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HELGASON SPHERES OF COMPACT SYMMETRIC SPACES
AND IMMERSIONS OF FINITE TYPE

BANG-YEN CHEN

A unit speed curve 7 = -y(s) in a Riemannian manifold N is called a circle if
there exists a unit vector field Y(s) along 7 and a positive constant k such that
VJ7 ' (S ) = kY(s), VaY(s) = -kj'(s). A maximal totally geodesic sphere with
maximal sectional curvature in a compact irreducible symmetric space M is called
a Helgason sphere. A circle which lies in a Helgason sphere of a compact symmetric
space is called a Helgason circle. In this article we establish some fundamental
relationships between Helgason circles, Helgason spheres of irreducible symmetric
spaces of compact type and the theory of immersions of finite type.

1. INTRODUCTION

A unit speed curve 7 = j(s) in a Riemannian manifold N is called a circle if there
exists a vector field Y(s) of unit vectors along 7 and a positive constant k such that

(1.1) VsX(s) = kY(s), VsY(s) = -kX(s),

where X(s) denotes the tangent vector of 7 and Vs the covariant differentiation along
7 at each point 7(s). The number 1/fc is called the radius of the circle 7 (see [10]).
A circle in an ordinary n-sphere 5 n is nothing but a small circle (in the usual sense)
lying in a totally geodesic 2-sphere S2 in 5" .

Let M be a Riemannian manifold. All isometries of M form a Lie group which is
denoted by I(M). Let GM denote the connected component IQ{M) of I{M). The Lie
group GM is compact if M is compact (see [8]). A Riemannian manifold M is called
homogeneous if GM acts transitively on M. Let o be a point in M. Denote by KM

the isotropy subgroup at o. We have M — GM/KM- Very often, we simply denote
GM and KM by G and K, respectively.

A curve 7 in a homogeneous Riemannian manifold M = GM/KM is called a
homogeneous curve if it is the orbit of a point under the action of a one-parameter
subgroup {(f)t} of G =
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The linear isotropy representation of M is the orthogonal representation of K in
the tangent space T0M at o denned by

(1.2) tf->O(ToM):0H>(0.)o,

where (</>»)o denotes the differential of the isometry 4> at o and 0(ToM) the orthogonal
group acting on the tangent space TOM at o.

A homogeneous Riemannian manifold is said to be isotropy-irreducible if its linear
isotropy representation is irreducible. An isotropy-irreducible homogeneous Riemannian
manifold is simply called an irreducible homogeneous Riemannian manifold.

A maximal dimensional complete totally geodesic submanifold with maximal con-
stant curvature in a compact irreducible symmetric space M is known as a Helgason
sphere. Except for the case when M is a real projective space the Helgason spheres are
actually spheres [7]. Moreover, the dimension of every Helgason sphere in M is at least
two. We define a Helgason circle of M to be a circle which lies in a Helgason sphere
of M. Obviously, every isometry of M carries a Helgason circle into a Helgason circle
with the same radius.

The main purpose of this paper is to study the relationship between Hegalson
spheres, Helgason circles and the theory of immersions of finite type. Our main results
are the following.

(1) Any two Helgason circles with the same radius in an irreducible symmetric
space M of compact type are conjugate under the connected component
Io(M) of the full group I{M) of isometries of M.

(2) Every Helgason circle in an irreducible symmetric space of compact type
is a homogeneous curve.

(3) An isometric immersion of class Cu from an irreducible symmetric space
of compact type into a Euclidean space is of finite type if and only if it
carries each Helgason circle into a curve of finite type.

(4) An isometric immersion of class Cu from an irreducible symmetric space
of compact type into a Euclidean space is of finite type if and only if it
carries each Helgason sphere into a submanifold of finite type.

2. CURVES AND SUBMANIFOLDS OF FINITE TYPE

In this section we review briefly some basic facts on submanifolds of finite type (for
the details, see [1, 2, 3]).

Let M be a compact Riemannian manifold. Denote by C°°(M) the set of differ-
entiable real-valued functions defined on M. Define an inner product on C°°(M) by
(f,h) — fM fg * 1. This inner product turns C°°(M) into a pre-Hilbert space. It is
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well-known that the eigenvalues of the Laplacian A form a discrete infinite sequence:
0 = Ao < Ai < A2 < . . . /* 00. Let Vk be the eigenspace of A associated with eigen-

value Afc. Then each Vk is finite-dimensional and £] Vk is dense in C°°(M) (in the
fc=0

00

L2 -sense). If we denote by L2(M) the completion of £) Vk, we have C°°(M) = L2(M)
fc=O

(in the L2-sense with respect to the topology of uniform convergence).
For a nonconstant function / in C°°(M), one can make the following spectral

resolution (or decomposition) of / (see [2] for details):

(2.1) / = /„ +
t=i

The set T(f) = {i > 0 : fi ^ 0} is called the type of f. The function / is said to be
of finite type if T{f) is a finite set; and / is of infinite type if T(/) is an infinite set.
Moreover, / is said to be of A;-type if T(f) contains exactly k elements.

The upper order (/) and the lower order (/) of / are defined by

(2.2) upper order(/) - supT(f) and lower order(/) = minT(/).

The same can be repeated for vector-valued differentiable functions on M. In
particular, we can define the notions of type, order, finite type, infinite type, fc-type,
upper order and lower order for isometric immersions of a compact Riemannian manifold
into a Euclidean space as well.

The simplest manifolds are those of dimension one. Let 7 : Sl —¥ E m be an
isometric immersion of a closed smooth curve of length 2nr into E m . Denote by s the
arc length of S1.

For a periodic function / = f(s) with period 2ixr, /(s) has a Fourier series

expansion given by

(2.3) /(*) = o0 + f
j

where ao is a constant and a,j,bj are the Fourier coefficients of f(s) given by

(2.4) aj = — f /(s)cos (J—) ds, bj = — [ /(a) sin (3-) ds.
•KT J_nr \ r ) 7T7- J_nr \r J

In terms of Fourier series expansion, we have the following [2].
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PROPOSITION 2 . 1 . Let 7 : S1 -> E m be a dosed smooth curve of length 2TIT

in E m . Then 7 is 0/ finite type if and only if the Fourier series expansion of each
coordinate function of 7 has only finitely many nonzero terms.

Proposition 2.1 can be restated as the following.

PROPOSITION 2 . 2 . Let 7 : S1 -> Em be a closed smooth curve of length 2-rrr
in E m . Then 7 is of finite type if and only if each coordinate function of 7 is an
algebraic polynomial in cos (s/r) and sin (s/r).

If 7 is a closed fc-type curve 7 in E™, 7 can be expressed in the form:

k

(2.5) 7(5) = co + ^2 (at cos (Xtis) +bisin (Atis)), Atl < • • • < Atfc
t = i

where ao,ai , . . . ,afc, 61 , . . . ,bk are vectors in E m satisfying |a»|2 + \bi\2 7̂  0 for i 6
{1, 2 , . . . , A;}. The type of 7 is then given by T{y) = {t\,... ,tk}; moreover, the lower
and upper orders of 7 are given by t\ and tk, respectively. A 1-type closed curve in
E m is a nothing but a circle lying in a 2-plane.

Suppose 7 : S1 —> E m is a finite type curve. By regarding S1 as a circle in the
uw-plane defined by u2 4- v2 = r2, each coordinate JA of 7 is a polynomial in u, v
whose degree is given by the upper order of j A , for A £ {1 , . . . , m}. Clearly, the upper
order of 7,4 is at most the upper order of 7.

3. INVARIANT SUBSPACES AND CLASS ONE REPRESENTATIONS

Let M = G/K be a compact symmetric space, where K is the isotropy subgroup
at a point o € M. Then M is an analytic manifold and G has a natural orthogonal
representation p over the Hilbert space L2(M) given by the action:

- 1(3.1) p{g) : L2(M) -> L2(M) : / ^ f o g

for g e G.
Every irreducible invariant subspace of L2(M) is finite-dimensional and it consists

of analytic functions. Moreover, the space generated by the irreducible invariant sub-
spaces of L2(M) is a dense subset of L2{M) with respect to the topology of uniform
convergence. Furthermore, if M is isotropy-irreducible, then every irreducible invariant
subspace of L2{M) is contained in one of the eigenspaces Vj of the Laplacian of M.

If G is a compact Lie group and K a closed subgroup of G, then a representation
a of G in a Euclidean vector space V is said to be of class one with respect to K if
there exists a nonzero vector v E V which is fixed by K, that is, a(ip)v = v for every
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Denote by ITT(G,K) a collection of mutually nonequivalent irreducible class one

representations of G with respect to K such that every irreducible class one represen-

tation of G with respect to K is equivalent to one of the representations in Irr(G, K).

Let W be an invariant subspace of L2{M) and let & . , . . . , Cmw be an orthonormal

basis of W. Define a map ipw • M -* W by

mw

(3.2)

The following results are known (see [6, 11]).

PROPOSITION 3 . 1 . Let M — G/K be an irreducible symmetric space of com-

pact type. Then the orthogonal direct sum:

(3-3)
<7€lrr (G,K)

is a dense subset of C°°(M) and of L2(M) in the L2-sense with respect to the topology
of uniform convergence, that is, every irreducible subrepresentation of p is of class one
with respect to K and each irreducible class one representation appears exactly once.

PROPOSITI ON 3 . 2 . Suppose that M = G/K is an irreducible symmetric space
of compact type and f € L2(M). Let V(f) denote the closure of the vector space gen-
erated by the orbit of f under p(G) and let f — Yl fa denote the decomposition

<7€lrr(G,JC)

of f with respect to the invariant subspaces Wa given in Proposition 3.1. Then

(3-4)

where the sum is taken over all a € Irr (G, K) with fa ^ 0.

PROPOSITION 3 . 3 . Let M = G/K be an irreducible symmetric space of com-
pact type and let W be an invariant subspace of L2(M) that does not consist of
constant functions only. Then

(1) ipw is a pw -equivariant map, where pw is the restriction of p to W.
(2) pw is of class one with respect to K.
(3) There exists a constant cw such that ^w = Cy/ipw is an isometric im-

mersion.
(4) If W is contained in an eigenspace V of the Laplacian of M with eigen-

value X, then ipw is a minimal immersion of M into a hypersphere of
W with radius y/n/X, where cw = y/nvol(M)/mwX, n = dimM, and

= dim W.
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4. HELGASON CIRCLES, HELGASON SPHERES AND FINITE TYPE IMMERSIONS

The purpose of this section is to prove the following relations between Helgason

circles, Helgason spheres and immersions of finite type.

THEOREM 4 . 1 . Let M be an irreducible symmetric space of compact type.

Then

(1) Any two Helgason circles with the same radius are conjugate under the

connected component Io{M) of the full group I{M) of isometries of M.

(2) Every Helgason circle of M is a homogeneous curve.

(3) Every finite type isometric immersion of M into a Euclidean space carries

each Helgason circle of M into a curve of finite type.

(4) Every finite type isometric immersion of M carries each Helgason sphere

of M into a submanifold of finite type.

P R O O F : (1) Assume that M is a compact irreducible symmetric space with max-
imal sectional curvature K . Observe that each Helgason circle in M is contained in a
2-dimensional totally geodesic submanifold, say 5^, of constant curvature K. Let /3 be
another Helgason circle with the same radius. Suppose that (3 lies in a 2-dimensional
totally geodesic submanifold, say 5 j , of constant curvature K. Let p and p be the
points in 5 | and S% so that /? and 7 are the geodesic circles in S j and S% centred
at p and p, respectively. Then there is an isometry <p € IQ{M) which carries Sp onto
S^ [8, Theorem 11.1, p.334]. Since M is a homogeneous Riemannian manifold, we
may choose <j> which also carries p to p. Because (5 and 7 have the same radius, the
distance from p to /? in S j and that from p to 7 in 5^ are the same. Thus, <f> carries
the Helgason circle /? to the Helgason circle 7.

(2) Suppose 7 is a Helgason circle of a compact irreducible symmetric space M.

Then 7 lies in a Helgason sphere S of M. Assume S — Gs/Ks, where G s is the group
of isometries on 5 generated by point symmetries of S. Since each point symmetry of
the totally geodesic submanifold S can be extended to a point symmetry of M, Gs can
be regarded as a subgroup of IQ{M) (see [5]). Because the Hegalson sphere S is of rank
one, every circle in S is a homogeneous curve in S (see [9]). Therefore, the Helgason
circle 7 is the orbit of a point in S under the action of a one-parameter subgroup of
G s . By regarding this one-parameter subgroup as a one-parameter subgroup of Io{M),
it follows that 7 is a homogeneous curve in M.

(3) Let x be a finite type isometric immersion of a compact irreducible symmetric
space M into a Euclidean space E m . We may assume that the centre of mass of x in
E m is the origin of E m . Suppose that the type of x is given by T{x) = {t\, t2,... ,tk).

Let {0i*,. . . , <j>mt.} be an orthonormal basis of the eigenspace Vt. with eigenvalue Xti.
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Then the position vector of M in E m takes the form:

k

(4-1) x

where a\,... , a^ t , . . . , a*, . . . , a j ^ are constant vectors in E m .

Consider a standard diagonal isometric immersion D(ctl, • • • , ctk) of M into E N

whose type { i i , i 2 j • • • ,tk) is the same as that of x. Then D{ctl,... , ctfc) takes the
form:

(4.2) D(ctl,... ,ctk) = (cHbtl<j>\\... , c t l 6 t l ^ t i ! . . . ,ctkbtk4>\k,... ,ctkbtk<j>%k),

for some positive numbers 6 j 1 , . . . , btk • Choose a s tandard basis { e i , . . . ,£N} of ~EN .

Consider the linear m a p L : E —» E m defined by

L(ctlbtlei) = a\, ... ,L(chbtlem

J =
= 0.

Then we obtain x = L o Z ^ c ^ , . . . ,Ctk) • Since a standard diagonal immersion of a
compact irreducible homogeneous Riemannian manifold is G-equivariant, the immer-
sion D(ctl,... ,ctk) is G-equivariant.

Let 7 be a Helgason circle of M. Then 7 is a homogeneous curve in M ac-
cording to statement (2). Hence the restriction of D^c^,... ,Ctk) to 7 is equiv-
ariant. Let x denote the position function of the image curve Z ^ c t j , . . . ,Ctt)(7).
Then x, A7x, A^x , . . . , A!^x are linearly dependent vectors fields in E m , where
A7 = -d2/ds2. Therefore there exists a nontrivial polynomial P of degree m + 1
such that P(A 7 )x = 0. Thus, by applying a result of [2], we conclude that the image
curve is a curve of finite type. Consequently, the diagonal immersion Di^c-t^,... , ctk)
carries each Helgason circle of M into a curve of finite type. In particular, this shows
that the Fourier series expansion of the image curve of the Helgason circle consists
of only finitely many nonzero terms according to Proposition 2.1. Because the finite
type isometric immersion x is the composition of the standard diagonal immersion
D(ctl, • • • ,ctk) followed by a linear map L, the Fourier series expansion of ( io7) ( s )
also consists of only finitely many nonzero terms. Hence, the finite type immersion x
carries Helgason circles into curves of finite type.
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(4) Let 5 be a Helgason sphere of a compact irreducible symmetric space M. The
dimension of S is known to be 1 + m(5), where m(J) is the multiplicity of the highest
restricted root 6. Except for the case when M is a real projective space, the Helgason
sphere is actually a Euclidean sphere (see [7] for details). Clearly, the dimension of a
Helgason sphere is at least two.

Assume that x is a finite type isometric immersion of M into a Euclidean space.
Then x carries each circle of S into a curve of finite type according to statement (3).
Our goal is to prove that x carries the Helgason sphere S into a submanifold of finite
type.

First, we claim that if an isometric immersion of a 2-sphere S2 into a Euclidean
space carries each circle in S2 into a curve of finite type, then the immersion is of finite
type. Without loss of generality, we may regard S2 as the unit sphere in Euclidean
3-space defined by u2, + u\ + u2 — 1. Recall that the i-th nonzero eigenvalue of the
Laplacian A on S2 is given by Aj = i(i + 1) whose multiplicity is m* = 2i + 1. More-
over, it is known that the restriction / to S2 of a harmonic homogeneous polynomial
of degree i in uo,ui,U2 is an eigenfunction with eigenvalue Xi. Conversely, if / is an
eigenfunction on S2 with eigenvalue Aj, then there is a unique harmonic homogeneous
polynomial P of degree i in uo,ui,U2 such that / is the restriction of P to S2. Let
x = (x\,... , x m ) denote the restriction of x to S2.

Suppose that x maps S2 into a surface of infinite type. Then there is a coordinate
function XA whose spectral resolution contains infinitely many nonzero terms. Hence,
XA is an infinite series in UQ, U\,U2 which is not an algebraic polynomial in UQ, UI,U2-

Put

(4.3) *A = $3aioi l iat4°uj1u?.
Then at least one of UQ,U\,U2 in (4.3) has its power approach oo. Without loss of
generality, we may assume that the power of ui goes to infinity. Consider a circle 7 of
S2 with radius r lying in the plane defined by UQ = y/l - r2 = c, 0 < r < 1. We put
m = r cos (s/r), U2 = r sin (s/r). Substituting these equations into (4.3) yields

(4.4) xA =

Since sup {ii : at0iit2 i1 0} = 0 0 , (4.4) cannot be an algebraic polynomial in cos (s/r)

and sin (s/r). Thus, 1(7) must be a curve of infinite type according to Proposition
2.2, which is a contradiction. Hence, x must carry each totally geodesic 2-sphere S2

into a surface of finite type. In particular, we have proved statement (4) if the Helgason
spheres of M are 2-dimensional Riemannian spheres.

Next, suppose that M is not a real projective space and the dimension of the
Helgason spheres is greater than 2. In this case, each Helgason sphere of M is a
Euclidean sphere.
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By statement (3) we know that the finite type immersion x carries each Helgason
circle into a curve of finite type. Thus, by applying the result we proved above, x carries
every circle of every totally geodesic 2-sphere S2 of a Helgason sphere S into a surface
of finite type. On the other hand, it is known from [4] that an isometric immersion
of compact irreducible symmetric space is of finite type if and only if it carries every
geodesic into a curve of finite type. Thus, by applying this result of [4], we know that
x carries every geodesic of each totally geodesic 2-sphere of a Helgason sphere into a
curve of finite type. Because every geodesic in a Helgason sphere 5 is contained in some
totally geodesic 2-sphere, x must carry every geodesic in a Helgason sphere into a curve
of finite type. Consequently, by applying the same result of [4] again, we conclude that
x carries each Helgason sphere into a submanifold of finite type. This proves statement
(4) except for the case when M is a real projective space.

Finally, assume that M is a real projective n-space RPn. In this case, the Hel-
gason sphere of M is M itself. Let IT : S" -> RPn be the canonical projection from
5 " onto RPn. Then it is known that the i-th eigenspace Vi associated with the i-th
nonzero eigenvalue of the Laplacian on RPn consists of those functions / for which fon
belongs to the 2i-th eigenspace of 5 " , that is, f on is the restriction to Sn of a har-
monic homogeneous polynomial in n + 1 variables and of degree 2i. If x : RP2 —¥ Em

is an isometric immersion of infinite type, then there is a coordinate function XA of
x whose spectral decomposition contains infinitely many nonzero terms. Hence, if we
express XA in the form of (4.3), then at least one of the powers of uo,ui,u2 must
approach oo. Hence, by applying the same argument as for S2, we know that x must
carry some circles in RP2 into curves of infinite type. Consequently, if x : RP2 —> Em

carries every circle into a curve of finite type, then x is an immersion of finite type.
Therefore, by applying the cited result of [4], x must carry each geodesic in RP2 into a
curve of finite type. Now, let us assume that n > 2 and x : RPn —» E m is an isometric
immersion which carries every circle in RPn into a curve of finite type. Then x carries
every circle in a totally geodesic RP2 of RPn into a curve of finite type. Hence, by ap-
plying the result for RP2, we conclude that the restriction of x to the totally geodesic
RP2 is of finite type. This implies that x carries every geodesic in RP2 into a curve
of finite type. Since every geodesic in RPn is contained in some totally geodesic RP2,
our discussion implies that x carries every geodesic in RPn into a curve of finite type.
Consequently, by applying the cited result of [4], we conclude that x : RPn -¥ E m is
of finite type. D

5. IMMERSIONS WHICH CARRY HELGASON SPHERES INTO FINITE T Y P E

SUBMANIFOLDS

The purpose of this section is to characterise immersions of compact irreducible

https://doi.org/10.1017/S0004972700019304 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019304


252 B-Y. Chen [10]

symmetric spaces which carry Helgason circles and Helgason spheres into submanifolds

of finite type.

THEOREM 5 . 1 . Let x be an isometric immersion of class Cu from an irreducible

symmetric space M of compact type into a Euclidean space. Then x is of finite type

if and only if x carries each Helgason circle of M into a curve of finite type.

PROOF: Assume that x is an isometric immersion of class Cu from an irreducible
symmetric space M of compact type into a Euclidean m-space. If x is of finite type,
then statement (3) of Theorem 4.1 implies that x carries each Helgason circle in M

into a curve of finite type.

For the converse, it is sufficient to prove that every C" isometric immersion of
infinite type from a compact irreducible symmetric space M must carry some Helgason
circles into curves of infinite type. This can be done by applying an idea of [4, 6].
To do so it is convenient to denote the sequence of eigenvalues of the Laplacian on
M by 0 = Ao < Ai ^ A2 ^ • • • , where each eigenvalue is repeated according to its
multiplicity. Let {CtljgN denote an orthonormal basis for L2{M) such that AQ = XiQ

for i € N = {0 ,1 ,2 , . . .} .

Define the map ip : M ->• L2(M) by

(5.1)

The map tp is known to be well-defined, continuous and p-equivariant, where p is the
natural orthogonal representation of G on L2(M) defined by (3.1).

Assume that x is an infinite type isometric immersion of class Cu from a compact
irreducible symmetric space M = G/K into a Euclidean m-space. Then at least one
of its coordinate functions, say Xj, is of infinite type. We simply denote Xj by y. Let

(5.2)

be the spectral resolution of y. Without loss of generality, we may assume y0 = 0.

Define the continuous linear map Fy : L
2(M) -t R by

(5.3) Fy(h) = (A2ny,h), h€L2(M).

Then we have

/ x t= l t=l
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for any p e M. Therefore one has

(5.4) y = Fy o ip.

Let 7 be a Helgason circle with length 2irr in M. Then, for any <p € G, the image
ip o 7 of 7 under (f is also a Helgason circle with length 2irr. For each i € N , we define
two functions a,i,bi : G —> R by

ai{f)=l (y o (p o-y) (s) COS [°-^)ds,

(5.5) J-;;
6 i ( v 3 ) = y_ x r

( y °
which give the Fourier coefficients of the function yo<poj, for each ip e G.

Let L2(M) — 2 M̂<T be the decomposition of L2(M) into irreducible invariant sub-

spaces given in Proposition 3.1. Choose {Ct}j6N *° 'De a n orthonormal basis adapted
to this decomposition. Since the coordinate function y is a function of infinite type,
we may write the type T{y) of y in the form: T(y) = {ji : i = 1,2,...} so that ji
increases with i. For each i € N , it is possible to choose cr* € Irr(G, K) such that
Wa< is contained in Vj. and such that Wai is not contained in the kernel of Fy. We
let rii be the upper order of tpwa- ° 7 - (See Proposition 3.3 for the definition of iJwa. •)
Then lim n^ = oo. We may assume that nj is increasing with i (by restricting to a

t-»oo

subsequence of {ji} if necessary).

Define

(5.6) Gi = {<peG: ani(<p) / 0 or bn.{<p) ± 0 } .

Then Gi is a dense open subset of G which can be seen as follows:

Let

oo

(5.7) (ip°-y)(s) = 3 0 + ^ (aicos(—) +6isin( —))
i = l

be the Fourier series expansion of (ip o j)(s). Then, by (5.4) and (5.7) and the fact that
tp is p-equivariant, we have

(yotpo 7)(s) = (FyOipoipo 7)(s)

= (Fvo/»(<£>) o V 0 7 ) ( s )
OO

= Fy(p{<p)a0) + Y, (Fy(p{<P)ai) cos ( " ) + Fv{p{tpjbi) sin ( " ) ) .
t=i
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Thus we find

(5.8) ai(<p) = Fy(p(<p)ai), bt(ip) = Fy(p(<p)bi).

From the definition of Oi and rii, we know that either ani or 6nj has a component in
Wai. Assume ani has a component in Wai. Then, Wa< is contained in V(ani).

If both ani and bni vanish on G, then V(ani) is contained in the kernel of Fy,
which is a contradiction. Thus, at least one of an<, 6n< is nonzero, which implies that Gi
is an open subset of G. Because the immersion x is of class Cu, the coordinate function
y is an analytic function. Thus, each Gi is a dense open subset of G. Therefore,

is a nonempty set by Baire's theorem. We conclude that, for each element
i}* > y°f°l is a function of infinite type. Hence the curve xotpoj is a curve

of infinite type. Therefore the immersion x must carry some Helgason circles to curves
of infinite type. Consequently, if the immersion x carries every Helgason circle of M
into a curve of finite type, then x is an immersion of finite type. D

By applying Theorem 4.1 and Theorem 5.1 we have the following.

THEOREM 5 . 2 . Let x be an isometric immersion of class Cu from an irreducible
symmetric space M of compact type into a Euclidean space. Then x is of finite type
if and only if x carries each Helgason sphere of M into a submanifold of finite type.

PROOF: Assume that x is an isometric immersion of class Cu from an irreducible
symmetric space M of compact type into a Euclidean space. If x is of finite type, then
statement (4) of Theorem 4.1 implies that x carries each Helgason sphere in M into a
submanifold of finite type.

Conversely, assume that x is a Cu isometric immersion which carries every Hel-
gason sphere in M into a submanifold of finite type. Then the restriction of x to
each Helgason sphere is of finite type. Since each Helgason circle 7 lies in a Helgason
sphere and every circle in a Helgason sphere is a homogeneous curve, the immersion x
must carry each Helgason circe into a curve of finite type according to Theorem 4.1.
Consequently, the immersion x carries each Helgason circle in M into a curve of finite
type. Therefore, by applying Theorem 5.1, we know that the immersion x is of finite
type. D
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