
Forum of Mathematics, Pi (2023), Vol. 11:e20 1–52
doi:10.1017/fmp.2023.18

RESEARCH ARTICLE

Exotic Monoidal Structures and Abstractly Automorphic
Representations for GL(2)
Gal Dor

Tel-Aviv University, Ramat Aviv, 6997801, Israel; E-mail: dorgal111@gmail.com.

Received: 29 September 2022; Revised: 3 June 2023; Accepted: 29 June 2023

2020 Mathematics Subject Classification: Primary – 11F27; Secondary – 11F70, 18M05

Abstract
We use the theta correspondence to study the equivalence between Godement–Jacquet and Jacquet–Langlands
L-functions for GL(2). We show that the resulting comparison is in fact an expression of an exotic symmetric
monoidal structure on the category of GL(2)-modules. Moreover, this enables us to construct an abelian category
of abstractly automorphic representations, whose irreducible objects are the usual automorphic representations. We
speculate that this category is a natural setting for the study of automorphic phenomena for GL(2), and demonstrate
its basic properties.

This paper is a part of the author’s thesis [4].
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1. Introduction

In order to minimize technical difficulties, in this paper we will only discuss automorphic forms over
function fields F of characteristic ≠ 2. Denote the adeles over F by A = A𝐹 .

This paper has two parts. The first part focuses on the construction of a symmetric monoidal
structure on the category of smooth representations of GL(2) over a local field. The second part uses
this construction in the global setting, to construct an abelian category of ‘abstractly automorphic’
representations.

While the first part takes up the majority of this paper, it is the author’s expectation that the second
part (which uses the first in an essential way) would be the most interesting.

Therefore, before delving into the details of the first part of the paper, let us briefly discuss the second.
There is a famously unsatisfactory aspect of the global theory of automorphic representations. There is

an informal analogy between the global cuspidal representations and local supercuspidal representations.
Both are in some sense compactly supported: The local representations in terms of matrix coefficients,
and the global representations in terms of their corresponding automorphic forms. Moreover, there is
some similarity between the local theory of Jacquet modules and the global theory of constant terms.
Additionally, there is similarity between the notion of parabolic induction and the notion of Eisenstein
series.

This analogy between the local and global theory is fairly imprecise. Supercuspidal representations,
Jacquet modules and parabolic induction all enjoy the status of functors, with clear formal properties and
relationships between each other. On the other hand, cusp forms, constant terms and Eisenstein series
are all considered at a lower level of categorification as maps between specific spaces of automorphic
functions.

We want to strengthen this analogy by placing these constructions on an equal footing.
That is, we want to construct a category of ‘abstractly automorphic’ representations. This category

should decompose as a category into a cuspidal and an Eisenstein part. Constant terms and Eisenstein
series should translate into a pair of adjoint functors, and cuspidal abstractly automorphic representations
should all be killed by taking their automorphic parabolic restriction. This should allow us to discuss
the cuspidal automorphic spectrum in more or less the same terms as the supercuspidal local spectrum.

This paper will culminate in the construction (and proving the basic properties) of a category of
abstractly automorphic representations for GL(2) over F. A detailed proof of the above properties
appears in a separate paper [6].

The remainder of this introduction is structured as follows. In Subsection 1.1, we will describe in
detail the ideas comprising Part I, as well as provide its outline. In Subsection 1.2, we will describe
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the ideas and outline of Part II. Finally, in Subsection 1.3, we will briefly describe Appendix A, which
contains an application of the results of Part II.

1.1. Symmetric monoidal structure

Let us begin with describing in detail the ideas in the first part of this paper.
Let (𝜋,𝑉) be an automorphic representation for a reductive group G over F. Automorphic L-functions

for V are usually defined via one of many different procedures. These procedures all share the following
general form:

1. Take a space of test functions (e.g., 𝑆(M2(A)), the space of matrix coefficients of V, the space of
vectors from V, etc.).

2. To each test function, assign a zeta integral – a meromorphic function in a complex variable s in
some right-half-plane.

3. Take the greatest common divisor (GCD) of the resulting zeta integrals, guided by some place-by-
place prescription to deal with the overall normalization.

The GCD we end up with is a meromorphic function in s, known as the L-function for (𝜋,𝑉).
The procedure above might seem rather ad hoc. Nevertheless, it gives correct results that conform

to our expectations. The resulting L-functions admit analytic continuation, satisfy a functional equation
and match up with those produced from Galois representations (where the procedure to produce them
is much more straightforward). Much work has been done in order to systematize this kind of procedure
via the use of spherical varieties (see, for example, [12] and [13]).

The research detailed in this paper was the result of taking a different point of view on these
automorphic L-functions. The idea is to study the entire space of zeta integrals, instead of just the L-
functions that generate them. From this point of view, it is the collection of zeta integrals itself that is
important, along with the relationships between such collections. This is analogous to the way in which
a vector space can be studied without necessarily specifying a concrete basis: The space of zeta integrals
is analogous to the vector space, and the L-function is a basis, or a generator, for this space.

This paper is the first in a series of papers, all based on this same philosophical idea, giving a variety
of results.

In this paper specifically, we will demonstrate some hidden algebraic structures that can come out
of comparing different spaces of zeta integrals. We will look at automorphic representations for GL(2),
and specifically, the comparison of Godement–Jacquet and Jacquet–Langlands zeta integrals. These are
two completely different constructions of the L-function for GL(2), both of which give the same result.
We will extend this to a canonical bijection between their spaces of zeta integrals, instead of just their L-
functions. It will turn out that this point of view, where the focus is on the zeta integrals, has unexpected
benefits.

To be more precise, this bijection between zeta integrals turns out to carry an algebraic structure: It
induces a novel multiplicative structure on representations of GL(2). The main focus of this paper will
be refining this algebraic structure and studying some of its consequences.

Let us recall each of the Godement–Jacquet and Jacquet–Langlands constructions in turn. Suppose
that we are given an automorphic representation (𝜋,𝑉). For Godement–Jacquet L-functions, one takes
a smooth and compactly supported test function Ψ ∈ 𝑆(M2(A)) and integrates it along with a matrix
coefficient 𝛽 ∈ 𝑉 ⊗ 𝑉 to obtain the zeta integral

𝑍GJ (𝛽,Ψ, 𝑠) =
∫

GL2 (A)
𝛽(𝑔)Ψ(𝑔) |det(𝑔) |𝑠+

1
2 d×𝑔. (1.1)

Here, 𝑉 denotes the contragradient, and 𝛽(𝑔) denotes the matrix coefficient formed by contraction of
𝜋(𝑔) with the vector and covector defining 𝛽. The GCD of all these zeta integrals in an appropriate ring
of holomorphic functions of 𝑠 ∈ C is the Godement–Jacquet L-function.
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However, there is an alternative approach to defining L-functions for GL(2), by Jacquet–Langlands
in the adelic formulation, based on a formulation by Hecke in more classical language (see also Remark
1.1). In this case, one takes an automorphic form 𝜙 ∈ 𝑉 and integrates it along some subgroup to obtain
the zeta integral

𝑍JL (𝜙, 𝑠) =
∫
A×/𝐹×

𝜙

((
𝑦

1

))
|𝑦 |𝑠−

1
2 d×𝑦. (1.2)

Remark 1.1. Let us make a couple of brief remarks about terminology. As stated above, the first
variant of the zeta integrals we are referring to as ‘Jacquet–Langlands’ zeta integrals was introduced
by Hecke in the classical language of modular forms. Later, Jacquet and Langlands gave these integrals
an adelic and local interpretation. Since in this text, we are emphasizing the local case and the role of
the adelic language, the author has chosen to refer to these zeta integrals as ‘Jacquet–Langlands’ zeta
integrals, rather than Hecke zeta integrals (which might be further confused with the L-functions of
Hecke characters).

In a similar fashion, for the sake of historical accuracy, one should also remark that what we are
referring to as ‘Godement–Jacquet’ zeta integrals are generalizations to GL(2) of the ideas laid out by
Tate in his thesis [14] and independently by Iwasawa in [10]. Tate’s ideas were originally stated in the
adelic language, but only for GL(1), generalizing work of Riemann on the Mellin transform of theta
functions.

Let us go back to our main line of discussion and elaborate on the structure relating the two kinds
of zeta integrals. Our proof of the equivalence between Godement–Jacquet and Jacquet–Langlands L-
functions will directly associate the data of a specific Godement–Jacquet zeta integral (a pair Ψ ⊗ 𝛽)
with the data of a specific Jacquet–Langlands zeta integral (a form 𝜙). This isomorphism of ‘modules’
of zeta integrals is a categorification of the usual equivalence of L-functions.

Given the description above, one might be led to suspect the existence of some kind of algebra
structure on the space S = 𝑆(GL2(𝐹)\GL2(A)) of automorphic forms. After all, we are associating
pairs of forms 𝛽 ∈ 𝑉 ⊗𝑉 with single forms 𝜙 ∈ 𝑉 . Amazingly, that turns out to more or less be the case!
There is, however, one caveat: The symmetric monoidal structure that one needs to use on the category
of representations of GL2 (A) is not the standard one but instead a construction (related to the theta
correspondence) using the space of test functions on M2(A).

The author would like to note that the papers [15] and in particular [7] study aspects of the theta
correspondence that are related to this symmetric monoidal structure (although without referring to it
as such).

The construction of this symmetric monoidal structure is the topic of the first part of this paper, while
the algebra of automorphic functions is constructed in the second part.

A rough outline of Part I is as follows. We will begin by establishing the aforementioned corre-
spondence between Godement–Jacquet and Jacquet–Langlands L-functions in Section 2, focusing on
the local picture. This will be done by looking at the space 𝑌 = 𝑆(M2(𝐹) × 𝐹×) of smooth compactly
supported functions, where F is a non-Archimedean local field. This space carries a left 𝐺 = GL2 (𝐹)-
action by left-multiplication on M2(𝐹) and the determinant action of G on 𝐹×. Similarly, it also carries
a right G-action by right-multiplication on M2 (𝐹) and the determinant action on 𝐹×. The key observa-
tion is that Y additionally carries a third, hidden, G-action that commutes with these two, coming from
the Weil representation. The third action will allow us to directly relate the two kinds of zeta integrals.

In Section 3, we will try to understand the object Y. It turns out that a useful way to do this is to
change our perspective and think of the object Y as defining a tensor product operation given by

𝑉©�𝑉 ′ � 𝑉 ⊗𝐺 𝑌 ⊗𝐺 𝑉 ′,

where ⊗𝐺 denotes the relative tensor product over G, that is, the universal space through which G-
invariant pairings factor. The operation ©� turns out to be a unital, associative, symmetric monoidal
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structure on the category Mod(𝐺) of smooth representations of GL2(𝐹). In fact, the structure of Mod(𝐺)

equipped with ©� is slightly richer: Mod(𝐺) can be turned into a commutative Frobenius algebra in
C-linear presentable categories in an appropriately categorified sense.

1.2. Abstractly automorphic representations

Let us describe in detail the ideas in the second part of this paper.
In Part II, we will go back to the global picture. We will show that under the symmetric monoidal

structure ©� , the space S = 𝑆(GL2(𝐹)\GL2(A)) of automorphic functions now carries a multiplication
operation, via a kind of theta lifting. The codomain of this multiplication is not quite S . However, if we
denote by ℐ the subspace of S which is orthogonal to all functions of the form 𝜒(det(𝑔)), then ℐ is
closed under multiplication. This turns out to induce on ℐ a structure of unital associative commutative
algebra with respect to ©� . This will give us an algebra of automorphic functions.

We will use this construction, the algebra structure on ℐ, to construct a category of what we refer to
as abstractly automorphic representations. Specifically, given a monoidal category (C, ⊗) and an algebra
object 𝐴 ∈ C with respect to its monoidal structure ⊗, one can construct the category of A-modules in
C. This is given by the category of objects 𝑀 ∈ C, along with action maps

𝑎 : 𝐴 ⊗ 𝑀 → 𝑀

satisfying the usual axioms.
By applying this construction to the algebra object ℐ with respect to the monoidal structure ©� , we

obtain the category of ℐ-modules in Mod(GL2 (A)), which we denote by Modaut(GL2(A)), and refer
to as the category of abstractly automorphic representations.

The category Modaut (GL2 (A)) is canonically equipped with a forgetful functor

Modaut (GL2(A)) → Mod(GL2(A)),

which turns out to be fully faithful in our case. This means that being an abstractly automorphic
representation (or, more concretely, an ℐ-module) is a mere property of a GL2(A)-module. We choose
to interpret this property as an automorphicity property for GL2(A)-modules, which we call abstract
automorphicity.

The question of what, exactly, is an automorphic representation is an old one. It is generally accepted
that an irreducible representation is automorphic if it is a subquotient of an appropriate space S̃
of functions on GL2(𝐹)\GL2(A) (this is, for example, the definition used in [11]). However, these
irreducible automorphic representations do not seem to be known to fit into any natural category.

We propose that the category Modaut(GL2(A)) of abstractly automorphic representations can be taken
as an answer to this question. A key property of the abelian category Modaut (GL2(A)), which helps
justify its name, is that its irreducible objects are precisely the irreducible automorphic representations
in the above sense (although the proof of this result lies outside the scope of this paper; see [6] for
the proof). In particular, this seems to allow the use of more categorical methods in the theory of
automorphic representations.

The detailed study of the category Modaut(GL2 (A)) lies outside the scope of this paper. Never-
theless, it appears to be much better behaved than the ambient category Mod(GL2(A)) of smooth
GL2(A)-modules. For example, although we will only show this in a follow-on paper [6], the category
Modaut (GL2(A)) admits a decomposition into components that are either induced from GL(1) ×GL(1)
(corresponding to Eisenstein series) or cuspidal in nature (corresponding to cuspidal automorphic rep-
resentations), in analogy to the local theory of representations of GL(2).

The category Modaut (GL2 (A)) will be described in Subsection 4.6.

Example 1.2. One way to think of the multiplicative structure on ℐ is to compare it to the commutative
case.
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Let H be a commutative group, and let Γ ⊆ 𝐻 be a subgroup. Then the space of functions on Γ\𝐻
admits an algebra structure, given by the convolution product with respect to H.

If we think of H as being analogous to GL2 (A) and Γ as being analogous to GL2(𝐹), then we can
justify thinking of the algebra structure of ℐ as being a kind of convolution product. In a sense, the
nonstandard symmetric monoidal structure ©� allows inherently commutative phenomena to manifest
for the noncommutative group GL2(A). See also Remarks 3.1 and 4.1.

Remark 1.3. Let us make a much more speculative remark.
The author believes that it would be interesting to generalize the results of this paper to groups other

than GL(2). At the very least, if B is a quaternion algebra over F, then it is possible to place the theta
correspondence between 𝐵× and GL(2) into the same framework of symmetric monoidal and module
structures as this paper. The author intends to do so in a subsequent paper.

Regardless, the author has not yet been able to take this theory beyond GL(2) and its inner forms.
However, it is possible to formulate some expectations for such a generalization. Essentially, for a
reductive group G, one can hope to construct some category Modaut(𝐺 (A)) of abstractly automorphic
𝐺 (A)-modules. We can expect that there will be a realization functor

Modaut (𝐺 (A)) → Mod(𝐺 (A)),

but it seems too harsh to demand that the realization functor be fully faithful outside the case of
𝐺 = GL(𝑛).

1.3. Additional consequences

Before ending this introduction, let us mention one more interesting consequence of our construction
of the algebra ℐ of automorphic functions. Consider the space ℐ/SL2 (OA) of coinvariants of ℐ with
respect to the action of SL2 (OA), where OA ⊆ A is the subring of all adeles which are integral at
all places. Note that ℐ/SL2 (OA) is the space of all smooth compactly supported spherical automorphic
functions that are orthogonal to all one-dimensional characters (note that because SL2 (OA) is compact,
it does not matter whether we take invariants or coinvariants).

The algebra structure of the space ℐ with respect to ©� will, as a special case, automatically equip
the space ℐ/SL2 (OA) with the structure of a commutative algebra with respect to the usual tensor product
⊗ (up to choice of a piece of global data called an unramified spin structure; see Appendix A). This
algebra structure is different from the usual pointwise multiplication and respects the action of the center
of the category Mod(GL2 (A)). This can be thought of as a kind of convolution product for spherical
automorphic functions in the following sense.

The space ℐ/SL2 (OA) of spherical automorphic functions has a Fourier transform. Specifically, the
Hecke operators act on this space, and therefore it defines a module on the spectrum of all Hecke
operators. Classically, one can try to identify this module with the structure sheaf of its support on
the spectrum of the Hecke operators and thus associate to each function 𝜙 ∈ ℐ/SL2 (OA) a function
on the unramified automorphic spectrum. However, this association is noncanonical. This manifests as
our freedom to choose different unramified vectors at each unramified automorphic representation. In
particular, it makes no sense to talk about the convolution of two functions 𝜙, 𝜙′ ∈ ℐ/SL2 (OA) .

However, the commutative algebra structure on ℐ/SL2 (OA) allows us to make this canonical. Given
an unramified spin structure, we can canonically identify functions 𝜙 ∈ ℐ/SL2 (OA) with functions on
the unramified automorphic spectrum (by a certain normalization of their Whittaker coefficients). In the
most abstract terms, one can think of the algebraic spectrum Specℐ/SL2 (OA) as a space and of elements
of ℐ/SL2 (OA) as functions on it. With this identification, the multiplication of ℐ/SL2 (OA) corresponds to
pointwise multiplication on the spectrum and is thus a convolution product.

This multiplicative structure will be described in Appendix A.
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Remark 1.4. One can speculate about the relationship of our construction with the geometric Langlands
conjectures. Let C be a smooth proper curve over C. Then the geometric Langlands conjectures predict
the equivalence of a certain category of D-modules on BunGL2 (𝐶) with a certain category of sheaves
of modules over LocSysGL∨

2
(𝐶). Now, the category of D-modules over BunGL2 (𝐶) carries a symmetric

monoidal structure, corresponding after decategorification to the pointwise multiplication of unramified
automorphic functions.

However, one can speculate about giving this category a symmetric monoidal structure inherited
from the other side of this equivalence, for example, from the !-tensor product of LocSysGL∨

2
(𝐶). This

should correspond to a ‘spectral’ product, or a convolution product, on unramified automorphic forms
after decategorification. The author believes that it would be interesting to attempt to relate this structure
to the convolution product on ℐ/SL2 (OA) described above.

Part I
Symmetric monoidal structure

2. Godement–Jacquet versus Jacquet–Langlands

2.1. Introduction

Let F be a non-Archimedean local field with char(𝐹) ≠ 2. In this section, we will attempt to give a
new point of view on the equivalence between the Godement–Jacquet L-functions of representations of
𝐺 = GL2 (𝐹) and the Jacquet–Langlands L-functions of the same representations.

Consider the G-bi-module 𝑆(GL2 (𝐹)) of smooth and compactly supported functions on GL2(𝐹),
and fix the standard Haar measure d×𝑔 on GL2(𝐹) such that the volume of a maximal compact subgroup
is 1. The spectral decomposition of this bimodule is well known; for a pair of irreducible representations
(𝜋,𝑉) and (𝜋′, 𝑉 ′), we have

�̃� ⊗𝐺 𝑆(GL2(𝐹)) ⊗𝐺 𝑉 ′ ∼
−→ C,

if 𝑉 � 𝑉 ′, and

�̃� ⊗𝐺 𝑆(GL2 (𝐹)) ⊗𝐺 𝑉 ′ = 0

otherwise, where �̃� is the contragradient of V, considered as a right G-module.
In other words, every G-bi-module𝑉⊗C�̃� appears ‘once’ in the spectral decomposition of 𝑆(GL2(𝐹)).

To truly specify this decomposition, one needs to also discuss the dependence of this decomposition on
the continuous part of the spectrum, but let us ignore this for now.

A question we can ask, then, is what is the spectral decomposition of the space 𝑆(M2 (𝐹)). The answer
to this question should be fairly deep as it relates to the Godement–Jacquet construction of L-functions.
The simplest aspect of this we can ask about is to compute the spaces

�̃� ⊗𝐺 𝑆(M2(𝐹)) ⊗𝐺 𝑉,

with (𝜋,𝑉) irreducible. Here, the Schwartz space 𝑆(M2 (𝐹)) is the space of smooth and compactly
supported functions on M2(𝐹). We restrict to the case where (𝜋,𝑉) is generic, that is, has a Kirillov
model. Note that we are also only looking at the diagonal part of the spectral decomposition, which we
justify by observing that the two actions of the Bernstein center of G on 𝑆(M2(𝐹)) coincide (this follows
because the two actions of the center on 𝑆(𝐺) coincide, as well as the fact that 𝑆(M2 (𝐹)) embeds in the
contragradient of 𝑆(𝐺)). This means that off-diagonal components

�̃� ⊗𝐺 𝑆(M2(𝐹)) ⊗𝐺 𝑉 ′,

with 𝑉 ′ ≠ 𝑉 generic are 0.
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The space �̃� ⊗𝐺 𝑆(M2(𝐹)) ⊗𝐺 𝑉 turns out to be a one-dimensional vector space. However, this
answer in not too meaningful. We would like to say which one-dimensional vector space this is. In order
to be able to make interesting statements about it, we should give it some more structure. So, consider
instead the space 𝑌 = 𝑆(M2 (𝐹) × 𝐹×). We let G act on M2 (𝐹) × 𝐹× from both sides as

ℎ · (𝑔, 𝑦) · ℎ′ =
(
ℎ𝑔ℎ′, 𝑦 · det(ℎℎ′)−1

)
, (2.1)

which turns 𝑌 = 𝑆(M2(𝐹) × 𝐹×) into a G-bi-module. Therefore, we want to compute the space

�̃� ⊗𝐺 𝑌 ⊗𝐺 𝑉,

which now has an extra structure of 𝐹×-module, via the action of 𝐹× on the second term in the product
M2(𝐹) × 𝐹×. The desired space �̃� ⊗𝐺 𝑆(M2 (𝐹)) ⊗𝐺 𝑉 is canonically the space of coinvariants of
�̃� ⊗𝐺 𝑌 ⊗𝐺 𝑉 under this 𝐹×-action.

Spectrally, the operation sending the G-bi-module 𝑆(M2 (𝐹)) to the 𝐹×-module �̃� ⊗𝐺 𝑆(M2(𝐹) ×
𝐹×)⊗𝐺𝑉 can be described as follows. Given a character 𝜒 : 𝐹× → C×, the component of �̃�⊗𝐺𝑆(M2(𝐹)×
𝐹×) ⊗𝐺 𝑉 at 𝜒 is the same as the component of 𝑆(M2 (𝐹)) at the exterior product of 𝜋 × (𝜒 ◦ det) with
itself.

In order to have an idea of the answer, we can start by considering the 𝐺 × 𝐺-submodule 𝑌◦ =
𝑆(GL2(𝐹) × 𝐹×) of Y. It is easy to see that there is a canonical isomorphism

𝜇 : �̃� ⊗𝐺 𝑌◦ ⊗𝐺 𝑉
∼
−→ 𝑆(𝐹×) (2.2)

given by the formula

�̃� ⊗ Ψ ⊗ 𝑣 ↦→

∫
GL2 (𝐹 )

〈�̃�, 𝜋(𝑔)𝑣〉 · Ψ
(
𝑔, 𝑦 det(𝑔)−1

)
d×𝑔.

Since M2(𝐹) is some completion of GL2 (𝐹), we can expect �̃� ⊗𝐺𝑌 ⊗𝐺𝑉 to be some extension of 𝑆(𝐹×).

2.1.1. Statement of the main result
We want to decompose the 𝐺 × 𝐺-module Y. It turns out that we can do this by introducing a third
action of G on this space, coming from the Weil representation.

Fix a nontrivial additive character 𝑒 : 𝐹 → C
×, and let 𝜃 be the corresponding character on the

subgroup 𝑈 = 𝑈2 (𝐹) ⊆ GL2(𝐹) of upper triangular unipotent matrices, defined by

𝜃 :𝑈 → C×

𝜃

((
1 𝑢

1

))
= 𝑒(𝑢).

For any generic irreducible G-module V, we denote by 𝑉 (𝑛) the twist of V by |det(·) |𝑛.

Recollection 2.1. Recall that for a generic irreducible G-module V, the Kirillov model K(𝑉) of V is
defined as follows.

Let 𝑃 =

{(
∗ ∗

1

)}
⊆ 𝐺 be the mirabolic subgroup. Let Φ− : Mod(𝑃) → Vect be the functor that takes

a P-module to its 𝜃-equivariant quotient, for the nontrivial character 𝜃 on the unipotent radical of P (see
[3] for this notation). Let Φ+ : Vect → Mod(𝑃) be its left adjoint, given by 𝜃-equivariant induction with
compact support (see Proposition 3.2 of [3]).

It is well known that the space Φ−�̃� is one dimensional. A choice of vector C → Φ−�̃� gives, by
adjunction, a map of P-modules

𝑆(𝐹×) � Φ+
C→ �̃� .
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Taking the dual map, we obtain a morphism of P-modules

𝑉 → �𝑆(𝐹×),

where �𝑆(𝐹×) is identified with the space of uniformly smooth functions on 𝐹×, and P acts on �𝑆(𝐹×) by(
𝑎 𝑏

1

)
· 𝑓 (𝑦) = 𝑒(𝑏𝑦) 𝑓 (𝑎𝑦).

The map 𝑉 → �𝑆(𝐹×) is the unique nonzero map of P-modules from V to �𝑆(𝐹×), up to scalar. Such
maps are injective and have the same image. This image is called the Kirillov model K(𝑉) of V, and it
acquires a canonical G-action from V [8, Theorem 6.7.2].

There is a related notion, called the Whittaker model of V. This model is obtained by taking the map
𝑆(𝐹×) → �̃� of P-modules above and extending it to a map of G-modules:

1� → �̃�

by letting 1� be the induction with compact support of 𝑆(𝐹×) from P to G (see also Construction 3.10
where we give an isomorphic construction of the same space, given a choice of measure on 𝐹×). The
space 1� is called the Whittaker space, and the image of the resulting dual map 𝑉 → 1̃� is called the
Whittaker model of V. Our notation for the Whittaker space is nonstandard.

Theorem 2.2. There exists an additional canonical G-action 𝜏 on Y. This action is uniquely determined
by the following properties:

1. The action 𝜏 commutes with the existing G-actions on Y from the left and the right.
2. For every generic irreducible (𝜋,𝑉), there is an isomorphism of G-modules

𝜈 : �̃� ⊗𝐺 𝑌 ⊗𝐺 𝑉
∼
−→ K(𝑉 (−1)) (1).

3. The isomorphism 𝜈 above fits into the commutative diagram

�̃� ⊗𝐺 𝑌◦ ⊗𝐺 𝑉

��

∼

𝜇
�� 𝑆(𝐹×)

��
�̃� ⊗𝐺 𝑌 ⊗𝐺 𝑉

∼

𝜈
�� K(𝑉 (−1)) (1),

(2.3)

where 𝜇 is as in equation (2.2), the left vertical map is induced from the natural inclusion 𝑌◦ ⊆ 𝑌
and the right vertical map is the inclusion of 𝑆(𝐹×) into the Kirillov model K(𝑉 (−1)) of 𝑉 (−1).

Remark 2.3. Note that in Item 2 above, the right-hand side K(𝑉 (−1)) (1) is isomorphic to V as a
representation of G, but ‘rigidified’ via the use of Kirillov models (in the sense that while an irreducible
representation is only unique up to automorphism, the Kirillov model is a canonical realization of that
representation).

Remark 2.4. Note that the right vertical map appearing in diagram (2.3) is not P-equivariant. Rather, this
map is twisted-P-equivariant, with respect to the character |det(·) |. The reason for this twist ultimately
stems from an off-by-one in the variable s between Jacquet–Langlands and Godement–Jacquet zeta
integrals: The formula for the Jacquet–Langlands zeta integral takes |𝑦 | to the power of 𝑠 − 1

2 , while the
formula for the Godement–Jacquet zeta integral takes |det(𝑔) | to the power of 𝑠 + 1

2 (see, for example,
the form of the integrals given in equations (1.1) and (1.2).

We refer to the G-action on Y introduced in Theorem 2.2 as the middle G-action (in contrast with the
left or right G-actions). The isomorphism 𝜈 in Theorem 2.2 is our answer to the questions posed above.
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That is, 𝜈 defines an isomorphism

�̃� ⊗𝐺 𝑆(M2(𝐹)) ⊗𝐺 𝑉 � K(𝑉 (−1)) (1)/𝐹× .

2.1.2. Compatibility with L-functions
The isomorphism 𝜈 above has one more remarkable property: it intertwines Godement–Jacquet and
Jacquet–Langlands zeta integrals (and thus shows that these two methods give the same L-function).
Explicitly, we make the following claim.

Proposition 2.5. Let Ψ ⊗ 𝑓 ∈ 𝑆(M2(𝐹)) ⊗C 𝑆(𝐹×) = 𝑌 be the function Ψ(𝑔) 𝑓 (𝑦), let 𝛽 be a matrix
coefficient of V, and let

𝑗 :K(𝑉 (−1)) (1) ∼
−→ K(𝑉)

be the canonical isomorphism. Then

𝑍JL ( 𝑗 ◦ 𝜈(𝛽 ⊗ Ψ ⊗ 𝑓 ), 𝑠) = 𝑍GJ (𝛽,Ψ, 𝑠) ·

∫
𝐹×

𝑓 (𝑦) |𝑦 |𝑠+
1
2 d×𝑦,

where

𝑍JL (𝑤, 𝑠) =
∫
𝐹×

𝑤(𝑦) |𝑦 |𝑠−
1
2 d×𝑦,

𝑍GJ (𝛽,Ψ, 𝑠) =
∫

GL2 (𝐹 )

𝛽(𝑔)Ψ(𝑔) |det(𝑔) |𝑠+
1
2 d×𝑔

are the Jacquet–Langlands and Godement–Jacquet zeta integrals, respectively.

This will follow immediately from Remark 2.21 below.

Remark 2.6. With the language and tools developed in Section 3, we will be able to reformulate
Theorem 2.2 in a much cleaner way, as well as give a slightly different proof.

Specifically, it will turn out that we can use the space Y to define a symmetric monoidal structure
©� on the category of smooth G-modules. The essence of Theorem 2.2 is that generic irreducible
representations are idempotent with respect to this monoidal structure. This will follow at once from the
general principle that in an abelian symmetric monoidal category whose tensor product is right exact,
surjections from the unit 1� � 𝑉 turn V into an idempotent. This is essentially the same argument
showing that for a commutative algebra A, module quotients of A are also algebra quotients of A. See
Example 3.55 for details.

2.2. The Weil representation

In this subsection, we will construct the middle action on Y, which we will use to prove Theorem 2.2.
This is done by turning 𝑆(M2 (𝐹)) into a Weil representation for an appropriate metaplectic group. The
action of the metaplectic group is then used to construct the hidden action on Y directly. Once this action
is constructed, proving its properties is relatively straightforward. After proving Theorem 2.2, we will
give a few additional remarks about the middle action and its properties.

We begin by constructing the symplectic space which will give us the appropriate representation.
The idea is to find a space such that M2(𝐹) is a Lagrangian subspace of it.

Recall that the pairing (𝑚, 𝑚′) ↦→ 〈𝑚, 𝑚′〉 = tr(𝑚)tr(𝑚′) − tr(𝑚𝑚′) is the polarization (or multilin-
earization) of the quadratic map 𝑚 ↦→ det(𝑚) on M2(𝐹).
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Construction 2.7. Consider the vector space 𝑈 = M2(𝐹), and let W be a two-dimensional symplectic
vector space. We turn 𝑈 ⊗𝑊 into a symplectic vector space via

〈𝑚 ⊗ 𝑣, 𝑚′ ⊗ 𝑣′〉 = (𝑣 ∧ 𝑣′) · 〈𝑚, 𝑚′〉 .

In particular, we get a map

𝐺3,det=1 = (GL2 (𝐹) × GL2(𝐹) × GL2 (𝐹))
1 → Sp(𝑈 ⊗𝑊)

of the group

𝐺3,det=1 =
{
(𝑔1, 𝑔2, 𝑔3) ∈ 𝐺3 | det(𝑔1𝑔2𝑔3) = 1

}
into the group of symplectic automorphisms of 𝑈 ⊗𝑊 . This embedding is defined by

(𝑔1, 𝑔2, 𝑔3) · (𝑚 ⊗ 𝑣) = 𝑔1𝑚𝑔𝑇3 ⊗ 𝑔2𝑣.

Remark 2.8. The construction of the space 𝑈 ⊗ 𝑊 above obfuscates the fact that the three terms in
𝐺3,det=1 act on 𝑈 ⊗ 𝑊 symmetrically. Indeed, as a vector space, 𝑈 � 𝑊 ⊗ 𝑊∨, and therefore one can
exchange the factors of W in the product 𝑈 ⊗ 𝑊 � 𝑊 ⊗ 𝑊∨ ⊗ 𝑊 . This is easily seen to leave the
symplectic form invariant.
Construction 2.9. The map 𝐺3,det=1 → Sp(𝑈 ⊗𝑊) of Construction 2.7 can be extended to a map

𝑆3 � 𝐺
3,det=1 → Sp(𝑈 ⊗𝑊)

where 𝑆3 acts by interchanging the order of the factors. In particular, we fix the convention that the
transposition (1, 3) ∈ 𝑆3 acts by

(1, 3) · (𝑚 ⊗ 𝑣) = 𝑚𝑇 ⊗ 𝑣.

Recollection 2.10 (Weil representation of metaplectic group). Let V be a symplectic vector space over
F. The Heisenberg group 𝐻 (𝑉) is defined as the underlying set 𝑉 × 𝐹, with multiplication given by

(𝑣, 𝑥) · (𝑣′, 𝑥 ′) = (𝑣 + 𝑣′,
1
2
〈𝑣, 𝑣′〉 + 𝑥 + 𝑥 ′).

The group 𝐻 (𝑉) has a unique (up to scalar automorphism) irreducible representation (𝜋, 𝑋) such
that (0, 𝑥) acts via any given nontrivial additive character 𝑒 : 𝐹 → C

×. For any symplectomorphism
𝑔 ∈ Sp(𝑉), one can define the representation 𝜋𝑔 given by 𝜋𝑔 (𝑣, 𝑥) = 𝜋(𝑔(𝑣), 𝑥). The group of pairs
(𝑔, 𝛾), where 𝑔 ∈ Sp(𝑉) and 𝛾 : 𝜋 → 𝜋𝑔 is an 𝐻 (𝑉)-linear map is called the metaplectic group Mp(𝑉).
This group sits in an exact sequence

1 �� C× �� Mp(𝑉) �� Sp(𝑉) �� 1,

and it has a canonical representation on the space X, called the Weil representation.
For 𝐿 ⊆ 𝑉 a Lagrangian subspace and a splitting

0 �� 𝐿 �� 𝑉 ��
𝑝

�� ���
𝐿∨ �� 0,

one can give an explicit model for this representation, 𝑋 = 𝑆(𝐿). Here, 𝑆(𝐿) is the space of smooth and
compactly supported functions on L, with group action

𝜋(𝑣, 𝑥) · Ψ(ℓ) = 𝑒

(
−

〈
𝑣, ℓ +

1
2
𝑝(𝑣)

〉
+ 𝑥

)
· Ψ(ℓ + 𝑝(𝑣))
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for 𝑣 ∈ 𝑉 , ℓ ∈ 𝐿, 𝑥 ∈ 𝐹. This defines an action of Mp(𝑉) on 𝑆(𝐿), called the Schrödinger model of the
Weil representation.
Construction 2.11. Consider the Lagrangian subspace M2 (𝐹) = M2(𝐹)⊗𝑒2 ⊆ 𝑈⊗𝑊 , where 𝑒1, 𝑒2 ∈ 𝑊
is a standard basis. We define a splitting split 𝑈 ⊗ 𝑊 → M2 (𝐹) with kernel M2(𝐹) ⊗ 𝑒1. Then by
the Schrödinger model of the Weil representation of Mp(𝑈 ⊗ 𝑊) on 𝑆(M2 (𝐹)) corresponding to the
character 𝑒 : 𝐹 → C×, we get an action of the metaplectic group

Mp(𝑈 ⊗𝑊)

on 𝑆(M2(𝐹)).
Proposition 2.12. There is a unique lift

𝑆3 � 𝐺
3,det=1 ��

���
����� Sp(𝑈 ⊗𝑊)

Mp(𝑈 ⊗𝑊)

��

satisfying that the transposition (1, 3) ∈ 𝑆3 of the left and right actions acts on 𝑆(M2(𝐹)) via the
transposition 𝑔 ↦→ 𝑔𝑇 of M2(𝐹).

For the sake of clarity of the exposition, we postpone the proof of this statement to the end of this
subsection. Our proof will be constructive, and we will give an explicit description of this lift.

We conclude that the group 𝑆3 � 𝐺
3,det=1 acts on 𝑆(M2(𝐹)).

Finally, we can use this Weil representation to construct an additional G-action on Y.
Construction 2.13. We use induction with compact support to extend the action of𝐺3,det=1 on 𝑆(M2(𝐹))
to an action of 𝐺3 on Y. Specifically, we identify

𝑌 = 𝑆(M2 (𝐹) × 𝐹×) = cInd𝑆3�𝐺
3

𝑆3�𝐺3,det=1 𝑆(M2(𝐹))

via the section

𝐺3,det=1\𝐺3 = 𝐹× → 𝐺3

given by 𝑦 ↦→

(
1,

(
𝑦

1

)
, 1

)
, together with a determinant twist.

Explicitly, if Ψ(𝑚, 𝑦) = Φ(𝑚) 𝑓 (𝑦) ∈ 𝑆(M2(𝐹) × 𝐹×) for Φ ∈ 𝑆(M2(𝐹)) and 𝑓 ∈ 𝑆(𝐹×), then we
define

((𝑔1, 𝑔2, 𝑔3) · Ψ) (𝑚, 𝑦)

= |det(𝑔1𝑔2𝑔3) | ·

((
𝑔1,

(
𝑦

1

)
𝑔2

(
𝑦−1 det(𝑔1𝑔2𝑔3)

−1

1

)
, 𝑔3

)
· Φ

)
(𝑚) 𝑓 (𝑦 · det(𝑔1𝑔2𝑔3)), (2.4)

where the action of
(
𝑔1,

(
𝑦

1

)
𝑔2

(
𝑦−1 det(𝑔1𝑔2𝑔3)

−1

1

)
, 𝑔3

)
on Φ is the Weil representation action.

We refer to the resulting action of the middle copy of 𝐺 = GL2 (𝐹) on Y as the middle action.
Recall that 𝑔 ↦→ 𝑔−𝑇 is the Cartan involution on GL2(𝐹), given by the inverse of the transposition

map: 𝑔−𝑇 = (𝑔𝑇 )−1.
Example 2.14. We can explicitly write down the action of (𝑔1, 1, 𝑔3) on Y

(𝑔1, 1, 𝑔3) · Ψ(𝑔, 𝑦) = Ψ
(
𝑔−1

1 𝑔𝑔−𝑇3 , 𝑦 · det(𝑔1𝑔
𝑇
3 )

)
.
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This follows from the explicit construction in equations (2.5) and (2.9) in the proof of Proposition 2.12
below.

Example 2.15. As in Remark 2.8, there is a hidden symmetry between the left, right and middle G-
actions on Y. This follows because Y carries an action of 𝑆3 � 𝐺3. In particular, the action of the the
transposition (1, 3) ∈ 𝑆3 on Y is given by

(1, 3) · Ψ(𝑔, 𝑦) = Ψ(𝑔𝑇 , 𝑦),

as can be seen from equation (2.10) in the proof of Proposition 2.12 below.

Remark 2.16. In order to be consistent with the notation of Theorem 2.2, we need to be able to write
expressions of the form

𝑉 ⊗𝐺 𝑌 ⊗𝐺 𝑉.

Recall that we are considering 𝑉 to be a right-module. Therefore, we need to turn one of the G-actions
on Y into a right action. In order to be consistent with equation (2.1), we will occasionally use the
transposition 𝑔 ↦→ 𝑔𝑇 to turn the third G-action into a right-action whenever it is necessary. See also
Definition 3.2 below.

We finish this subsection by proving Proposition 2.12.

Proof of Proposition 2.12. Let us begin by showing that there is at most one metaplectic lift for the
map 𝑆3 � 𝐺

3,det=1 → Sp(𝑈 ⊗𝑊) compatible with the specified action of the metaplectic lift of (1, 3).
This follows because the abelianization of 𝑆3 � 𝐺3,det=1 is Z/2 and is generated by the image of the
transposition (1, 3) due to the fact that any two lifts to Mp(𝑈 ⊗ 𝑊) differ by a character. Also, recall
that the Weil representation is faithful for the metaplectic group so that describing lifts of elements of
𝑆3 � 𝐺

3,det=1 is the same as describing their actions on 𝑆(M2(𝐹)).
Let us show the existence of this lift. We will do so in several steps. Let us first show that the subgroup

SL2 (𝐹)
3 ⊆ 𝑆3 � 𝐺3,det=1 admits a unique lift. We will then handle the rest of the group. Indeed,

the lift of each factor SL2(𝐹) is unique because its abelianization is trivial. Note that the subgroup
SL2 (𝐹) × {1} × SL2 (𝐹) consisting of two of the copies of SL2(𝐹) admits an explicit metaplectic lift by
the following action on 𝑆(M2(𝐹)):

(𝑔1, 1, 𝑔3) · Ψ(𝑚) = Ψ(𝑔−1
1 𝑚𝑔−𝑇3 ). (2.5)

Because the pairs SL2(𝐹) × SL2(𝐹) × {1} and {1} × SL2 (𝐹) × SL2(𝐹) are conjugate to it, these
pairs admit metaplectic lifts as well, and all of those lifts agree on each factor SL2 (𝐹) separately by
uniqueness. This shows that there is a metaplectic lift for SL2 (𝐹) × SL2(𝐹) × SL2(𝐹). For the sake of
being explicit, we note that the action of the middle copy of SL2(𝐹) is given by(

1,
(
1 𝑏

1

)
, 1

)
· Ψ(𝑚) = 𝑒 (𝑏 det(𝑚)) · Ψ(𝑚) (2.6)

(
1,

(
𝑡
𝑡−1

)
, 1

)
· Ψ(𝑚) = |𝑡 |2 · Ψ(𝑡 · 𝑚) (2.7)

(
1,

(
−1

1

)
, 1

)
· Ψ(𝑚) =

∫
M2 (𝐹 )

Ψ(𝑛)𝑒(− 〈𝑚, 𝑛〉) d𝑛, (2.8)

where the measure d𝑛 on M2 (𝐹) is normalized such that 𝑒(〈·, ·〉) is a self-dual character.
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Now, we observe that there is a split short exact sequence

1 �� SL2 (𝐹)
3 �� 𝑆3 � 𝐺

3,det=1 �� 𝑆3 � (𝐹
×)3,Π=1 �� 1,

where (𝐹×)3,Π=1 = {(𝑎, 𝑏, 𝑐) ∈ 𝐹× | 𝑎𝑏𝑐 = 1}. We think of (𝐹×)3,Π=1 as embedded in 𝐺3,det=1 via the
splitting:

(𝑎, 𝑏, 𝑐) ↦→

((
𝑎

1

)
,

(
𝑏

1

)
,

(
𝑐

1

))
.

Thus, it remains to show that there is a metaplectic lift for 𝑆3 � (𝐹×)3,Π=1 as it will act by conjugation
on SL2(𝐹)

3 correctly by uniqueness.
We construct the lift for 𝑆3 � (𝐹×)3,Π=1 in three steps. We will first construct a lift 𝑆2 � (𝐹×)3,Π=1

for the copy of 𝑆2 ⊆ 𝑆3 generated by the permutation 𝜏 = (1, 3). Then, we will construct a lift for
a permutation 𝜎 ∈ 𝑆3 of order 3. Finally, we will show that all required relations between 𝜎 and
𝑆2 � (𝐹

×)3,Π=1 must hold.
We lift 𝑆2 � (𝐹

×)3,Π=1 explicitly by defining((
𝑎

1

)
,

(
𝑏

1

)
,

(
𝑐

1

))
· Ψ(𝑚) = |𝑏 | · Ψ

((
𝑎−1

1

)
𝑚

(
𝑐−1

1

))
(2.9)

𝜏 · Ψ(𝑚) = Ψ(𝑚𝑇 ) (2.10)

for Ψ ∈ 𝑆(M2(𝐹)), and 𝜏 = (1, 3) ∈ 𝑆3 being the transposition of the first and third actions.
Let 𝜎 ∈ 𝑆3 be the permutation 𝜎(1) = 2, 𝜎(2) = 3, 𝜎(3) = 1 of order 3. Observe that there is a

unique lift for sigma in Mp(𝑈 ⊗𝑊) which respects the relation

𝜏𝜎𝜏−1 = 𝜎2.

Note that because 𝜏 has order 2, such a lift automatically respects all relations of 𝑆3. For the sake of
being explicit, we note that this lift is given by

𝜎 · Ψ

((
𝑚00 𝑚01
𝑚10 𝑚11

))
=

∫
𝐹×𝐹

𝑒(𝛽 · 𝑚00 − 𝛼 · 𝑚10)Ψ

((
𝛼 𝛽
𝑚01 𝑚11

))
d𝛼 d𝛽. (2.11)

We have now chosen lifts for both 𝑆2 � (𝐹×)3,Π=1 and 𝜎. Thus, to show that 𝑆3 � (𝐹×)3,Π=1 admits
a metaplectic lift and finish the proof, it suffices to check that the action of 𝑆3 on the metaplectic lift
of (𝐹×)3,Π=1 by conjugation is the correct one. This can be verified explicitly using equations (2.9) and
(2.11) �

2.3. Proof of Theorem 2.2

Having constructed the action we seek, we can now start proving Theorem 2.2. Our first step is to restrict
the set of representations that can appear in �̃� ⊗𝐺 𝑌 ⊗𝐺 𝑉 , which is done via the following lemma.

Lemma 2.17. Let Y be considered as a 𝐺3-module via the left, middle and right actions, respectively.
Then the resulting three actions of the Bernstein centers of each copy of G on Y identify.

Proof. Observe that the statement is true for the left and right translation actions of G on 𝑆(M2(𝐹))
(recall Remark 2.16) because the 𝐺 × 𝐺-equivariant pairing
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𝑆(M2(𝐹)) ⊗ 𝑆(𝐺) → C

Ψ ⊗ 𝑓 ↦→

∫
𝐺
Ψ(𝑔) 𝑓 (𝑔) d×𝑔

is nondegenerate and because the Bernstein center of G acts on 𝑆(𝐺) the same way from both sides. As
a result, the left and right actions of the center of G on Y coincide. By symmetry (i.e., by conjugation
by a permutation from 𝑆3), this also applies to the middle action. �

Remark 2.18. Note that the Bernstein center is fixed by taking the transpose 𝑔 ↦→ 𝑔𝑇 . This follows
due to the description of the Bernstein center as invariant distributions as any matrix is conjugate to its
transpose.

Recall the functor Φ− : Mod(𝑃) → Vect and its left adjoint Φ+ : Vect → Mod(𝑃) from Recollection
2.1.
Lemma 2.19. The map

Φ+Φ−𝑌 → 𝑌

is an embedding with image 𝑌◦ ⊆ 𝑌 , where the functor Φ+Φ− is taken with respect to the middle action.

Proof. By equation (2.6) and the definition in equation (2.4), the middle action of the matrix
(
𝑎 𝑏

1

)
on

the element Ψ ∈ 𝑌 is (
𝑎 𝑏

1

)
· Ψ(𝑔, 𝑦) = |𝑎 | · 𝑒 (𝑏 det(𝑔)𝑦) · Ψ(𝑔, 𝑎𝑦). (2.12)

By the exact sequence of part (e) of Proposition 3.2 of [3], it follows that the map is injective and its
image consists of the functions supported away from the set {det(𝑔)𝑦 = 0}. �

Proof of Theorem 2.2. We consider the middle action of G on Y, given by Construction 2.13. That it
commutes with the left and right G-actions is by construction. The existence of the isomorphism 𝜈 of
Theorem 2.2 is proven as follows.

First, we suppose that (𝜋,𝑉) is either an irreducible principal series representation or a supercuspidal
representation. By Lemma 2.17, the space

�̃� ⊗𝐺 𝑌 ⊗𝐺 𝑉

is V-isotypic, because such irreducible representations are determined by the characters they define on
the Bernstein center (also known as their central character, or infinitesimal character). Our goal is to
count the number of copies of V appearing in it and show that it is 1. By the assumptions on V, we have
that Φ−𝑉 is one-dimensional. Therefore, it is enough to test the dimension of

Φ−
(
�̃� ⊗𝐺 𝑌 ⊗𝐺 𝑉

)
.

However, this is the same as

Φ−Φ+Φ−
(
�̃� ⊗𝐺 𝑌 ⊗𝐺 𝑉

)
,

which by Lemma 2.19 is the same as evaluating

Φ−
(
�̃� ⊗𝐺 𝑌◦ ⊗𝐺 𝑉

) ∼
−→ Φ−𝑆(𝐹×) = C.

Note that the first isomorphism is given by Φ−(𝜇) for 𝜇 as in equation (2.2), and it follows from equation
(2.12) that 𝜇 is an isomorphism of P-modules. This shows that the number of copies of V appearing in
the space above is indeed 1, and shows that the diagram in Item 3 is commutative.

https://doi.org/10.1017/fmp.2023.18 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.18


16 G. Dor

The above argument does not quite work in the case that (𝜋,𝑉) is a Steinberg representation because
the Bernstein center is not strong enough to distinguish V from the trivial representation. However,
in this case, it is sufficient to verify that the image of the Jacquet functor on �̃� ⊗𝐺 𝑌 ⊗𝐺 𝑉 is one
dimensional (because we already know that Φ−

(
�̃� ⊗𝐺 𝑌 ⊗𝐺 𝑉

)
is one dimensional by the argument

above). By equation (2.12), it follows that the Jacquet functor on �̃� ⊗𝐺 𝑌 ⊗𝐺 𝑉 is given by

�̃� ⊗𝐺 𝑆(Mdet=0
2 (𝐹) × 𝐹×) ⊗𝐺 𝑉.

Hence, we need to prove that this space is one dimensional. This follows immediately from Lemma
2.20 below (note that V is a Steinberg representation and therefore generic, meaning that it admits no
SL2 (𝐹)-invariant linear functionals, as the lemma requires). �

Identify the torus
{(

𝑎
𝑑

)}
⊆ 𝐺 with the group 𝐹× × 𝐹×. Let

Jac : Mod(𝐺) → Mod(𝐹× × 𝐹×)

be the Jacquet functor (i.e., parabolic restriction) with respect to the parabolic subgroup

𝑃′ =

{(
𝑎 𝑏

𝑑

)}
⊆ 𝐺.

Lemma 2.20. Let (𝜋,𝑉) be a representation of G such that V and �̃� admit no SL2(𝐹)-invariant linear
functionals. Then

�̃� ⊗𝐺 𝑆(Mdet=0
2 (𝐹) × 𝐹×) ⊗𝐺 𝑉 = Jac(�̃�) ⊗𝐹××𝐹× Jac(𝑉).

Proof. We use the decomposition of 𝑆(Mdet=0
2 (𝐹)) via an exact sequence

0 �� 𝑆(𝑃\𝐺) ⊗𝐹× 𝑆(𝑃\𝐺) �� 𝑆(Mdet=0
2 (𝐹))

𝑓 ↦→ 𝑓 (0)�� 1𝐺
�� 0,

where 1𝐺 is the trivial representation. This uses an identification of the quotient of

𝑃\𝐺 × 𝑃\𝐺

by the diagonal left action of 𝐹× with the space of rank-one matrices.
If we tensor this sequence by 𝑆(𝐹×), we obtain the decomposition

0 �� 𝑆(𝑈\𝐺) ⊗𝐹××𝐹× 𝑆(𝑈\𝐺) ��

�� 𝑆(Mdet=0
2 (𝐹) × 𝐹×) �� 𝑆(𝐹×) �� 0,

where𝑈 ⊆ 𝐺 is the unipotent radical. Tensoring by �̃� and V from the left and right, we get a morphism:

Jac(�̃�) ⊗𝐹××𝐹× Jac(𝑉) �� �̃� ⊗𝐺 𝑆(Mdet=0
2 (𝐹) × 𝐹×) ⊗𝐺 𝑉, (2.13)

and we want to show that it is an isomorphism.
The fact that equation (2.13) is an isomorphism will follow because our assumption about SL2 (𝐹)-

invariant linear functionals implies that

𝑆(𝐹×) ⊗𝐺 𝑉 = 𝑆(𝐹×) ⊗𝐺 �̃� = 0. (2.14)
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Indeed, surjectivity immediately follows from �̃�⊗𝐺 𝑆(𝐹×)⊗𝐺𝑉 = 0 and because relative tensor products
are right exact. Injectivity is trickier but can be proven as follows. Essentially, it remains to prove that

Tor𝐺×𝐺
1 (�̃� ⊗ 𝑉, 𝑆(𝐹×)) = 0.

Plugging equation (2.14) in to the spectral sequence

Tor𝐺𝑖 (�̃� ,Tor𝐺𝑗 (𝑉, 𝑆(𝐹
×))) =⇒ Tor𝐺×𝐺

𝑖+ 𝑗 (�̃� ⊗ 𝑉, 𝑆(𝐹×)),

we see that the objects at (𝑖, 𝑗) = (0, 0), (1, 0), (0, 1) are all 0. �

2.4. Properties of the hidden action

Let us make a few closing remarks about the properties of the middle G-action on the space Y. These
observations are easy to see directly, but we write them down explicitly because they will be useful later.

Remark 2.21. The consistency of the map

𝜈 : �̃� ⊗𝐺 𝑌 ⊗𝐺 𝑉 → K(𝑉 (−1)) (1)

with the map 𝜇 allows us to write it explicitly. It is easy to see that 𝜈 is given by

𝜈 (�̃� ⊗ Ψ ⊗ 𝑣) (𝑦) =
∫

GL2 (𝐹 )

〈�̃�, 𝜋(𝑔)𝑣〉 · Ψ
(
𝑔, det(𝑔)−1𝑦

)
d×𝑔.

That is, Theorem 2.2 says that the expression above, when considered as a function of y, belongs to the
twist of the Kirillov space of 𝑉 (−1).

Remark 2.22. By Example 2.14, the subspace 𝑌◦ ⊆ 𝑌 is closed under the left and right G-actions (and,
in fact, equation (2.12) shows that it is also closed under the middle action of the mirabolic group P).
However, one can show that 𝑌◦ generates the entire space Y under the middle action of G.

Remark 2.23. Very informally, Theorem 2.2 says that the spectral decomposition of Y is given by an
integral of the form

𝑌 �
∫

𝑉 ⊗ K(𝑉 (−1)) (1) ⊗ �̃�

over the irreducible representations (𝜋,𝑉) of G.

Remark 2.24. We can also write down the middle action of the matrix
(

−1
1

)
on Y. Explicitly, by

normalizing the Haar measure on M2 (𝐹) so that 𝑒(〈−,−〉) is self-dual, it is straightforward to use
equation (2.8) to obtain(

−1
1

)
· Ψ(𝑔, 𝑦) = |𝑦 |2

∫
M2 (𝐹 )

Ψ(ℎ, 𝑦) · 𝑒

(
− 𝑦 · 〈𝑔, ℎ〉

)
dℎ.

3. Symmetric monoidal structure on mdules of GL(2)

3.1. Introduction

Let F be a non-Archimedean local field with char(𝐹) ≠ 2, and fix the standard Haar measure on GL2(𝐹)
such that the volume of a maximal compact subgroup is 1. In Section 2, we introduced the object

𝑌 = 𝑆(M2(𝐹) × 𝐹×).

https://doi.org/10.1017/fmp.2023.18 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.18


18 G. Dor

The space Y has three commuting 𝐺 = GL2(𝐹)-actions. The first copy of G acts by multiplication on
the left on M2 (𝐹) and by the determinant on 𝐹×, and the second copy of G acts by multiplication on
the right on M2 (𝐹) and by the determinant on 𝐹×. The third action is harder to describe and is related
to the Weil representation.

The trimodule Y appears to encode information about the relation between the Godement–Jacquet
and Jacquet–Langlands L-functions. An interesting question to ask is how can we use Y to learn more
about the representation theory of G. Regardless, one might want to better understand the trimodule Y
and its properties. It turns out that a useful way of achieving both is by considering the trimodule Y as
encoding a functor

©� : Mod(𝐺) × Mod(𝐺) → Mod(𝐺),

sending pairs of modules to their tensor product with Y over G and letting G act on the result via the
third action:

𝑉©�𝑉 ′ = 𝑉 ⊗𝐺 𝑌 ⊗𝐺 𝑉 ′.

This point of view turns out to be surprisingly insightful: The functor ©� turns out to be a part of
a (unital) symmetric monoidal structure on the category Mod(𝐺). In fact, this structure can be further
enriched with the duality on Mod(𝐺) (which interchanges left and right modules) into a structure called
a commutative Frobenius algebra in presentable categories in an appropriately categorified sense (see
Remark 3.54).

The symmetric monoidal structure ©� enjoys some interesting properties. For example, the main
result of Section 2 can be restated in terms of ©� : Namely, Theorem 2.2 says that generic irreducible
representations V of G satisfy 𝑉©�𝑉 � 𝑉 (see Example 3.55 for a more precise formulation). Moreover,
in Section 4, we will show that the functor ©� can be turned into a symmetric monoidal product on the
category of global GL2 (A)-modules, and that an appropriate space of global automorphic functions is
an algebra under ©� .

Remark 3.1. Intuitively, one can think of the product ©� as a kind of ‘commutative relative tensor
product’ over G. Let us explain this idea by considering a commutative group H and showing that its
relative tensor product ⊗𝐻 satisfies similar properties to those of ©� .

For commutative groups H, the relative tensor product ⊗𝐻 : Mod(𝐻) × Mod(𝐻) → Mod(𝐻) is
defined as follows. For 𝑀, 𝑁 ∈ Mod(𝐻), the vector space 𝑀 ⊗ 𝑁 has a 𝐻 × 𝐻-action. Then the H-
module 𝑀 ⊗𝐻 𝑁 is given by taking the coinvariants of 𝑀 ⊗ 𝑁 by the action of the subgroup

{(ℎ, ℎ−1) | ℎ ∈ 𝐻} ⊆ 𝐻 × 𝐻.

The relative tensor product ⊗𝐻 in the commutative case seems to satisfy many of the same properties
as the bifunctor ©� in the case of GL(2). For example, for an irreducible H-module V, there is an
isomorphism 𝑉 ⊗𝐻 𝑉 � 𝑉 . This is analogous to the above restatement of Theorem 2.2. Moreover, the
space of functions on H acquires an algebra structure with respect to this monoidal structure, which
is analogous to the fact that the space of global automorphic functions has a multiplication map with
respect to ©� .

In this informal manner (e.g., having the tensor of generic irreducibles be themselves), the monoidal
structure ©� ‘mimics’ the behaviour of the case of a commutative group.

This section is dedicated to constructing all of this extra structure on top of the object Y, and is
structured as follows. In Subsection 3.2, we rigorously introduce the bifunctor ©� . Unfortunately, at this
point we do not yet know that it can be extended to a symmetric monoidal structure as this requires
introducing unitality and associativity data. In Subsection 3.3, we construct the unit 1� of the desired
symmetric monoidal structure ©� . However, we cannot yet prove that ©� carries the associativity data
required from a symmetric monoidal structure.
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Much of this section is dedicated to showing that there is a unique way to extend the unitality and
symmetry data of Sections 3.2 and 3.3 into a symmetric monoidal structure on Mod(𝐺). This is done
in several steps by showing that there is a unique choice of associativity data on larger and larger
subcategories. In Section 3.4, we prove that 1� and ©� can be taken to be a part of a symmetric monoidal
structure on the full subcategory of Mod(𝐺) generated under colimits by 1�. This full subcategory is
equivalent to the quotient of Mod(𝐺) by the degenerate representations and consists of what we refer
to as the degeneracy-free representations (which are closely related to generic representations). This
establishes much of the needed data for the associativity of ©� .

In Subsection 3.5, we will extend this result further and establish the associativity data on all spherical
representations. Finally, in Subsection 3.6, we prove the existence of a unique extension of ©� into a
symmetric monoidal structure on all of Mod(𝐺). This will make use of the fact that the degeneracy-
free representations and the spherical representations, taken together, generate all of Mod(𝐺). We also
discuss some nice consequences of our construction in Subsection 3.6.

3.2. Fixing left and right actions

Let us begin by properly defining the functor ©� .
The first thing we need to do is to carefully distinguish between left and right G-modules. The reason

for this is that although it is possible to convert left G-modules and right G-modules into each other,
there are a priori two ways of doing so. One can turn a left G-module (𝜋𝐿 , 𝑀) into a right G-module
(𝜋𝑅, 𝑀) via either

𝜋𝑅 (𝑔) = 𝜋𝐿 (𝑔
−1) ∈ End(𝑀) (3.1)

or

𝜋𝑅 (𝑔) = 𝜋𝐿 (𝑔
𝑇 ) ∈ End(𝑀). (3.2)

The composition of these two functors is the outer automorphism 𝑔 ↦→ 𝑔−𝑇 of G, given by the inverse
of the transposition map.

Either choice is good. The most commonly used choice in the literature appears to be equation (3.1).
However, we would like to unambiguously talk about the action of the center of G on a module in a way
which is independent of whether we think of it as a left or a right module. This forces us to use equation
(3.2) for all our needs:

Definition 3.2. We let Mod(𝐺) = Mod𝐿 (𝐺) denote the category of smooth left G-modules over C.
We similarly denote by Mod𝑅 (𝐺) the category of smooth right G-modules. We fix an equivalence of
categories

𝐼𝑅𝐿 : Mod𝐿 (𝐺) → Mod𝑅 (𝐺)

given by sending a left module (𝜋𝐿 , 𝑀) to a right module (𝜋𝑅, 𝑀) as in equation (3.2). We denote the
inverse by

𝐼𝐿𝑅 : Mod𝑅 (𝐺) → Mod𝐿 (𝐺).

Because this is an unusual choice, we will be especially pedantic in explicitly applying the functors
𝐼𝑅𝐿 and 𝐼𝐿𝑅 in this section. Nevertheless, we will allow ourselves to be lax again once we get to Section 4.

Recall that the 𝐺 × 𝐺 × 𝐺-module Y from Construction 2.13. Using this, we now construct:

Construction 3.3. We have a functor

©� : Mod(𝐺) × Mod(𝐺) → Mod(𝐺)
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𝑌

𝐼𝑅𝐿

𝑉

𝐼𝑅𝐿

𝑉 ′

=

𝑉

𝑉 ′

�

Figure 1. String diagram for the bifunctor ©� .

given by

𝑉©�𝑉 ′ = (𝐼𝑅𝐿 (𝑉) ⊗ 𝐼𝑅𝐿 (𝑉
′)) ⊗𝐺×𝐺 𝑌,

with the 𝐺 ×𝐺 action on Y being given by the left and right translation actions, respectively, and where
the left G-action on 𝑉©�𝑉 ′ is given by the middle action of G on Y.

Remark 3.4. Observe that the action of the transposition of M2 (𝐹) on 𝑌 = 𝑆(M2 (𝐹) × 𝐹×) induces a
natural symmetry isomorphism:

𝑉©�𝑉 ′ ∼
−→ 𝑉 ′©�𝑉.

That is, the functor ©� has a canonical commutativity constraint.

Remark 3.5. In fact, when constructing ©� , we have seemingly made an arbitrary choice of which two
of the three G-actions on Y we use to match with a module and a third through which we act on the
result. By Proposition 2.12, this choice does not matter: The action of 𝐺3 = 𝐺 × 𝐺 × 𝐺 on Y can be
extended to an action of 𝑆3 � 𝐺

3 in a way compatible with Remark 3.4.

Remark 3.6. The functor ©� is colimit preserving. That is, it is right-exact and respects direct sums.

3.3. Unitality of �©

In this subsection, we will derive some of the basic properties of the functor ©� . Specifically, we will
introduce the unit 1� of the symmetric monoidal structure-to-be. Since we will need a name for this
kind of structure (a symmetric product with a unit but with no associativity data), we begin by formally
defining and naming it in §3.3.1. We will construct this structure for the category Mod(𝐺) in §3.3.2.

3.3.1. Weak symmetric monoidal structures
The definition we need is the following:

Definition 3.7. Let C be a category. A weak symmetric monoidal structure on C is a bifunctor

⊗ : C × C → C,

an object

1C ∈ C

and natural isomorphisms

𝑠𝐴,𝐵 : 𝐴 ⊗ 𝐵
∼
−→ 𝐵 ⊗ 𝐴, 𝑙𝐴 :1C ⊗ 𝐴

∼
−→ 𝐴
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such that the following diagrams commute:

𝐴 ⊗ 𝐵
𝑠𝐴,𝐵

���
��

��
��

��
id𝐴⊗𝐵

𝐴 ⊗ 𝐵

𝐵 ⊗ 𝐴

𝑠𝐵,𝐴

�����������

and

1C ⊗ 1C
𝑠1C ,1C ��

𝑙1C

���
��

��
��

��
1C ⊗ 1C

𝑙1C

		���
��
��
��

1C .

A category with a weak symmetric monoidal structure is a weak symmetric monoidal category.

Definition 3.8. If C and D are two weak symmetric monoidal categories, then a weak symmetric
monoidal functor between them is a functor 𝐹 : C → D, along with natural isomorphisms

1D
∼
−→ 𝐹 (1C), 𝐹 (𝐴) ⊗ 𝐹 (𝐵)

∼
−→ 𝐹 (𝐴 ⊗ 𝐵)

such that the following diagrams commute:

𝐹 (𝐴) ⊗ 𝐹 (𝐵)

∼

��

𝑠𝐹 (𝐴) ,𝐹 (𝐵) �� 𝐹 (𝐵) ⊗ 𝐹 (𝐴)

∼

��
𝐹 (𝐴 ⊗ 𝐵)

𝐹 (𝑠𝐴,𝐵) �� 𝐹 (𝐵 ⊗ 𝐴)

and

1D ⊗ 𝐹 (𝐴)

∼

��

𝑙𝐹 (𝐴) �� 𝐹 (𝐴)

𝐹 (1C) ⊗ 𝐹 (𝐴)
∼ �� 𝐹 (1C ⊗ 𝐴).

𝐹 (𝑙𝐴) .

��

Remark 3.9. One can use the language of operads to encode this data more cleanly. Indeed, we define
the weak symmetric operad O𝑤 to have n-ary operations indexed by binary trees with labeled leaves
and unordered children. We allow the empty tree to be a 0-ary operation. The composition of these
operations is the natural composition of trees. For example, O𝑤 admits a single commutative binary
operation 𝑎 · 𝑏, and the three ternary operations in O𝑤 are given by (𝑎 · 𝑏) · 𝑐, (𝑏 · 𝑐) · 𝑎 and (𝑐 · 𝑎) · 𝑏.

Note that the category of categories admits a Cartesian monoidal structure. With this monoidal
structure, a weak symmetric monoidal category is an O𝑤 -algebra in categories. A weak symmetric
monoidal functor is a morphism of O𝑤 -algebras in categories.

3.3.2. A weak symmetric monoidal structure on Mod(GL2(𝑭))
The structure of the rest of this subsection is as follows. We begin by constructing the unit 1� for ©� .
Afterwards, we will show that 1� is indeed a unit and satisfies the required axioms. This will allow us
to turn ©� into a weak symmetric monoidal structure on Mod(𝐺).
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Let 𝑒 : 𝐹 → C
× be the same additive character used in Section 2, and recall the corresponding

nontrivial additive character

𝜃 :𝑈 → C×

on the subgroup 𝑈 = 𝑈2 (𝐹) ⊆ GL2(𝐹) of upper triangular unipotent matrices.

Construction 3.10. Let 1� be the space of 𝜃-coinvariants of 𝑆(𝐺) with respect to the right action. That
is, we apply the functor Φ− of [3] to the right action of G on the space 𝑆(𝐺).

Remark 3.11. See also Recollection 2.1 for more context on this space.

Remark 3.12. Note that as it is defined in [3], the functor Φ− carries modules of the mirabolic group
𝑃2 ⊆ GL2 (𝐹) to modules of 𝑃1 ⊆ GL1 (𝐹). Since the group 𝑃1 is trivial, we may think of Φ− as a
functor Φ− : Mod(𝐺) → Vect.

Warning 3.13. There are contradictory conventions with regard to what constitutes the ‘right’ or ‘left’
action on the space 𝑆(𝐺). With one convention, one has the right action acting by left-translation on
the underlying space G. With another convention, one has an action by right-translation but after a twist
such as 𝑔 ↦→ 𝑔−1 or 𝑔 ↦→ 𝑔𝑇 . Unless explicitly stated otherwise, in this section we let G act on 𝑆(𝐺)

according to the first convention:

(𝑔𝐿 · 𝑓 · 𝑔𝑅) (ℎ) = 𝑓 (𝑔𝑅ℎ𝑔𝐿).

Remark 3.14. To clarify, the space 1� consists of smooth compactly supported functions 𝑓 :𝐺 → C

modulo the relations of the form

𝑓 (𝑢𝑔) − 𝜃 (𝑢) 𝑓 (𝑔) ∼ 0

for all 𝑢 ∈ 𝑈. The space 1� carries a left G-action given by

(𝜋(ℎ) · 𝑓 ) (𝑔) = 𝑓 (𝑔ℎ).

Remark 3.15. Let us relate 1� to (perhaps) better known spaces. Fixing a Haar measure on U allows
us to define a map:

1� → cInd𝐺𝑈 (𝜃),

where cInd𝐺𝑈 (𝜃) is the representation of G obtained from 𝜃 by induction with compact support. One can
easily show that this map is bijective and thus an isomorphism.

The main result of this subsection is the unitality result:

Construction 3.16. There is a canonical natural isomorphism of functors from Mod(𝐺) to Mod(𝐺):

1�©� id ∼
−→ id.

𝑀�

𝑀

1�

�

Figure 2. String diagram illustrating Construction 3.16.
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𝑀

𝑁

𝐼𝑅𝐿�

𝑀

𝑁

�Φ−

Figure 3. String diagram illustrating Remark 3.17.

Indeed, we note that 𝑆(𝐺) ⊗𝐺 𝑁 � 𝑁 for any smooth representation N. Thus,

1�©� 𝑀 = (𝐼𝑅𝐿 (1�) ⊗ 𝐼𝑅𝐿 (𝑀)) ⊗𝐺×𝐺 𝑌 �

� (𝐼𝑅𝐿 (1�) ⊗ 𝑆(𝐺) ⊗ 𝐼𝑅𝐿 (𝑀)) ⊗𝐺×𝐺×𝐺 𝑌
(★)
�

(★)
� (𝑆(𝐺) ⊗ 𝐼𝑅𝐿 (1�) ⊗ 𝐼𝑅𝐿 (𝑀)) ⊗𝐺×𝐺×𝐺 𝑌 �

� 𝐼𝑅𝐿 (1�) ⊗𝐺

(
(𝑆(𝐺) ⊗ 𝐼𝑅𝐿 (𝑀)) ⊗𝐺×𝐺 𝑌

)
,

where the tensor products−⊗𝐺×𝐺𝑌 are with respect to the left and right translation actions, and the result
is considered as a G-module via the middle action. Additionally, the tensor products −⊗𝐺×𝐺×𝐺 are with
respect to the left, middle and right actions in this order. The transition (★) follows from Remark 3.5.

However, we can construct an explicit isomorphism:

𝜙 : 𝐼𝑅𝐿 (1�) ⊗𝐺 𝑌
∼
−→ 𝑆(𝐺),

where the tensor product is taken with respect to the middle action. Indeed, there is an identification of
functors 𝐼𝑅𝐿 (1�) ⊗𝐺 (−) � Φ−(−), and by the same argument as in Lemma 2.19, applying the functor
Φ− to the middle action on Y gives the space 𝑆(𝐺), considered as a 𝐺 ×𝐺 left-module by applying 𝐼𝐿𝑅
to its right action. This gives the required isomorphism, explicitly given by

𝜙 : 𝑓 (ℎ) ⊗ Ψ(𝑔, 𝑦) ↦→

∫
𝐺

𝑓 (ℎ) ·
(
𝑤ℎ−𝑇 · Ψ

) (
𝑔−1,− det(𝑔)

)
d×ℎ, (3.3)

where 𝑤ℎ−𝑇 · Ψ denotes the middle action, and 𝑤 =

(
−1

1

)
.

We now get the desired isomorphism as a composition:

1�©� 𝑀
3.5
−−→ 𝐼𝑅𝐿 (1�) ⊗𝐺

(
(𝑆(𝐺) ⊗ 𝐼𝑅𝐿 (𝑀)) ⊗𝐺×𝐺 𝑌

)
𝜙
−→ 𝑀.

Remark 3.17. While performing Construction 3.16 above, we have in fact also constructed a canonical
isomorphism

Φ−(𝑀©� 𝑁) � 𝐼𝑅𝐿 (𝑀) ⊗𝐺 𝑁.

The natural isomorphism of Construction 3.16, together with the commutativity structure of Remark
3.4, give a composition

1�

𝜆

��	 
 � �  � � � � � � � � � �
1�©� 1�

3.16

 3.4 �� 1�©� 1�

3.16 �� 1�. (3.4)
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1�

1�

��

1�

1�

�

Figure 4. String diagram illustrating Claim 3.18. The claim is that the two ways of identifying the two
sides of the diagram (using the symmetry of ©� compared with the symmetry of the usual tensor product
⊗) give the same isomorphism.

The automorphism 𝜆 :1� → 1� is self-inverse by construction. In fact, it turns out that

Claim 3.18. The automorphism 𝜆 :1�

∼
−→ 1� of diagram (3.4) is the identity map.

Remark 3.19. Claim 3.18 would follow at once if we already knew that ©� and 1� were a part of a
symmetric monoidal structure. However, we need to prove this directly.

Proof of Claim 3.18. We are essentially asking about the triviality of the braiding action of 𝑆2 on
1�©� 1�. Therefore, we are asking about the action of the transposition of M2 (𝐹) on

(𝐼𝑅𝐿 (1�) ⊗ 𝐼𝑅𝐿 (1�)) ⊗𝐺×𝐺 𝑌 .

That is, we want to show that the 𝜃-coinvariants of 𝑆(M2 (𝐹) × 𝐹×) under the left and right actions
of the group U are invariant under the transposition of M2(𝐹). We will show this using a standard
technique by Gelfand–Kazhdan (see, for example, Theorem 6.10 of [2]). Since the author lacks a
specific reference applicable to the current use-case, and because this technique is usually used for
GL2(𝐹) rather than M2(𝐹), let us write the details of its application here explicitly. Specifically, we
will decompose M2(𝐹) × 𝐹× into 𝑈 ×𝑈-orbits and prove that the only ones which carry a 𝜃-equivariant
distribution are also invariant under the transposition.

Indeed, we can decompose Y as a 𝐺 × 𝐺-module into a filtration with graded pieces

𝑆(𝐺 × 𝐹×), 𝑆(Mdet=0
2 (𝐹) × 𝐹×).

We will show that the transposition acts by identity on the tensor product of both pieces with 1� from
both sides (note that the functor (−) ⊗𝐺 1� is exact as the functor Φ− is exact).

We begin with the space 𝑆(𝐺 × 𝐹×), which can itself be decomposed as a 𝑈 ×𝑈-module into

𝑆

(
𝑈

(
𝑎

𝑏

)
𝑈𝑇 × 𝐹×

)
, 𝑆

(
𝑈

(
𝑎

𝑏

)
𝑈𝑇 × 𝐹×

)
.

Transposition acts as the identity on the first of these two components, and the other is supported on
{𝑎 = 𝑏} after multiplication by 1� on both sides.

This leaves us with the other component, 𝑆(Mdet=0
2 (𝐹) × 𝐹×). It is clear, by decomposing Mdet=0

2 (𝐹)

into𝑈×𝑈-orbits as above, that 𝑆(Mdet=0
2 (𝐹)×𝐹×) becomes isomorphic to 𝑆(𝐹××𝐹×) after multiplication

by 1� on both sides. The isomorphism is given explicitly by

Ψ(𝑔, 𝑦) ↦→

∫ ∫
Ψ

((
1 𝑢

1

) (
0
𝑧

) (
1
𝑣 1

)
, 𝑦

)
𝑒(𝑢 + 𝑣) d𝑢 d𝑣,

and it is clearly symmetric to the transposition. �
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Corollary 3.20. The ring of endomorphisms

End(1�)

is commutative.

Proof. This is given by a minor variant of the classical Eckmann–Hilton argument. Indeed, we note that
there are two compatible multiplications on End(1�): composition and the ©� product. We do not yet
know that the latter is associative, but the Eckmann–Hilton argument works regardless; all we actually
need is the triviality of the braiding shown in Claim 3.18. �

Corollary 3.21. The bifunctor ©� : Mod(𝐺) × Mod(𝐺) → Mod(𝐺), together with the object 1�, the
isomorphism of Construction 3.16 and the commutativity structure of Remark 3.4, form a weak symmetric
monoidal structure on Mod(𝐺).

3.4. Restriction to degeneracy-free representations

In this subsection, we will study the behaviour of the product ©� on degeneracy-free representations.
These will turn out to be the representations generated under colimits from the unit 1�. Our main result
(Theorem 3.26) will be that ©� behaves as a tensor product over the center of Mod(𝐺) when restricted to
degeneracy-free representations, and in particular it can be extended uniquely to a symmetric monoidal
structure on these representations.

The basic definition we will use is:

Definition 3.22. We say that a module 𝑀 ∈ Mod(𝐺) is degenerate if

Φ−(𝑀) = 0.

Definition 3.23. We say that a module 𝑁 ∈ Mod(𝐺) is degeneracy-free if

Ext𝑖 (𝑁, 𝑀) = 0

for all degenerate 𝑀 ∈ Mod(𝐺) and 𝑖 = 0, 1. We denote by Moddeg−free(𝐺) ⊆ Mod(𝐺) the full
subcategory of degeneracy-free representations.

Remark 3.24. Definition 3.23 deserves a more conceptual explanation. There are two equivalent de-
scriptions of Moddeg−free(𝐺) that will follow from the results later in this subsection:

1. The category Moddeg−free(𝐺) is the smallest full subcategory of Mod(𝐺) which contains 1� and is
closed under colimits. This will be Claim 3.33.

2. The second description is as follows. Consider the quotient C of the category Mod(𝐺) by the
degenerate representations. Then the quotient functor Mod(𝐺) → C has a left adjoint, and this left
adjoint defines an equivalence between C and Moddeg−free(𝐺). This will follow from Claim 3.30 and
Theorem 3.26.

Warning 3.25. Note that, while most generic irreducible representations are degeneracy-free, this is not
always the case. Specifically, let St be the Steinberg representation with trivial central character. While
St is generic, it is not degeneracy-free. Instead, let us denote by

( St
1𝐺

)
the unique nontrivial extension of

the trivial representation St by 1𝐺 . Then
( St
1𝐺

)
is degeneracy-free.

For each Bernstein component c of Mod(𝐺), let 𝑍𝑐 be the corresponding Bernstein center. Let

Z =
⊕
𝑐

𝑍𝑐
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be the direct sum of all 𝑍𝑐-s. This is a nonunital ring, but it is quasi-unital (this follows formally because
Z is a direct sum of unital rings). This means that it satisfies that the multiplication map

Z ⊗Z Z → Z

is an isomorphism. Here, ⊗Z denotes the relative tensor product over Z: That is, for a pair of (nonunital)
Z-modules M and N, the space 𝑀 ⊗Z 𝑁 is the quotient of 𝑀 ⊗ 𝑁 by the expressions of the form

𝑧𝑚 ⊗ 𝑛 − 𝑚 ⊗ 𝑧𝑛, 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁, 𝑧 ∈ Z .

Denote the symmetric monoidal category of smooth (nonunital) Z-modules by Mod(Z), equipped
with the relative tensor product over Z . By definition, a Z-module M is smooth if it satisfies that the
action map

Z ⊗Z 𝑀 → 𝑀

is an isomorphism. Essentially, this condition means that each 𝑚 ∈ 𝑀 is supported on finitely many
components ofZ . Intuitively, quasi-unital rings share many properties with unital rings, and their smooth
modules take the role of unital modules. See also Section 3 of [5] for more details about quasi-unital
rings and their smooth modules.

Note that the symmetric monoidal category Mod(Z) acts on Mod(𝐺). This is a fancy way of saying
that the center 𝑍𝑐 of each component c automatically acts on the objects of the component Mod𝑐 (𝐺).
Our main theorem for this subsection is:

Theorem 3.26. The functor

− ⊗Z 1� : Mod(Z) → Mod(𝐺)

is fully faithful, with essential image Moddeg−free(𝐺). Moreover, this functor is weak symmetric monoidal.

Corollary 3.27. Consider the restriction

©� : Moddeg−free(𝐺) × Moddeg−free(𝐺) → Moddeg−free(𝐺)

of the weak symmetric monoidal structure of Mod(𝐺) to Moddeg−free(𝐺). Then it can be extended
from a weak symmetric monoidal structure on Moddeg−free(𝐺) into a symmetric monoidal structure on
Moddeg−free(𝐺) in an essentially unique way (that is, in a way that is unique up to a unique isomorphism).

Remark 3.28. Recall from Remark 3.24 that we can think of Moddeg−free(𝐺) both as a subcategory of
Mod(𝐺) and as a quotient (in fact, a colocalization) of it. Theorem 3.26 says that as a subcategory, the
category Moddeg−free(𝐺) is closed under ©� . However, the reader should note that the multiplication ©�

does not descend to Moddeg−free(𝐺) as a quotient. Specifically, the trivial representation 1𝐺 is killed by
this quotient (as it is degenerate), but one can show that

1𝐺©� 1𝐺 =

(
1𝐺

St

)
is an extension of 1𝐺 by a Steinberg representation (so that 1𝐺 is the quotient). However,

(1𝐺
St

)
is

nondegenerate as Φ− is an exact functor (see Proposition 3.2(a) of [3]) and St is nondegenerate. Thus,
there are products of degenerate representations that are not degenerate.

3.4.1. Proof of Theorem 3.26
The rest of this subsection is structured as follows. After introducing some notation, we will state Claims
3.30, 3.32 and 3.33. This will let us prove Theorem 3.26. Finally, we will prove the three claims.
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Observe that the functor

Φ− : Mod(𝐺) → Vect

factors through the forgetful functor Mod(Z) → Vect:

Mod(𝐺)
Φ−

��

Φ−
enh

���
�
� Vect

Mod(Z).

������������

In other words, because Z acts on Mod(𝐺), the spaces Φ−(𝑉) for 𝑉 ∈ Mod(𝐺) are canonically Z-
modules. We denote the corresponding Z-module by Φ−

enh(𝑉) and say that Φ−
enh is an enhancement of

Φ−.

Remark 3.29. The functor Φ− respects all colimits because it has a right adjoint (by Proposition 3.2 of
[3]). In particular, Φ−

enh : Mod(𝐺) → Mod(Z) also respects all colimits.

For 𝑀, 𝑁 ∈ Mod(𝐺), let

Hom(𝑀, 𝑁) ⊆ Hom(𝑀, 𝑁)

be the subset consisting of morphisms supported on finitely many Bernstein components. This is the
enriched inner Hom of Mod(𝐺) over Mod(Z), and we therefore think of it as an object of Mod(Z).
Note that Hom(𝑀, 𝑁) is also given by the formula

Hom(𝑀, 𝑁) = Z ⊗𝑍 (Mod(𝐺)) Hom(𝑀, 𝑁)

where 𝑍 (Mod(𝐺)) is the usual Bernstein center of Mod(𝐺).
We will prove Theorem 3.26 by the combination of the following three claims:

Claim 3.30. The functor

− ⊗Z 1� : Mod(Z) → Mod(𝐺)

is left adjoint to

Φ−
enh : Mod(𝐺) → Mod(Z).

Remark 3.31. This adjunction depends on our choice of Haar measure on U.

Claim 3.32. The natural map of rings induced by the action of Z on Mod(𝐺):

Z → Hom(1�,1�)

is an isomorphism.

Claim 3.33. The smallest full subcategory of Mod(𝐺) containing 1� and closed under all colimits is
Moddeg−free(𝐺).

Remark 3.34. Note that Claim 3.30 is equivalent to the statement that there is a natural isomorphism
of functors:

Φ−
enh𝑀

∼
−→ Hom(1�, 𝑀).
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Using Claims 3.30, 3.32 and 3.33, we can now prove our main theorem.

Proof of Theorem 3.26. Claim 3.30 implies that the functor

− ⊗Z 1� : Mod(Z) → Mod(𝐺)

is left adjoint to Φ−
enh. Remark 3.29 and Claim 3.32 show that the unit

𝑁 → Φ−
enh(𝑁 ⊗Z 1�)

is an isomorphism, because Z � Φ−
enh1� by Claim 3.32 and Remark 3.34.

The characterization of the essential image follows from Claim 3.33.
The isomorphism of Construction 3.16 now induces the requisite natural isomorphism between ⊗Z

and ©� . This is because ⊗Z is the unique colimit preserving Z-linear weakly symmetric monoidal
structure on Mod(Z) with unit Z , while ©� is Z-linear by Lemma 2.17 and weakly symmetric monoidal
by Corollary 3.21. �

Let us now prove the three claims.

Proof of Claim 3.30. We want to construct a natural isomorphism:

Φ−
enh𝑀

∼
−→ Hom(1�, 𝑀),

for 𝑀 ∈ Mod(𝐺). Using the Haar measure on U (as in Remark 3.15), we can construct the map
(essentially taking a matrix coefficient)

1� ⊗ 𝐼𝑅𝐿 (1�) → 𝑆(𝐺)

𝑓 ⊗ 𝑓 ′ ↦→

∫
𝑈

∫
𝐺

𝑓 (𝑢𝑔′𝑔) 𝑓 ′(𝑤𝑔′−𝑇 )𝜃 (𝑢−1) d×𝑔′ d𝑢.

This integral takes values in 𝑆(𝐺) because of the following argument. We may suppose that f and 𝑓 ′

are indicator functions for a compact neighborhood 𝐾𝑛 of 1. In order for the integral to be nonzero, g
must be of the form 𝑘−1𝑤𝑢−1𝑘 ′ for 𝑘, 𝑘 ′ ∈ 𝐾𝑛. However, the integral is also equal to 0 for large values
of u using a standard argument of multiplying k and 𝑘 ′ by diagonal matrices close to 1.

This map factors through the relative tensor product over the center of Mod(𝐺), and thus induces a
map of modules over the center:

Φ−
enh𝑀 → Hom(1�, 𝑀).

This map factors through Hom(1�, 𝑀).
Therefore, we have a map

Φ−
enh𝑀 → Hom(1�, 𝑀), (3.5)

which we want to prove is an isomorphism. Note that it is sufficient to prove this for M supported on a
single component c, in which case Hom(1�, 𝑀) � Hom(1�, 𝑀).

The map of equation (3.5) is very nearly an isomorphism for reasons of abstract nonsense. That
is, a naïve expectation would be that this immediately follows by Frobenius reciprocity. The problem,
essentially, is about the smoothness of the module M. That is, the object Hom(1�, 𝑀) is given by the
𝜃-invariants of the roughening of M, defined to be the nonsmooth 𝑆(𝐺)-module Hom(𝑆(𝐺), 𝑀).

https://doi.org/10.1017/fmp.2023.18 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.18


Forum of Mathematics, Pi 29

However, by the description of the left adjoint toΦ− as a functor Mod(𝑃) → Vect, given in Subsection
3.2 of [3], we get

Φ−
(
𝑆(𝑃) ⊗𝑆 (𝑃) Hom𝐺 (𝑆(𝐺), 𝑀)

)
� Hom𝑃

(
𝑆(𝐹×), 𝑆(𝑃) ⊗𝑆 (𝑃) Hom𝐺 (𝑆(𝐺), 𝑀)

)
� Hom𝑃

(
𝑆(𝑃), 𝑆(𝑃) ⊗𝑆 (𝑃) Hom𝐺 (𝑆(𝐺), 𝑀)

)𝑈,𝜃

� Hom𝐺 (𝑆(𝐺), 𝑀)𝑈,𝜃 ∼
−→ Hom𝐺 (1�, 𝑀),

where 𝑆(𝐹×) is identified with the space of 𝜃-coinvariants of 𝑆(𝑃) with respect to the right action of U
on 𝑆(𝑃).

Therefore, the claim follows from Lemma 3.35 below. �

Lemma 3.35. Let 𝑀 ∈ Mod𝑐 (𝐺) belong to a single component c of Mod(𝐺). Then the natural map

𝑀 → 𝑆(𝑃) ⊗𝑆 (𝑃) Hom𝐺 (𝑆(𝐺), 𝑀) (3.6)

becomes an isomorphism after applying Φ−.

Proof. We must prove that the cokernel of the map in equation (3.6) is U-invariant.
To do this, it is sufficient to consider a representation M given by compact induction:

𝑀 = cInd𝐺𝐾 (𝜎)

from a representation (𝜎,𝑉) of 𝐾/𝐾0, where 𝐾 = GL2 (O𝐹 ) and 𝐾0 ⊆ 𝐾 is some fixed normal compact
open subset.

In this case, 𝑆(𝑃) ⊗𝑆 (𝑃) Hom(𝑆(𝐺), 𝑀) is the space of functions 𝑓 :𝐺 → 𝑉 which are 𝜎-equivariant
on the left, P-smooth on the right and such that the convolution 1𝐾 ′ ∗ 𝑓 from the right is compactly
supported for all compact open 𝐾 ′ ⊆ 𝐾 .

Pick a sufficiently large compact open subset 𝑈 (0) ⊆ 𝑈. Replace f with its average 𝑓 given by

𝑓 (𝑔) =
∫
𝑈 (0)

𝑓 (𝑔𝑢)𝜃 (𝑢−1) d𝑢.

Then 𝑓 (𝑔) is supported on the g-s of the form

𝑘

(
𝑎

𝑑

) (
1 𝑏

1

)
, 𝑘 ∈ 𝐾

with bounded |𝑏 | and |𝑑/𝑎 |. However, this is sufficient to guarantee that 𝑓 is G-smooth on the right, and
thus compactly supported. This means that 𝑓 is already in M. �

Proof of Claim 3.32. It is sufficient to prove that the map

𝑍 (Mod(𝐺)) → End(1�)

from the center of Mod(𝐺) to the endomorphisms of 1� is an isomorphism.
Observe that the natural isomorphism

1�©� 𝑀
∼
−→ 𝑀

of Construction 3.16 induces a map from End(1�) to the endomorphisms of the identity functor of
Mod(𝐺), which gives a section to the above map.

Therefore, it remains to prove that an element of the center of Mod(𝐺) which maps to 0 in End(1�)

is 0. Indeed, 1� maps surjectively onto generic irreducible representations, and elements of the center
of Mod(𝐺) can be tested for equality on each irreducible generic representation separately. �
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Proof of Claim 3.33. It is clear that Moddeg−free(𝐺) is closed under colimits and contains 1�. Let
𝑀 ∈ Moddeg−free(𝐺). We want to show that it is generated under colimits from 1�. Note that Claim
3.30 and Remark 3.29 imply that 1� is projective. Thus, the cokernel of

𝑝 :1� ⊗ Hom(1�, 𝑀) → 𝑀

is degenerate. Since Hom(𝑀, 𝑁) = 0 for all degenerate N, we conclude that p is surjective.
Let the kernel of p be K. Since K also satisfies that Hom(𝐾, 𝑁) = 0 for all degenerate N, we see that

M can be written as the colimit

1� ⊗ Hom(1�, 𝐾) �� 1� ⊗ Hom(1�, 𝑀) �� 𝑀 �� 0.

�

3.5. Restriction to spherical representations

Our ultimate goal in this section is to turn ©� into a symmetric monoidal structure on the whole of
Mod(𝐺) in a canonical way. Corollary 3.27 already tells us that this is true on a large subcategory of
Mod(𝐺). However, it turns out that this is not enough to guarantee associativity in general. In fact, it is
not difficult to construct a different weak symmetric monoidal structure ©� ′ which has the same unit as
©� and identifies with it on Moddeg−free(𝐺), but which is not associative.

Thus, in order to prove associativity for ©� in general, we must find a larger category on which we
know that ©� is associative. Once we have found such a sufficiently large category, the associativity of
©� will become a property that can be checked, instead of additional data (see Subsection 3.6).

In Subsection 3.4, we studied the restriction of ©� to the subcategory generated by 1�. It makes sense
that this was not sufficient as 1� does not generate all of Mod(𝐺). Thus, our goal for this subsection
is to study the restriction of ©� to the subcategory generated by another projective object E, such that
together with 1� they generate all of Mod(𝐺).

Our choice of E will eventually (Remark 3.56) turn out to be a coalgebra

𝜀 : 𝐸 → 1�, 𝜇 : 𝐸 → 𝐸©� 𝐸

such that the comultiplication map 𝜇 is an isomorphism. This will force E to be coassociative, which
will enable us to uniquely define the associativity data of ©� in Subsection 3.6.

Definition 3.36. Denote O = O𝐹 , and let K be the maximal compact subgroup GL2(O). We let K act
on the space 𝑆(O×) by the determinant action. Let

𝐸 = cInd𝐺𝐾 (𝑆(O×))

be the G-module given by induction with compact support of 𝑆(O×).
We denote the smallest full subcategory of Mod(𝐺) which contains E and is closed under colimits

by Modsph (𝐺). We refer to objects of Modsph(𝐺) as spherical representations.

Remark 3.37. Note that the term ‘spherical representations’ is not standard terminology.

Remark 3.38. We can identify

𝐸 = cInd𝐺𝐾 (𝑆(O×)) = cInd𝐺𝐾 (cInd𝐾SL2 (O) (1SL2 (O) )) = cInd𝐺SL2 (O)

(
1SL2 (O)

)
.

Remark 3.39. We have the natural adjunction

Hom(𝐸, 𝑀) � Hom(𝑆(𝐺), 𝑀)SL2 (O) .

As a result, in order to define a map from E to a G-module M, one needs to give a SL2(O)-invariant
element of the roughening of M, defined to be the (nonsmooth) 𝑆(𝐺)-module Hom(𝑆(𝐺), 𝑀). When
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M is given by functions on some space, we will sometimes abuse notation and think of such elements
as SL2(O)-invariant distributions (although we will also fully write them out to retain clarity).

Informally, since our elements of the roughening are SL2(O)-invariant, they are only really rough in
the direction of the determinant det(𝑔). Hence, we will frequently use the distribution 𝛿𝑦 (𝑦

′) defined
on 𝐹× via the its standard measure under which O× has volume 1.

In particular, in addition to the measure on G required to give 𝑆(𝐺) its ring structure, our constructions
in this subsection will only depend on the measure on 𝐹×.

Remark 3.40. Conceptually, the reason that E turns out to be a cocommutative coalgebra is related to
the multiplicity one property of spherical vectors.

Remark 3.41. Observe that E is supported only on Bernstein components of Mod(𝐺) which contain a
one-dimensional representation.

Let

Zsph =
⊕

𝑐 spherical
𝑍𝑐

be the direct sum of the Bernstein centers of all components that contain a one-dimensional represen-
tation. We think of Zsph as a smooth Z-module, with Z as in Subsection 3.4. Note that Zsph is also
quasi-unital. Denote the symmetric monoidal category of smooth Zsph-modules by Mod(Zsph), and
observe that Mod(Z) acts on Mod(Zsph).

Our main theorem for this subsection is

Theorem 3.42. The functor

− ⊗Zsph 𝐸 : Mod(Zsph) → Mod(𝐺)

is fully faithful, with essential image Modsph (𝐺). Moreover, this functor sends the unitZsph ∈ Mod(Zsph)
and relative tensor product ⊗Zsph to E and ©� , respectively.

Remark 3.43. We do not actually claim that the functor of Theorem 3.42 is weak symmetric monoidal
as it does not respect the unit.

The proof of this theorem follows the same outline as the proof of Theorem 3.26, only easier. It is
clear that E is projective, that its restriction to each component is compact and that

Zsph → Hom(𝐸, 𝐸)

is an isomorphism. Thus, Theorem 3.42 would immediately follow if we could prove the existence of
an isomorphism

𝐸©� 𝐸 � 𝐸.

This isomorphism will be the content of Claim 3.49.
We begin by constructing a counit map 𝜀 : 𝐸 → 1�, as well as constructing a comultiplication map

𝜇 : 𝐸 → 𝐸©� 𝐸 . The comultiplication 𝜇 will then be the desired isomorphism 𝐸 � 𝐸©� 𝐸 . Recall that
𝑒 : 𝐹 → C× is our chosen additive character.

Construction 3.44. Let 𝜈(𝑒) be the largest integer such that 𝑒(𝜋−𝜈 (𝑒)O) = 1, with 𝜋 ∈ O a uniformizer.
We let the map

𝜀 : 𝐸 → cInd𝐺𝑈 (𝜃) � 1�

be given as follows.
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Let f be the distribution on G given by the delta distribution

𝑓 (𝑔) = 𝑒(𝑏)𝛿1(det(𝑘))

if g has the form (
1 𝑏

1

) (
1
−𝜋𝜈 (𝑒)

)
𝑘

with 𝑘 ∈ GL2(O), and we set 𝑓 (𝑔) = 0 otherwise. It is clear that f is compactly supported modulo U,
left-SL2 (O)-invariant, and right-𝜃-equivariant.

Therefore, f defines an SL2 (O)-invariant element of the roughening Hom(𝑆(𝐺), cInd𝐺𝑈 (𝜃)) given
explicitly by

𝜙(𝑔) ↦→

∫
𝑈

∫
SL2 (O)

𝑒(−𝑏)𝜙

(
𝑘−1

(
1
−𝜋−𝜈 (𝑒)

) (
1 𝑏

1

)
𝑔

)
d×𝑘 d𝑏.

By the universal property in Remark 3.39, we conclude that the distribution f defines a map 𝜀 : 𝐸 →

cInd𝐺𝑈 (𝜃). Note that the resulting map 𝐸 → 1� is independent of the choice of measure on U.

Construction 3.45. Let 𝑌SL2 (O)×SL2 (O) be the space of vectors in Y which are invariant under the left
and right actions of SL2(O). We let 𝜇 be the map

𝜇 : 𝐸 → 𝑌SL2 (O)×SL2 (O) � 𝐸©� 𝐸

given as in Remark 3.39 by the 𝑆3 � SL2(O)3-invariant distribution (more precisely, SL2(O)-invariant
element of the roughening of 𝑌SL2 (O)×SL2 (O) )

𝑞−𝜈 (𝑒) · 1M2 (O) (𝑔)𝛿𝜋−𝜈 (𝑒) (𝑦)

for (𝑔, 𝑦) ∈ M2 (𝐹) × 𝐹×. This can be more explicitly described as the SL2 (O)-invariant element of
Hom(𝑆(𝐺), 𝑌SL2 (𝑂)×SL2 (O) ) given by

𝜙(𝑔) ↦→ 𝑞−𝜈 (𝑒)
∫

det(𝑔′) ·𝑦=𝜋−𝜈 (𝑒)
𝜙(𝑔′−1

)𝜋(𝑔′) ·
(
1M2 (O) (𝑔)1𝜋−𝜈 (𝑒) (𝑦)

)
d×𝑔′,

where 𝜋 denotes the middle action on Y.

Remark 3.46. Let us try to informally motivate Constructions 3.44 and 3.45. Because the comultiplica-
tion determines the counit, we can focus on trying to understand the map 𝜇. It turns out that 𝜇 is related
to the standard ‘distinguished test function’ on M2(𝐹) appearing in the theory of Godement–Jacquet
L-functions.

Let us give more details. In the theory of Godement–Jacquet L-functions, it is known that if one wants
to define the L-function of an unramified representation, then it is sufficient to consider the specific test
function 1M2 (O) (𝑔) and to integrate it against a matrix coefficient made up of unramified vectors. Our
claim is that these data manifest in our theory as the comultiplication on E. Indeed, observe that in the
case of 𝜈(𝑒) = 0, the comultiplication 𝜇 corresponds to the distribution

1M2 (O) (𝑔)𝛿1(𝑦).

For more on this, see Remark 3.56. The same idea will also let us define the convolution product on
the space of spherical automorphic functions in Section 4.
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Remark 3.47. When 𝜈(𝑒) ≠ 0, the choice of the matrix(
1
−𝜋𝜈 (𝑒)

)
in the definition of the counit 𝜀 : 𝐸 → 1� in Construction 3.44 seems fairly arbitrary. Indeed, any matrix
ℎ ∈ GL2(𝐹) satisfying

ℎ𝐾ℎ−1 ∩𝑈 = ker(𝜃)

would have worked after appropriate modifications to 𝜇 : 𝐸 → 𝐸©� 𝐸 in Construction 3.45 (i.e., using
the distribution 𝜋(𝑤ℎ𝑇 𝑤−1) ·

(
1M2 (O) (𝑔)𝛿1(−𝑦)

)
). These data, together with the choice of the additive

character 𝑒 : 𝐹 → C
× defining 𝜃, are related to something called an unramified spin structure. The

precise details of this relationship will be explored in Appendix A.
Remark 3.48. The comultiplication 𝜇 : 𝐸 → 𝐸©� 𝐸 is symmetric. That is, the diagram

𝐸
𝜇 ��

𝜇
���

��
��

��
� 𝐸©� 𝐸

3.4
��

𝐸©� 𝐸

commutes.
We now show that 𝜇 : 𝐸 → 𝐸©� 𝐸 and 𝜀 : 𝐸 → 1� are consistent with being the comultiplication and

counit of a coalgebra. As discussed above, the following claim immediately implies Theorem 3.42.
Claim 3.49. The diagram

𝐸

id𝐸
��

𝜇 �� 𝐸©� 𝐸

id𝐸©� 𝜀

��
𝐸

∼ �� 𝐸©� 1�

(3.7)

commutes. Moreover, the map 𝜇 : 𝐸 → 𝐸©� 𝐸 is an isomorphism.
Remark 3.50. It does not yet make sense to ask about the coassociativity of 𝜇 since we have not assigned
associativity data to ©� . Once we do so in Subsection 3.6 below, we will be able to upgrade Claim 3.49
and show that E is a cocommutative counital coalgebra. See also Remark 3.56.
Proof of Claim 3.49. In order to prove that diagram (3.7) commutes, it suffices to evaluate it for the
roughenings of the respective objects. Specifically, one may evaluate the two compositions on the object
of the roughening of E given informally by the uniform distribution of volume 1 on SL2(O) as this
generates all of E. Under 𝜇, this distribution maps into

Ψ(𝑔, 𝑦) = 𝑞−𝜈 (𝑒) · 1M2 (O) (𝑔)𝛿𝜋−𝜈 (𝑒) (𝑦).

We wish to apply the map 𝜀, followed by the isomorphism of Construction 3.16, and then compare
the result with the delta distribution on SL2(O), from which we started. We do so via the formula in
equation (3.3); plugging Ψ and 𝜀 in, we must show that∫

SL2 (O)

(
𝑤

(
1
−𝜋𝜈 (𝑒)

)−𝑇
𝑘−𝑇 · Ψ

) (
𝑔−1,− det(𝑔)

)
d×𝑘

is the uniform distribution of volume 1 on SL2 (O).
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However, because Ψ is SL2(O)-invariant, the above simplifies to((
−𝜋−𝜈 (𝑒)

1

)
· Ψ

) (
𝑔−1,− det(𝑔)

)
= 1M2 (O) (𝑔

−1)𝛿𝜋−𝜈 (𝑒) (𝜋−𝜈 (𝑒) det(𝑔)) = 1M2 (O) (𝑔
−1)𝛿1(det(𝑔)),

and we deduce that this is indeed the desired distribution from

M2 (O) ∩ SL2(𝐹) = SL2(O).

It remains to show that 𝜇 is an isomorphism. Let us start by noting that applying the functor Φ−
enh to

𝜇, we obtain a retract of Zsph-modules

Φ−
enh𝐸

=
����

���
���

��

Φ−
enh (𝜇)�� 𝐼𝑅𝐿 (𝐸) ⊗𝐺 𝐸

Φ−
enh (𝐸©� 𝜀)

��
Φ−

enh𝐸.

Since 𝐼𝑅𝐿 (𝐸) ⊗𝐺 𝐸 � Zsph has no nontrivial retracts when restricted to any component, we deduce that
Φ−(𝜇) is an isomorphism.

Having shown that Φ− takes the map 𝜇 into an isomorphism, we see that the cokernel of 𝜇 is
degenerate. However, this cokernel must be split (diagram (3.7) splits it), and it is easy to see that Y
has no degenerate subrepresentations. Indeed, because Y consists of smooth and compactly supported
functions on M2(𝐹) × 𝐹×, it is clear that it has no vector invariant under the action of U. �

We can also combine Theorem 3.26 and Theorem 3.42 as follows. Consider the category

Mod(Z) × Mod(Zsph)

whose objects are pairs (𝑀, 𝑁) of smooth Z-modules M and smooth Zsph-modules N. Recall that we are
thinking of Zsph as a Z-module. This category admits a unique colimit preserving symmetric monoidal
structure which respects the action of Z , whose unit is (Z , 0) and such that (0,Zsph) is idempotent.
This symmetric monoidal structure is explicitly defined by

(𝑀0, 𝑁0) ⊗ (𝑀1, 𝑁1) → (𝑀0 ⊗Z 𝑀1, 𝑀0 ⊗Z 𝑁1

⊕𝑁0 ⊗Z 𝑀1

⊕𝑁0 ⊗Z 𝑁1).

We now conclude that

Corollary 3.51. The faithful functor

Mod(Z) × Mod(Zsph) → Mod(𝐺)

given by

(𝑀, 𝑁) ↦→ (𝑀 ⊗Z 1�) ⊕ (𝑁 ⊗Zsph 𝐸)

is weak symmetric monoidal.

3.6. Associativity of �©

In this subsection, we will finally prove that ©� uniquely extends to a symmetric monoidal structure.
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Our main theorem is thus:

Theorem 3.52. There is a unique extension of ©� from a weak symmetric monoidal structure to a
symmetric monoidal structure on Mod(𝐺).

Remark 3.53. In the previous subsection, we made some choice of isomorphism 𝐸 � 𝐸©� 𝐸 . Because
this was a noncanonical choice (see Remark 3.47), we had some ugly expressions. However, while in
this subsection we will need to use the existence of such an isomorphism 𝐸 � 𝐸©� 𝐸 , our extension
of ©� to a symmetric monoidal structure will be unique, and in particular it will not depend on the
choice of isomorphism. In other words, the effects of this choice are confined to Subsection 3.5, with
the exception of Remarks 3.56 and 3.57, which are not a part of the proof of Theorem 3.52.

Before proving Theorem 3.52, let us present some nice consequences of our constructions.

Remark 3.54. The symmetric monoidal structure ©� on Mod(𝐺) is a part of a slightly more sophisticated
higher-categorical structure called a commutative Frobenius algebra in C-linear presentable categories.

Specifically, the functor Φ− : Mod(𝐺) → Vect is a trace map on Mod(𝐺). This is because its
composition with the multiplication

Φ− ◦ ©� : Mod(𝐺) ⊗ Mod(𝐺) → Vect

is the pairing 𝑀 � 𝑁 ↦→ 𝐼𝑅𝐿 (𝑀) ⊗𝐺 𝑁 (see Remark 3.17), which is a self-duality on Mod(𝐺) in the
following higher-categorical sense.

The 2-category of C-linear presentable categories with colimit preserving functors is a symmetric
monoidal 2-category, whose product is given by the Lurie tensor product. In this context, Φ− ◦ ©� is a
bilinear pairing from the category Mod(𝐺) to the unit Vect of the symmetric monoidal structure, and it
is easy to see that this is in fact a perfect pairing.

Example 3.55. We can now give a much cleaner reformulation and proof of Theorem 2.2. For any
object 𝑉 ∈ Mod(𝐺), we have a canonical morphism

𝑉 ⊗ Hom𝐺 (1�, 𝑉) � 𝑉©� 1� ⊗ Hom𝐺 (1�, 𝑉) → 𝑉©�𝑉.

Theorem 2.2 can be simply stated as saying that, for a generic irreducible representation V, the above
is an isomorphism. Note that this implies that after a choice of Whittaker model (i.e., an isomorphism
Hom𝐺 (1�, 𝑉) � C), we have 𝑉 � 𝑉©�𝑉 .

In fact, something even stronger can be said: After fixing a nonzero vector 𝑣gen in the one-dimensional
space

Φ−𝑉 = Hom𝐺 (1�, 𝑉),

a generic irreducible representation V canonically becomes a unital commutative algebra with respect
to ©� .

Moreover, this strengthening of Theorem 2.2 now has an exceedingly short proof. Indeed, it imme-
diately follows from the following general principle. Let C be a symmetric monoidal abelian category
with a right exact tensor product. Then all surjections 1C � 𝑋 from the unit induce isomorphisms
𝑋

∼
−→ 𝑋 ⊗ 𝑋 , and moreover turn X into a commutative unital algebra.

Remark 3.56. Using the idempotent theorem of [9], it is an easy observation that Theorem 3.52 and
Claim 3.49 imply that E is necessarily coassociative. That is, E is a counital cocommutative coalgebra
with respect to ©� .

This has the following implication. Fix a choice of comultiplication on E as in Remark 3.47 (recall
that these data can be derived from a global spin structure, a fact explored in detail in Appendix A).
Let V be any unital and commutative algebra with respect to ©� . Then the space 𝑉/SL2 (O) = Hom(𝐸,𝑉)
of coinvariants is automatically a quasi-unital commutative algebra over Zsph, with respect to the usual
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tensor product ⊗ (note that invariants and coinvariants with respect to SL2 (O) are the same since the
group is compact). In the global setting, this will let us define a multiplicative structure on a certain
space of spherical automorphic functions. See Appendix A for details.

Informally, the product of𝑉/SL2 (O) comes from the product of V using the ‘distinguished test function’
appearing in the definition of the comultiplication of E in Construction 3.45. That is, to multiply two
vectors of 𝑉/SL2 (O) , one tensors them with the distinguished test function and then applies the product
of V. See also Remark 3.46.

Remark 3.57. We can say something even stronger. As in Remark 3.47, fix a choice of comultiplication
on E, and let V be any unital and commutative algebra with respect to ©� as above. Note that 1� is
also a coalgebra. Thus, the space Φ−𝑉 = Hom(1�, 𝑉) can also be automatically upgraded into a quasi-
unital commutative algebra over the center Z (with respect to the usual tensor product ⊗). Moreover,
the following diagram of algebras commutes:

Z ��

��

Φ−𝑉

��
Zsph �� 𝑉/SL2 (O) .

For V a generic irreducible representation as in Example 3.55, this is not very interesting as Φ−𝑉 and
𝑉/SL2 (O) are both at most one-dimensional. However, this will be a much more interesting statement for
𝑉 = ℐ, the algebra of automorphic functions developed in Section 4. See also Appendix A.

The rest of this subsection is dedicated to the proof of Theorem 3.52. We begin with the following
strengthening of Corollary 3.51.

Claim 3.58. There is at most one extension of ©� from a weak symmetric monoidal structure to a
symmetric monoidal structure on Mod(𝐺). Moreover, the functor

Mod(Z) × Mod(Zsph) → Mod(𝐺)

of Corollary 3.51 is symmetric monoidal for any such extension.

Proof. Consider any extension of ©� to a symmetric monoidal structure (that is, suppose that there is
some associator for ©� satisfying the axioms of a symmetric monoidal structure).

We want to show that any two such extensions are equal. Because ©� respects colimits, it is enough
to compare their associators

(𝐴©� 𝐵)©�𝐶
∼
−→ 𝐴©� (𝐵©�𝐶)

on objects 𝐴, 𝐵, 𝐶 that are either of the two generators 1�, 𝐸 . Note that if any of the objects 𝐴, 𝐵, 𝐶 is
equal to 1�, then the associator is uniquely determined by unitality.

Thus, it remains to show that the only possible choice for the associator

(𝐸©� 𝐸)©� 𝐸
∼
−→ 𝐸©� (𝐸©� 𝐸)

is the one coming from the functor

Mod(Z) × Mod(Zsph) → Mod(𝐺).

That is, it remains to show that the only possible choice for the associator

(𝐸©� 𝐸)©� 𝐸
∼
−→ 𝐸©� (𝐸©� 𝐸)

is the identification (𝐸©� 𝐸)©� 𝐸 � 𝐸 � 𝐸©� (𝐸©� 𝐸) coming from repeated applications of Claim 3.49.
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Indeed, in this case the pentagonal axiom

((𝐸©� 𝐸)©� 𝐸)©� 𝐸

∼

��

∼ �� (𝐸©� 𝐸)©� (𝐸©� 𝐸)
∼ �� 𝐸©� (𝐸©� (𝐸©� 𝐸))

(𝐸©� (𝐸©� 𝐸))©� 𝐸
∼ �� 𝐸©� ((𝐸©� 𝐸)©� 𝐸)

∼

��

fully determines the associator; any such associator must be given by a map 𝑎 : 𝐸 ∼
−→ 𝐸 (after using

Claim 3.49 to identify (𝐸©� 𝐸)©� 𝐸 � 𝐸 � 𝐸©� (𝐸©� 𝐸)), which must then satisfy

𝑎2 = 𝑎3.

Note that this is the same argument as the idempotent theorem (Theorem 3.1.2) of [9]. �

Proof of Theorem 3.52. The functor

𝜄 : Mod(Z) × Mod(Zsph) → Mod(𝐺)

defines associator isomorphisms

𝑎𝐴,𝐵,𝐶 : (𝜄(𝐴)©� 𝜄(𝐵))©� 𝜄(𝐶)
∼
−→ 𝜄(𝐴)©� (𝜄(𝐵)©� 𝜄(𝐶))

for 𝐴, 𝐵, 𝐶 ∈ Mod(Z) × Mod(Zsph), by considering the images of the associators in its domain. Note
that, because 𝜄 is not fully faithful, this family of isomorphisms does not automatically descend to its
essential image.

Let C0 ⊆ Mod(𝐺) be the fully faithful subcategory given by finite direct sums of 1� and E. Because
©� is a Z-linear functor that respects colimits, it is uniquely determined by its restriction to C0. Indeed,
Mod(𝐺) is generated as a Z-linear category by 1� and E. In fact, ©� is given by the left Kan extension

𝐴©� 𝐵 = colim
𝐴0∈C0

𝛼 : 𝐴0→𝐴

colim
𝐵0∈C0

𝛽 : 𝐵0→𝐵

𝐴0©� 𝐵0.

Thus, it is sufficient to show that the associators 𝑎𝐴,𝐵,𝐶 commute with the morphisms of Mod(𝐺) on the
finite direct sums of Z and Zsph in Mod(Z) × Mod(Zsph), and therefore induce a natural morphism on
C0. The required compatibilities with the rest of the symmetric monoidal structure (and the pentagonal
axiom) will follow immediately from those of Mod(Z) × Mod(Zsph).

Because Mod(Z) × Mod(Zsph) is generated under colimits by 1� and E, it is sufficient to prove that
for all 𝐴, 𝐵, 𝐶, 𝐷 ∈ {1�, 𝐸} and all maps 𝑓 :𝐶 → 𝐷, the following diagram commutes:

(𝐴©� 𝐵)©�𝐶

𝑎𝐴,𝐵,𝐶

��

(𝐴©� 𝐵)©� 𝑓 �� (𝐴©� 𝐵)©� 𝐷

𝑎𝐴,𝐵,𝐷

��
𝐴©� (𝐵©�𝐶)

𝐴©� (𝐵©� 𝑓 )) �� 𝐴©� (𝐵©� 𝐷).

The claim follows immediately if either A or B is 1�. Additionally, because ©� respects the action of
the center and because both End(1�) and End(𝐸) are covered by the center, it is enough to consider the
case 𝐶 ≠ 𝐷, so either (𝐴, 𝐵, 𝐶, 𝐷) = (𝐸, 𝐸, 𝐸,1�) or (𝐴, 𝐵, 𝐶, 𝐷) = (𝐸, 𝐸,1�, 𝐸).
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Since the proof in either case is identical, it is enough to consider the case (𝐴, 𝐵, 𝐶, 𝐷) =
(𝐸, 𝐸,1�, 𝐸). Letting 𝑓 :1� → 𝐸 , we must show that the following diagram commutes:

(𝐸©� 𝐸)©� 1�

(𝐸©� 𝐸)©� 𝑓 �� (𝐸©� 𝐸)©� 𝐸

𝐸©� 𝐸

�

����������

�

����
���

���
��

𝐸©� 𝐸

�

�����
���

���
�

�

������������

𝐸©� (𝐸©� 1�)
𝐸©� (𝐸©� 𝑓 )) �� 𝐸©� (𝐸©� 𝐸).

We can rewrite this as the following diagram commuting:

𝐸
� ��

�
��

𝐸©� 1�

𝐸©� 𝑓 �� 𝐸©� 𝐸 𝐸
�



�
��

𝐸©� 𝐸
� �� 𝐸©� (𝐸©� 1�)

𝐸©� (𝐸©� 𝑓 )) �� 𝐸©� (𝐸©� 𝐸) 𝐸©� 𝐸,
�



which is equivalent to asking that the two maps

Hom(1�, 𝐸) → Hom(𝐸, 𝐸)

given by −©� 𝐸 and (−©� 𝐸)©� 𝐸 be equal.
In other words, it is sufficient to prove that the map

Hom(𝐸, 𝐸) → Hom(𝐸, 𝐸)

given by −©� 𝐸 is the identity map of Hom(𝐸, 𝐸). But the center of Mod(𝐺) covers Hom(𝐸, 𝐸).
Therefore, it is enough to test this property on the identity map of E, and verify that

id𝐸 = id𝐸©� 𝐸.

However, this holds by functoriality of ©� . �

Part II
Abstractly automorphic representations

4. Global automorphic forms

4.1. Introduction

Our goal for this section is to observe that an appropriate space of automorphic functions becomes a
commutative algebra under the symmetric monoidal structure ©� .

Let F be a global function field of characteristic ≠ 2. Fix the standard Haar measure d×𝑔 on A×

(respectively, GL2 (A)) such that the product of the maximal compact subgroups O×
𝑣 (respectively,

GL2(O𝑣 )) is of measure 1.
Consider the space

S = 𝑆(GL2(𝐹)\GL2(A))
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of automorphic functions – smooth and compactly supported functions on the automorphic quotient
GL2(𝐹)\GL2(A). Let

𝑝 : S → 𝑆(A×/𝐹×)

be the projection along the determinant map

det : GL2 (A) → A
×,

and let ℐ be the kernel of p (note that ℐ is independent of the choices of Haar measures). Given any two
functions 𝜙, 𝜙′ ∈ S and a test function Ψ ∈ 𝑆(M2 (A)), one obtains a Godement–Jacquet zeta integral

𝑍GJ (𝜙
′, 𝜙,Ψ, 𝑠) =

∫
GL2 (A)

(∫
GL2 (𝐹 )\GL2 (A)

𝜙′(ℎ−𝑇 )𝜙(ℎ𝑔) d×ℎ
)
Ψ(𝑔) |det(𝑔) |𝑠+

1
2 d×𝑔.

On the other hand, a single function 𝜙′′ ∈ S with Whittaker function 𝑊𝜙′′ also has an associated
Jacquet–Langlands zeta integral

𝑍JL (𝜙′′, 𝑠) =
∫
A×

𝑊𝜙′′

((
𝑦

1

))
|𝑦 |𝑠−

1
2 d×𝑦.

Below, we will see that the equality of Godement–Jacquet and Jacquet–Langlands L-functions more
or less induces a multiplication map on S . More precisely, we will obtain a map

ℐ©�ℐ → ℐ

on the kernel ℐ of 𝑝 : S → 𝑆(A×/𝐹×) which turns Godement–Jacquet zeta integrals into Jacquet–
Langlands zeta integrals. We will show that this multiplication map makes ℐ into a commutative unital
algebra with respect to the symmetric monoidal structure ©� .

To put this construction in context inside the theory of automorphic representations, one can think
about the multiplication map we construct as a kind of theta lifting of pairs of automorphic forms. This
is essentially a shadow of the construction of Y in Section 2 as a Weil representation.

Before delving into the structure of this section, let us detail some more of the remarkable properties
of the algebra ℐ. For starters, it turns out that the unit map

𝑒 :1� → ℐ

is surjective. This implies that while the multiplication map uniquely determines the unit, the other
direction holds as well. In fact, for any smooth GL2(A)-module V, being an ℐ-module is a mere
property, equivalent to the existence of a (necessarily unique) lift

1�©�𝑉 ��

𝑒©� id
��

𝑉

ℐ©�𝑉.

���
�

�
�

�

It turns out that S , along with all irreducible automorphic representations, areℐ-modules. This justifies
thinking of the property of being an ℐ-module as an automorphicity property. In fact, it appears
that the category Modaut (GL2 (A)) of ℐ-modules is a natural context for the study of automorphic
representations.

Remark 4.1. The multiplication ℐ©�ℐ → ℐ continues the theme discussed in Remark 3.1, where the
symmetric monoidal structure ©� seems to mimic the behaviour of the relative tensor product over a
commutative group. That is, over a commutative group H, the space of functions on a quotient Γ\𝐻 of
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the group carries a convolution product. Intuitively, it seems as though the multiplication on ℐ takes
the same role as this convolution product, despite the group GL2 (A) being noncommutative. The cost
of this noncommutativity is the use of the exotic symmetric monoidal structure ©� .

One can think of the structure of this section as one big construction of the algebra structure on ℐ.
Let us be more specific.

We start in Subsection 4.2, where we fix some definitions for ©� in the global case as we have only
discussed ©� locally so far.

In Subsection 4.3, we will define the desired multiplication map. In fact, we will construct a single
multiplication map 𝑚 : S ©� S → S̃ into the contragradient S̃ of S (which canonically contains S ).
At this point, the multiplication will simply be a map; we will not even know if the subspace ℐ ⊆ S
is closed under multiplication.

In Subsection 4.4, we will show that this multiplication is unital by explicitly constructing a unit map
𝑒 :1� → ℐ. In Subsection 4.5, we will show that this unit map 𝑒 :1� → ℐ is surjective. This will imply
that the multiplication we defined is associative, as well as show that ℐ is closed under multiplication,
and establish the desired algebraic structure. Finally, in Subsection 4.6, we will discuss the property of
being an ℐ-module, and construct the category of abstractly automorphic representations.

Having established our desired constructions, in Appendix A we will fulfill a debt and show how
the coalgebra E of Subsection 3.5 is related to global spin structures. This will allow us to show that
the spherical functions in ℐ are an algebra with respect to the usual tensor product ⊗, as described in
Section 1.

4.2. Global symmetric monoidal structure

We begin by turning the local symmetric monoidal structures ©� at each place 𝐹𝑣 into a global symmetric
monoidal structure ©� on the category Mod(GL2 (A)) of smooth GL2(A)-modules.

Define

𝑌A = 𝑆(M2 (A) × A
×)

via a restricted tensor product of the local spaces 𝑆(M2(𝐹𝑣 ) × 𝐹×
𝑣 ), with respect to the distinguished

functions 1M2 (O𝑣 ) (𝑔)1O×
𝑣
(𝑦). Fix a nontrivial additive character 𝑒 :A/𝐹 → C× once and for all. Using

e, Construction 2.13 gives the space 𝑌A a smooth GL2(A)
3-action. Note that, in this section, we will

allow ourselves to more implicitly switch between right and left GL2 (A) actions. However, we will
always do so via the transposition map, as in Definition 3.2.

We define the bifunctor

©� : Mod(GL2(A)) × Mod(GL2 (A)) → Mod(GL2 (A))

by

𝑉©�𝑉 ′ = 𝑉 ⊗𝐺 𝑌A ⊗𝐺 𝑉 ′.

Here, ⊗𝐺 denotes the relative tensor product over the global group 𝐺 = GL2 (A).
The global unit 1� is defined as the 𝜃-coinvariants of 𝑆(GL2(A)) with respect to the right action of

𝑈 (A), where 𝜃 :𝑈 (A)/𝑈 (𝐹) → C× is given by

𝜃

((
1 𝑢

1

))
= 𝑒(𝑢).
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Remark 4.2. As in Remark 3.15 in the local case, fixing a Haar measure on 𝑈 = 𝑈 (A) allows us to
define an isomorphism

1�

∼
−→ cInd𝐺𝑈 (𝜃),

where cInd𝐺𝑈 (𝜃) is the representation of G obtained from 𝜃 by induction with compact support.

We now claim that the local commutativity, associativity and unitality data turn ©� into a symmetric
monoidal structure on Mod(GL2 (A)). This requires some compatibility of the commutativity, associa-
tivity and unitality data of Section 3 with the distinguished vector 1M2 (O𝑣 ) (𝑔)1O×

𝑣
(𝑦) at each place.

Claim 4.3. Let v be a place of F. Additionally, let 𝑌𝑣 = 𝑆(M2 (𝐹𝑣 ) × 𝐹×
𝑣 ), let 𝐺𝑣 = GL2(𝐹𝑣 ), and let

𝑦𝑣 = 1M2 (O𝑣 ) (𝑔)1O×
𝑣
(𝑦) ∈ 𝑌𝑣 be the distinguished vector. The following hold for almost all places v:

1. The isomorphism 1� ⊗𝐺𝑣 𝑌𝑣 � 𝑆(𝐺𝑣 ) of Construction 3.16 sends distinguished vectors to distin-
guished vectors.

2. The action of the permutation (1, 3) interchanging the left and right actions on 𝑌𝑣 sends the distin-
guished vector 𝑦𝑣 ∈ 𝑌𝑣 to itself.

3. The associativity constraint 𝑌𝑣 ⊗𝐺𝑣 𝑌𝑣 � 𝑌𝑣 ⊗𝐺𝑣 𝑌𝑣 sends the distinguished vector 𝑦𝑣 ⊗ 𝑦𝑣 to itself.

Proof. Recall that for every place v, the space 𝐸𝑣 = cInd𝐺𝑣

SL2 (O𝑣 )
(1SL2 (O𝑣 ) ) is a cocommutative, counital,

coalgebra by Remark 3.56. For places v where 𝑒𝑣 is unramified, denote by 𝑓𝑣 the vector 1GL2 (O) ∈ 𝐸𝑣 .
We observe that under the counit 𝐸𝑣 → 1�,𝑣 of Construction 3.44, the vector 𝑓𝑣 maps to the

distinguished vector 1GL2 (𝐹𝑣 ) of 1�,𝑣 . Moreover, observe that under the comultiplication map 𝐸𝑣 →

𝐸𝑣©� 𝐸𝑣 of Construction 3.45, the vector 𝑓𝑣 maps to 𝑓𝑣 ⊗ 𝑦𝑣 ⊗ 𝑓𝑣 ∈ 𝐸𝑣 ⊗𝐺𝑣 𝑌𝑣 ⊗𝐺𝑣 𝐸𝑣 .
Therefore, the counitality of 𝐸𝑣 implies Item 1, the cocommutativity of 𝐸𝑣 implies Item 2, and the

coassociativity of 𝐸𝑣 implies Item 3. �

Corollary 4.4. The local commutativity, associativity and unitality data comprise well-defined global
maps, turning ©� into a symmetric monoidal structure on Mod(GL2(A)).

4.3. The �©-algebra of automorphic forms

In this subsection, we will define the promised multiplication map

𝑚 : S ©� S → S̃ .

Later, in Subsection 4.5, we will show an associativity-type statement for it, as well as prove that the
image of ℐ©�ℐ lies inside ℐ. This will turn ℐ into an algebra.

Let us begin with an informal discussion. We are trying to construct a map

𝑚 : S ©� S = S ⊗𝐺 𝑌A ⊗𝐺 S → S̃

which sends Godement–Jacquet zeta integrals to Jacquet–Langlands zeta integrals. This map should
take as input pairs of automorphic functions, as well as a test function from 𝑌A, and yield an element of
S̃ . We think of the codomain S̃ as the space of smooth functions on GL2(𝐹)\GL2 (A), without any
conditions on growth. The Godement–Jacquet zeta integral of the input data (two automorphic functions
and a test function) should be the same as the Jacquet–Langlands zeta integral of the output (a smooth
function on GL2(𝐹)\GL2(A)). We will formalize this compatibility property in Remark 4.11.

This compatibility with zeta integrals should in principle be enough to recover the multiplication map
m, for the following reason. Recovering a sufficiently nice function 𝜙′′ ∈ S̃ from its family of Jacquet–
Langlands zeta integrals is fairly standard. One simply integrates the zeta integrals over all unitary
characters 𝜒 :A×/𝐹× → C× (i.e., applies the inverse Mellin transform) to isolate 𝜙′′(1). The rest of the
values of 𝜙′′ can be recovered by the GL2(A)-equivariance of the map we are trying to construct.
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Let 𝑌AGL2 (𝐹 )\ /GL2 (𝐹 )
denote the coinvariants of𝑌A with respect to the left and right GL2 (𝐹)-actions.

The above discussion suggests defining a linear functional

𝑌AGL2 (𝐹 )\ /GL2 (𝐹 ) = S ⊗𝐺 𝑌A ⊗𝐺 S → C

that should informally correspond to taking the Godement–Jacquet zeta integral of the input and applying
the inverse Mellin transform to it. If we did everything correctly, it will then be invariant under the
middle action of GL2(𝐹). With this extra invariance property, we will be able to equivariantly extend
the map S ⊗𝐺 𝑌A ⊗𝐺 S → C into the desired multiplication map S ⊗𝐺 𝑌A ⊗𝐺 S → S̃ .

In other words, due to the universal property of the contragradient, it is enough to give a linear
functional

𝜇 :𝑌A → C

which is invariant under all three actions of GL2(𝐹). Note that this goal is inherently symmetric in the
three actions.

The structure of the rest of this subsection is as follows. We will formally define the desired linear
functional in §4.3.1. In §4.3.2, we will show that this functional is invariant under the full action of
GL2(𝐹)

3. Finally, in §4.3.3, we will define the multiplication map 𝑚 : S ©� S → S̃ itself, and discuss
its compatibility with zeta integrals.

4.3.1. Defining the functional
We propose the following functional, which will be justified by Remark 4.11 below.

Definition 4.5. Define the linear functional

𝜇 :𝑌A → C

by the formula

𝜇(Ψ) ↦→
∑

( 𝜉 ,𝑞) ∈M2 (𝐹 )×𝐹×

Ψ(𝜉, 𝑞).

Remark 4.6. The functional 𝜇 is clearly invariant with respect to the left and right actions of GL2(𝐹).
Moreover, 𝜇 is also invariant with respect to the middle action of 𝑃2 (𝐹). This follows using the explicit
formula for the middle action of the mirabolic group on 𝑌A given in equation (2.12).

Remark 4.7. The functional 𝜇 is clearly symmetric under the action of the transposition of M2(A) on
𝑌A (see Remark 3.4).

4.3.2. Invariance of the functional
Our goal for this subsubsection is to prove that 𝜇 is indeed invariant under all three of the GL2 (𝐹)-
actions. This will give us a map

𝑚 : S ©� S → S̃

into the smoothening S̃ of the dual of S (i.e., the contragradient of S ).

Remark 4.8. The reader should note that the strategy we are proposing looks like a kind of theta lifting.
The image of S ©� S in S̃ is essentially given by a theta function, up to issues related to the center of
GL2.

In fact, we prove something even stronger:

Proposition 4.9. The functional 𝜇 :𝑌A → C is invariant with respect to the 𝑆3 � GL2 (𝐹)
3-action of

Remark 3.5.
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Proof. This immediately follows from the invariance of the theta functional

𝑆(M2(A)) → C

Ψ ↦→
∑

𝜉 ∈M2 (𝐹 )

Ψ(𝜉)

under the action of the group of rational points of the metaplectic group used in the construction of 𝑌A.
Nevertheless, let us explicitly show the invariance under the middle action of GL2 (𝐹). By Remark

4.6, it is sufficient to prove that 𝜇 is invariant under the middle action of the matrix 𝑤 =

(
−1

1

)
. Using

Remark 2.24, it is enough to show that

∑
( 𝜉 ,𝑞) ∈M2 (𝐹 )×𝐹×

Ψ(𝜉, 𝑞) =
∑

( 𝜉 ,𝑞) ∈M2 (𝐹 )×𝐹×

|𝑞 |2
∫

M2 (𝐹 )

Ψ(ℎ, 𝑞) · 𝑒

(
− 𝑞 · 〈𝜉, ℎ〉

)
dℎ.

However,

∑
( 𝜉 ,𝑞) ∈M2 (𝐹 )×𝐹×

|𝑞 |2
∫

M2 (𝐹 )

Ψ(ℎ, 𝑞) · 𝑒

(
− 𝑞 · 〈𝜉, ℎ〉

)
dℎ

=
∑

( 𝜉 ,𝑞) ∈M2 (𝐹 )×𝐹×

∫
M2 (𝐹 )

Ψ(ℎ, 𝑞) · 𝑒

(
− tr(𝜉𝑇 ℎ)

)
dℎ,

where we have used the identity

〈𝜉, ℎ〉 = tr(𝑤−1𝜉𝑇 𝑤ℎ).

We are now done by the Poisson summation formula

∑
( 𝜉 ,𝑞) ∈M2 (𝐹 )×𝐹×

Ψ(𝜉, 𝑞) =
∑

( 𝜉 ,𝑞) ∈M2 (𝐹 )×𝐹×

∫
M2 (𝐹 )

Ψ(ℎ, 𝑞) · 𝑒

(
− tr(𝜉𝑇 ℎ)

)
dℎ.

�

4.3.3. Defining the multiplication
Proposition 4.9 justifies the following construction.

Construction 4.10. We define a map 𝑚 : S ©� S → S̃ by composing the identification

S ©� S � 𝑌AGL2 (𝐹 )\ /GL2 (𝐹 )

with the map

𝑌AGL2 (𝐹 )\ /GL2 (𝐹 ) → S̃

Ψ ↦→ 𝜇(𝑔 · Ψ).

Here, 𝑔 · Ψ denotes the middle action.

In our informal discussion at the beginning of this subsection, it was emphasized that the multiplica-
tion map m should be compatible with zeta integrals in some sense. Let us formalize this.
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Remark 4.11. The multiplication 𝑚 : S ©� S → S̃ sends Godement–Jacquet zeta integrals into
Jacquet–Langlands zeta integrals. Specifically, we claim that

𝑍JL (𝑚(𝜙′ ⊗ Ψ ⊗ 𝑓 ⊗ 𝜙), 𝑠) = 𝑍GJ (𝜙
′, 𝜙,Ψ, 𝑠) ·

∫
A×

𝑓 (𝑦) |𝑦 |𝑠+
1
2 d×𝑦,

where Ψ ⊗ 𝑓 ∈ 𝑌A, 𝜙, 𝜙′ ∈ S , and

𝑍JL (𝜙′′, 𝑠) =
∫
A×

𝑊𝜙′′

((
𝑦

1

))
|𝑦 |𝑠−

1
2 d×𝑦,

𝑍GJ (𝜙
′, 𝜙,Ψ, 𝑠) =

∫
GL2 (A)

(∫
GL2 (𝐹 )\GL2 (A)

𝜙′(ℎ−𝑇 )𝜙(ℎ𝑔) d×ℎ
)
Ψ(𝑔) |det(𝑔) |𝑠+

1
2 d×𝑔

are the Jacquet–Langlands and Godement–Jacquet zeta integrals, respectively. Here, 𝑊𝜙′′ is the Whit-
taker function corresponding to 𝜙′′ ∈ S̃ . This can be easily seen via a direct computation.

Recall that we have normalized the measures on GL2 (A) and A× in Subsection 4.1 so that they have
measure 1 on maximal compact subgroups. Also, note that it is standard to define the Whittaker function
𝑊𝜙′′ using a measure on 𝑈 (A) which assigns a measure of 1 to 𝑈 (A)/𝑈 (𝐹).

4.4. Unitality of S

In the previous subsection, we defined a multiplication map 𝑚 : S ©� S → S̃ (Construction 4.10). We
have not yet proven that ℐ©�ℐ maps to ℐ, and not yet shown any associativity properties of m. In this
subsection, we will discuss the unitality of the multiplication m.

Recall that in a category C with a symmetric monoidal structure ⊗, a commutative algebra object
𝐴 ∈ C is called unital if there exists a (necessarily unique) map 𝑒 :1C → 𝐴 such that

𝐴
∼ �� 𝐴 ⊗ 1C

𝐴⊗𝑒 �� 𝐴 ⊗ 𝐴 �� 𝐴

is the identity map.
Specifically, in this subsection, we will begin by constructing a map 𝑒 :1� → S (which, in fact,

factors through ℐ). Afterwards, we will show (Corollary 4.18) that the composition

S S ©� 1�

S©� 𝑒 �� S ©� S
𝑚 �� S̃ (4.1)

is the inclusion S ⊆ S̃ adjoint to the Petersson pairing S ⊗𝐺 S → C. This is the desired unitality of
m, which will later translate into e being the unit for the commutative algebra ℐ with its multiplication
induced by m.

Remark 4.12. We are going to give an explicit construction of the unit map e in this subsection, while
in the previous subsection we gave an explicit construction for the multiplication map m. However, these
two constructions are not independent and more or less determine each other.

Indeed, it should be noted that as with all algebras, the multiplication map m (given in Construction
4.10) and the unitality property (given in diagram (4.1)) are already sufficient to uniquely determine
e. Moreover, in our case the other direction holds as well; this means the following. We will show in
Subsection 4.5 that the unit map e has image ℐ ⊆ S . This will mean that the unit map e already
uniquely determines the restriction of the multiplication map m to ℐ©� S (see also Remark 4.23).

Let us begin. The cleanest way to describe the map 𝑒 :1� → S is by looking at its dual,𝑊 : S̃ → 1̃�.
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Construction 4.13. We think of S̃ as the space of smooth functions on the automorphic quotient
GL2(𝐹)\GL2(A), and of 1̃� as the space of 𝜃−1-equivariant functions on GL2 (A). We define the map
𝑊 : S̃ → 1̃� by sending an automorphic function to its corresponding Whittaker function:

𝜙(𝑔) ↦→ 𝑊𝜙 (𝑔) =
∫
𝑈 (A)/𝑈 (𝐹 )

𝜙(𝑢𝑔)𝜃 (𝑢) d𝑢.

Here, we use a normalized measure on 𝑈 (A)/𝑈 (𝐹) such that the total volume is 1.

We now claim that

Claim 4.14. There is a unique map 1� → S such that its contragradient is the map 𝑊 : S̃ → 1̃� of
Construction 4.13.

Indeed, it is clear that the contragradient is a faithful functor. Therefore, we can prove Claim 4.14 by
directly constructing the desired map 𝑒 :1� → S . This will be our unit for the multiplication on the
algebra ℐ.

Construction 4.15. Define the map

𝑒 :1� → S

as the composition of

𝑆(GL2 (A))/𝑈2 (A) , 𝜃 → 𝑆(𝑈2 (𝐹)\GL2 (A))

𝑓 (𝑔) ↦→

∫
𝑈2 (A)

𝑓 (𝑢𝑔)𝜃 (𝑢−1) d𝑢

with the projection 𝑆(𝑈2 (𝐹)\GL2(A)) → S . In other words, using the equivalence of Remark 4.2, a
function 𝑊 ∈ cInd𝐺𝑈 (𝜃) � 1� is mapped to the Poincaré series∑

𝛾∈𝑈2 (𝐹 )\GL2 (𝐹 )

𝑊 (𝛾𝑔) ∈ 𝑆(GL2(𝐹)\GL2 (A)) � S .

It is a standard fact that this Poincaré series is an element of 𝑆(GL2(𝐹)\GL2(A)).

The map 𝑒 :1� → S of Construction 4.15 will be a unit with respect to the multiplication
𝑚 : S ©� S → S̃ of Construction 4.10. To show this, we will need the following proposition about the
Petersson pairing.

Recall that the Petersson pairing is the map 𝜌 : S ⊗𝐺 S → C given by

𝑓 (𝑔) ⊗ 𝑓 ′(𝑔′) ↦→

∫
GL2 (A)

𝑓 (𝑔) 𝑓 ′(𝑔−𝑇 ) d×𝑔,

where we have implicitly used S ⊗𝐺 S instead of the more formally correct 𝐼𝑅𝐿 (S ) ⊗𝐺 S . This can
also be described by the functional

𝑆(GL2(A))GL2 (𝐹 )\ /GL2 (𝐹 ) → C

𝑓 (𝑔) ↦→
∑

𝜉 ∈GL2 (𝐹 )

𝑓 (𝜉),

where the notation 𝑆(GL2 (A))GL2 (𝐹 )\ /GL2 (𝐹 )
denotes the coinvariants of the vector space 𝑆(GL2(A))

under the two actions of GL2(𝐹).
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Proposition 4.16. The composition

S ⊗𝐺 S � 1� ⊗𝐺 (S ©� S )
𝑒⊗id
−−−→ S ⊗𝐺 (S ©� S )

𝜇
−→ C

is the Petersson pairing 𝜌, where 𝜇 is the map of Definition 4.5.

Remark 4.17. Proposition 4.16 is independent of which of the three copies of S we insert 1� into.
This follows by the 𝑆3-invariance shown in Proposition 4.9.

Finally, the desired unitality property of 𝑒 :1� → S follows because 𝜇 is given by m together with
the natural evaluation pairing.

Corollary 4.18. The composition

S 1�©� S
𝑒⊗id �� S ©� S

𝑚 �� S̃

is the inclusion S ⊆ S̃ .

Proof of Proposition 4.16. We want to show that the two maps S ⊗𝐺 S → C coincide. This is a
straightforward verification. We will show that the diagram

1� ⊗𝐺

(
𝑌AGL2 (𝐹 )\ /GL2 (𝐹 )

)
∼ �� 1� ⊗𝐺 (S ©� S )

𝑒⊗id ��

∼

��

S ⊗𝐺 (S ©� S )

𝜇

��
S ⊗𝐺 S

𝜌 �� C

commutes by separately evaluating the clockwise and counter-clockwise compositions.
We begin with the counterclockwise composition. Using equation (3.3), it is given by

𝑓 (ℎ) ⊗ Ψ(𝑔, 𝑦) ↦→
∑

𝜉 ∈GL2 (𝐹 )

∫
GL2 (A)

(𝑤ℎ−𝑇 · Ψ) (𝜉−1,− det(𝜉)) · 𝑓 (ℎ) d×ℎ.

We should compare this with the clockwise composition

𝑓 (ℎ) ⊗ Ψ(𝑔, 𝑦) ↦→
∑

( 𝜉 ,𝑞) ∈M2 (𝐹 )×𝐹×

∫
𝑈2 (𝐹 )\GL2 (A)

∫
𝑈2 (A)

(ℎ−𝑇 · Ψ) (𝜉, 𝑞) · 𝑓 (𝑢ℎ) · 𝜃 (𝑢−1) d𝑢 d×ℎ

=
∑

( 𝜉 ,𝑞) ∈M2 (𝐹 )×𝐹×

∫
𝑈2 (𝐹 )\GL2 (A)

∫
𝑈2 (A)

(𝑤ℎ−𝑇 · Ψ) (𝜉,−𝑞) · 𝑓 (𝑢ℎ) · 𝜃 (𝑢−1) d𝑢 d×ℎ

=
∑

( 𝜉 ,𝑞) ∈M2 (𝐹 )×𝐹×

∫
GL2 (A)

(𝑤ℎ−𝑇 · Ψ) (𝜉,−𝑞) · 𝑓 (ℎ) ·

∫
A/𝐹

𝑒(𝑥(𝑞 det 𝜉 − 1)) d𝑥 d×ℎ.

Thus, the two maps coincide. �

4.5. Associativity of the multiplication

We are now armed with a unital multiplication map 𝑚 : S ©� S → S̃ . Our goal in this subsection will
be to prove that it is associative in some sense and to prove that ℐ is an algebra.

Everything will immediately follow from the following proposition.

Proposition 4.19. The image of the unit map 𝑒 :1� → S of Construction 4.15 is ℐ.
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Remark 4.20. In a very vague sense, Proposition 4.19 can be thought of as a multiplicity one property;
because a generic irreducible V has dimΦ−𝑉 = 1, it follows that the space of maps between ℐ and V is
at most one dimensional as well. Following the proof of Proposition 4.19 below, one can also see that it
relies on similar ideas to the usual proof of multiplicity one.

Before proving Proposition 4.19, let us state some of its corollaries.

Corollary 4.21. The image 𝑚(ℐ©�ℐ) lies inside ℐ ⊆ S ⊆ S̃ .

Proof. Consider the commutative diagram

1�©�ℐ
∼ ��

����

ℐ� �

��
ℐ©�ℐ

���
�

�
�

�
𝑚 �� S̃ .

The left vertical map is surjective, while the right vertical map is injective. This means that the diagram
can be completed as above. �

Corollary 4.22. The multiplication 𝑚 : S ©� S → S̃ makes ℐ into a unital commutative algebra with
respect to ©� .

Proof. Follows immediately from the surjectivity of 𝑒 :1� → ℐ and the axioms of symmetric monoidal
categories. By Corollaries 4.18 and 4.21, it is sufficient to show that the multiplication 𝑚 :ℐ©�ℐ → ℐ

is associative. Indeed, we have two maps

ℐ©�ℐ©�ℐ
𝑚◦(id©� 𝑚) ��

𝑚◦(𝑚©� id)
�� ℐ,

and we want to show that they are the same. By Proposition 4.19, we can test this by precomposing with
the unit map 𝑒 :1� → ℐ at one of the coordinates. However, the two maps

1�©�ℐ©�ℐ �� ℐ©�ℐ©�ℐ
𝑚◦(id©� 𝑚) ��

𝑚◦(𝑚©� id)
�� ℐ

are the same by the unitality result of Corollary 4.18. �

Remark 4.23. In fact, the surjectivity of the unit map implies that m is the unique multiplicative structure
on ℐ with respect to this unit.

Remark 4.24. Observe that ℐ becomes not just an algebra, but it also carries a pairing

〈−,−〉 :ℐ ⊗𝐺 ℐ = Φ−(ℐ©�ℐ) → C

induced from the Petersson pairing 𝜌 : S ⊗𝐺 S → C (here, Φ− : Mod(𝐺) → Vect indicates the functor
of 𝜃-coinvariants; recall that Φ− defines a trace on the category Mod(𝐺), as in Remark 3.54). Moreover,
the 𝑆3-invariance shown in Proposition 4.9 implies that this map satisfies the axiom

〈𝑥, 𝑦𝑧〉 = 〈𝑥𝑦, 𝑧〉 .

Note that ℐ is not a Frobenius algebra because it is not self-dual: The map ℐ → ℐ̃ induced from the
pairing is not an isomorphism.

Corollary 4.25. The image 𝑚(ℐ©� S ) lies inside S ⊆ S̃ .
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Proof. Identical to Corollary 4.21. �

Corollary 4.26. The multiplication 𝑚 : S ©� S → S̃ turns S into an ℐ-module with respect to ©� .

Proof. Identical to Corollary 4.22. �

Remark 4.27. We have seen that we can think of the multiplication ℐ©�ℐ → ℐ as defining an algebra
structure on ℐ, and of the multiplication ℐ©� S → S as defining an ℐ-module structure on S . Both
of these multiplications are associative in an appropriate sense. This raises the question of how to think
about the associativity of the multiplication map S ©� S → S̃ .

We answer this as follows. Note that the map 𝑚 : S ©� S → S̃ defines a symmetric triality

Φ−(S ©� S ©� S ) → C

by the universal property of the contragradient S̃ and Remark 3.17. Our claim is that this triality respects
the ℐ-module structure of S . This follows immediately by the surjectivity of the map 𝑒 :1� → ℐ.

We dedicate the rest of this subsection to the proof of Proposition 4.19.

Proof of Proposition 4.19. Since

Hom
(
1�, 𝑆(A

×/𝐹×)
)
= 0,

it remains to show that the map 1𝑌 → ℐ is surjective. To do so, let us show that the sequence

1�
�� S �� 𝑆(A×/𝐹×) �� 0

is exact.
We will show this by proving that the sequence of contragradients

0 �� �𝑆(A×/𝐹×) �� S̃ �� 1̃�

is exact. That is, it is sufficient to show that if 𝜙 : GL2(𝐹)\GL2(A) → C is a smooth automorphic
function whose corresponding Whittaker function

𝑊𝜙 (𝑔) =
∫
𝑈 (A)/𝑈 (𝐹 )

𝜙(𝑢𝑔)𝜃 (𝑢) d𝑢

is 0, then 𝜙 is SL2(A) · GL2(𝐹)-invariant.
Indeed, from 𝑊𝜙 = 0 we see that 𝜙 is left 𝑈 (A)-invariant. Since 𝜙 is also GL2 (𝐹)-invariant, it

follows that 𝜙 is left-invariant with respect to the subgroup generated by 𝑈 (A) and GL2(𝐹). However,
it is easy to check that this subgroup contains SL2 (A). This finishes the proof. �

4.6. Abstract automorphicity

The purpose of this subsection is to introduce the category Modaut (GL2(A)) of abstractly automorphic
representations. This category will be a full subcategory of Mod(GL2(A)), containing all irreducible
automorphic representations, and closed under taking subquotients and contragradients. The author’s
belief is that this category is a natural place in which to study the theory of automorphic representations.

Let Mod(ℐ) be the category of ℐ-modules in Mod(GL2(A)). This makes sense as Mod(GL2(A))
is a symmetric monoidal category, and ℐ is an algebra with respect to its symmetric monoidal structure
©� . We begin by observing that:

Claim 4.28. The forgetful functor from Mod(ℐ) to Mod(GL2(A)) is fully faithful.

Proof. Follows immediately from Proposition 4.19. �

https://doi.org/10.1017/fmp.2023.18 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.18


Forum of Mathematics, Pi 49

This justifies giving a name to the essential image.

Definition 4.29. Let 𝑉 ∈ Mod(GL2 (A)). We will say that V is abstractly automorphic if V belongs to
the essential image of Mod(ℐ) in Mod(GL2(A)).

Denote by Modaut (GL2(A)) ⊆ Mod(GL2(A)) the full subcategory of abstractly automorphic repre-
sentations.

Remark 4.30. Equivalently, a smooth GL2(A)-module V is abstractly automorphic if and only if the
canonical map 1�©�𝑉 → 𝑉 factors through the quotient ℐ©�𝑉 .

Remark 4.31. Note that the above also means that the structure of S as an ℐ-module observed in
Corollary 4.26 is unique. That is, since Corollary 4.26 implies that S ∈ Modaut(GL2 (A)), it follows
from Claim 4.28 that S carries a unique structure of ℐ-module.

Proposition 4.32. The category Modaut(GL2 (A)) of abstractly automorphic representations is closed
under taking subquotients in Mod(GL2 (A)).

Moreover, it is also closed under taking contragradients.

Proof. The proof is a straightforward application of Remark 4.30.
Let us show closure under taking contragradients. Let 𝑉 ∈ Modaut (GL2(A)). By Remark 4.30, we

must show that the identity map 𝑉 → 𝑉 factors through ℐ©�𝑉 . By the universal property of 𝑉 , this is
equivalent to showing that the pairing

Φ−(𝑉©�𝑉) → C

factors through

Φ−(𝑉©� (ℐ©�𝑉)).

However, this holds by associativity of ©� and the abstract automorphicity of V.
Let us also show closure under taking subobjects. Closure under quotients is similar. Let V be

abstractly automorphic, and let 𝑉 ′ ⊆ 𝑉 . Then we have a map

ℐ©�𝑉 → 𝑉.

We claim that the image of ℐ©�𝑉 ′ → 𝑉 lies inside𝑉 ′. Indeed, we can check the image by precomposing
with 1�©�𝑉 ′ → ℐ©�𝑉 ′, but the map 1�©�𝑉 ′ → 𝑉 factors through the canonical map 1�©�𝑉 ′ → 𝑉 ′. �

Remark 4.33. We have already seen in Corollary 4.26 that S is abstractly automorphic. Therefore,
so is S̃ , and in particular, all irreducible automorphic representations are also abstractly automorphic,
being subquotients of it.

Remark 4.34. Very informally, if we imagine objects of Mod(GL2(A)) as sheaves on some algebraic
space, then Proposition 4.19 says that ℐ defines a closed subspace of that algebraic space.

Let us elaborate on this analogy. Instead of the symmetric monoidal category Mod(GL2 (A)) equipped
with ©� , consider the category Mod(𝐴) of A-modules for some commutative algebra A, equipped with
the relative tensor product over A. Then the unit of Mod(𝐴) is the object A, and its quotient objects (as
an A-module) are precisely the closed subschemes of Spec 𝐴. In this manner, the quotient ℐ of the unit
1� can be thought of as defining a closed subspace.

Example 4.35. Consider the space 𝑆(M2 (A)) of smooth and compactly supported functions on M2 (A),
which appears as the space of test functions in Godement–Jacquet zeta integrals. This space has actions
of GL2(𝐹) from the left and right. Consider the vector space ℒ = 𝑆(M2 (A))/GL2 (𝐹 ) of coinvariants
under one of those actions. We observe that it is abstractly automorphic.

Indeed, it can be written as

ℒ = 𝑆(M2(A))/GL2 (𝐹 ) = S ©� 𝑆(𝐴\𝐺),
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where 𝐴 =

{(
A
×

1

)}
⊆ GL2(A) is a copy of G𝑚 inside GL2. Since S is abstractly automorphic, then

so is ℒ.

A. Spin structures

We have stated in the introduction to this paper (Section 1) that a piece of global data called an
unramified spin structure turns an appropriate space ℐ/SL2 (OA) of spherical automorphic functions into
a commutative algebra with respect to the usual tensor product ⊗. In this appendix, we will formalize this
statement. We will define what an unramified spin structure is and then show how it yields a canonical
multiplicative structure on ℐ/SL2 (OA) . This will allow us to think of functions in ℐ/SL2 (OA) as functions
on the spectrum of ℐ/SL2 (OA) , which is the promised Fourier transformation.

As explained in Section 1, one may think of this result as a kind of spectral Fourier transform on the
space of spherical automorphic forms

ℐ/SL2 (OA) ⊆ 𝑆(GL2 (𝐹)\GL2 (A)/SL2(OA))

which are orthogonal to one-dimensional characters. Here, OA ⊆ A is the subring of all adeles which
are integral at all places.

Let us begin with describing what an unramified spin structure is. Let C be the unique smooth and
proper curve with function field F, and let Ω = Ω𝐶 be its sheaf of differentials. Then Ω is a line bundle
on C.

Definition A.1. An unramified spin structure on C is a line bundle L on C, equipped with an isomor-
phism:

𝜂 : 𝐿 ⊗ 𝐿
∼
−→ Ω.

Remark A.2. An unramified spin structure on C always exists (see [1]).

For the rest of this appendix, fix an unramified spin structure (𝐿, 𝜂) on C. Our goal is to give a
construction for a commutative algebra structure on ℐ/SL2 (OA) .

We now turn to defining the convolution product on ℐ/SL2 (OA) . We will do this by globalizing the
local construction of the coalgebra E from Subsection 3.5 and taking an appropriate space of maps
between E and ℐ. In fact, this will let us turn the SL2(OA)-coinvariants of an arbitrary algebra with
respect to ©� into an algebra with respect to ⊗, as in Remarks 3.56 and 3.57.

The key point is that we have made several choices in our constructions so far, and we will show
how they are all fixed by the unramified spin structure (𝐿, 𝜂). The first piece of data is the additive
character 𝑒 :A/𝐹 → C× that we have chosen in Subsection 4.2. Moreover, in order for the construction
of Subsection 3.5 to work, we needed to fix some additional local data at every place, as mentioned in
Remark 3.47.

Let us derive this data from the spin structure. Choose any rational section 𝑠 ∈ 𝐹 ⊗ 𝐿 of L, and
suppose that the additive character 𝑒 :A/𝐹 → C× we have chosen in Subsection 4.2 corresponds to the
section 𝜂(𝑠 ⊗ 𝑠) ∈ 𝐹 ⊗ Ω in the standard way, that is, by identifying 𝐹 ⊗ Ω with the dual of A/𝐹 by
taking the sum of all residues.

Remark A.3. It will turn out that the multiplication onℐ/SL2 (OA) is independent of the choice of rational
section s.

Observe that the valuation of e at any place v is necessarily even. In particular, there is a unique
OA-sub-module Λ ⊆ A which is self-dual with respect to e.
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Definition A.4. Let

𝐸A = cInd𝐺SL2 (OA) (1)

be the G-module given by induction with compact support from the trivial representation of SL2 (OA).

The self-dual lattice Λ allows us to fix the comultiplication on 𝐸A as follows.

Construction A.5. We define the map

𝜇 : 𝐸A → 𝐸A©� 𝐸A

to be induced by the 𝑆3 � SL2 (OA)3-invariant distribution

1M2 (Λ) (𝑔)𝛿1(𝑦)

on M2 (A) × A
× in a similar manner to Construction 3.45.

Claim A.6. The map 𝜇 : 𝐸A → 𝐸A©� 𝐸A of Construction A.5 turns 𝐸A into a counital, cocommutative
and coassociative coalgebra.

Proof. Counitality follows immediately from the local Claim 3.49, using the adjustments described in
Remark 3.47.

Coassociativity follows from the idempotent theorem of [9], as in Remark 3.56. �

We can now state our final result for this appendix.

Construction A.7. The space of spherical automorphic functions:

ℐ/SL2 (OA) = Hom(𝐸A,ℐ)

acquires a canonical quasi-unital commutative algebra structure over the center of Mod(𝐺), with respect
to the usual tensor product ⊗. This follows by the coalgebra structure on 𝐸A given in Claim A.6 and the
algebra structure on ℐ given in Corollary 4.22.

It is possible to see (by a direct computation) that the resulting algebra structure on ℐ/SL2 (OA) is
independent of the choice of section s.

Remark A.8. It is also possible to show that the multiplication on ℐ/SL2 (OA) is invariant with respect
to the involution

𝜄 :ℐ ∼
−→ ℐ

𝜄( 𝑓 ) (𝑔) = |det(𝑔) |−2 𝑓 (𝑔−𝑇 ).

That is, if the product of 𝑓 , 𝑓 ′ ∈ ℐ/SL2 (OA) is given by 𝑓 ′′ ∈ ℐ/SL2 (OA) , then the product of 𝜄( 𝑓 ) and
𝜄( 𝑓 ′) is given by 𝜄( 𝑓 ′′).
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