xj ) = gi,j (xi)+gj,i(xj ). Inserting this in (14), and considering fk(xk) = exp{−νkxk}
with νk > 0, k = i, j , which belong to C2

b (R+), we obtain

L[gi,jpi](νi)L[pj ](νj )+ L[gj,ipj ](νj )L[pi](νi)
= Ri,j

2Rj,j
aj,j (0)pj (0

+)
{

1

νj
− L[pj ](νj )

νj

}
L[pi](νi)

+ Rj,i

2Ri,i
ai,i (0)pi(0

+)
{

1

νi
− L[pi](νi)

νi

}
L[pj ](νj ).

Since the above equation must hold for all νi, νj > 0, we conclude that

L[gi,jpi](νi) = Rj,i

2Ri,i
ai,i (0)pi(0

+)
{

1

νi
− L[pi](νi)

νi

}
, (15)

with the corresponding expression for L[gj,ipj ](νj ) gained by interchanging i and j . Hence,
(11) and (12) now follow. For the converse, assume that for all i and j , i �= j , ai,j (xi, xj )
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satisfies (11) for (Fi ×Fj )-almost-every (xi, xj ) ∈ R
2+, with gi,j and gj,i as in (12). Since, for

all i and all fi ∈ C2
b (R+), we have∫

R+

dfi
dxi

(xi)

(∫ ∞

xi

pi(ξ) dξ

)
dxi = lim

xi→∞ fi(xi)
∫ ∞

xi

pi(ξ) dξ − fi(0)

+
∫

R+
fi(xi)pi(xi) dxi

= −fi(0)+
∫

R+
fi(xi)pi(xi) dxi,

it follows that �i,j (fi, fj )+�j,i(fj , fi) = 0 for all i and j , i �= j , and all fi, fj ∈ C2
b (R+).

Therefore, (5) is satisfied with
∏n
i=1 pi in place of p for all f = ∏n

i=1 fi , where, for all i, fi
is any function in C2

b (R+). The theorem now follows (see Remark 2).

Remark 7. Note that, in the statement of Theorem 1, no assumptions regarding the existence
of derivatives involving b, a, or p are needed.

Remark 8. In the case where there are no jumps and the drift vector b(·) is constant, by
considering fi(xi) = exp{−νixi} ∈ C2

b (R+) (νi > 0), for each i, from (9) we obtain

ai,i(0)pi(0
+)

{
1

νi
− L[pi](νi)

νi

}
= L[ai,ipi](νi)

and, therefore, using (15) the separability condition can be written, in this case, as

ai,j (xi, xj ) = Rj,i

2Ri,i
ai,i (xi)+ Ri,j

2Rj,j
aj,j (xj ) (16)

for all i and j , i �= j , and for (Fi × Fj )-almost-every (xi, xj ) ∈ R
2+ (as will be seen in

Subsection 5.1.1, under the conditions therein, for all (xi, xj ) ∈ R
2+). Note that this generalizes

the separability condition stated in [4] for the simpler case of SRBM, where the entries of b
and a do not depend on x and there are no jumps. Finally, note that from (16), condition (c3)
is satisfied for all i and j , in the separable case, once satisfied for all i = j .

From Theorem 1, we conclude that product-form stationary distributions are only possible
under very special conditions. In fact, we have the following negative result.

Corollary 4. If the diffusion matrix a has constant off-diagonal elements, then a product-form
stationary density is not possible unless either the jumps in each coordinate are identically null
and the drift b, as well as the diagonal elements of a, are constant; or both a and the reflection
matrix R are diagonal.

Proof. Let {pi}ni=1 be the family of one-dimensional marginals extracted from the stationary
density p, and assume that for all i and j , i �= j , ai,j (xi, xj ) = ai,j (a constant). Then, from
Theorem 1, a product-form stationary density is only possible in the following two cases. The
first case is when each pi is such that

1

pi(xi)

∫ ∞

xi

pi(ξ) dξ = 1

pi(0+)
for all xi ∈ R+.

However, then pi is absolutely continuous for all i, thus continuous and, therefore, from the
same expression, differentiable. Hence, pi(xi) = pi(0+) exp{−pi(0+)xi} for all i and all
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xi ∈ R+, i.e. each pi corresponds to an exponential density with parameter pi(0+) = pi(0),
in which case, from Corollary 3, the jumps in each coordinate must be identically null and the
drift b, as well as the diagonal elements of a, must be constant. Note that this case corresponds
to SRBM. The second case is when, for all i and j , i �= j , ai,j = 0 (i.e. a is diagonal) and
either Ri,j = 0 or pj (0+) = 0. But then, from Lemma 2, we conclude that, for all i,

0 = 1
2ai,i(0)pi(0

+)+
∫

R+
bi(xi)pi(xi) dxi + E[λi]

∫
R

2+
zipi(xi)ki(xi, zi) dzi dxi

and, therefore, from Corollary 3, if pi(0+) = 0 for some i then pi(xi) = 0 for almost every
xi ∈ R+, which cannot be. Thus, we conclude that R must be diagonal as well. The corollary
is now proved.

Remark 9. Note that Corollary 4 generalizes the negative results regarding product-form
stationary distributions shown for the case of n-dimensional reflected Lévy processes in [8].

5. Some examples

We conclude the paper with a presentation of some examples where explicit computations
are possible.

5.1. Continuous case

We first discuss some examples in the continuous case, i.e. in the absence of jumps. Then,
assuming that the hypotheses of Lemma 3 are satisfied and that, in addition, for all i and all
xi ∈ R+, ai,i(xi) > 0, from (10) we find that

pi(xi) = ai,i(0)pi(0)

ai,i (xi)
exp

{
−2

∫ xi

0

E[bi] − bi(ξ)+ 1
2ai,i(0)pi(0)

ai,i (ξ)
dξ

}
(17)

for all i and all xi ∈ R+, where E[bi] = ∫
R+ bi(ζ )pi(ζ ) dζ . We can find all the unknowns

involved in (17) in the following two cases.

5.1.1. Constant drift vector b. In this case, (17) reduces to

pi(xi) = ai,i(0)pi(0)

ai,i (xi)
exp

{
−ai,i(0)pi(0)

∫ xi

0

dξ

ai,i(ξ)

}
. (18)

Furthermore, from Lemma 2, we have Rγ0 = −2b, where b is the constant drift vector and
γ0 is the vector whose ith entry is given by (ai,i (0)/Ri,i)pi(0). Then, since R is nonsingular,
the boundary conditions {pi(0)}ni=1 are uniquely determined by inverting the above system
of linear equations. Of course, we require that γ0 > 0 (componentwise), which imposes the
stability condition R−1b < 0 (componentwise), i.e. the net drift in each dimension must be
strictly negative. Furthermore, if for all i,∫

R+

dxi
ai,i (xi)

= ∞,

then each pi integrates to unity. Note that if ai,i is constant, the above condition is trivially
satisfied and, from (18), pi corresponds to an exponential density with parameter pi(0).
Moreover, note that, from (18),

d(ai,ipi)

dxi
(xi) = −ai,i(0)pi(0)pi(xi)
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and, therefore, that the Laplace transform of d(ai,ipi)/dxi exists for all i. In addition, if for
all i, ∫

R+
exp

{
−ai,i(0)pi(0)

∫ xi

0

dξ

ai,i(ξ)

}
dxi < ∞,

then condition (c3) is satisfied (in the separable setting) for all i and j , since the separability
condition in this case reduces to (see Remark 8)

ai,j (xi, xj ) = Rj,i

2Ri,i
ai,i (xi)+ Ri,j

2Rj,j
aj,j (xj )

for all i and j , i �= j , and for (Fi × Fj )-almost-every (xi, xj ) ∈ R
2+, i.e. for all (xi, xj ) ∈ R

2+,
since the elements of a are continuous. Then, from (18), we conclude thatFi is equivalent to the
Lebesgue measure in R+ for all i. Thus, under all the previous requirements, if the stationary
setting and its corresponding density p, satisfying conditions (c3) and (c4), exist, then

p(x) =
n∏
i=1

ai,i(0)pi(0)

ai,i (xi)
exp

{
−ai,i(0)pi(0)

∫ xi

0

dξ

ai,i(ξ)

}

for almost every x ∈ R
n+. Note that this generalizes the exponential product-form density

obtained in the case of SRBM, as shown, for example, in [1] and [4].

5.1.2. Normal reflections. In this case, the reflection matrix R is the identity matrix and,
therefore, using Lemma 2, (17) reduces to

pi(xi) = ai,i(0)pi(0)

ai,i (xi)
exp

{
2
∫ xi

0

bi(ξ)

ai,i(ξ)
dξ

}
. (19)

From the normalization condition, we obtain

pi(0) =
{
ai,i(0)

∫
R+

φi(xi)

ai,i (xi)
dxi

}−1

,

where

φi(xi) := exp

{
2
∫ xi

0

bi(ξ)

ai,i(ξ)
dξ

}
,

and, therefore, we require that, for all i,∫
R+

φi(xi)

ai,i (xi)
dxi < ∞.

Furthermore, note that for all i, (8) in Lemma 2 is verified if bi(xi) < 0 for almost every
xi ∈ R+, and if ∫

R+

bi(xi)

ai,i (xi)
dxi = −∞.

Also, note that the above requirements guarantee that condition (c2) is satisfied for all i.
Moreover, note that, from (19),

d(ai,ipi)

dxi
(xi) = 2bi(xi)pi(xi)
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and, therefore, under the previous requirements, the Laplace transform of d(ai,ipi)/dxi exists
for all i. In addition, if, for all i,∫

R+
exp

{
2

∫ xi

0

bi(ξ)

ai,i(ξ)
dξ

}
dxi < ∞,

then condition (c3) is satisfied (in the separable setting) for all i and j , since the separability
condition in this case reduces, of course, to

ai,j (xi, xj ) = 0

for all i and j , i �= j , and for (Fi × Fj )-almost-every (xi, xj ) ∈ R
2+, i.e. for all (xi, xj ) ∈ R

2+,
since the elements of a are continuous. Then, from (19), we conclude thatFi is equivalent to the
Lebesgue measure in R+ for all i. Thus, under all the previous requirements, if the stationary
setting and its corresponding density p, satisfying conditions (c2), (c3), and (c4), exist, then

p(x) =
n∏
i=1

ai,i(0)pi(0)

ai,i (xi)
exp

{
2
∫ xi

0

bi(ξ)

ai,i(ξ)
dξ

}

for almost every x ∈ R
n+.

5.2. Càdlàg case

We now allow a nonidentically null-jump measure. Then, assuming that, for all i and all
xi ∈ R+, bi(xi) = bi (a constant), ai,i(xi) = ai,i > 0 (a constant), and ki(xi, zi) = ki(zi)

(independent of xi), by considering fi(xi) = exp{−νixi} ∈ C2
b (R+) (νi > 0) for each i, from

(9) we find that

L[pi](νi) =
1
2ai,ipi(0

+)
1
2ai,ipi(0

+)+ E[λi] E[ki] + 1
2ai,iνi + (E[λi]/νi){L[ki](νi)− 1} , (20)

where E[ki] = ∫
R+ ziki(zi) dzi . Of course, we require that E[λi] E[ki] < ∞ for all i. Further-

more, from Lemma 2, we have
Rγ0 = −2β, (21)

where γ0 is as in Subsection 5.1.1 (but, of course, with pi(0) replaced by pi(0+) for all i) and
β is the vector whose ith entry is given by bi + E[λi] E[ki]. Then, since R is nonsingular, the
limit boundary conditions {pi(0+)}ni=1 are uniquely determined by inverting the above system
of linear equations. Therefore, as in Subsection 5.1.1, we require that γ0 > 0 (componentwise),
i.e. the net drift in each dimension must be strictly negative. Thus, under the previous require-
ments, if the stationary setting and its corresponding density p, satisfying conditions (c3) and
(c4), exist, and if condition (c3) and the separability condition in Theorem 1 are satisfied by
the family {pi}ni=1 obtained from (20), then

p(x) =
n∏
i=1

pi(xi)

for almost every x ∈ R
n+. (Note that condition (c3) is trivially satisfied when i = j , since a

has constant diagonal elements.)
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5.2.1. Exponentially distributed jumps. As a particular example of the results above, we now
consider the case of exponentially distributed jumps, i.e. when ki corresponds to an exponential
density with parameter θi > 0, for all i. Then, by making the inverse Laplace transform of
(20), we obtain, for all i and for almost every xi ∈ R+,

pi(xi) = 1
2pi(0

+){qi(xi)+ ri(xi)}, (22)

where

qi(xi) :=
(

1 − Mi

Ni

)
exp{−(θi +Mi −Ni)xi},

ri(xi) :=
(

1 + Mi

Ni

)
exp{−(θi +Mi +Ni)xi},

and

2Mi := pi(0
+)− θi + 2 E[λi]

ai,iθi
,

Ni :=
√

2 E[λi]
ai,i

+M2
i ≥ |Mi |.

Then, since

θi +Mi = pi(0+)
2

+ θi

2
+ E[λi]
ai,iθi

and

Ni =
√{

pi(0+)
2

+ θi

2
+ E[λi]
ai,iθi

}2

− pi(0+)θi

for all i, (22) gives a valid density in R+ as long as pi(0+) > 0 (see (21) and the comments
that follow it). In addition, since

∫
R+ xipi(xi) dxi < ∞ for all i, condition (c3) is satisfied for

all i and j in the separable case. Finally, the separability condition is

ai,j (xi, xj ) = gi,j (xi)+ gj,i(xj )

for all i and j , i �= j , and for all (xi, xj ) ∈ R
2+ since the elements of a are continuous and,

from (22), we conclude that Fi is equivalent to the Lebesgue measure in R+ and that pi can be
taken to be continuous and strictly positive, for all i. Here, for all k and l, k �= l,

gk,l(xk) = Rl,k

2Rk,k
ak,kpk(0

+)qk(xk)/(θk +Mk −Nk)+ rk(xk)/(θk +Mk +Nk)

qk(xk)+ rk(xk)
.

Thus, under all the previous requirements, if the stationary setting and its corresponding
density p, satisfying conditions (c3) and (c4), exist, then

p(x) = 1

2

n∏
i=1

pi(0
+){qi(xi)+ ri(xi)}

for almost every x ∈ R
n+.
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6. Concluding remarks

Although, in this paper, we have provided necessary and sufficient conditions for product-
form densities to exist in the stationary regime, we have not discussed the conditions forthe
existence of this regime. However, we believe the conditions derived in Section 5 are the
appropriate ones in each of the cases considered there (in the separable setting, of course).
We also believe that product-form stationary densities are not possible under any more general
dependences of b and a on x ∈ R

n+ than the ones we have considered here, or under a more
general, nonseparable structure for the jumps. Moreover, in this paper we have considered the
case of positive jumps. However, all the results in the paper are readily generalizable (mutatis
mutandis) to the case of both positive and negative jumps, under the additional assumption that�
is such that for all t ∈ R+,Xt− +�Xt ≥ 0 (componentwise) P-a.s., where�Xt := Xt −Xt−.
Then (Xt ) does not leave the positive orthant due to a jump and, in addition, the regulator
(or reflection map) process (Zt ) remains continuous. Of course, condition (c1) is in this case
extended to

∫
R
n+×Rn

|zi |�(x)k(x, z) dz dx = ∫
R
n+×R

|zi |�(x)ki(x, zi) dzi dx < ∞ for all i.
Note that models including negative jumps are important in risk theory and in financial scenarios
where claims arise at random times.
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