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ABSTRACT

It has become standard practice in the non-life insurance industry to employ
generalized linear models (GLMs) for insurance pricing. However, these
GLMs traditionally work only with a priori characteristics of policyholders,
while nowadays we increasingly have a posteriori information of individual
customers available across multiple product categories. In this paper, we there-
fore develop a framework to capture this a posteriori information over several
product lines using a dynamic claim score. More specifically, we extend the
bonus-malus-panel model of Boucher and Inoussa (2014) and Boucher and
Pigeon (2018) to include claim scores from other product categories and to
allow for nonlinear effects of these scores. The application of the proposed
multi-product framework to a Dutch property and casualty insurance portfo-
lio shows that customers’ individual claims experience can have a significant
impact on the risk classification. Moreover, it indicates that considerably more
profits can be gained by accounting for their multi-product claims experience.
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1. INTRODUCTION

It has become the industry standard in non-life insurance to adopt gener-
alized linear models (GLMs) for determining the premium rate structure.
Traditionally, these rate structures are based only on a priori characteristics
of policyholders and do not account for any information available a posteriori.
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2 R. M. VERSCHUREN

In addition, customers often hold multiple policies across different product cat-
egories, while insurers tend to focus on policies in a single line of business when
designing their premia. However, a lot of individual heterogeneity is typically
unaccounted for in these a priori univariate rate structures, which may (par-
tially) be captured by information observed a posteriori and from other product
lines.

Several methods have been introduced in the literature to account for this
form of heterogeneity. Common shocks and copulas, for instance, can induce
correlation between claims from different product categories by introducing
common processes and a dependence structure to the marginal claim pro-
cesses of the same customer, respectively (see, e.g., Bermúdez and Karlis, 2011;
Shi and Valdez, 2014). Vector GLMs, multivariate integer-valued autoregres-
sive processes, and multivariate decision trees, on the other hand, can allow
for this correlation by directly describing the vector of claims of a customer
(see, e.g., Yee and Hastie, 2003; Bermúdez et al., 2018; Quan and Valdez,
2018). Multivariate random effects and multivariate credibility can addition-
ally enable a dynamic correction of the a priori rate structure by absorbing
any variation not already accounted for by the covariates in GLMs (see, e.g.,
Englund et al., 2008, 2009; Pechon et al., 2018; Barseghyan et al., 2020).
However, Lemaire (1998) argues that past claiming behavior is one of the most
important determinants of future claim counts and that a bonus-malus sys-
tem (BMS) is therefore more intuitive for this correction. In contrast to the
random effect and credibility models, the timing of past claims is now explic-
itly accounted for in these systems through a claim score as a special case of
a Markov process with a finite number of states (Kaas et al., 2008). As such,
BMSs pose a commercially attractive form of experience rating where only the
current level of the score matters instead of the entire claims history.

Despite the appealing framework, these claim scores have primarily been
used for designing rate structures for a single product in a cross-sectional set-
ting. Many authors consider BMSs for automobile insurance, for instance, to
adjust the given static premium without accounting for any information from
other product lines (see, e.g., Pinquet, 1997; Denuit et al., 2007; Tzougas et al.,
2014, 2018). A more dynamic approach is followed by Boucher and Inoussa
(2014), who argue that it is no longer consistent to use this two-step approach
in case of panel or longitudinal data and suggest to estimate the a posteriori
rate structure in a single step. Boucher and Pigeon (2018) further develop the
resulting BMS-panel model and, for practical reasons, consider linear effects
for the levels of the claim score.

While the BMS-panel model deals with past claiming behavior in a
longitudinal setup, it has thus far only focused on linear effects and a single
product. The contribution of this paper is therefore twofold. It extends this
BMS-panel model by, on the one hand, allowing the claim scores to affect the
rate structure of other product lines and, on the other hand, incorporating a
spline for their effects using a generalized additive model (GAM). In addition,
a piecewise linear simplification of this spline is considered to accommodate an
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interpretable rate structure in practice with more flexibility than the pure linear
specification. This, in turn, allows us to account for information observed a
posteriori and from other product lines in our rate structures, to identify the
cross-selling potential of customers and to investigate the relation between
past claiming behavior across different product categories.

The remainder of this paper is organized as follows. In Section 2, we briefly
highlight the concepts behind the industry standard of GLMs, describe the
novel extension of the BMS-panel model, and additionally discuss how to
determine the optimal claim score. While Section 3 describes the Dutch prop-
erty and casualty insurance portfolio and comments on the exact optimization
procedure, we apply this methodology in Section 4 and elaborate on the results.
The final section concludes this paper with a discussion of the most important
findings and implications.

2. MODELING FRAMEWORK

2.1. Static a priori risk classification

Among non-life insurers, there has been a long tradition of adopting statistical
techniques to construct their a priori rate structure. These insurers are typically
interested in predicting the total claim amount L relative to the exposure to risk
e in the form of a risk premium. Technically, this risk premium π is defined as:

π =E

[
L
e

]
=E

[
N
e

×E

[
L
N

∣∣∣∣N > 0
]]

=E [F ]×E [S] ,

with N, S=L/N, and F =N/e the number of claims, the average claim
severity, and the claim frequency, respectively (Antonio and Valdez, 2012;
Henckaerts et al., 2020). While we can allow the claim frequencies and severi-
ties to interact, it is in general common practice to model these two components
independently (see, e.g., Czado et al., 2012; Garrido et al., 2016).

Insurers now traditionally adopt the framework of GLMs for both compo-
nents to properly estimate these risk premia (Nelder andWedderburn, 1972). In
this framework, we assume that the claim frequency or severity Yi,t is indepen-
dently distributed for each subject i and period t according to some distribution
from the exponential family. The mean predictor ηi,t in the GLM is then
given by:

ηi,t = g
(
μi,t

)=X ′
i,tβ for i= 1, . . . ,M, t= 1, . . . ,Ti,

with μi,t =E
[
Yi,t|Xi,t

]
the conditional expectation of Yi,t and β a parameter

vector containing the effects of the risk factors Xi,t. In practice, we typically
assume a Poisson and Gamma distribution for the claim counts and sizes,
respectively, while a logarithmic link function g(·) is commonly adopted to
accommodate a multiplicative rate structure (Haberman and Renshaw, 1996).
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4 R. M. VERSCHUREN

While these GLMs have become the industry standard over the last
decades, they lead to a static form of risk classification that only takes a pri-
ori information of policyholders into account. However, the longitudinal setup
in this paper allows us to easily incorporate any a posteriori information in
the mean predictor to account for past claiming behavior. By additionally
including the claims experience from other product categories, we obtain a
framework for dynamic multi-product risk classification.

2.2. Dynamic a posteriori risk classification

While the cross-sectional model assumes independence between both subjects
and periods, we can account for dependencies between periods in the longitu-
dinal setting. As in the BMS-panel model of Boucher and Inoussa (2014), past
claiming behavior is summarized by a single claim score, defined recursively as:

�i,t+1 =min
(
max

(
�i,t + ei,t1

(
Ni,t = 0

)− �
Ni,t

ei,t
, 1
)
, s
)
,

with initial value �i,0 = �0 and indicator function 1
(
Ni,t = 0

)
that equals one for

a period without any claims and zero otherwise. The parameters �, s, and �0
denote a jump parameter, the maximum score, and the initial score for new
policyholders without any experience yet, respectively. The lowest score as well
as the jump size after a claim-free period are both fixed at one, since we can
already capture their effect indirectly through � and s. We additionally intro-
duce the exposure of risk ei,t into this claim score to account for policies with
exposures of less than an entire year. Moreover, the score �i,t is an indication
of the a posteriori risk in a policy, since policyholders who claim more (less)
frequently and are thus more (less) risky will receive lower (higher) scores. As
such, this type of score corresponds to a BMS with transition rules +1/ − �,
entry level �0, and maximum level s.

With this claim score, we can directly incorporate past claiming behavior in
a longitudinal GLM, even for multiple products. The intuition behind this is
that the claim score serves as a relevant predictor for future claiming behavior,
rather than an ex post punishment (reward) for (no) claims in the past. The lin-
ear predictor for product category (c) of this multi-product claim score model
is given by:

η
(c)
i,t = g(c)

(
μ

(c)
i,t

)
=X (c)′

i,t β (c) +
C∑
j=1

f (c)j

(
�
(j)
i,t

)
for c= 1, . . . ,C, (2.1)

where f (c)j (·) represents some function. By additionally requiring that f (c)j (�(c)i,t )=
0 whenever �

(c)
i,t = �0 or unknown, we can account for policyholders without

any a posteriori information (yet) and for customers holding only a subset of
all available products. In turn, the a priori risk premia are fully determined

https://doi.org/10.1017/asb.2020.34 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.34
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by the policyholder’s risk characteristics and any effects of the past claiming
behavior, if any, are multiplicative to these premia in case of a logarithmic link
function.

While Boucher and Inoussa (2014) and Boucher and Pigeon (2018) con-
sider a logarithmic function, the transformations f (c)j (·) can be taken in a much
more general way. The natural cubic splines used in GAMs, for instance, can
already capture nonlinear as well as linear effects of the claim score on the
response variable (Hastie and Tibshirani, 1986). These splines are additionally
optimal among all twice continuously differentiable functions when minimiz-
ing the penalized deviance and can easily be constructed by B-splines (Hastie
et al., 2009; Ohlsson and Johansson, 2010). More importantly, we can express
the multi-product claim score model as a GAMwith these splines, where, given
the claim score specification, parameters can be estimated straightforwardly
by penalized maximum likelihood and with standard statistical software (see
Appendix B). However, a piecewise linearly segmented rate structure is prefer-
able from a practical perspective. We therefore adopt both natural cubic and
linear splines in this paper to allow for nonlinear effects of the claim score and
to benefit from the existing framework for GAMs. In turn, the resulting multi-
product claim score model allows us to dynamically classify policyholders’ risk
profile based on their experience in multiple product categories.

2.3. Optimality of rate structure

With the multi-product claim score model, we can formulate a rate structure
based on the a priori characteristics of policyholders and their past claiming
behavior across product categories. Depending on our choice for the claim
score parameters (�, s, �0), different premium rates will result from the esti-
mated model. Moreover, since a lot of different parameter combinations, and
thus rate structures, are possible in this framework, a criterion is required
to assess their performance. While typical statistical goodness-of-fit measures
such as the Akaike information criterion (AIC) and Bayesian information cri-
terion (BIC) are based on maximized likelihoods, we are more interested in the
discriminatory power of the predicted premia from a practitioner’s point of
view. Our aim in this context is to best identify and distinguish between risky
and safe customers. A well-known approach for assessing the discriminatory
power is based on the Lorenz curve and the Gini index.

The Lorenz curve has first been introduced by Lorenz (1905) in the field of
welfare economics as a statistical tool to compare two distributions. In case of
perfect alignment between the two distributions, the Lorenz curve reduces to
the 45-degree line, or the line of equality. Similarly, the greater the discrepancy
between the two distributions, the further the Lorenz curve is away from this
line of equality. The Gini index is defined as twice the distance between this
Lorenz curve and the line of equality and thus represents a measure of inequal-
ity (Gini, 1912). More importantly, in the context of insurance rate making, the
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6 R. M. VERSCHUREN

Lorenz curve and the corresponding Gini index can also be adopted as a mea-
sure of risk discrimination (see, e.g., Frees et al., 2014; Henckaerts et al., 2020).
To find the Lorenz curve in practice, we can use the following three steps:

(i) Construct the relativity Rj =PA
j /PB

j for each policy j= 1, . . . ,H, where
PB
j denotes the risk premium of a benchmark model and PA

j the risk
premium of an alternative model;

(ii) Order the policies by the relativities Rj from lowest to highest;
(iii) Calculate(

F̂P(ω), F̂L(ω)
)

=
(∑H

j=1 P
B
j × 1 {FH(Rj)≤ ω

}∑H
j=1 P

B
j

,

∑H
j=1 Lj × 1

{
FH(Rj)≤ ω

}∑H
j=1 Lj

)
as a function of ω ∈ [0, 1], where Lj denotes the actual observed claim
amount of policy j and FH(·) the empirical cumulative distribution
function of the relativities Rj.

In turn, this ordered Lorenz curve
{(
F̂P(ω), F̂L(ω)

)
:ω ∈ [0, 1]

}
leads to the

empirical Gini index, given by the expression:

Ĝini= 1−
H−1∑
j=0

(
F̂P
(
FH(Rj+1)

)− F̂P
(
FH(Rj)

))(
F̂L
(
FH(Rj+1)

)+ F̂L
(
FH(Rj)

))
from the trapezoidal rule where R0 = 0. Its asymptotic covariance matrix can
be consistently estimated as:

�̂Gini = 4
μ̂2
Lμ̂

2
P

(
4�̂h + μ̂2

h

μ̂2
L

�̂L + μ̂2
h

μ̂2
P

�̂P − 4μ̂h

μ̂L
�̂hL − 4μ̂h

μ̂P
�̂hP + 2μ̂2

h

μ̂Lμ̂P
�̂LP

)
,

with hj = 1
2 (μLPB

j FL(Rj)+LjμP[1− FP(Rj)]) for j= 1, . . . ,H, and using
moment-based estimators for all the means and covariances of L, P,
and h (Frees et al., 2011).

Depending on our choice for the benchmark model, there are two versions
of the Gini index, namely the simple Gini index and the ratio Gini index. If we
simply assume a constant benchmark premium for every policy without any
risk discrimination, or PB

j = 1, we are calculating the simple Lorenz curve and
the total degree of risk discrimination of the alternative model. However, we
often have an existing framework or benchmark premium rate in place, such
as a standard GLM, that we would like to improve. In these cases, it makes
more sense to not calculate the total degree of risk discrimination but to com-
pare the risk classification resulting from the alternative model to that from
this benchmark model. Frees et al. (2014) describe a mini-max strategy for
determining which model leads to the best risk classification. They calculate
the ratio Gini coefficient for every combination of alternative and benchmark
model and select the benchmark model that minimizes the maximal coefficient.
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The intuition behind this is that the model that minimizes the maximal Gini
coefficient is the least vulnerable to alternative specifications. The use of this
ratio Gini index has an additional practical advantage, since we can directly
relate it to the profit potential of the alternative rate structure over the bench-
mark structure. If we take PB

j to be the risk premia of a benchmark GLM, then
the ratio Gini coefficient (divided by two) quantifies how much more profitable
it is, on average, to use, for instance, the multi-product claim score model due
to the different ordering of risks. In other words, the ratio Gini index enables
us to identify which design of the claim score is most profitable and optimal in
the sense of risk discrimination as opposed to the benchmark GLM in non-life
insurance.

3. DATA AND EMPIRICAL CONSIDERATIONS

3.1. Property and casualty insurance

To illustrate the implications of the multi-product claim score model in prac-
tice, we apply this model framework to real-world non-life insurance claims.
More specifically, we analyze a Dutch property and casualty insurance portfo-
lio containing 183,690 policies on general liability, 264,348 on home contents,
111,018 on home, and 363,573 on travel insurance from 2012 up to and includ-
ing 2018. These policies generally have a duration of 1 year and need to
be renewed annually, but policyholders may enter or leave the portfolio at
any moment. For each of these four products, we consider a different set of
explanatory variables that are known to be used to construct premium rates in
the Netherlands. For more details on the exact covariates used for each product
category in this paper, see Tables A.1–A.5 in Appendix A.

From the individual claim counts and sizes in this portfolio, we can clearly
see excess zeros and negative skewness for each product category in Figure C.1
in supplementary Appendix C. Note that, for illustrative purposes, the claim
severities are shown on a logarithmic scale and that the excess zeros in the claim
counts seem to indicate that a negative binomial (NB) or zero-inflated (ZI) dis-
tribution is more appropriate than a Poisson distribution. More importantly,
in Table 1, we show how many policyholders also own other products and
in Table 2 how many claims have occurred in each product line. For general
liability insurance, for instance, we observe 34,407 customers, of which 5660
[16.45%] own only that product, 13,285 [38.61%] exactly two products, 11,898
[34.58%] exactly three products, and 3564 [10.36%] all four products. Out of
the 3520 general liability claims in total, 511 [14.52%] are filed by customers
holding only that product, 1192 [33.86%] by those holding exactly two prod-
ucts, 1290 [36.65%] by those holding exactly three products, and 527 [14.97%]
by those holding all four products. Moreover, in 339, 147, and 12 cases, the
customers holding exactly two, three, and four products, respectively, have
also filed at least one claim on the other product(s). In other words, we see
that quite a lot of customers have general liability, home contents, and/or
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TABLE 1

NUMBER OF POLICYHOLDERS IN EACH INSURANCE PRODUCT CATEGORY WITH PERCENTAGES IN SQUARE BRACKETS.

Products owned

Policyholders 1 2 3 4 Total

General liability 5660 [16.45%] 13,285 [38.61%] 11,898 [34.58%] 3564 [10.36%] 34,407 [100.00%]
Home contents 10,272 [22.88%] 18,333 [40.84%] 12,724 [28.34%] 3564 [7.94%] 44,893 [100.00%]
Home 688 [3.44%] 5612 [28.08%] 10,119 [50.64%] 3564 [17.84%] 19,983 [100.00%]
Travel 73,412 [89.01%] 2042 [2.48%] 3461 [4.20%] 3564 [4.32%] 82,479 [100.00%]
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TABLE 2

NUMBER OF CLAIMS IN EACH INSURANCE PRODUCT CATEGORY WITH PERCENTAGES IN SQUARE BRACKETS AND TAKING INTO ACCOUNT THAT AT LEAST
ONE CLAIM HAS ALSO BEEN FILED IN THE OTHER CATEGORIES IN PARENTHESES.

Products owned

Claims 1 2 3 4 Total

General liability 511 (0) 1192 (339) 1290 (147) 527 (12) 3520 (498)
[14.52% (0.00%)] [33.86% (68.07%)] [36.65% (29.52%)] [14.97% (2.41%)] [100.00% (100.00%)]

Home contents 1546 (0) 3820 (870) 3508 (204) 1297 (16) 10,171 (1090)
[15.20% (0.00%)] [37.56% (79.82%)] [34.49% (18.72%)] [12.75% (1.47%)] [100.00% (100.00%)]

Home 63 (0) 1285 (522) 2506 (174) 1127 (16) 4981 (712)
[1.26% (0.00%)] [25.80% (73.31%)] [50.31% (24.44%)] [22.63% (2.25%)] [100.00% (100.00%)]

Travel 9148 (0) 296 (59) 645 (35) 683 (16) 10,772 (110)
[84.92% (0.00%)] [2.75% (53.64%)] [5.99% (31.82%)] [6.34% (14.55%)] [100.00% (100.00%)]
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10 R. M. VERSCHUREN

home insurance, but that there is relatively little overlap with travel insurance.
In addition, given that a customer files a claim, we observe a slight yet non-
negligible tendency of customers holding exactly two products to have claims
in both product categories, while this diminishes as the customer owns more
products.

3.2. Optimization methodology

Using the Dutch insurance portfolio, we estimate the multi-product claim score
model developed in this paper. We model the claim frequencies and severities
independently and assume a Poisson (P), NB, and ZI Poisson (ZIP) distribu-
tion for the claim counts and a Gamma (G), Inverse-Gaussian (IG) and Pareto
(P) distribution for the claim sizes, both with a logarithmic link function.
Moreover, we consider an ordinary GLM for the claim severities and apply the
multi-product framework to the claim frequencies, with explanatory variables
given in Appendix A for each product category without any interactions. We
additionally allow the risk factors to affect the logit of the ZI parameter of the
ZIP distribution but include the claim scores only in the Poisson component
to avoid identification issues and for consistent interpretation of the marginal
effects. While these assumptions can be relaxed, they are adopted nonetheless
since they correspond to standard practices in the non-life insurance industry.

Under these assumptions, we apply the multi-product framework to the
property and casualty insurance data. Given the claim score parameters,
we estimate this framework by penalized maximum likelihood, or penalized
iteratively reweighted least squares (PIRLS), which we describe in detail in
Appendix B and can be performed efficiently in Rwith the package mgcv devel-
oped by Wood (2006). However, rather than letting the smoothing penalty
determine the number of parameters for the B-splines, we employ k= 4
parameters for all of them to sufficiently account for nonlinearities using the
k− 1= 3 effective degrees of freedom.We additionally adopt these splines with
default knot locations and replace their centering constraint by the a priori
constraint introduced earlier that fj

(
�i,t
)= 0 whenever �i,t = �0 or unknown,

equivalent to having no a posteriori information. This, in turn, allows us to
exploit all information available, both on customers with or without any a pos-
teriori information and with or without all products. Finally, we compare the
multi-product framework developed in this paper to the case of linear claim
score effects resembling the BMS-panel model of Boucher and Inoussa (2014)
and Boucher and Pigeon (2018) to assess the value of our extension.

The above methodology assumes known claim score parameters, while
in practice these are unknown as well. We therefore determine the optimal
parameters independently for each product by a grid search in terms of the
ratio Gini index with a standard GLM as benchmark. More specifically, we
estimate the claim score model for each product separately on training data
from the period of 2012 up to and including 2017 and select the parameters
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TABLE 3

ABBREVIATIONS FOR COMBINED FREQUENCY (X ) ∈ {P, NB, ZIP} AND
SEVERITY (Y ) ∈ {G, IG, P} MODELS.

Severity
Abbreviation Frequency Severity model (X ) model (Y )

GLM-(X )(Y ) (X ) GLM (Y ) GLM
GAM-(X )(Y )-One (X ) one-product claim score GAM (Y ) GLM
GLM-(X )(Y )-One (X ) one-product claim score GLM (Y ) GLM
GAM-(X )(Y )-Multi (X ) multi-product claim score GAM (Y ) GLM
GLM-(X )(Y )-Multi (X ) multi-product claim score GLM (Y ) GLM
GAM-(X )(Y )-Multi-PL (X ) multi-product claim score piecewise linear GAM (Y ) GLM

that lead to the best ratio Gini index for test data from 2018. We addition-
ally impose the restriction that each claim score level, after truncation toward
�0, must contain at least 0.01% of the training set’s exposure to avoid param-
eter combinations that can lead to unobserved levels. While we consider the
values {1, 2, . . . , s− 1} for � and {3, 4, . . . , 25} for s, we implement the set
{2, 3, . . . , s− 1} for �0 in case policyholders have no prior claims experience.

However, in practice, policyholders often switch between insurers or have
been a customer at the insurer previously, meaning that they do in fact have
claims experience prior to our data. Fortunately, we have access to the claims
history at the insurer from 2005 up to and including 2011, albeit not to
policyholders’ risk characteristics. All the claims filed, if any, by 12,361, 13,210,
5460, and 13,112 customers are therefore available for general liability, home
contents, home and travel insurance in this period, respectively. As a proxy
to the unobserved prior claims experience, we can already construct the claim
score and use its level at the end of this 7-year period to initialize the claim
score for existing policyholders. Given the optimal claim score parameters, we
can then specify and estimate the multi-product framework. As such, the multi-
product claim score model remains tractable and allows us to incorporate past
claiming behavior across product categories for insurance pricing.

4. APPLICATIONS IN NON-LIFE INSURANCE

4.1. Static risk profiles

Based on the Dutch insurance portfolio and the methodology described ear-
lier, we explore how well a standard GLM can describe insurance data. While
we adopt the abbreviations in Table 3 henceforth, we show the out-of-sample
errors for the estimated GLMs in Figure C.2. Moreover, Table C.1 depicts the
maximal ratio Gini coefficients for the static GLMs with the Poisson, NB, and
ZIP distribution for the claim frequencies and the Gamma, IG, and Pareto
distribution for the claim severities.

https://doi.org/10.1017/asb.2020.34 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.34


12 R. M. VERSCHUREN

From the prediction errors, it is apparent that the magnitude of the out-
of-sample errors can differ substantially across product categories. For home
contents insurance, for instance, we obtain the largest errors, whereas the pre-
dicted premia for general liability insurance appear to be much closer to the
realized expenses than for the other product lines. More importantly, we find
that the prediction errors are distributed largely the same regardless of the
model specification. This is additionally supported by the parameter estimates
which appear roughly the same for the three-frequency and the three-severity
components and are available upon request. The distribution underlying the
static GLMs therefore does not seem to really affect the prediction errors or to
matter that much for the goodness of fit.

However, in terms of the ratio Gini index, we do find a substantial
impact of the distribution underlying the static GLMs. Based on the mini-
max strategy, we find that the static GLM-NBG or GLM-NBP is the least
vulnerable to alternative model choices for general liability or home contents
and home insurance, respectively, while the static GLM-ZIPP is the least vul-
nerable for travel insurance. These results thus seem to indicate that the NB
(Pareto) distribution is generally more profitable to adopt for the frequency
(severity) component than the Poisson or ZIP (Gamma or IG) distribution.
A straightforward selection procedure based on both the AIC and BIC values
in Table C.2 additionally confirms these findings.

4.2. Dynamic risk profiles

While the standard GLM is a form of static risk classification, we can also
create dynamic risk profiles from the claims experience of individual poli-
cyholders. Using the claim score introduced earlier, whose range and hence
meaning are reversed compared to Boucher and Inoussa (2014) and Boucher
and Pigeon (2018), we first account for this claims experience on a single prod-
uct and optimize the parameters (�, s, �0) for each product category separately.
The resulting one-product models consider Poisson, NB, and ZIP distributed
claim frequencies, Gamma, IG, and Pareto distributed claim severities and use
either GAM or GLM specifications. Moreover, from the optimal claim score
parameters in Table 4, we see that the claim frequency distribution is not very
important. More specifically, there can be substantial differences between the
GAM and GLM specifications, but the one-product GAMs only appear to
distinguish between Pareto and non-Pareto distributed claim severities. The
one-product GLMs, on the other hand, can lead to different but still roughly
similar parameters.

In contrast to the one-product models, we can also account for the claims
experience across multiple product lines. As such, we extend the one-product
models by incorporating the claim score on the other products of the poli-
cyholder, if any, given the optimized claim score parameters. We display the
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TABLE 4

OPTIMAL CLAIM SCORE PARAMETERS FOR EACH PRODUCT CATEGORY WITH DYNAMIC UNIVARIATE RISK CLASSIFICATION, WHERE BOLD PARAMETER
COMBINATIONS CORRESPOND TO THE LOWEST MAXIMAL RATIO GINI COEFFICIENT IN TABLE C.3.

Optimal claim score parameters (�, s, �0)

General liability Home contents Home Travel

Frequency model GAM GLM GAM GLM GAM GLM GAM GLM

GAM/GLM-PG-One (2, 5, 2) (2, 6, 1) (13, 14, 13) (18, 19, 1) (2, 7, 1) (2, 7, 1) (2, 3, 2) (2, 3, 2)
GAM/GLM-PIG-One (2, 5, 2) (2, 8, 1) (13, 14, 13) (18, 19, 1) (2, 7, 1) (2, 7, 1) (2, 3, 2) (2, 3, 2)
GAM/GLM-PP-One (10, 14, 4) (2, 3, 1) (14, 25, 13) (13, 25, 14) (12, 17, 13) (16, 21, 1) (2, 5, 3) (2, 5, 3)
GAM/GLM-NBG-One (2, 5, 2) (21, 24, 6) (13, 14, 13) (18, 19, 1) (2, 7, 1) (2, 7, 1) (2, 3, 2) (2, 3, 2)
GAM/GLM-NBIG-One (2, 5, 2) (2, 8, 1) (13, 14, 13) (18, 19, 1) (2, 7, 1) (2, 7, 1) (2, 3, 2) (2, 3, 2)
GAM/GLM-NBP-One (10, 14, 4) (2, 3, 1) (14, 25, 13) (13, 25, 14) (12, 17, 13) (15, 20, 1) (2, 5, 3) (2, 5, 3)
GAM/GLM-ZIPG-One (2, 5, 2) (18, 21, 5) (13, 14, 13) (13, 15, 14) (2, 7, 1) (2, 7, 1) (2, 3, 2) (2, 3, 2)
GAM/GLM-ZIPIG-One (2, 5, 2) (17, 20, 5) (13, 14, 13) (13, 15, 14) (2, 7, 1) (2, 7, 1) (2, 3, 2) (2, 3, 2)
GAM/GLM-ZIPP-One (10, 14, 4) (3, 7, 3) (14, 25, 13) (12, 25, 13) (12, 17, 13) (16, 21, 1) (2, 5, 3) (2, 5, 3)
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effects of these claim scores on the linear predictor and the corresponding dis-
counts/surcharges offered to the insured in Figure 1 for each product category
separately, where the multi-product GAMs and GLMs lead to almost the same
claim score effects and we therefore only show those for the PG-Multi specifica-
tions. Figure 2 and Tables C.4 and C.5 additionally present the maximal ratio
Gini coefficients and AIC/BIC values when we include these dynamic (multi-
variate) risk profiles, with all parameter estimates available upon request. The
results from the one-product models are provided in Figure C.3 and Table C.3
as well, but since they lead to similar conclusions they are omitted from the
text here.

From the claim score effects in Figure 1, we observe that in general pol-
icyholders who claim more (less) frequently are more (less) risky. However,
we do find some exceptions to this rule in case of the one- and multi-product
GAMs. For general liability (home contents) insurance in Figure 1(a) (1(b)),
for instance, we find that policyholders with the highest or lowest claim score
receive a relatively large (small) discount or surcharge, respectively, but that
those with a score between these two extremes receive approximately the same
small (large) discount (surcharge). This relation is far less clear and appears
evenmore complicated for the claim scores on other products.We, for instance,
find that policyholders merely possessing home contents and/or travel insur-
ance are almost always associated with more risk in the multi-product GAMs.
This, in turn, implies that insurers should not target customers holding these
products with cross-selling offers since we expect these customers to receive
low claim scores or claim relatively often on the other products. Note that the
relatively large confidence bands for home contents and travel insurance result
from a lack of policyholders with these claim scores, since most policyholders
claim very few, more claim score levels lead to sparser distributions and there
is relatively little overlap from travel insurance with the other products. The
cubic spline approach thus seems more representative of the uncertainty of the
claim score effects than the linear approach.

Interestingly enough, the multi-product GLMs do not indicate these sub-
tleties in the claim score due to a lack of exposure in customers owning multiple
products and simultaneously having low claim scores. More explicitly, since
the effects of the claim scores in these multi-product GLMs are linear, they are
essentially a weighted average of all the observed claim scores and do not reflect
the actual non-monotonicities in the average observed claim frequencies in the
histograms in Figure 1. However, in Tables 1 and 2, we see that most policy-
holders do not claim (at all) and, as a result, end up with high claim scores. The
estimates for the linear claim scores are therefore dominated by policyholders
with high claim scores and seem a rather poor linear approximation of the cubic
claim scores that is primarily appropriate for the good risks. The flexibility of
the one- and multi-product GAMs, on the other hand, allows us to adjust for
this lack of exposure by employing multiple cubic splines instead of forcing a
single linear relation for all claim scores. This, in turn, enables the cubic claim
scores to largely capture the non-monotonic claim frequencies. As such, the
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FIGURE 1: Estimated claim score effects on linear predictor and corresponding discounts/surcharges to the
insured with 95% confidence intervals and histograms of average observed claim frequencies of general
liability (panel (a)), home contents (panel (b)), home (panel (c)), and travel insurance (panel (d)) for

multi-product GAM-PG-Multi (left) and GLM-PG-Multi (right).
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FIGURE 2: Maximal ratio Gini coefficients (panel (a)) and Akaike/Bayesian information criteria in excess of
lowest (bold) value (panel (b)) for the best benchmark or frequency model in every model framework and for
each product category with dynamic multivariate risk classification. Recall that a lower maximal coefficient
(AIC/BIC value) implies a (statistically) less vulnerable and thus better benchmark (frequency) model, and

for more details on these coefficients (values), see Table C.4 (C.5).

effects of the multi-product GLMs seem a result of misspecification, whereas
the effects of the multi-product GAMs a data-driven result.

Surprisingly, the mini-max strategy of the ratio Gini coefficients largely
favors the linear claim score effects over the cubic claim score effects.
Figure 2(a), for instance, shows that the linear, rather than cubic, specification
is generally the least vulnerable to alternative rate structures, except for travel
insurance. Moreover, the claims experience in other product lines appears to be
useful for risk classification for every product category. However, based on the
AIC and BIC values in Figure 2(b), the cubic, rather than linear, specification
systematically leads to better statistical performance. The AIC values further
indicate that the claims experience in other product lines consistently improves
the performance, while it seems sufficient to only account for the claims expe-
rience in the own product category based on the BIC values. Nonetheless, the
mini-max strategy indicates that accounting for a customer’s one- or multi-
product claims experience can already lead to 3% up to 17% more profits, on
average, than a static GLM. A standard likelihood ratio (LR) test additionally
shows in Table C.5 that the multi-product (one-product) model significantly
outperforms the one-product model (static GLM) in-sample for all non-ZIP
(most) cubic and some (most) linear specifications and each product category.
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While these conflicting in- and out-of-sample results may seem surprising at
first sight, they can primarily be ascribed to two factors. Firstly, even though
the linear specification is favored by the mini-max strategy due to its larger
discounts and surcharges, its effects appear to be misspecified for the major-
ity of claim score levels. The cubic specification is therefore preferred based on
the AIC and BIC values, since its effects are more representative of the aver-
age claim frequencies observed. Secondly, because most policyholders do not
claim (at all) and thus end up with high claim scores, there is a huge excess of
zeros in the insurance portfolio, in particular when considering multiple prod-
uct categories. For home contents insurance, for instance, we observe relatively
few policyholders with claims in multiple product categories, and we thus also
observe little variation in the claim scores on the other products. In case of
travel insurance, we do observe a large pool of policyholders, but few of them
actually hold multiple products. As a result, it may be statistically sufficient
to merely incorporate the claims experience in the own product category, even
though accounting for the claims experience in other product categories always
appears to improve the rate structure’s profitability.

4.3. Piecewise linear simplification

While most claim scores in the multi-product GAMs lead to an intuitive and
decreasing relation with respect to a customer’s risk, some are less straightfor-
ward and more complicated. However, in practice, insurers must explain and
justify their premia, and they thus highly prefer intuitive and interpretable pre-
mium rates. As a consequence, it makes more sense from a practical perspective
to consider a rate structure segmented into piecewise linear components using
linear, rather than cubic, splines. We therefore implement this multi-product
piecewise linear GAM for Poisson, NB, and ZIP distributed claim frequencies
and Gamma, IG, and Pareto distributed claim severities. Moreover, we present
the piecewise linear effects on the linear predictor and the corresponding dis-
counts/surcharges offered to the insured resulting from these claim scores in
Figure 3 and show the maximal ratio Gini coefficients when including these
piecewise linear specifications in Table C.6.

From the claim score effects in Figure 3, we observe approximately the
same patterns and subtleties for the piecewise linear GAMs as those for the
cubic GAMs. In general, we again expect customers with lower claim scores
on a certain product to be associated with more risk on that same product and
that customers who merely possess home contents and/or travel insurance are
associated with more risk for all other product categories. In terms of cross-
selling opportunities, this also means that insurers should, for instance, not
target customers holding these products with cross-selling offers. Note that we
only show the claim score effects for the piecewise linear GAM-PG-Multi-PL
in Figure 3, since the other specifications lead to almost the same relations
and that these effects are based on the optimal claim score parameters for the
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FIGURE 3: Estimated claim score effects on linear predictor and corresponding discounts/surcharges to the
insured with 95% confidence intervals and histograms of average observed claim frequencies of general
liability (panel (a)), home contents (panel (b)), home (panel (c)), and travel insurance (panel (d)) for

multi-product piecewise linear GAM-PG-Multi-PL.

cubic GAMs. The piecewise linear specifications can, of course, be optimized
separately as well, but this leads to similar results. The resulting piecewise lin-
ear splines therefore simply seem a piecewise linear simplification of the cubic
splines and the non-monotonicities in the claim scores indeed a data-driven
result that the linear claim scores in the multi-product GLMs are unable to
capture. As such, the piecewise linear GAMs represent a more intuitive and
interpretable version of the cubic GAM for insurers to adopt in practice but
retain the possibility to identify the cross-selling potential of customers across
property and casualty insurance.

Despite their promising potential, the piecewise linear GAMs do not con-
sistently outperform their pure linear counterparts in our mini-max strategy.
In Table C.6, the multi-product piecewise linear GAM is, for instance, the
least vulnerable to alternative rate structures for general liability insurance
and only marginally more vulnerable than the multi-product cubic GAM for
travel insurance. However, the multi-product GLM remains the least vulner-
able for home contents and home insurance, even though the piecewise linear
GAM is preferred for these products based on the AIC values in Table C.2.
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Nonetheless, these piecewise linear GAMs mostly still seem, on average, much
less vulnerable to alternative model choices than the static GLMs. We addi-
tionally already found in the previous section that the multi-product model
significantly outperforms the one-product model in all non-ZIP (all) cubic
GAM, and some (all) GLM cases in-sample based on a straightforward LR
test (AIC selection procedure). Even though these piecewise linear GAMs are
not always optimal in our mini-max strategy, they therefore do seem promising
to consider for practitioners in the non-life insurance industry.

The claims experience of customers thus appears to be an important deter-
minant for individual risk classification and it can be very profitable to account
for this experience in our premia. Moreover, it seems that accounting for multi-
product claims experience is always optimal and becomes more effective in
case of a portfolio with relatively more policyholders having claims on mul-
tiple products and with more overlap between different product categories.
Regardless of these conditions, however, the multi-product piecewise linear
GAM seems particularly interesting for its intuitive and interpretable use in
practice, and its ability to detect the cross-selling potential of existing individual
customers.

5. CONCLUSION

In this paper, we have presented and applied a multi-product framework for
dynamic insurance pricing on the level of individual policyholders. While the
industry standard of a GLM typically considers only a priori information of
policyholders, we have included the a posteriori claims experience of customers
across multiple product categories in a predictive claim score. As such, we have
extended the BMS-panel model of Boucher and Inoussa (2014) and Boucher
and Pigeon (2018) by, on the one hand, incorporating the claims experience
from multiple product lines and, on the other hand, allowing the respective
claim scores to have a nonlinear effect on the (logarithm of the) premium
rate structure. Moreover, we have considered both a natural cubic and linear
spline for the effects of these claim scores to embed our novel multi-product
framework into a GAM and benefit from its existing framework.

In our application of this multi-product framework, we considered a Dutch
property and casualty insurance portfolio, including general liability, home
contents, home and travel insurance. Using this portfolio, we compared the
industry standard of a GLM with cubic splines for the claim scores and linear
effects similar to the BMS-panel model. This led to the finding that account-
ing for a customer’s claims experience can be very profitable and substantially
outperforms a static GLM based on a mini-max strategy of ratio Gini coef-
ficients. This mini-max strategy generally also favored the linear effects more
than the cubic splines in terms of profit potential, even though the linear effects
appeared to be dominated by the good risks and thus misspecified for all other
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risks. The effects from the cubic splines, on the other hand, were actually a
data-driven result that yielded more representative confidence bounds in case
of claim score levels with little exposure and were preferred based on an AIC
and BIC selection procedure. A piecewise linear simplification of the cubic
spline supported this claim by resulting in almost the same claim score effects
and identifying similar cross-selling opportunities that the linear specification
was unable to detect. More importantly, however, our results indicated that it
is in fact always optimal or most profitable to account for a customer’s claims
experience from all product lines and that it becomes more effective in case of
a portfolio with relatively more policyholders having claims on multiple prod-
ucts and with more overlap between different product categories. As such, the
multi-product framework presented in this paper, and in particular the piece-
wise linear GAMs for their intuitive and interpretable rate structures, seem
promising for practitioners in the non-life insurance industry to implement in
their dynamic pricing strategies.

While the focus of this paper has primarily been on separate effects for
each claim score, it is also possible to include interaction effects of all these
scores. However, a more interesting avenue for future research is to consider a
single multidimensional spline in the multi-product GAM for all the separate
claim scores combined. This, in turn, may be able to expose complex dependen-
cies between the claim scores of different product categories and enhance the
multi-product risk profiles. Alternatively, future research can refine the piece-
wise linear simplification of the cubic spline using one of the binning strategies
mentioned in Henckaerts et al. (2018) to improve the profitability of the multi-
product piecewise linear GAM. Finally, since the non-monotonic splines can
complicate a direct commercial application, a decreasing monotonicity restric-
tion may lead to a more intuitively appealing and feasible framework for
non-life insurers to adopt in practice, while simultaneously adjusting their
effects.

ACKNOWLEDGMENTS

The author gratefully acknowledges financial support fromVIVAT. Any errors
made or views expressed in this paper are the responsibility of the author alone.
In addition, the author would like to thank the editor and two anonymous
referees for their valuable comments on a previous version of this paper.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit https://doi.org/
10.1017/asb.2020.34.

https://doi.org/10.1017/asb.2020.34 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.34
https://doi.org/10.1017/asb.2020.34
https://doi.org/10.1017/asb.2020.34


PREDICTIVE CLAIM SCORES FOR DYNAMIC MULTI-PRODUCT RISK CLASSIFICATION 21

REFERENCES

ANTONIO, K. and VALDEZ, E.A. (2012) Statistical concepts of a priori and a posteriori risk
classification in insurance. AStA Advances in Statistical Analysis, 96(2), 187–224.

BARSEGHYAN, L., MOLINARI, F., MORRIS, D.S. and TEITELBAUM, J.C. (2020) The cost of
legal restrictions on experience rating. Journal of Empirical Legal Studies, 17(1), 38–70.

BERMÚDEZ, L., GUILLÉN, M. and KARLIS, D. (2018) Allowing for time and cross depen-
dence assumptions between claim counts in ratemaking models. Insurance: Mathematics and
Economics, 83, 161–169.

BERMÚDEZ, L. and KARLIS, D. (2011) Bayesian multivariate Poisson models for insurance
ratemaking. Insurance: Mathematics and Economics, 48(2), 226–236.

BOUCHER, J.-P. and INOUSSA, R. (2014) A posteriori ratemaking with panel data. ASTIN
Bulletin, 44(3), 587–612.

BOUCHER, J.-P. and PIGEON, M. (2018) A claim score for dynamic claim counts modeling.
Working Paper, December 2018. Available online at https://arxiv.org/abs/1812.06157.

CZADO, C., KASTENMEIER, R., BRECHMANN, E.C. andMIN, A. (2012) Amixed copula model
for insurance claims and claim sizes. Scandinavian Actuarial Journal, 2012(4), 278–305.

DENUIT, M., MARÉCHAL, X., PITREBOIS, S. and WALHIN, J.-F. (2007) Actuarial Modelling of
Claim Counts: Risk Classification, Credibility and Bonus-Malus Systems. New York: Wiley.

ENGLUND, M., GUILLÉN, M., GUSTAFSSON, J., NIELSEN, L.H. and NIELSEN, J.P. (2008)
Multivariate latent risk: A credibility approach. ASTIN Bulletin, 38(1), 137–146.

ENGLUND, M., GUSTAFSSON, J., NIELSEN, J.P. and THURING, F. (2009) Multidimensional
credibility with time effects: An application to commercial business lines. The Journal of Risk
and Insurance, 76(2), 443–453.

FREES, E.W., MEYERS, G. and CUMMINGS, A.D. (2011) Summarizing insurance scores using
a Gini index. Journal of the American Statistical Association, 106(495), 1085–1098.

FREES, E.W., MEYERS, G. and CUMMINGS, A.D. (2014) Insurance ratemaking and a Gini
index. The Journal of Risk and Insurance, 81(2), 335–366.

GARRIDO, J., GENEST, C. and SCHULZ, J. (2016) Generalized linear models for depen-
dent frequency and severity of insurance claims. Insurance: Mathematics and Economics, 70,
205–215.

GINI, C. (1912) Variabilità e Mutabilità Contributo allo Studio delle Distribuzioni e delle Relazioni
Statistiche. Bologna: Cuppini.

HABERMAN, S. and RENSHAW, A.E. (1996) Generalized linear models and actuarial science.
Journal of the Royal Statistical Society. Series D (The Statistician), 45(4), 407–436.

HASTIE, T. and TIBSHIRANI, R. (1986) Generalized additive models. Statistical Science, 1(3),
297–310.

HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2009) The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. New York: Springer.

HENCKAERTS, R., ANTONIO, K., CLIJSTERS,M. and VERBELEN, R. (2018) A data driven bin-
ning strategy for the construction of insurance tariff classes. Scandinavian Actuarial Journal,
2018(8), 681–705.

HENCKAERTS, R., CÔTÉ, M.-P., ANTONIO, K. and VERBELEN, R. (2020) Boosting insights
in insurance tariff plans with tree-based machine learning methods. North American Actuarial
Journal, 1–31.

KAAS, R., GOOVAERTS, M., DHAENE, J. and DENUIT, M. (2008) Modern Actuarial Risk
Theory: Using R. Berlin, Heidelberg: Springer.

LEMAIRE, J. (1998) Bonus-malus systems: The European and Asian approach to merit-rating.
North American Actuarial Journal, 2(1), 26–38.

LORENZ, M.O. (1905) Methods of measuring the concentration of wealth. Publications of the
American Statistical Association, 9(70), 209–219.

NELDER, J.A. and WEDDERBURN, R.W.M. (1972) Generalized linear models. Journal of the
Royal Statistical Society. Series A (General), 135(3), 370–384.

https://doi.org/10.1017/asb.2020.34 Published online by Cambridge University Press

https://arxiv.org/abs/1812.06157.
https://doi.org/10.1017/asb.2020.34


22 R. M. VERSCHUREN

OHLSSON, E. and JOHANSSON, B. (2010) Non-Life Insurance Pricing with Generalized Linear
Models. Berlin, Heidelberg: Springer.

PECHON, F., TRUFIN, J. and DENUIT, M. (2018) Multivariate modelling of household claim
frequencies in motor third-party liability insurance. ASTIN Bulletin, 48(3), 969–993.

PINQUET, J. (1997) Allowance for cost of claims in bonus-malus systems. ASTIN Bulletin, 27(1),
33–57.

QUAN, Z. and VALDEZ, E.A. (2018) Predictive analytics of insurance claims using multivariate
decision trees. Dependence Modeling, 6(1), 377–407.

SHI, P. and VALDEZ, E.A. (2014) Multivariate Negative Binomial models for insurance claim
counts. Insurance: Mathematics and Economics, 55(1), 18–29.

TZOUGAS, G., VRONTOS, S. and FRANGOS, N. (2014) Optimal bonus-malus systems using finite
mixture models. ASTIN Bulletin, 44(2), 417–444.

TZOUGAS, G., VRONTOS, S. and FRANGOS, N. (2018) Bonus-Malus Systems with two-
component mixture models arising from different parametric families. North American
Actuarial Journal, 22(1), 55–91.

WOOD, S.N. (2006) Generalized Additive Models: An Introduction with R. New York: Chapman
and Hall/CRC.

YEE, T.W. and HASTIE, T.J. (2003) Reduced-rank vector generalized linear models. Statistical
Modeling, 3(1), 15–41.

ROBERT MATTHIJS VERSCHUREN
Amsterdam School of Economics
University of Amsterdam
Roetersstraat 11, 1018 WB, Amsterdam
The Netherlands
E-Mail: r.m.verschuren@uva.nl

APPENDIX A. RISK FACTORS FOR PROPERTY
AND CASUALTY INSURANCE

TABLE A.1

DESCRIPTION OF THE KEY VARIABLES USED FOR PROPERTY AND CASUALTY INSURANCE.

Variable Values Description

Count Integer The number of claims filed by the policyholder
Size Continuous The size of the claim in euros
Exposure Continuous The exposure to risk in years

TABLE A.2

DESCRIPTION OF THE RISK FACTORS USED FOR GENERAL LIABILITY INSURANCE.

Risk factor Values Description

FamilySituation 4 categories Type of family situation
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TABLE A.3

DESCRIPTION OF THE RISK FACTORS USED FOR HOME CONTENTS INSURANCE.

Risk factor Values Description

ProductType 3 categories Type of product
Year 6 categories Calendar year
Age Continuous Age of the policyholder in years
BuildingType 7 categories Type of building of the home
RoofType 2 categories Type of roof of the home
FloorSpace Continuous Total floor area of the home in thousands of square meters
HomeOwner 3 categories Whether the policyholder owns or rents its home
Residence 5 categories Residential area of the policyholder
Urban 8 categories Degree of urbanization at home address
GlassCoverage 2 categories Whether the policyholder has glass coverage

TABLE A.4

DESCRIPTION OF THE RISK FACTORS USED FOR HOME INSURANCE.

Risk factor Values Description

ProductType 3 categories Type of product
Year 6 categories Calendar year
Age Continuous Age of the policyholder in years
FamilySituation 5 categories Type of family situation
BuildingType 6 categories Type of building of the home
RoofType 2 categories Type of roof of the home
Capacity Continuous Total capacity of the home in thousands of cubic meters
ConstructionYear 6 categories Construction year of the home
Residence 5 categories Residential area of the policyholder
Urban 8 categories Degree of urbanization at home address
GlassCoverage 2 categories Whether the policyholder has glass coverage

TABLE A.5

DESCRIPTION OF THE RISK FACTORS USED FOR TRAVEL INSURANCE.

Risk factor Values Description

Region 3 categories Regional area covered
Age Continuous Age of the policyholder in years
FamilySituation 5 categories Type of family situation
WinterCoverage 2 categories Whether the policyholder has winter sport coverage
MoneyCoverage 2 categories Whether the policyholder has money coverage
VehicleCoverage 2 categories Whether the policyholder has vehicle coverage
MedicalCoverage 2 categories Whether the policyholder has medical coverage
AccidentCoverage 2 categories Whether the policyholder has accident coverage
CancelCoverage 2 categories Whether the policyholder has cancellation coverage
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APPENDIX B. ESTIMATION INMULTI-PRODUCT
CLAIM SCORE MODEL

Essential to the multi-product claim score model developed in this paper is the assumption
that the response variable is independently distributed according to some member of the
exponential family. If we denote byYi,t this response for subject i in period t, then its density
p(·) can be written as:

p(yi,t|ϑi,t, ϕ)= h(yi,t,wi,t, ϕ) exp
(
wi,t
ϕ

(
ϑi,tyi,t −A(ϑi,t)

))
for i= 1, . . . ,M, t= 1, . . . ,Ti,

where ϑi,t denotes a distribution parameter, ϕ a dispersion parameter, wi,t a known weight
that is typically set to one or the exposure to risk, h(·, ·, ·) a known function, and A(·) a
known twice continuously differentiable function. The function A(·) is related to the mean
μi,t and covariance �i,t of Yi,t through:

μ =E [Y ]=A′(ϑ) and � =V [Y ]= ϕ

w
v(μ),

where v(μ)=A′′(ϑ)=A′′(A′−1(μ)) is called the variance function (Ohlsson and Johansson,
2010). As such, it is sufficient to only consider a model for the mean since this can already
completely characterize the entire distribution of the response variable.

When considering the multi-product claim score model for the mean equation, inference
can be performed straightforwardly by penalized maximum likelihood. Suppose the linear
predictor in this model is given by Equation (2.1) with penalized cubic regression splines
for the transformations f (c)j (·). If we consider (m+ 1)-th order B-splines with k parameters
and k+m+ 1 knots in a certain interval [x1, xk+m+1] for the basis of some set of regression
splines, then we can represent them by:

fj(x)=
k∑

h=1

γhB
m
h (x) for j= 1, . . . ,C,

with m= 2 for cubic splines and m= 0 for linear splines. The B-spline basis functions Bmh (·)
in this representation are defined recursively as:

Bmh (x)=
x− xh

xh+m+1 − xh
Bm−1
h (x)+ xh+m+2 − x

xh+m+2 − xh+1
Bm−1
h+1 (x) for h= 1, . . . , k,

with initial value B−1
h (x)= 1(xh ≤ x< xh+1

)
and where we have omitted the superscripts (c)

for the sake of simplicity (Wood, 2006). The knots themselves are typically located at the
quantiles of the observations or spaced evenly over the range of the observations for cubic
or linear splines, respectively (see, e.g., Wood, 2006). The smooths fj(·) are usually subject
to an additional centering constraint to ensure identification of the mean equation and it
is commonly assumed that all its elements sum to zero. As a result, one degree of freedom
in the splines is lost due to this identification restriction and k− 1 effectively remain. The
penalized log-likelihood function is now defined as:

�p(δ, ϕ, λ|y)= �(δ, ϕ|y)− 1
2

C∑
j=1

λj

∫
f ′′
j (x)

2dx

=
M∑
i=1

Ti∑
t=1

[
log
(
h(yi,t,wi,t, ϕ)

)+ wi,t
ϕ

(
ϑi,tyi,t −A(ϑi,t)

)]− 1
2

C∑
j=1

λjδ
′Sjδ, (B1)
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with δ = (β, γ ) and where the distribution parameters ϑi,t depend on the parameters δ

through the linear predictor, λj denotes the penalty or smoothing parameter for the j-th
regression spline, and Sj a matrix of known coefficients S̃j padded with zeros such that
δ′Sjδ = γ ′S̃jγ . Note that the first expression in Equation (B1), or �(·), actually represents
the ordinary log-likelihood function of the model and that the multi-product claim score
model can therefore be seen as a penalized GLM in terms of optimization. Maximization of
this penalized log-likelihood in terms of the parameters δ given the penalties λj leads to the
set of K +∑C

j=1 kj normal equations given by:

1
ϕ

M∑
i=1

Ti∑
t=1

wi,t
yi,t − μi,t

v(μi,t)g′(μi,t)
Xi,t −

C∑
j=1

λjSjδ = 0,

where K denotes the dimension of β and ϕ is usually omitted since we can incorporate its
effect into the penalties. In practice, the smoothing parameters are of course unknown as
well and are usually estimated by generalized cross-validation or unbiased risk estimation
(see, e.g., Wood, 2006).

It is clear that these normal equations do not lead to an analytical solution for our
unknown parameters and that we need to find a numerical solution to them. One way to
numerically solve these equations is by the Newton–Raphson method that relies on the gra-
dient of the normal equations with respect to δ, or the Hessian matrix of the (penalized)
log-likelihood function. However, a more popular approach for numerically solving these
equations in the context of GLMs is called the Fisher scoring method. This method applies
the same iterative procedure as theNewton–Raphsonmethod, but now uses the Fisher infor-
mation matrix I(·), rather than the Hessian matrix. The Fisher scoring method is therefore
characterized by:

δ(n+1) = δ(n) + I−1(δ(n))J(δ(n)),

with J(·) the Jacobian matrix of the (penalized) log-likelihood function, or the normal equa-
tions. Formally, this information matrix is given by the expectation of the negative Hessian
matrix, or:

I(δ)=E [−H(δ)]= 1
ϕ

M∑
i=1

Ti∑
t=1

wi,t
v(μi,t)g′(μi,t)2

Xi,tX ′
i,t −

C∑
j=1

λjSj ,

where ϕ is typically omitted again. The advantages of using this matrix are that it is slightly
easier to implement in practice and, by definition, always remains positive definite (Ohlsson
and Johansson, 2010). The Hessian matrix, on the other hand, is not necessarily positive
definite unless we are already close to convergence. The Fisher scoring method therefore
typically leads to more stable convergence than the Newton–Raphson method, whereas the
latter method is considered faster. In the context of (penalized) GLMs, Fisher’s iterative
procedure is also known as PIRLS and can easily be implemented in, for instance, R with
the package mgcv developed byWood (2006). As such, the multi-product claim score model
can heavily benefit from the framework of GLMs and GAMs and rely on existing statistical
theory and software for inference.
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