STEINHARDT'S INEQUALITY IN THE MINKOWSKI PLANE

Mostafa Ghandehari

In a Minkowski plane with unit circle E, the product of the positive circumference of a plane convex body K and that of its polar dual is greater than or equal to the square of the Euclidean length of the polar dual of E. Equality holds if and only if K is a Euclidean unit circle.

1. Introduction

By a plane convex body K we shall mean a compact, convex subset of the Euclidean plane having a non-empty interior. Let K_{1} and K_{2} be plane convex bodies, both having the origin as an interior point. Define $\sigma_{+}\left(K_{1}, K_{2}\right)$ as the length of the positively oriented boundary of K_{1}, measured with respect to the (nonsymmetric) metric induced by K_{2}. Similarly define $\sigma_{-}\left(K_{1}, K_{2}\right)$ as the length of the negatively oriented boundary of K_{1}, measured with respect to K_{2}.

The main purpose of this note is to prove that if E is the unit circle of a given Minkowski plane and K is a plane convex body then

$$
\begin{equation*}
\sigma_{+}(K, E) \sigma_{+}\left(K^{*}, E\right) \geqslant\left[L\left(E^{*}\right)\right]^{2} \tag{1}
\end{equation*}
$$

where $L\left(E^{*}\right)$ denotes the Euclidean length of the polar dual of E and K^{*} denotes the polar dual of K. The polar dual is taken with respect to an interior point of K. In the case that E is a Euclidean unit circle, Steinhardt's inequality [6] follows:

$$
\begin{equation*}
L(K) L\left(K^{*}\right) \geqslant 4 \pi^{2} \tag{2}
\end{equation*}
$$

The preliminary definitions and results are given in the next section. The proof of the main result is given in Section 3. Related results are also given in Section 3.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/82 \$A2.00+0.00.

2. Preliminary definitions and results

Let K be a plane convex body with the origin as an interior point. For each angle $\theta, 0 \leqslant \theta<2 \pi$, we let $r(K, \theta)$ be the radius of K in direction $(\cos \theta, \sin \theta)$, so that the boundary of K has equation $r=r(K, \theta)$ in polar coordinates. The distance from the origin to the supporting line of K with outward normal $(\cos \theta, \sin \theta)$ is noted by $h(K, \theta)$. This is the supporting function of K restricted to the Euclidean unit circle. Since K is convex, it has a well defined unique tangent line at all but at most a countable number of points. We let $d s(K, \theta)$ represent the element of Euclidean arclength of the boundary of K at a point where the unit normal is given by $(\cos \theta, \sin \theta)$. The Euclidean length of K is given by

$$
\begin{equation*}
L(K)=\int_{0}^{2 \pi} h(K, \theta) d \theta \tag{3}
\end{equation*}
$$

while the Euclidean area of K is given by

$$
\begin{equation*}
A(K)=\frac{1}{2} \int_{0}^{2 \pi} h(K, \theta) d s(K, \theta) \tag{4}
\end{equation*}
$$

The polar dual of K, denoted by K^{*}, is another plane convex body having the origin as an interior point and is defined in such a way that

$$
\begin{equation*}
h\left(K^{*}, \theta\right)=\frac{1}{r(K, \theta)} \text { and } r\left(K^{*}, \theta\right)=\frac{1}{h(K, \theta)} \tag{5}
\end{equation*}
$$

The mixed area $A\left(K_{1}, K_{2}\right)$ of two convex sets is defined by

$$
\begin{equation*}
A\left(K_{1}, K_{2}\right)=\frac{1}{2} \int_{0}^{2 \pi} h\left(K_{1}, \theta\right) d s\left(K_{2}, \theta\right) \tag{6}
\end{equation*}
$$

It turns out that the mixed area is symmetric in its arguments. Eggleston [2] contains further properties of mixed areas.

If K is a centrally symmetric plane convex body, centred at the origin, then the self-circumference $\sigma(K)$ is given by

$$
\begin{equation*}
\sigma(K)=\int \frac{d s(K, \theta)}{r\left(K, \theta+\frac{\pi}{2}\right)} \tag{7}
\end{equation*}
$$

If K is not necessarily symmetric and z is any point interior to K, then positive and negative self-circumference of K relative to z are defined by

$$
\begin{equation*}
\sigma_{+}(K, z)=\int \frac{d s(K, \theta)}{r\left(K, \theta+\frac{\pi}{2}\right)} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{-}(K, z)=\int \frac{d s(K, \theta)}{r\left(K, \theta-\frac{\pi}{2}\right)} \tag{9}
\end{equation*}
$$

where the origin of the coordinate system is at z.
Both $\sigma_{+}(K, z)$ and $\sigma_{-}(K, z)$ reduce to $\sigma(K)$ in case K is centrally symmetric with z as its centre.

If K_{1} and K_{2} are plane convex bodies with the origin as an interior point, then the length of the positively oriented boundary of K_{1} with respect to K_{2} is given by

$$
\begin{equation*}
\sigma_{+}\left(K_{1}, K_{2}\right)=\int \frac{d s\left(K_{1}, \theta\right)}{r\left(K_{2}, \theta+\frac{\pi}{2}\right)} \tag{10}
\end{equation*}
$$

and the length of the negatively oriented boundary is given by

$$
\begin{equation*}
\sigma_{-}\left(K_{1}, K_{2}\right)=\int \frac{d s\left(K_{1}, \theta\right)}{r\left(K_{2}, \theta-\frac{\pi}{2}\right)} \tag{11}
\end{equation*}
$$

Schäffer [5] and independently later, Thompson [7], proved that for a centrally symmetric set $\sigma_{+}(K)=\sigma_{-}\left(K^{*}\right)$ and $\sigma_{-}(K)=\sigma_{+}\left(K^{*}\right)$. More generally Chakerian [1] used the concept of mixed areas to prove that

$$
\begin{align*}
& \sigma_{+}\left(K_{1}, K_{2}\right)=\sigma_{-}\left(K_{2}^{*}, K_{1}^{*}\right) \quad \text { and } \\
& \sigma_{-}\left(K_{1}, K_{2}\right)=\sigma_{+}\left(K_{2}^{*}, K_{1}^{*}\right) . \tag{12}
\end{align*}
$$

The unit circle E of a Minkowski plane is referred to as the indicatrix. Define the isoperimetrix to be that convex body T such that

$$
\begin{equation*}
h(T, \theta)=\frac{1}{r\left(E, \theta+\frac{\pi}{2}\right)}=h\left(E^{*}, \theta+\frac{\pi}{2}\right) . \tag{13}
\end{equation*}
$$

A centrally symmetric set is called a Radon curve if it coincides with the corresponding isoperimetrix. In the next section we use properties of mixed areas to discuss self-circumference of Radon curves. We also use the following theorem, given by the author in [4], to establish the main result and obtain an inequality for self-circumference of a plane convex curve with four-fold symmetry, that is, a convex curve K such that $r(K, \theta+\pi / 2)=r(K, \theta)$.

Theorem 1. Assume K_{1} and K_{2} are plane convex bodies with the origin as an interior point. Let K_{1}^{*} denote the polar dual of K_{1}. Let $A\left(K_{1}, K_{2}\right)$ denote the mixed area of K_{1} and K_{2}. Then

$$
\begin{equation*}
A\left(K_{1}, K_{2}\right) A\left(K_{1}^{*}, K_{2}\right) \geqslant\left[L\left(K_{2}\right)\right]^{2} . \tag{14}
\end{equation*}
$$

Equality holds if and only if K_{1} is a circle.

Proof: Use equalities (5) and (6) to proceed as follows:

$$
\begin{aligned}
4 A\left(K_{1}, K_{2}\right) A\left(K_{1}^{*}, K_{2}\right) & =\left(\int_{0}^{2 \pi} h\left(K_{1}, \theta\right) d s\left(K_{2}, \theta\right)\right)\left(\int_{0}^{2 \pi} \frac{1}{r\left(K_{1}, \theta\right)} d s\left(K_{2}, \theta\right)\right) \\
& \geqslant\left(\int_{0}^{2 \pi} \sqrt{h\left(K_{1}, \theta\right)}\left(\sqrt{r\left(K_{1}, \theta\right)}\right)^{-1} d s\left(K_{2}, \theta\right)\right)^{2} \\
& \geqslant\left(\int_{0}^{2 \pi} d s\left(K_{2}, \theta\right)\right)^{2}=\left[L\left(K_{2}\right)\right]^{2}
\end{aligned}
$$

where we have used the Cauchy-Schwarz inequality and the fact that $h\left(K_{1}, \theta\right) \geqslant$ $r\left(K_{1}, \theta\right)$.

In the above theorem assume $K_{1}=K$ and $K_{2}=B$ where B is the Euclidean unit circle. Then use (3) and (6) to obtain Steinhardt's inequality given in (2).

Assume $K_{1}=K_{2}=K$ and use the isoperimetric inequality given by

$$
\begin{equation*}
L^{2}(K) \geqslant 4 \pi A(K) \tag{15}
\end{equation*}
$$

and the fact that $A(K, K)=A(K)$ to obtain

$$
\begin{equation*}
A\left(K^{*}, K\right) \geqslant \pi \tag{16}
\end{equation*}
$$

Inequality (16) is a result due to Firey [3]:
The mixed area of a plane convex body and its polar dual is at least π. In the next section we use Firey's result to obtain a lower bound for self-circumference of sets with four-fold symmetry.

Proof of the main result: In Theorem 1 let $K_{1}=K$ and $K_{2}=E^{+}$where E^{+}denotes the polar dual of the unit circle E of the Minkowski plane rotated 90°, to obtain

$$
A\left(K, E^{+}\right) A\left(K^{*}, E^{+}\right) \geqslant\left[L\left(E^{+}\right)\right]^{2}
$$

Then use (5), (6) and (10) to obtain

$$
\sigma_{+}(K, E) \sigma_{+}\left(K^{*}, E\right) \geqslant\left[L\left(E^{+}\right)\right]^{2}
$$

Since a rotation of 90° leaves the length invariant, $L\left(E^{+}\right)=L\left(E^{*}\right)$. Thus we obtain the inequality (1) as desired.

In the remainder of this section we use properties of mixed areas and polar duals to obtain additional theorems on self-circumference of convex curves. The following theorem shows that the self-circumference of a plane convex body with four-fold symmetry is at least 2π.

Theorem 2. Let K be a centrally symmetric plane convex body centred at the origin. Assume $r(K, \theta)$ is an equation of the boundary of K in polar coordinates. Assume $r(K, \theta)=r(K, \theta+\pi / 2), 0 \leqslant \theta \leqslant 2 \pi$. That is, K has four-fold symmetry. Then the self-circumference satisfies $\sigma(K) \geqslant 2 \pi$. Equality holds if and only if K is a circle.

Proof: Using the definitions given in (7), and four-fold symmetry, we obtain

$$
\sigma(K)=\int \frac{d s(K, \theta)}{r\left(K, \theta+\frac{\pi}{2}\right)}=\int \frac{d s(K, \theta)}{r(K, \theta)}
$$

By the property of the polar dual given in (5) and the property of mixed areas given in (6), it follows that

$$
\begin{aligned}
\sigma(K) & =\int \frac{d s(K, \theta)}{r(K, \theta)}=\int h\left(K^{*}, \theta\right) d s(K, \theta) \\
& =2 A\left(K^{*}, K\right)
\end{aligned}
$$

Firey's result [3] implies $\sigma(K) \geqslant 2 \pi$.
The following can be proved directly from the definition:
Let K be a plane convex body with origin as interior point. Assume T is the isoperimetrix, that is, the polar dual rotated 90 degrees. Then $\sigma_{+}(K, T)=2 A(K)$, where $A(K)$ is the Euclidean area.

If K is a Radon curve, then it coincides with its isoperimetrix. Thus the selfcircumference of a Radon curve is equal to twice its Euclidean area as follows directly from the definitions. We conclude by proving the following theorem, concerning the length of a Euclidean unit circle with respect to a convex curve K.

Theorem 3. Let K be a plane convex body. Assume B is the Euclidean unit circle. Then the length of B with respect to K is equal to the Euclidean length of the polar dual of K. That is, $\sigma_{+}(B, K)=L\left(K^{*}\right)$.

Proof: By the result of Chakerian given in (12) we obtain

$$
\sigma_{+}(B, K)=\sigma_{-}\left(K^{*}, B^{*}\right)=\sigma_{-}\left(K^{*}, B\right)
$$

Assuming that the polar dual of K is calculated at the centre of the Euclidean unit circle B, it follows that $\sigma_{+}(B, K)=L\left(K^{*}\right)$.

References

[1] G.D. Chakerion, 'Mixed areas and the self-circumference of a plane convex body', Arch. Math. 34 (1980), 81-83.
[2] H.G. Eggleston, Convexity (Cambridge University Press, Cambridge, 1958).
[3] W.J. Firey, 'The mixed area of a convex body and its polar reciprocal', Israel J. Math. 1 (1963), 201-202.
[4] M. Ghandehari, 'Polar duals of convex bodies', Proc. Amer. Math. Soc. (to appear).
[5] J.J. Schäffer, 'The self-circumference of polar convex disks', Arch. Math. 24 (1973), 87-90.
[6] F. Steinhardt, On distance functions and on polar series of convex bodies, Ph.D. Thesis (Columbia University, 1951).
[7] A.C. Thompson, 'An equiperimetric property of Minkowski circles', Bull. London. Math. Soc. 7 (1975), 271-272.

Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943
United States of America

[^0]: Received 2 April 1991
 The author is thankful to the Naval Postgraduate School for support during this work.

