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Thermal capillary wave growth and surface
roughening of nanoscale liquid films
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The well-known thermal capillary wave theory, which describes the capillary spectrum of
the free surface of a liquid film, does not reveal the transient dynamics of surface waves,
e.g. the process through which a smooth surface becomes rough. Here, a Langevin model is
proposed that can capture this dynamics, goes beyond the long-wave paradigm which can
be inaccurate at the nanoscale, and is validated using molecular dynamics simulations for
nanoscale films on both planar and cylindrical substrates. We show that a scaling relation
exists for surface roughening of a planar film and the scaling exponents belong to a specific
universality class. The capillary spectra of planar films are found to advance towards a
static spectrum, with the roughness of the surface W increasing as a power law of time
W ∼ t1/8 before saturation. However, the spectra of an annular film (with outer radius
h0) are unbounded for dimensionless wavenumber qh0 < 1 due to the Rayleigh–Plateau
instability.

Key words: thin films

1. Introduction

Surface roughening due to randomness is ubiquitous in nature, and a problem spanning
many disciplines, e.g. in the propagation of wetting fronts in porous media, in the growth
of bacterial colonies, and in atomic deposition during the manufacture of computer chips
(Kardar, Parisi & Zhang 1986). To allow us to predict and control surface roughening, it
is essential to understand how surface morphology develops in time, and this is usually
described by scaling relations (Kardar et al. 1986; Barabási & Stanley 1995).

A liquid film at rest on a substrate also has a rough, fluctuating surface due to thermally
excited capillary waves. These capillary waves are used in experiments to measure
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properties of liquid–solid systems (Jiang et al. 2007; Alvine et al. 2012; Pottier, Frétigny &
Talini 2015). This measuring technique has the advantage of being non-invasive, which is
important for soft matter and biological fluids that can be sensitive to external forces.
Capillary waves also play an important role in modern theories of surface physics (Evans
1981; MacDowell, Benet & Katcho 2013), and are thought to be critical to the instability of
thin liquid films (Vrij & Overbeek 1968) where thermal capillary waves are enhanced by
disjoining pressure, leading to the film rupture. The roughness created by thermal capillary
waves is usually on the scale of nanometres, but it has also been observed optically at the
microscale in ultra-low surface tension mixtures (Aarts, Schmidt & Lekkerkerker 2004).

Previous work (Evans 1981; Aarts et al. 2004; Jiang et al. 2007; Alvine et al. 2012;
MacDowell et al. 2013; Pottier et al. 2015) has been underpinned by capillary wave theory
(CWT), which, from the equipartition theorem (i.e. in thermal equilibrium), provides the
mean amplitude of each surface mode as a function of wavenumber (q). For a planar film
(without gravity), the r.m.s. spectral density is given by

Ss(q) ∝
√

kBT/γ

q
, (1.1)

where kB is the Boltzmann constant, T is temperature and γ is the surface tension.
Importantly, (1.1) has no time dependence; it cannot reveal how a smooth surface develops
to a rough one, or how sudden changes in material parameters generate evolution towards
new spectra – as such, we refer to it as the static spectrum, and denote it using the subscript
‘s’. Understanding dynamics is also essential as it allows prediction of the time required for
a smooth film to reach its static spectrum, thus determining when the adoption of classical
CWT is valid.

Alongside open problems concerning the dynamics of capillary waves on a planar
interface is their evolution in a cylindrical geometry. An analysis of this geometry is timely,
being driven by state-of-the-art applications, e.g. the use of nanofibres to transport annular
films of liquids (Huang et al. 2013) and the manufacture of ultra-smooth optical fibres
(Bresson et al. 2017).

For the aforementioned dynamic problems, it is natural to seek solutions to the
equations of fluctuating hydrodynamics (FH) (Landau & Lifshitz 1959). In FH, thermal
fluctuations, which drive the capillary waves, are modelled by a stochastic stress (white
noise) contribution to the Navier–Stokes equations. A long-wave approximation for thin
films, and also for jets, has been used to derive stochastic lubrication equations (SLE)
from FH: the jet SLE by Moseler & Landman (2000), and the planar-film SLE by Grün,
Mecke & Rauscher (2006), Davidovitch, Moro & Stone (2005) and Durán-Olivencia et al.
(2019). Notably, numerical solutions to the jet SLE (Moseler & Landman 2000; Eggers
2002; Zhao, Lockerby & Sprittles 2020) and the planar-film SLE (Grün et al. 2006;
Nesic et al. 2015; Diez, González & Fernández 2016; Durán-Olivencia et al. 2019; Shah
et al. 2019) demonstrated that noise can accelerate the rupture process, in agreement with
experimental analyses (Becker et al. 2003).

Linear stability analysis of the SLE has provided time-dependent capillary wave spectra
for both jets and planar films (Mecke & Rauscher 2005; Fetzer et al. 2007; Zhang,
Sprittles & Lockerby 2019; Zhao, Sprittles & Lockerby 2019). Importantly, in the recent
article (Zhang, Sprittles & Lockerby 2020), new SLE have been derived for both planar
and annular films (like those consider here), taking into account the slip effects at the
solid–liquid interface, which are well-known to be significant for nanoflows (Lauga,
Brenner & Stone 2005; Bocquet & Charlaix 2010). However, despite their success,
the long-wave approximation inherent in each of these SLE creates restrictions on the
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wavelengths that can be accurately predicted, which requires the development of a more
general method.

The motivation of this work is to understand the time-dependent nature of capillary wave
spectra, S(q, t), i.e. the surface roughening process (i) for different types of film (e.g. planar
or annular), (ii) with different physics (e.g. with or without liquid slip at the substrate) and
(iii) without the limitations of the lubrication approach. The subject is both of fundamental
interest and practical value, creating a single theoretical framework under which the time
evolution of thermal capillary waves on films can be studied, and allowing prediction of
the time required for a smooth film to reach its static spectrum, thus determining when the
adoption of classical CWT is valid.

This paper is organised as follows. In § 2, the molecular models of nanoscale liquid
films on substrates are presented, which will be used as virtual nanoscale experiments
against which to validate new theories. In § 3, our new Langevin model of capillary-wave
growth is derived. Section 4 compares the new model with molecular simulation results
and previous experiments, and discusses new findings. In § 5, we summarise the main
contributions of this work and outline exciting future directions of research.

2. Molecular dynamics simulations

We use molecular dynamics (MD) simulations as a benchmark for capillary wave
dynamics of nanoscale liquid films (the best proxy for experimental data at this scale), and
adopt the popular open-source code LAMMPS (Plimpton 1995). All simulation domains
contain three phases, with an argon liquid film bounded by its vapour above and a platinum
substrate below, as shown in figure 1 for planar and annular films.

The film is composed of liquid argon, simulated with the standard Lennard-Jones (LJ)
12-6 potential: U(rij) = 4εll[(σll/rij)

12 − (σll/rij)
6], where r is the distance between two

particles, ll denotes liquid–liquid interactions and ij represents pairwise particles. The
energy parameter εll is 1.67 × 10−21 J and the length parameter σll is 0.34 nm. The
temperature of this system is kept at T = 85 K or T∗ = 0.7εll/kB (* henceforth denotes
LJ units). At this temperature, the number density of liquid argon is n∗

l = 0.83/σ 3
ll .

The number density of the vapour phase is (1/400)n∗
l . The surface tension of liquid is

γ = 1.52 × 10−2 N m−1 and the dynamic viscosity is μ = 2.87 × 10−4 kg m s−1 (Zhang
et al. 2020). For a planar substrate, the solid is platinum made of five layers of atoms, with
a face centred cubic (fcc) structure and its 〈100〉 surface in contact with the liquid. The
platinum number density is n∗

s = 2.60/σ 3
ll . For cylindrical substrates, two different atomic

structures are considered: the one in figure 1(e) is generated by cutting a cylinder from a
large cube of platinum; the one in figure 1( f ) consists of two concentric surfaces, of which
the cross-section consists of two rings with same number of particles distributed uniformly.
All solid substrates are assumed to be rigid, which saves considerable computational
cost. The liquid–solid interactions are also modelled by the same 12-6 LJ potential with
σls = 0.8σll for the length parameter (ls denotes liquid-solid interactions). For planar films,
three different values of the energy parameter are used, in order to generate varying slip
lengths: Case (P1) εls = 0.65εll, Case (P2) εls = 0.35εll and Case (P3) εls = 0.20εll. For
annular films and Fibre 1, Case (A1) εls = 0.7εll; for Fibre 2, Case (A2) εls = 0.6εll.

The initial dimensions of a planar liquid film (see figure 1a) are Lx = 313.90, Ly =
3.14 and h0 = 3.14 nm (Ly is the film length in the y direction into the page); the MD
simulations are quasi-2-D (Lx � Ly) allowing comparison with 2-D theory. The initial
size of the annular film (see figure 1c) has film length Lx = 229.70 nm and outer radius
h0 = 5.74 nm. The radius of Fibre 1 is defined by the radius of the cylinder, a1 = 2.35
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Figure 1. Snapshots of a thin liquid film (a section) on a substrate in MD. For planar films, (a) initial
configuration with a smooth surface; (b) surface roughening. For annular films, (c) initial configuration; (d)
beads formed due to the Rayleigh–Plateau instability. Two types of cylindrical substrates are used: (e) Fibre 1,
cut out from a bulk of platinum with fcc structure. ( f ) Fibre 2, consisting of two concentric surfaces. Here Lx
is the film length, h is the film thickness for a planar film and film radius for an annular film, and a is the fibre
radius (y and θ are into the page).

nm, used to cut the fibre out of a bulk cube of platinum. Fibre 2 has an outer radius
a2 = 2.17 nm, with spacing 0.22 nm from the inner ring. Solid particles are distributed
uniformly with 5◦ spacing.

For the planar case, we separately equilibrate a liquid film with thickness h0 = 3.14 nm
and a vapour are in periodic boxes at T = 85 K. Then the film is deposited above the
substrate and the vapour is placed on top of the film. Because there exists a gap (a depletion
of liquid particles) between the solid and liquid, arising from the repulsive force in the LJ
potential, it is necessary to deposit the liquid above the substrate by some distance. The
thickness of the gap is found to be approximately 0.2 nm after the liquid–solid system
reached equilibrium so that we choose a deposit distance d = 0.2 nm. This makes the
position of the film surface at z = h0 + d = 3.34 nm initially if the substrate surface has
position at z = 0.

For an annular film, cuboid boxes of liquid and vapour are equilibrated separately in
periodic boxes at T = 85 K. Then an annular film is cut out from the cuboid box with
the outer radius at 5.74 nm and inner radius above the fibre radius with an interval 0.2
nm. Then the fibre is put into the annular film and vapour is placed to surround the film.
Notably, in this case, the position of film surface is still at h0 = 5.74 nm initially.

Periodic boundary conditions (PBC) are applied in the x and y directions of a planar
system while vapour particles are reflected specularly in the z direction at the top boundary
of the planar system. For annular films, PBC are applied in all three directions. After
initialization of the simulated systems, the positions and velocities of the liquid and vapour
atoms are updated with a Nosé–Hoover thermostat (keeping the temperature at T = 85 K)
and the above boundary conditions.

According to classical theory, the surface of the initially smooth planar film, figure 1(a),
should remain smooth indefinitely. However, thermal fluctuations generate surface
roughness over a period of time, see figure 1(b), and it is the evolution of this roughness
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that we study here. The situation for the annular film is more complex, since, as seen in
figure 1(d), it can be prone to a Rayleigh–Plateau instability, due to the ‘pinching’ surface
tension force generated by the circumferential curvature.

In this work, h(x, t) is the film height, δh = h − h0 is the surface perturbation from

its initial height h0, δ̂h the perturbation in Fourier space, and S(q, t) =
√

〈|δ̂h|2〉 the
surface spectrum, where 〈 · · · 〉 denotes an ensemble average, and | · · · | the norm of the
transformed variable. In MD, the liquid–vapour interface (h) is defined by the equimolar
surface. A discrete Fourier transform of δh is performed and surface spectra (presented in
§ 4) are obtained from the average of a number of independent simulations (65 for planar
films and 10 for annular films).

3. Langevin model for thermal capillary wave growth

For nanoflows, where inertia is usually negligible, Stokes flow governs the flow dynamics.
In this regime, for the deterministic setting, linear analyses of free-surface flows are
described by equations for the surface perturbation (in Fourier space) of the form

∂

∂t
δ̂h + Ωδ̂h = 0, (3.1)

where Ω(q) is the dispersion relation (the decay rate of a particular mode). The
dispersion relation for films depends on the domain geometry, the physics at play and any
approximations adopted. For example, for a planar film with slip, no disjoining pressure
and a long-wave approximation, the dispersion relation is (Zhang et al. 2020)

Ω(q) = (h3
0 + 3	h2

0)γ q4

3μ
. (3.2)

Here 	 is the slip length at the liquid–solid interface and μ is the viscosity of the liquid. A
similar expression is obtained in Zhang et al. (2020) for the annular film, again, adopting
a long-wave approximation.

For nanoscale liquid films, where the Reynolds number is small, Stokes flow is
accurate but the long-wave approximation is less valid, particularly as noise can excite
short-wavelength perturbations. For planar films with slip, the Stokes-flow dispersion
relation was obtained in Henle & Levine (2007), while for annular films with slip, we have
derived an expression for the first time, with details of the relatively standard derivation in
appendix A.

The main idea in this work is to establish a framework for taking thermal fluctuations
into account in modelling films in the general case (i.e. for whichever film geometry,
physics or modelling approximation we adopt). Knowing the restoring pressure due to
surface tension is βδ̂h (β = γ q2 for planar films and β = γ (q2 − 1/h2

0) for annular films),
we can rewrite (3.1) and add a fluctuating pressure term (white noise) at the same time.
This results in a Langevin equation of the form

β

Ω

∂δ̂h
∂t

= −βδ̂h + ζ N̂, (3.3)

where N̂(q, t) is a complex Gaussian random variable with zero mean and
correlation 〈|N̂N̂′|〉 = δ(q − q′)δ(t − t′) and ζ is the noise amplitude. Since (3.3) is an
Ornstein–Uhlenbeck process, ζ is determined straightforwardly by considering the surface
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at thermal equilibrium, where 〈|δ̂h|2〉s = S2
s = ζ 2Ω/2β2. Thus, we must have

ζ =
√

2
Ω

βSs, (3.4)

where for planar and annular films, the CWT gives

Ss =
√

Lx

Ly

kBT
γ q2 , Ss =

√
Lx

2πh0

kBT

γ (q2 − 1/h2
0)

, (3.5a,b)

respectively (Zhang et al. 2020). Here Ly is the planar-film length in the y direction with
Lx � Ly, making the simulation of planar films quasi-two-dimensional.

The required time-dependent capillary wave spectra can be obtained directly from (3.3)
(see appendix B). As we are interested in how thermal fluctuations roughen a surface (i.e.
the evolution of a non-equilibrium surface to its thermal equilibrium), the initial condition
of the surface is assumed to be smooth, though our theory is general to consider any
kinds of initial conditions (see appendix B). As will be seen, a smooth interface allows
us to extract the maximum time for a non-equilibrium liquid surface to reach its thermal
equilibrium, which provides a useful guideline either for computational or experimental
investigation of non-equilibrium surfaces. For an initially smooth surface (S(q, 0) = 0),
the spectra are

S(q, t) = Ss

√(
1 − e−2Ωt

)
. (3.6)

The power of this Langevin model is its generality: to find the time-dependent spectrum
for the linear treatment of any Stokes-flow film, all that is required is to substitute the
appropriate static spectra and dispersion relation into (3.6). For example, substituting (3.2)
and (3.5a) into (3.6) generates exactly the spectra derived in Zhang et al. (2020) for a
planar film, with slip, without disjoining pressure and using a long-wave approximation
(i.e. the SLE). It also offers the opportunity of improving on such SLE predictions by
adopting more accurate dispersion relations, such as those utilising Stokes flow (see
appendix A), or adding additional physics without having to always return to the full
equations of FH, and performing an asymptotic analysis.

This Langevin model also naturally bridges the gap between the growth of capillary
waves to the static spectrum which is our focus here, and the relaxation of capillary wave
correlations after the free surface reaches the static spectrum, widely studied in previous
work (Aarts et al. 2004; Jiang et al. 2007; Alvine et al. 2012; Pottier et al. 2015). With
(3.3) and using the Itô integral (Mecke & Rauscher 2005; Diez et al. 2016), the correlation
of interfacial Fourier modes is found to be for planar films〈

δ̂h(q, t)δ̂h
∗
(q, t′)

〉
=
〈∣∣∣δ̂h(q, 0)

∣∣∣2〉 e−Ω(t+t′) − Lx

Ly

kBT
γ q2

[
e−Ω(t+t′) − e−Ω|t−t′|

]
(3.7)

Here, the asterisk denotes a conjugate value and, 〈|δ̂h(q, 0)|2〉 = S(q, 0)2 is the initial
spectra of the surface. Assuming the initial surface is smooth, and with t = t′, (3.7) is
simplified to (3.6). On the other hand, assuming the initial condition is at the state of the
static spectrum, (3.7) is reduced to〈

δ̂h(q, t)δ̂h
∗
(q, t′)

〉
= Lx

Ly

kBT
γ q2 e−Ω|t−t′|, (3.8)

which is the relaxation dynamics of capillary waves studied previously (Aarts et al. 2004;
Jiang et al. 2007; Alvine et al. 2012; Pottier et al. 2015).
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Figure 2. (a–c) Evolution of capillary spectra of a (long) planar film for increasing slip length. A comparison
of spectra extracted from MD results (triangles), and Langevin model with Stokes-flow dispersion relation
(solid lines) or with long-wave dispersion relation (dash lines) at four different times, along with the static
spectrum (dash-dot line). In panel (a) 	 = 0.68 nm, panel (b) 	 = 3.16 nm and panel (c) 	 = 8.77 nm. The
effective thickness of the film h0 = 2.90 nm and film length is 313.9 nm. Inset of panel (c) shows how the
dominant wavenumber qd decreases with time. (d) Evolution of capillary spectra for a short film (62.8 nm)
with other settings the same as panel (b).

4. Results and discussions

4.1. Spectra of planar films
We now compare the proposed Langevin model directly to MD data. Figure 2(a–c) shows
spectra of (long) planar films with three different slip lengths. The first thing we note is that
the spectra are, indeed, time-dependent, and only gradually approach the static spectrum.
One can see that the transient characteristics of the spectra are strongly influenced by
the slip length, which is controlled in the MD indirectly by the solid–liquid interaction
potential (appendix C provides details on how this parameter, and the effective film
thickness, are extracted from independent MD simulations for use in the Langevin model,
see the caption of figure 2 for values).

From figure 2(a–c), the MD spectra compare remarkably well with the Langevin model
when a Stokes-flow approximation to the dispersion relation is adopted (solid lines) for
all slip lengths and at all times. In contrast, the Langevin model with a dispersion relation
derived from a long-wave approximation (dashed lines) – equivalent to the SLE of Zhang
et al. (2020) – is only accurate (i) when slip lengths are small relative to the film thickness
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(i.e. not for the case in figure 2c) and (ii) only in the later stages of capillary wave growth
where the dominant (dimensionless) wavenumber qdh0 (the one with peak amplitude)
becomes much smaller than unity (i.e. when the wavelength becomes large), as discovered
and detailed in Zhang et al. (2020). Thus, the new Langevin model developed here allows
us to go beyond the long-wave paradigm.

The dominant wavenumber is seen to decrease with time and qd can be estimated
from the dynamic spectrum (3.6), by finding the spectrum’s maximum ∂S/∂q|q=qd = 0.
Adopting the long-wave approximation for the dispersion relation (3.2) allows analytical
results to be obtained (Zhang et al. 2020):

qd ∼=
[

15
8

μ

γ (3	h2
0 + h3

0)

]1/4

t−(1/4). (4.1)

As can be seen from the inset of figure 2(c), this prediction agrees well with the MD.

4.2. Roughness of planar films and their universality class
For the free surface considered here, the roughness of the film, W, can be defined in terms
of the evolving surface spectrum from Parseval’s theorem:

W(t) =
√

1
Lx

〈∫ Lx

0
(δh)2 dx

〉
=
√

1
2πLx

∫ 2πN/Lx

2π/Lx

S2 dq, (4.2)

where N is the number of bins used to extract the surface profile from MD simulations,
which provides an upper bound on the wavenumbers that can be extracted. A quick
inspection of the MD results presented in figure 3(a) (symbols) reveals that, approximately,
the roughness grows with some power law in time, which motivates the use of
scaling relations to study surface roughening, as considered previously for the interface
roughening between two immiscible inviscid gases (Flekkøy & Rothman 1995). In other
words, this opens up the remarkable possibility of obtaining a simple parametrisation for
this complex roughening process that aligns the process to seemingly unrelated physical
phenomena.

Scaling relations for surface roughness can be summarised by Barabási & Stanley
(1995):

W ∼ Lαf (t/Lm), (4.3)

where L is the system size, f (v) = vκ for v � 1 (during roughness growth), and f (v) = 1
for v � 1 (at roughness saturation; which is not reached in the MD results of figure 3).
The time to transition, between roughness growth and saturation, scales with ts ∼ Lm. The
three exponents (α, m and κ) define a universality class, and are here related by κ = α/m.

For the planar film, α can be obtained by considering the surface at saturation, i.e. from
the static spectrum given in (3.5a), assuming Ly is fixed: W ∼ Lx

1/2. An upper estimate
on the transition time, between growth and saturation, can be estimated from the inverse
of the dispersion relation at the largest permissible wavelength (q = 2π/Lx). For this it is
reasonable to use the long-wave approximation, (3.2), to find ts ∼ Lx

4, and thus W ∼ t1/8.
In summary, we find the exponents α = 1/2, m = 4 and κ = 1/8, assuming, as we have
done, long-wave dominated roughness.

The MD results in figure 3(a) indicate that, indeed, W ∼ t1/8; this scaling is more
apparent at later times, but before saturation, when the roughness is characterised by
long wavelengths. This precise scaling, as well as the anticipated roughness saturation,
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Figure 3. Slip effects on surface roughening of a planar film. (a) A comparison made among MD results
(symbols), Langevin model with Stokes-flow dispersion relation (solid lines) and with long-wave dispersion
relation (dash lines). (b) A comparison of Langevin model with previous experiments (Fetzer et al. 2007) of
a rupturing film without slip but with effects of disjoining pressure. A further experiment with large slip is
suggested.

is confirmed by the Langevin model with a long-wave approximation to the dispersion
relation (the dashed lines). A closer agreement with MD at earlier times, when the
roughness has a shorter characteristic wavelength, is provided by a Stokes-flow dispersion
relation (solid lines), but this model does not permit the simple extraction of power laws.
The results also show that enhanced slip accelerates the roughening of the surface, but
does not alter the final saturated value.

Interestingly, the new analysis enables us to see that the exponents we find for the surface
roughening of a planar film using the long-wave dispersion relation (i.e. the planar-film
SLE by Grün et al. 2006; Zhang et al. 2020) are the same as those for surface roughening
of atomic depositions in molecular beam epitaxy (MBE) (Barabási & Stanley 1995; Krug
1997). Thus the two distinct physical problems belong to the same universality class (1/2,
4, 1/8).

The strong dependency of the transition time on domain length (ts ∼ L4
x) which we have

uncovered, explains why in our simulations for a film length Lx = 313.9 nm this time is
of the order of microseconds (see figure 3a) and is thus impossible to resolve in MD.
For example, for case P2, the transition time ts = 1/|Ω| = 3389.3 ns using the long-wave
dispersion relation and ts = 3458.5 ns using the Stokes-flow dispersion relation, evaluated
at the smallest permissible wavenumber, q = 2π/Lx. However, for a shorter film with film
length 62.78 nm (other parameters are the same as P2), the transition time is ts = 5.4 ns
with the long-wave dispersion relation and ts = 8.2 ns with the Stokes-flow dispersion
relation (with better accuracy). Thus, the complete evolution of capillary waves to the
static capillary wave can be realised in MD simulations, which is shown in figure 2(d), but
our results have highlighted that care should be taken when interpreting results for larger
film lengths where reaching thermal equilibrium (the static spectrum) for the surface is
often computationally intractable.

4.3. Spectra of annular films
Figure 4 shows the evolving spectra of the capillary waves of annular films. For
wavenumber qh0 > 1, the MD spectra (triangles) of different times collapse onto the static
spectrum, (3.5b). However, for qh0 < 1, the Laplace pressure from the circumferential
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Figure 4. Evolution of capillary spectra for annular films; a comparison between MD results (triangles), the
static spectrum (dashed and dotted line) and the Langevin model. Dispersion relations used in the Langevin
model assuming Stokes flow (solid lines) and a long-wave approximation (dashed lines). Slip lengths: (a) Fibre
1, 	 = 0; and (b) Fibre 2, 	 = 1.18 nm. The hydrodynamic boundary is at radius a = 2.60 nm and the initial
surface at h0 = 5.74 nm (see appendix C for measurement details).

curvature results in a negative dispersion relation such that the amplitude grows
unboundedly until the film ruptures and beads are formed (seen in figure 1d).

The surprise finding discussed earlier is that the noise amplitude in the Langevin model
appears independent of whether CWT (which assumes disturbances are saturated) or a
long-wave approximation (which does not) is adopted. It is therefore interesting to see
that the Langevin model compares closely to the MD simulation for the annular film,
particularly in unstable regions of the spectra. Note, while the noise amplitude seems
independent of the long-wave approximation, the dispersion relation is not, see the inset
of figure 4(b); hence the improved agreement when adopting the Stokes-flow dispersion
relation, particularly in figure 4(b), which is rather dramatic in the annular case.

4.4. Connections with experiments
Using the parameters found in experiments of polymer systems considered in Jiang et al.
(2007), Pottier et al. (2015) and Alvine et al. (2012) where a static spectrum has to
be presupposed to measure the temporal correlations of capillary waves, i.e. (3.8), we
calculate the transition time to be hours long – it is therefore not immediately clear that
the assumption of saturation is justified, and this should be confirmed before analysing
experimental data. Fetzer et al. (2007) presented experiments of dewetting polymer films
and compared the experimental data with the no-slip planar-film SLE (Mecke & Rauscher
2005; Grün et al. 2006) to investigate the effects of thermal fluctuations on thin-film
dewetting. The high viscosity of experimental liquids makes the time scales for instability
growth so slow that atomic force microscopy can be used to provide spatio-temporal
observations. One of the variables they analysed is the roughness of the film surface
in experiments, with which we can compare our developed Langevin model. In their
experiments, the dewetting is influenced by disjoining pressure so that the capillary
spectrum from the Langevin model is slightly modified to consider disjoining pressure φ:

S(q, t) =
√

S2(q, 0)e−2Ωt + L2 kBT
γ q2 + dφ/dh

∣∣h0

(
1 − e−2Ωt

)
. (4.4)
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Here φ = A/6πh3
0 and A is the Hamaker constant. The long-wave dispersion relation

considering disjoining pressure is

ΩLW = 1
μ

(
1
3

h3
0 + 	h2

0

)(
γ q4 + dφ

dh

∣∣∣∣
h0

q2

)
, (4.5)

while the Stokes-flow dispersion relation considering disjoining pressure is

ΩStokes = γ q2 + (dφ/dh)
∣∣h0

4μq
sinh(2qh0) − 2qh0 + 4q	sinh2(qh0)

cosh2(qh0) + q2h2
0 + q	

[
2qh0 + sinh(2qh0)

] . (4.6)

The surface roughness W is thus determined by the spectrum with

W =
√

1
L2

∫ L

0

∫ L

0
(δh)2 dx dy =

√
1

2πL2

∫ qmax

qmin

Sq dq. (4.7)

Here one has to think of the spectrum as radially symmetric in the wavenumber space for a
two-dimensional surface. The qmin and qmax are the minimum and maximum wavenumber
one can find in a periodic surface.

We use the data of roughness from Experiment 1 (Exp. 1) presented in figure 2 of
Fetzer et al. (2007). To evaluate (4.7), the values of parameters (film thickness, surface
tension, Hamaker constant, viscosity, qmin, qmax and initial condition S(q, 0)) have to
be known. Some of them (qmin, qmax, S(q, 0)) are unavailable from Fetzer et al. (2007).
For others, Fetzer et al. (2007) provided referenced values but did not provide the fitting
values of parameters used to have good fit with experimental data. Therefore, we have
to adjust some values of parameters to have best match with the fitting curve in figure 2
of Fetzer et al. (2007) to infer what values may have been used by Fetzer et al. (2007).
In summary, the values we use are h0 = 3.9 nm, γ = 0.045 N m−1, μ = 2 × 104 kg m
s−1, A = 2 × 10−20 J, S(q, 0) = 0, qmin = 0.42 nm−1 and qmax = 0.1q′

d, where q′
d is the

constant dominant wavenumber and q′
d =

√
(1/γ )(A/2πh4

0).
Since there is no slip (	 = 0 nm) and q′

dh0 = 0.0482, which is much smaller than 1,
the Langevin model with a long-wave dispersion relation (i.e. planar-film SLE) can be as
accurate as the Langevin model with a Stokes-flow dispersion relation. However, polymer
films usually have a large slip (up to 1 μm) (Fetzer et al. 2005; Bäumchen et al. 2014) on
certain substrates. We thus suggest an experiment using the same polymer film mentioned
above, but the film has thickness h0 = 9 nm and a large slip length 	 = 450 nm on a
substrate. We predict that this would greatly accelerate the roughening and thus dewetting
as shown in figure 3(b), which highlights the better accuracy of using the Langevin model
with Stokes-flow dispersion relation.

5. Conclusion

We have investigated the dynamic capillary waves of both planar and annular liquid films
at the nanoscale. A Langevin model with a Stokes-flow dispersion relation is able to
accurately predict the growth of capillary waves with slip effects, as validated by MD
simulations. Though our MD simulations of the evolution of an initially smooth surface
is ideal, it may represent the scenario of the melting of nanoscale metal surfaces by laser
pulses (González et al. 2013). Our work also provides grounds for carefully evaluating
future experiments of thin films that currently rely on CWT. The quantitative analysis
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of spontaneous roughening, which is connected to the theory of Universality Classes,
allows better understanding of the instability of liquid-vapour or liquid-liquid interfaces
(Vrij & Overbeek 1968). Though gravity is not considered in the current work as it is
usually neglected at the nanoscale, the introduction of gravity to our Langevin model is
straightforward for potential applications in larger scales. A topic of future interest will
be to investigate how capillary length influences the roughening process. The established
relation between capillary spectra and slip also provides a method to measure large slip
length such as water films on graphene where a shear-driven method shows considerable
statistical errors (Kumar Kannam et al. 2012).
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Appendix A. Stokes-flow dispersion relation for an annular film with slip

For a liquid film flowing on a fibre, axisymmetric Stokes flow is assumed in the annular
film. We use the method in Craster & Matar (2006) to calculate the dispersion relation
analytically, but now assuming we have slip at the liquid–solid interface. The momentum
equations are

∂p
∂r

= μ

[
∂

∂r

(
1
r

∂(ru)

∂r

)
+ ∂2u

∂x2

]
, (A1)

∂p
∂z

= μ

[
1
r

∂

∂r

(
r
∂w
∂r

)
+ ∂2w

∂z2

]
. (A2)

Here u, w and p are the radial velocity, axial velocity and pressure, respectively. The mass
conservation with incompressible assumption is

1
r

∂(ru)

∂r
+ ∂w

∂z
= 0. (A3)

In terms of the boundary conditions, we have the slip boundary condition and
no-penetration condition at the fibre surface r = a such that

w = 	
∂w
∂r

, (A4)

u = 0. (A5)

At the free surface r = h, the no-shear boundary condition, for small surface perturbations,
is

∂w
∂r

+ ∂u
∂z

= 0, (A6)

and the normal force balance requires (for small surface perturbations)

− p + 2μ
∂u
∂r

= γ

{
∂2h/∂z2[

(∂h/∂z)2 + 1
]3/2 − 1

h
[
(∂h/∂z)2 + 1

]1/2

}
. (A7)
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Meanwhile, the kinematic condition is

∂h
∂t

+ w
∂h
∂z

= u. (A8)

The linear stability analysis of the above (A1)–(A8) is performed using
u = ũ exp(Ωt + iqz), w = w̃ exp(Ωt + iqz), p = p0 + p̃ exp(Ωt + iqx) and h = h0 +
h̃ exp(Ωt + iqz). The linearisation of the momentum equations leads to

μ

[
d
dr

(
1
r

d(rũ)

dr

)
− q2ũ

]
= dp̃

dr
, (A9)

μ

[
1
r

d
dr

(
r

dw̃
dr

)
− q2w̃

]
= iqp̃. (A10)

For the equation of mass conservation, we have

1
r

d(rũ)

dr
+ iqw̃ = 0. (A11)

Using (A9)–(A11), the elimination of w̃ and p̃ leads to a fourth-order ordinary partial
differential equation for ũ

d
dr

1
r

d
dr

{
r

d
dr

[
1
r

d(rũ)

dr

]}
− 2q2 d

dr

[
1
r

d(rũ)

dr

]
+ q4ũ = 0. (A12)

The general solution of this equation is (Craster & Matar 2006)

ũ = C1rK0[qr] + C2K1[qr] + C3rI0[qr] + C4I1[qr], (A13)

where K0(K1) and I0(I1) are zeroth (first) order modified Bessel function of second and
first kind. We can also get the expressions for w̃ and p̃ which are

w̃ = − 1
iq

{
C1
[
2K0(qr) − qrK1(qr)

]− C2qK0(qr)

+C3
[
2I0(qr) + qrI1(qr)

]+ C4qI0(qr)
}
, (A14)

p̃ = 2μ
[
C1K0(qr) + C3I0(qr)

]
. (A15)

The four coefficients (C1–C4) are determined by the boundary conditions (A4)–(A8). For
boundary conditions (A4) and (A5) at r = a, their linearised form are

w̃ = 	
dw̃
dr

, (A16)

ũ = 0. (A17)

And for boundary conditions (A6)–(A8) at r = h0, their linearisation gives

dw̃
dr

+ iqũ = 0, (A18)

−p̃ + 2μ
dũ
dr

=
(

−γ q2 + γ
1
h2

0

)
h̃, (A19)

Ω = ũ

h̃
. (A20)
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A substitution of (A13)–(A15) into linearised boundary conditions (A16)–(A20) leads
to a set of four homogeneous equations, which is⎛⎜⎝ m11 m12 m13 m14

aK0(qa) K1(qa) aI0(qa) I1(qa)

−K1(qh0) + qh0K0(qh0) qK1(qh0) qh0I0(qh0) + I1(qh0) qI1(qh0)
m41 m42 m43 m44

⎞⎟⎠
⎛⎜⎝C1

C2
C3
C4

⎞⎟⎠ = 0,

(A21)

where the elements of the first row are given by

m11 = q(2	 − a)K1(qa) − (	aq2 − 2)K0(qa),

m12 = −qK0(qa) − 	q2K1(qa),

m13 = −(	aq2 − 2)I0(qa) − q(2	 − a)I1(qa),

m14 = qI0(qa) − 	q2I1(qa).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(A22)

The elements of the fourth row are given by

m41 = 2μqh0K1(qh0) − Dh0K0(qh0)/Ω,

m42 = 2μ
[
qK0(qh0) + K1(qh0)/h0

]− DK1(qh0)/Ω,

m43 = −2μqh0I1(qh0) − Dh0I0(qh0)/Ω,

m44 = −2μ
[
qI0(qh0) − I1(qh0)/h0

]− DI1(qh0)/Ω.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (A23)

Here D is the driving force D = γ (q2 − 1/h2).
The vanishing of the determinant of the 4 × 4 matrix gives the dispersion relation Ω =

Ω(q). Numerically, we use Matlab to solve the determinant of the matrix.

Appendix B. Capillary spectra from the Langevin model

For the Langevin equation formulated in the main text:

∂

∂t
δ̂h = −Ωδ̂h + ζΩ

β
N̂, (B1)

and its solution can be represented as the linear superposition of two contributions:

δ̂h = δ̂hdet + δ̂hflu, (B2)

where δ̂hflu is the contribution purely caused by thermal fluctuations and δ̂hdet is the
solution to the deterministic part of (B1), i.e. ∂δ̂h/∂t = −Ωδ̂h, obtained as below:

δ̂hdet(q, t) = δ̂h(q, 0)e−Ωt, (B3)

where the initial disturbance is δ̂h(q, 0); here this is the Fourier transform of the liquid
surface found in MD simulations at t = 0.

To find the contribution of the fluctuating component to the spectrum, we determine the
impulse response of the linear system ∂δ̂h/∂t = −Ωδ̂h through

∂δ̂h
∂t

= −Ωδ̂h + δ. (B4)
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Performing a Laplace transform of (B4) using g(q, s) = ∫∞
0 δ̂h(q, t) e−ts dt with zero

initial disturbance δ̂h(q, 0) = 0 gives

g = 1
s + Ω

, (B5)

so that from the inverse Laplace transform, the impulse response is simply

H = δ̂h = e−Ωt. (B6)

Now with thermal fluctuations ζ N̂ as the input, we find

δ̂hflu = ζ

∫ t

0
N̂ (q, t − τ)H(q, τ ) dτ. (B7)

As δ̂h is both a random and complex variable, the r.m.s. of its norm is sought, which,
from (B2), is given by

∣∣∣δ̂h
∣∣∣
rms

=
√∣∣∣δ̂hdet + δ̂hflu

∣∣∣2 =
√∣∣∣δ̂hdet

∣∣∣2 +
∣∣∣δ̂hflu

∣∣∣2, (B8)

(as the average of δ̂hflu is zero) where from (B3)∣∣∣δ̂hdet

∣∣∣2 = |δ̂h(q, 0)|2e−2Ωt, (B9)

and from (B7)

∣∣∣δ̂hflu

∣∣∣2 = ζ 2Ω2

β2

∣∣∣∣∫ t

0
N̂ (q, t − τ)H(q, τ ) dτ

∣∣∣∣2
= ζ 2Ω2

β2

∫ t

0

∣∣∣N̂ (q, t − τ)

∣∣∣2H(q, τ )2dτ

= ζ 2Ω2

β2

∫ t

0
H2dτ

= ζ 2Ω

2β2 [1 − e−2Ωt]. (B10)

Thus, we obtain the spectrum of capillary waves as

S(q, t) =
∣∣∣δ̂h
∣∣∣
rms

=
√

|δ̂h(q, 0)|2e−2Ωt + S2
s
(
1 − e−2Ωt

)
. (B11)

For an initially smooth surface, |δ̂h(q, 0)| = 0, (B11) simplifies to

S(q, t) = Ss

√(
1 − e−2Ωt

)
, (B12)

which is (3.6) in the main text.
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Figure 5. Slip length measured using pressure-driven flows. Panels (a,b) are for planar films with panel (a)
for case P2 and panel (b) for case P1 and P3. Molecular dynamics calculations of velocity (triangles) are fitted
with analytical solutions (black solid lines) with the HB (z1) at the first valley of MD density (yellow solid line)
and FS (z2) at 0.5n∗

l . The inset shows slip length as a function of driving force. (c) is for annular films, case A1
and A2. The inset shows the density profile.

Appendix C. Measurements of slip length

Slip length is measured from independent configurations by simulating pressure-driven
flow past a substrate surface as shown by the MD snapshots in the top-left corner of
figure 5(a) (for a planar film) and figure 5(c) (for an annular film). The pressure gradient
is created by applying a body force g to the fluid. The generated velocity distribution is
u(z) = (nlg/2μ)(z − z1)(2z2 − z1 − z) + us for a planar film. Here z1 and z2 are positions
of the hydrodynamic boundary (HB) and free surface (FS) for a planar film, respectively,
and us is the slip velocity at the HB. For an annular film, the axisymmetric velocity profile
is u(r) = −(nlg/4μ)[r2 − r2

1 − 2r2
1 log(r/r2)] + us, where r1 and r2 are positions of the

HB and FS for this system.
The precise location of two boundary positions for each system is not trivial since there

is an interfacial zone between the two different phases (solid–liquid and liquid–vapour)
as demonstrated by the density distribution (the orange line in figure 5(a) and the inset of
figure 5c). For the HB, research has shown it is located inside the liquid, between first-peak
density and second-peak density rather than being located at the solid surface (Bocquet &
Barrat 1994; Chen et al. 2015) by comparing the analytical solution and MD measurements
of the correlations of momentum density (an offset which matters when the interfacial
layer has comparable width to the film). In line with this finding, we choose the position
of the HB at the first valley of density distribution: z∗

1 = 1.3σ for a planar film and r∗
1 =

7.65σ for an annular film (see figures 5(a) and 5(c)). The position of the FS is determined
in the standard way by the location of the equimolar surface where density is 0.5n∗

l , with
z∗

2 = 9.8σ for a planar film and r∗
2 = 16.55σ for an annular film (see figures 5(a) and 5(c)).

After locating the boundary, the slip velocity is obtained by fitting velocity profiles of
MD data (symbols) with analytical expressions of velocity (solid black lines) as shown in
figure 5(a). The slip length 	 is the distance between the HB and the position where the
the linear extrapolation of the velocity profile vanishes. Figure 5(a) is, in particular, for the
measurement of slip length of case P2 where the slip length is measured to be 	∗ = 9.3σ

(3.16 nm) (	 = 0.68 nm for P1 and 	 = 8.77 nm for P3, see figure 5b). In figure 5(a),
two different values of driving forces g∗ = 0.01 and g∗ = 0.006 are used to prove that the
measured slip length is a constant independent of driving forces (g∗ ≤ 0.01). However,
as the inset shows, the slip length becomes force (shear)-dependent for g∗ ≥ 0.01, which
is beyond current consideration (Thompson & Troian 1997). As the driving forces in the
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Thermal capillary wave growth and surface roughening

free-surface flows studied for capillary waves are small, the assumption of a constant slip
length holds.

For annular films, as shown in figure 5(c), the slip lengths are 	 = 0 nm (no-slip) for
case A1 and 	 = 1.18 nm for A2. Similar to the planar cases, we make sure that the slip
lengths for annular cases are constant using driving forces with different strength.

We note that as the HB does not align with the edge of the solid, the effective thickness
of the fluid domain simulated for capillary waves in the main text is different from its
initial thickness. For a planar film, as the position of the initial FS is at 3.34 nm (see § 2)
and the HB is at z1 = 0.44 nm, the effective thickness of a planar film is 2.9 nm. For an
annular film, this means a = r1 = 2.6 nm and outer radius h0 is 5.74 nm.
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