A note on the focal relations of a bicircular quartic.

By R. F. Davis, M.A.

Let P be any point on a bicircular quartic having $\mathrm{A}, \mathrm{B}, \mathrm{C}$ for foci ; so that $l . \mathrm{PA}+m . \mathrm{PB}+n . \mathrm{PC}=0$, where l, m, n are known. It will be shown how the fourth focus E (lying upon the circumcircle of $A B C$) may be found; and also the relations subsisting between any three focal distances.

If x, y, z be masses placed at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively and P any point in the plane of ABC ,

$$
\begin{equation*}
x \cdot \mathrm{PA}^{2}+y \cdot \mathrm{~PB}^{2}+z \cdot \mathrm{PC}^{2}=(x+y+z) \cdot \mathrm{PE}^{2}+\text { constant } \tag{A}
\end{equation*}
$$

where E (the centroid of the masses) has its trilinear coordinates proportional to $x / a: y / b: z / c$.

When E lies on the circum-circle of $\mathrm{ABC} \Sigma a^{2} / x=0$, and the constant vanishes. The relation (A) is then the result of eliminating l, m, n from the equations

$$
\left.\begin{array}{r}
-(l / x) \cdot \mathrm{PB}+(m / y) \cdot \mathrm{PA}+\quad n \cdot \mathrm{PE}=0 \\
(l / x) \cdot \mathrm{PC}+\quad m \cdot \mathrm{PE}-(n / z) \cdot \mathrm{PA}=0 \tag{B}\\
l \cdot \mathrm{PE}-(m / y) \cdot \mathrm{PC}+(n / z) \cdot \mathrm{PB}=0
\end{array}\right\}
$$

if $x+y+z+x y z=0$. The equations (B) are inconsistent unless $\Sigma l^{2} / x=0$, but if this relation holds [as well as (A)] they are derivable from the single equation $\Sigma l . \mathrm{PA}=0$, found by eliminating PE from any two of them.

From the equations $\Sigma l^{2} / x=\Sigma a^{2} / x=0$ and $\Sigma x+\Pi x=0$ we get

$$
x\left(c^{2} m^{2}-b^{2} n^{2}\right)=\ldots \ldots=\ldots \ldots=\sqrt{ }\left\{\Sigma b^{2} c^{2} l^{2}-2 a b c \sum a m^{2} n^{2}\right\}
$$

Hence the coordinates of E are inversely proportional to

$$
a\left(c^{2} m^{2}-b^{2} n^{2}\right), \ldots \ldots
$$

and the relations between the focal distances are those given above (B).

If $l^{2}: m^{2}: n^{2}=a^{2}: b^{3}: c^{2}$ the equations for determining E are insufficient ; this is a priori evident, for E may be any point on the circum-circle.

