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FINITE MATRIX MODEL OF Q U A N T U M HALL FLUIDS ON S2

Y I - X I N C H E N , MARK D. GOULD AND YAO-ZHONG ZHANG

Based on Haldane's spherical geometrical formalism of the two-dimensional quan-
tum Hall fluids, the relation between the noncommutative geometry of S2 and the
two-dimensional quantum Hall fluids is exhibited. A finite matrix model on the two-
sphere is explicitly constucted as an effective description of the fractional quantum
Hall fluids of finite extent, and the complete sets of physical quantum states of this
matrix model are determined. We also describe how the low-lying excitations in the
model are constructed in terms of the quasi-particle and quasi-hole excitations. It
is shown that there exists a Haldane hierarchical structure in the two-dimensional
quantum Hall fluid states of the matrix model. These hierarchical fluid states are
generated by the parent fluid state by condensing the quasi-particle and quasi-hole
excitations level by level.

1. INTRODUCTION

The planar coordinates of quantum particles in a constant magnetic field provide a
natural realisation of noncommutative space [7]. The physics of electrons in the lowest
Landau level exhibits many fascinating properties. In particular, when the electron den-
sity equals to some rational fraction of the density corresponding to a fully filled lowest
Landau level, the electrons are condensed into special incompressible fluid states whose
excitations exhibit unusual phenomena such as fractional charges and fractional statis-
tics. For the filling fractions v = 1/m, the physics of these states is accurately described
by the wave functions proposed by Laughlin [13].

Recently, an interesting connection between the quantum Hall effect and noncom-
mutative field theory has been revealed in the literature. In particular, Susskind [19]
proposed that the noncommutative Chern-Simons theory on a plane may provide a de-
scription of the (fractional) quantum Hall fluid and specifically of the Laughlin states.
This noncommutative Chern-Simons theory describes a spatially infinite quantum Hall
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system. It gives the Laughlin states at filling fractions v when the number of electrons
confined in the lowest Landau level is infinitely large. The fields of this theory are in-
finite matrices which act on an infinite Hilbert space, to account for an infinite number
of electrons. Subsequently, Polychronakos [17] proposed a regularised matrix version of
the noncommutative Chern-Simons theory in an effort to describe a finite system with
a finite number of electrons in limited spatial extent. This matrix model was shown
to reproduce the basic properties of the quantum Hall droplets. Furthermore, it was
shown that there exists a complete minimal basis for the exact wave functions of the
regularised matrix theory at arbitrary level u~l and rank N, and these wave functions
are in one to one correspondence with the Laughlin wave functions describing the exci-
tations of the quantum Hall droplet composed of N electrons at filling fraction v [10].
It is believed that the matrix model is equivalent to the theory of composite fermions
in the lowest Landau level, and should provide an accurate description of the fractional
quantum Hall states. However, although the long distance behaviours of the two theories
mentioned above agree, their short distance behaviours are different [12]. It should also
be pointed out that the finite matrix model proposed by Polychronakos is still defined
on a two-dimensional plane.

It is well known that it is more convenient to formulate the quantum Hall system
on a two-dimensional sphere. Such a formulation appeared in the work of Haldane on
the fractional quantum Hall effect [9]. The Haldane model deals with a two-dimensional
gas of N electrons on a spherical surface in a radial monopole magnetic field. The Dirac
monopole lies at the centre of the two-dimensional sphere. This model describes not only
a variant of the Laughlin model with translationally invariant wave functions, but also a
hierarchy of the quantum Hall fluid states. In certain limits, the Haldane model exhibits
a clear connection with the noncommutative Chern-Simons theory. Precisely, the non-
commutative property of the particle coordinates in the Haldane model is described by a
fuzzy two-sphere [15] ( see below for details ). It is believed that different noncommuta-
tive manifolds correspond to finite matrix models with different geometrical properties.
Recently, there has been much interest in formulating Chern-Simons theories on various
noncommutative manifolds [16, 14, 2].

Based on the work of Hellerman and Raamsdonk [10] on the equivalence of two-
dimensional quantum Hall physics and noncommutative field theory, one knows that
a secondly-quantised field theoretical description of the quantum Hall fluids for vari-
ous filling fractions should be provided by some noncommutative field theory. On a
2-dimensional plane, such a noncommutative field theory is the regularised matrix U(l)
noncommutative Chern-Simons theory. The aim of this paper is to construct a finite ma-
trix model which provides the description of the quantum Hall system on S2. Moreover,
we shall explore the possible hierarchical structure of the quantum Hall fluids in the finite
matrix model.
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This paper is organised as follows. Section two introduces the two-dimensional
quantum Hall model on S2 proposed by Haldane [9] and analyses the non-commutativity
of the S2 coordinates by focusing on the lowest Landau level state of the system. It will
be shown that the noncommutative space has the geometry of the fuzzy S2. We introduce
the Hopf mapping for the fuzzy S2, and construct a regularised effective matrix theory
on it. This matrix theory is singularity-free in the field configurations obtained by the
Hopf fibration with the fuzzy S2 as the base. These configurations are described by
spinors with two complex components. Taking the number of particles infinitely large,
we show that the effective matrix theory is equivalent to the C/(l) noncommutative Chern-
Simons theory proposed by Susskind. However, our matrix model is different from the
one proposed by Polychronakos: unlike the Polychronakos model, matrix fields in our
effective theory are complex two-component spinors since the theory is invariant under
the £/(l) gauge transformation of such spinors. In section three, we analyse the Fock
space structure of our matrix model and determine its complete sets of physical quantum
states. Section four investigates a condensation mechanism for the low-lying excitations
in our finite matrix model of the quantum Hall fluids on S2. It is shown that there exists
a Haldane hierarchy in the matrix model and such hierarchy is dynamically generated by
condensing the excitations of the quantum Hall fluids level by level. Section five includes
a summary on our main results and some remarks on further research in the direction.

2. HALDANE'S QUANTUM HALL SYSTEM AND FUZZY S2 STRUCTURE

In the quantum Hall effect problem, it is advantageous to consider a compact spheri-
cal space which can be mapped to the flat Euclidean space by the standard stereographic
mapping [9]. Haldane considered a system, in which a two-dimensional electron gas of
N particles is placed on a two-sphere S2 in a radial Dirac monopole magnetic field B. A
point x° on S2 with radius R can be described by the dimensionless vector coordinates
na = xa/R, a = 1,2,3 which satisfy nana = 1. Here and throughout, we shall often use
the usual summation convention, that is, repeated indices are understood to be summed.
The single particle Hamiltonian in this system reads

where M is the effective mass, and A = fx [—ifty - eA] = fx\p — eA] is the dynamical
angular momentum of the particle. The relation between the vector potential A and the
magnetic field is given by V x A = Bn. Due to the presence of the Dirac monopole field,
the dynamical angular momentum A0 does not obey the algebraic relation of the usual
angular momentum. One can easily check that they satisfy the commutation relations

(2) [A°, A6] = i / l e ^ A * + eBR2nc).
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However, L° = A" — eBR2na provide the generators of the rotations in the presence of
the Dirac monopole field. Indeed, by direct calculation, one can show that

(3) [La, L") = ifea6cLc, [La, A6] = ihe^A0, [La, nb] = ihettbcnc.

The vector A has no component normal to the surface and thus we have Lana = -eBR2

= naLa. As pointed out by Haldane [9], the spectrum of A"A" determined by the angular
momentum operators L° is AaAa = (L + eBR2)a(L+eBR2)a = ft2[i(Z + l ) - S 2 ] . Because
A is a hermitian operator and the Hamiltonian H ~ A" A" must be larger than or equal
to zero, one determines that I = S + n, n = 0,1,2, Hence, for a given 5, the energy
eigenvalues of the Hamiltonian (1) are

(4) £n J l
The above energy spectrum when n = 0 corresponds to the lowest Landau level. Since
S is the spin of the particle, the degeneracy of the lowest Landau level is 25 + 1.

On the other hand, we can discuss the classical canonical dynamics of the Hamilto-
nian H and H+V(xa), where V(x°) is the potential energy with rotational symmetry. By
means of the correspondence between classical and quantum physics, one can straightfor-
wardly read off the fundamental Poisson brackets of the classical degrees of freedom from
their corresponding commutation relations. In the canonical Hamiltonian formulation,
the evolution of the dynamical variables with time is described by the canonical Hamilton
equation, that is, Aa = {Aa, H) = (eB)/MeabcAbnc^0. This implies that the dynamical
angular momentum is not a conservative quantity of the system. In fact, in the presence
of the Dirac monopole, the generator of the rotations is modified to L°, which is a con-
servative quantity since L° = {La,H} = (-l)/(MR2)eabcAbAc = 0. If we consider the
system with the rotationally symmetric potential V(xa), La is still conservative. That is

(5) La = A a - eBR2ha = 0.

The variation of na with time is given by the canonical Hamiltonian equation of Aa

{6) A +

Since we are interested in the equation of motion in the lowest Landau level, we take the
infinite limit of mass M —> oo. In this limit, we obtain the following equation of motion

This implies that the momentum variables can be fully eliminated in the lowest Landau
level. The elimination of momentum variables leads to the coordinates on the two-sphere
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which are noncommutative. Restricted to the lowest Landau level state, the equation of
motion may be equivalently derived from the fundamental Poisson bracket

(8) {„«,„» J{ „ , „ } ^ g v , „ „ = !.

This Poisson algebra can be realised by the matrix commutator

(9) [„«,„»] ^

In conclusion, if we focus on the lowest Landau level of the system, the two-dimensional
spherical geometry becomes the geometry of the fuzzy S2 which is noncommutative [15].

In order to exhibit the fuzzy property of algebra (9), we take an isomorphic mapping
from (9) to algebra SU{2). Set na H-> (Xa)/{eBR2). Then equation (9) becomes

(10) [Xa,X"] = ieabcXc

which is nothing but the standard SU(2) algebra. The quadratic Casimir of SU(2) in
the iV-dimensional irreducible representation is given by

(11) XaXa = J(AT2 - 1).

The constraint nana = 1 leads to

(12) eBR2 = yJ±(W - 1).

This relation implies that the two parameters B and R are quantised, exhibiting the
property of the fuzzy two-sphere. In order to compare with the usual expression, we
rewrite eBR2 as eBR • R = R/{ff) = ^(N2 - l)/4, where ff = eBR. Then, we have

(13) [na, n") = i^e^n' = i26eabcnc, nana = 1.
R

This algebraic relation is the starting point of the following discussions about the Hopf
mapping of the fuzzy S2.

It is well known that in the appearance of a monopole field one can not define
a vector potential which is singularity-free on the entire manifold S2. The use of two
vector potentials living respectively on the north and the south semi-spheres, which was
advocated by Wu and Yang [20], provides a way of solving the singularity problem.
However, the Wu-Yang procedure is not well adapted for our later purpose. Thus in
this paper we shall use the formalism proposed by Balachandran in [3]. This formalism
allows one to obtain the singularity-free effective Lagrangian. The key step is to carry
out the first Hopf fibration of S2 to get S3. The first Hopf map is a mapping from S3

to S2. In the presence of a Dirac monopole, the U{\) bundle over S2 is topologically
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non-trivial. However, one can use the first Hopf map to define a non-singular vector
potential everywhere on S3. This procedure is called the first Hopf fibration.

Let us use the notation z = ( l 1 for the two-component complex spinor z. This
\Z2/

complex spinor z has three degrees of freedom since the normalisation condition z^z —

1 = Izjp + l^l2 is the only constraint on the two complex numbers 21,2:2. So they are
actually defined on a S3 surface. The Hopf projection map which takes us from S3 to S2

is given by

(14) n = z^az,

where aa are the three Pauli matrices. It should be noticed that the £7(1) transformation
z -> eiaz leaves na invariant and so the inverse image of any point on S2 is a circle on
S3. Now we ask what Poisson relation for z's can be used to produce the Poisson algebra
(8) of the fuzzy S2. It can be easily checked that the answer to this question is

(15) {z,z*} = 0,

that is,

(16) {21,21} = 0 = {z2,z2},{z1,z2} = 0 = {z2, zi}.

Subsequently, we focus on the description of the effective action of particles in the
presence of a Dirac monopole field. Due to the existence of the monopole, the £7(1)
bundle over S2 is topologically non-trivial. This leads to the appearance of an additional
term, called the Wess-Zimino term, in the effective action of the system. Such an effective
action had been obtained by Stone in [18], which has the form

I = hfdtri<Xria

where / is dependent on the parameters of the system, and A is the potential of the Dirac
monopole which cannot be globally expressed on S2 due to the singularity of the Dirac
string. However, by means of the Hopf fibration of S2 and its [/(I) gauge symmetry, the
monopole potential can be globally defined on S3 as

(18) A = i^dz - dz^z),

where A is related to the magnetic charge of the Dirac monopole. It should be pointed
out that the potential A is equivalent to A"dna up to a U(l) gauge transformation, and
is non-singular everywhere on S3. Furthermore, the first term in the effective action (17)
can also be described by the spinors defined on S3 [3, 1]. In fact, after quantising the
effective action in which the Hopf fibration has been carried out, one gets the energy
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spectrum of the Hamiltonian (1) [1]. Hence, the quantum Hall system on the spherical
geometry as discussed by Haldane can be equivalently described by the effective action
(17) with the Hopf fibration potential A (18). Restricted to the lowest Landau level state,
the contribution from the kinetic energy in the effective action can be ignored, which is
equivalent to taking an infinite limit of / . So the physics in the lowest Landau level is
described by the action

(19)

As mentioned above, the U(l) gauge transformation z -¥ e"*z leaves n° invariant,
so the effective action after the Hopf fibration is also invariant under such a U(l) gauge
transformation. Thus, projected to the lowest Landau level state, the effective action
becomes Ie = i A / 2 / dt[z^dtz — dtz*z] which should possess the [/(I) gauge symmetry.
By the standard way of introducing the coupling of a gauge field, we can write the effective
action in the explicitly gauge invariant form 7e = z(A)/2 f dt[z^(dt+iAo)z— (dt—iAo)z^z],
where AQ is a f/(l) gauge field. Indeed, this action is invariant under the f/(l) gauge
transformations z —> eiaz and AQ —» AQ — dtoc. However, now the spinor z becomes
noncommutative since it arises from the Hopf mapping of the fuzzy S2. The matrix
realisation of z is required due to the non-trivial algebraic relations (15) [that is (16)].
The gauge field AQ should act on the matrix z by adjoint operation in order for the
covariant derivative dt + iA0 to have the derivative property. Finally, the effective action
projected to the lowest Landau level state is given by

(20) Ie = i

This matrix theory is similar to that describing £>0-branes in the string theory [4, 5]. We
can use this theory to investigate the fluctuations of the spherical brane, which describes
the excitations of the Hall fluids on S2, by expanding the matrix field in terms of the
fluctuations around the classical configurations [5].

First of all, let us introduce £r, r = 1,2, as the parameterising coordinates of the 5 2 .
The transformations of area preserving diffeomorphisms on this two-dimensional space
are given by

(21) r->r+

where /?"" can be locally written as

(22) 0

and w(£) is a 2-dimensional measure for the normalisation. The transformation rules of
the fields are determined by introducing the following Poisson brackets

(23) {A,B} = ^dTAdsB.
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Then the transformations of the fields are SXa = {/?,X°} and 6 A = dtfi + {P,A}. The
coordinates f, r = 1,2, parameterise not only the fields n" on S2 but also the spinor field
2 through the Hopf mapping n = z*az. However, in order to describe the dynamics of
the system consistently, the definition of the Poisson bracket (23) should coincide with
that of the fundamental Poisson bracket (15). Comparing (23) with (15), we obtain

0

where z\ = xl + ix2 and z2 = x3 + ix*. According to the transformation rule of the fields,
we have

(24) Sxi = ^ e '

and

(25) 5x{ = —^'drPd,!* = irre
T'&i

where i, j = 1,2 and i, j = 3,4. It should be understood that in the above transformations
the matrix variables are expanded in terms of the fluctuations A around the classical
solutions x{W and x*(°', which determine the classical spinor solution z^. These classical
solutions z^ and z^0^ obey the fundamental Poisson relation (15). Substituting the
matrix variable expansions with fluctuations into the effective action Ie, we get

e dt Tr f.20Ao

(26)

The quantities x1^ and x1^0^ are matrices of the classical solution to be related
with the noncommutative coordinates of the fuzzy S2 by means of the Hopf map-
ping. Since any matrix can be expressed in terms of a finite sum of the products
17 exp{ipiXiW}exp{iprxbW}, the N x N matrices A^ and Ay. can be thought of as func-
ii _

tions of z*(°) and z'(°). Based on this fact, we can derive the effective Lagrangian in the
continuum limit by taking iV large. The changes of the coordinates £r,r = 1,2 parame-
terising the spherical geometry induce the variations of the matrix fields a;̂ 0' and x^°\
In the continuum limit, the N x N matrices Af are mapped to smooth functions of the
noncommutative coordinates x'W and x'̂ 0 .̂ For such fields, we can introduce the Weyl
ordering to define a suitable ordering for their products in the effective Lagrangian. This
implies that the ordinary product is replaced by the noncommutative ^-product. Here,
the transition rules from fields on the noncommutative space to ordinary functions with
the star-product are

[/,g] -> i^e"drfdag,
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Thus the effective action describing the fluctuations is

(27) Ie = J d3ZAoJ° + ̂ J d^e^iAr * d,At + ̂ AT *Aa* At),

where A = 4\W and J° = A/2.
The first term in the above equation is the chemical potential and the second term

is the standard action for the £7(1) noncommutative Chern-Simons theory. Susskind
[19] proposed this theory as the description of the quantum Hall fluids on the plane.
This Chern-Simons theory necessarily describes an infinite quantum Hall system since
the non-commutativity condition requires an infinite dimensional Hilbert space. In other
words, the fields in this theory are infinite matrices. However, it is well known that
Haldane's description of the quantum Hall effect on a sphere is equivalent to that of
Laughlin's on a plane in the thermodynamic limit, taking the number of electrons iV
large. Our conclusion is that in large N, the quantum Hall system on the two-sphere
is also described by the U(l) noncommutative Chern-Simons theory. Physically, such a
conclusion is reasonable.

However, if we want to describe the quantum Hall fluids of a finite number of elec-
trons on the sphere, we must regularise the noncommutative Chern-Simons theory de-
scribing an infinite number of electrons. By means of the Hopf fibration, the spinor

z = I ' 1 can be used to describe the dynamics of the electrons on S2. So, unlike the

finite matrix model proposed by Polychronakos in [17], the regularised matrix model
for particles on S2 should correspond to the f/(l) noncommutative Chern-Simons theory
with spinor matrix fields. It should be pointed out that in such a model, the spinor z
must be regarded as a field with a single particle rather than that with two particles zt

and 22-

3. REGULARISED U(l) NONCOMMUTATIVE CHERN-SIMONS THEORY ON S2

In this section we analyse the regularised version of the £7(1) noncommutative Chern-
Simons theory on S2. This regularised matrix model should recover the U{\) noncommu-
tative Chern-Simons model on the plane in the large N limit. Explicitly, in the large N
limit, the equation of motion for Ao provides the non-commutativity of the coordinates,
which leads to the classical matrix commutator (9). Such a regularised matrix model
associated with the spinor matrix field z can be obtained by following the construction
of Polychronakos for the finite matrix model on the plane [17]. Notice that the Hopf
mapping makes the normal vector on S2 be related to the coordinates of S3 described

by the two-component spinor z = I 1 ), that is, n° = z^aaz. This mapping relation is
\Z2/

invariant under the U{\) gauge transformation z -> z! = e'° ( ) . So it is natural for us
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to propose the following action

(28) Sp = ^ f dt Ti{iZ^DtZ + 20AO - UJZ*Z} + ^ ( i t f - A0V) + h.c.

to describe the system with finite number of electrons living on the two-dimensional
sphere, where the covariant derivative is defined as Dt = dt + i[A>. ]• In the above

equation, * and Z are spinors with two components, defined by * = I ) and

Z = I * j , respectively. Za,a = 1,2 are N x N complex matrices, Ao is a N x N

hermitian matrix, and ^a,a = 1,2 are complex JV-vectors. They, in the fundamental
representation of the gauge group U(N), are transformed as

~\(29) Za -> UZaU

It is obvious that the action Sp is invariant under the U(N) gauge transformation. Thus
we can choose a gauge for Ao and impose the equation of motion of Ao as the constraint

(30) -[2

If we re-scale Z to y/2/XZ' and denote Z' as Z, the above equation can be rewritten as

(31) [z, zf] + $** = xe.

One sees from the action (28) that the conjugate momenta of Z and \& are Z* and
>£*, respectively. So they obey the classical matrix commutators

[(Za)mn, (Z\)k{\ = -iSmkSniSaf) and [(tfQ)m, (*^)n] = -iSmn6a/).

Since the spinor describes a particle moving on the two-sphere, we should regard such
spinor as a single oscillator. So there are N2 + N uncoupled oscillators in the present
system. Their Hamiltonian is

(32) H = u Tr Z*Z = u £ (Zl)mn(Za)nm.
m,n,ct

The constraint equation can be used to reduce the space of the quantum physical
states. Since the constrained matrix G = [Z, Z^\ + W* is the generator of the unitary
transformations for both Z and \If, it must obey the commutation relations of the U(N)
algebra. In terms of the basis {/, T°} of U(N), the matrix fields Z and Z^ can be
expanded as

^O«J^ & — *0 T / Za*- ) & — -̂ 0 ' /

o=l o=l
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Using these expansions, we can express the constrained matrix as

(34) Ga = Tr(GTa) = -if^z^ + &TaV,

where f0^ are the structure constants of SU(N), that is, [Ta,Tb] = ifabcTc.

After quantisation, the elements of the matrix fields Z, Z* and the vector fields vf,
\pt become operators, and satisfy the fundamental commutation relations

(35) [(ZQ)mn, (Zj)«] = SmkSnlSa0, [(9a)M, (*£)„] = 6mnSa0.

Furthermore, the expansion modes in the constrained matrix G also become operators.
The constrained operators Ga satisfy the SU{N) algebra, and can be regarded as the
generators of SU(N). Because the generators T" of SU{N) are traceless, the constrained
matrix G gives the traceless part of the constraint equation (31). After quantisation,
the operators Ga become the projected operators of the quantum physical states in the
matrix model

(36) Ga | Phys > = (Ga
z + G%) | Phys > = 0.

On the other hand, the trace part of (31) produces the following constraint condition of
the quantum physical states

(37) (*£*„ - 2NX6) | Phys > = 0.

Since we are considering a matrix model of finite number of particles moving on the
two-dimensional sphere, we must also impose the geometrical constraint on the quantum
physical states, which maps the manifold parameterised by the coordinates Z to the two-
sphere S2. As mentioned above, z^z = 1 together with the U{\) gauge transformations
of z, that is, z -> etaz, implies that the geometrical condition nana = 1 of 5 2 is satisfied.
In our matrix model, this condition becomes

(38) [Tt(Z*Z) - g] | Phys > , = 0,

where g is a parameter dependent on the model, and | Phys >, stands for the geometrically
stable configuration among the quantum physical states.

From the constraint condition (36), we know that the physical states must be the
singlet representation of SU(N), of which G" are the generators. However, G% are only
realised by the representations arising from products of the adjoint representations of
SU(N). Furthermore, Z\ and Z2 form a spinor, and describe the spin degree of freedom
of the particles. So they should appear in pairs in the singlet representation. Therefore,
the representations of G% contain only irreducible representations for which the total
number of boxes in the Young diagram is an integer multiple of 2N. Since the physical
states are invariant under the action of Ga

z + G%, the representations of Gz and G*
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must be conjugate to each other so that their product contains the singlet of SU(N).
Hence, the irreducible representations of G* must be given by the Young diagram with
the number of boxes being a multiple of 2N. Following the arguments in [17], from the
other constraint condition (37), one knows that the number of boxes equals to the total
number of spinor oscillators * ^ . Thus, we conclude

(39) X9 = k,

where k is an integer. This relation is the same as the one obtained in [17] for the finite
matrix model on the plane. Namely, the level k of the f/(l) noncommutative Chern-
Simons action does not change with the geometry on which the particles move.

In Haldane's description of the quantum Hall eifect, spinors are dynamical degrees of
freedom of the electrons. On the other hand, it can be easily seen from (36) and (37) that
the constraint of the SU(N) invariance (36) is consistent with the vanishing condition of
the total U(l) charge (37) only if the quantum physical states are spin singlets.

To summarise, the quantum physical states of our matrix model must possess the
following properties, (a) They are the singlet representations of the SU(N) group, (b)
They must be the spin singlets, which implies that the same number of spin-up and
spin-down components will be present in the quantum physical states, that is, they are
the SU(2) invariant states associated with the spin, (c) There are kN number of *{ and
kN number of ^2

 m t n e quantum physical states, where ${ and ^f\ forrn t n e spinor #*.
(d) The geometrically stable states among the quantum physical states should satisfy the
geometrical constraint condition (38).

Subsequently, we shall determine the quantum physical states of the matrix model,
which build up the physical Fock space of the model. Recall that Hamiltonian (32) of
the system can be expressed as wNz in terms of the number operator Nz = 51 4«2ra»

of the spinor oscillators Z. Prom this expression, we know that energy eigenstates will
be linear combinations of terms with a fixed number of Zt creation operators acting on
the Fock space vacuum |0 > defined by

(40) Zmn|0) = *B|0> = 0.

The constraint conditions of quantum physical states require that all physical states must
have a fixed number Nk of *} creation operators and the same number of *J creation
operators acting on the Fock vacuum. Furthermore, the number of Z\ creation operators
appearing in the physical state should be the same as that of Z\ creation operators. Thus,
any physical state which is an energy eigenstate is a sum of terms of the form

M Nk

m=l n=l

where the upper and lower represent fundamental and anti-fundamental indices oISU(N),
respectively.
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Now, the problem is how to construct a singlet of both SU(N) and spin from the
equation (41) by contracting all indices with the covariant tensors of SU(N). Since
the product of an epsilon tensor with upper indices and one with lower indices may be
rewritten as a sum of products of delta functions, we may only need to use one type of
epsilon tensors to do the contraction. Let us first of all establish a few lemmas, which
are generalisations of the facts given by Hellerman and Raamsolonk in the appendix of
their paper [10].

LEMMA 1. Setting x(u, v) = nC"*^ ~ uivi) wiere u and v are two components of

spmor z, that is, z = [ ], we have

w
N

(42) x(u,v) = eil™i"
7 1 = 1

_ N N
where we have abbreviated e("h"iiN U («""")•„fa""1)?,, as eil~iN f l (u""""11"1)*-

n=l " n=l
P R O O F : From the definition of \(uiv) and its expression (42), one can see that they

all are completely antisymmetric, and have the same order in u and v powers. Hence,
the definition of x(u, v) must equal to its expression up to a numerical factor. Taking a
fixed N, for example, N = 3, we can check that the numerical factor is equal to 1. D

N N N

LEMMA 2 . Any polynomial D(u,v) = sil"ifl H (un muS m)i m, where J2nt = Yfii,
may be written as a sum of terms of the form m~ 1 - 1 l - 1

(43) F(u,v) f
n=l

N _ N N N
here Si = ^2u[ and Si — J2v[. The equality £ m = J^fij is the conclusion of spin

i = l t = l i = l i = l
AT N _

singlet, which implies that JZ *c« = 13 *c<-
i=l n=l

LEMMA 3 . Suppose that *{ , $1 and Z\, Z\ be the N-dimensional vectors and the

N x N matrices of commuting variables, respectively. Thus, any expression of the form

N

V(9[, *J; Z\, Z\) = £M>-W

N

(44) = £«'•••*
1=1

may be uniquely expressed as a sum of terms of form

N N

(45) ^(tfI, *l; Z\, Z\) =
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The conclusion of this lemma, is also true conversely.

The proofs of the lemma 2 and the lemma 3 are completely parallel to those of the
fact 2 and the fact 3 provided by Hellerman and Raamsolonk. Here we shall omit them.
The above lemmas provide the basis for constructing the quantum physical states of our
matrix model.

Now, we return to the contraction of the Fock states (41). The problem is to de-
termine all possible ways of combining the symmetrised anti-fundamentals of ^{, ^2 to
form a singlet of SU(N). Unlike the finite matrix model of Polychronakos, this singlet
of SU(N) is also a spin singlet. Notice that Z},ty{ should be regarded as the spin-up
components and Z\, ^\ as spin-down components. Let us first of all contract Nk creation
operators ^\ with a fixed number of Z\ and Nk operators \I>2 wi*n certain number of Z\
to form a singlet of SU(N). Precisely, we first consider the indices of the Nk number
of \&{. The lower index of \t{ must be contracted with either the upper index of Z\ or
an epsilon tensor. After the contraction of \t{ with one Z\, the resulting object will still
have a single lower index, that is, (^1)1, (Zi)^ —> (^fzf)^. This lower index may again
be contracted with either the upper index of another Z\ or an epsilon tensor. Repeating
this process, we conclude that after contracting each ^\ with certain number of Z\ the
resulting object will only have one free lower index, that is, (^iZj"1)^. Similarly, we
have (*2Zf %. However, the indices of (^{zj*1)^ and {^\zfiyh belong to the same
particle label since Z\ and Z\ are respectively associated with the spin-up and spin-down
components of the particle. This implies that v&jzj"1 and ^Z^" 1 should appear in one
contracted element, that is, {^{zl^Zl"1^)^. The lower indices of JV such elements are
then contracted with the upper indices of an epsilon tensor to produce the fundamental
contraction block

N

(46) eil~4»

where we have used the abbreviation symbol defined in the lemmas.
Because there are Nk number of ^\ and Nk number of ty\ m t n e quantum phys-

ical states, the physical states are composed of k fundamental contraction blocks. So,
using the above lemmas, we can write down the minimal basis for the physical energy
eigenstates, which is a singlet for both SU(N) and the spin,
(47)

\{mh{ni},k)=£«»•••*n(*izitn%tHi*2)i, e i i - ' N n ^ i ^ " " " ^ " " ' ^ ) * , . io>,
1=1 ^ n=l /

where {nj} and {rii} satisfy the relation £ri j = Yin, derived from the spin singlet
t t

requirement. On the other hand, Z\, i = 1,2, may also be contracted with themselves,
leading to terms which are products of Tr(Z\),..., Ti(Z\N) and Tr(Z|) , . . . , Tr(Z^). By

https://doi.org/10.1017/S0004972700039502 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039502


[15] Finite matrix model 125

means of the Lemma 3, they can be used to build up another set of minimal basis for the
physical energy eigenstates

N • • - ( • • N \ k

t= l ^ n=l *'

N N __

The spin singlet condition of the physical states leads to ^ic, = Y ic*. Using the

Hamiltonian (32), we can easily obtain the energy eigenvalues corresponding to the above
bases. The former basis give the energy eigenvalues,

£({n,},fa},fc) =u)[(k- l)N(N -

(49) =« [ ( * •

and the latter basis gives rise to

N N N

(50) E({a},{ci},k) = uj[kN(N - 1) + ^2ici + ̂ 2^] =w[kN{N-l) + 2'*jrici].
t=l i=l i=l

From the expressions (47) and (48) of the minimal bases of the physical energy
eigenstates, we find that the physical ground state of the present finite matrix model is
given by

(51) |{0},{0},A;) = (eh"iN J J ^ i ^ " " ^ " " 1 * ! ) ^ ) |0) = Lf*|0).
^ n=l . '

Roughly speaking, after the formal substitutions *} -¥ 1, * | -> 1 and Z\j -* A\j,

Z\j -> A2j in (51), we get

n = l

Furthermore, if u and v are regarded as the eigenvalue parameters of A\ and A-i respec-
tively in the coherent state picture, we find that

<«, «|0, k) = (?>"<" fl(uN-nvn-l)in) = H(uiVj - ujVi)
k,

^ n=l ' i<j

which is the same as the ground state wave function of the two-dimensional quantum Hall
fluid on the spherical geometry [9]. However, as pointed out by Polychronakos [17], the
classical value of the inverse filling fraction is shifted quantum mechanically if one uses
the finite matrix Chern-Simons theory to describe the fractional quantum Hall states.
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This can be equivalently viewed as renormalising the Chern-Simons coefficient. In fact,
this level shift in the matrix Chern-Simons model is the same as the quantum mechanical
level shift in the corresponding Chern-Simon theory. The renormalisation of the level for
the latter theory has been done in [8] using the BRS invariant regularisation method.
This renormalisation leads to the following level shift: k -t k + sign(k)cv, where k is
the bare level parameter and cv the quadratic Casimir in the adjoint representation of
the gauge group. As mentioned previously, our finite matrix Chern-Simons model on
S2 corresponds to the U(l) Chern-Simons theory. Hence, physical states in the matrix
model at level A; should be identified with the quantum Hall states at the filling fraction
l/(k + 1) rather than 1/fc. That is, for filling fraction l/(k + 1) the Laughlin type wave
function in the two-dimensional spherical geometry can be equivalently described by the
physical ground state of the finite matrix Chern-Simons model on S2.

The reason that the state (51) is regarded as the physical ground state becomes clear
from the following discussions. The system considered by us is a priori 2N(N +1) uncou-
pled oscillators, which consist of 2iV2 harmonic oscillators from Z\, Z2 and 2iV harmonic
oscillators from ^\, ^2- However, they should be regarded as iV(iV +1) uncoupled spinor

oscillators since Z = I * ) and \& = I 1 must be viewed as the spinors describing the

particles on S2. Furthermore, what couples the spinor oscillators is N2 — 1 constraint
equations in the traceless part of the Gauss constraint (31). Effectively, we can describe
the system by means of the N + 1 independent oscillators. All SU{N) invariant states
can be spanned by the operators, Q\n = Tr(Zjn), Q\n = Tr(Z^n) with n = 1,2,..., N,
and Ltfc acting on the Fock vacuum. However, the spin singlet condition of physical states
results in the balancing of the numbers of {Q\n} and {Q2n} appearing in the physical
states. So there are TV independent spinor oscillators, which together with the operator
L^k provide the JV+1 independent oscillators. A useful conclusion in mathematics is that
the operators Q\t and Q2; for I > N can be expressed as homogeneous polynomials of
total order I in {Qu, Q\2, • ••, Q\N) and {Q\1} Q\2,..., Q*2N}, respectively, with constant
coefficients. Based on this conclusion and the commutation relations between Z and Z\
we have QuQ2iL^k\0) = 0, for all /. This means that the state Ltfc|0) = |0, k) is the phys-
ical vacuum with respect to all operators Qu and Q2|. Equivalently, the Laughlin-type
state |0, k) is the physical ground state of our finite matrix model. In the next section,
we shall discuss the excitation states produced by acting the creation operators Q\^ and
Qx2 on the ground state.

4. QUASI-PARTICLE EXCITATIONS AND HIERARCHY OF QUANTUM HALL FLUIDS

Following [17, 11], the low-lying excitations in our matrix model can be described
in terms of quasi-particles and quasi-holes. A quasi-particle state is obtained by peeling
a 'particle' from the surface of the Fermi sea. That is, one quasi-particle obtained by
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exciting a 'particle' above the Fermi level by energy amount nw is described by

m=l
N

m=2

The quasi-holes correspond to the minimal excitations of the ground state inside the
quantum Hall fluid. One quasi-hole excitation is obtained by creating a gap inside the
quantum Hall fluid with the energy increase mw, namely,

n=l

f f(53) e^" f[(^\zlN-n+1Zln-^l)in f[ ^\z\N-nZ\n-^\)l
n=m+l

Obviously, p}f = ft}*. So there is no fundamental distinction between 'particles' and
'holes' in the matrix model. Similarly, one can describe the quasi-particle excitation p%
and quasi-hole excitation /î J corresponding to the oscillator field Z^- We have

AT

m=l
N-\

(54) &"*»
m=l

and

n=l

f f(55) £<•-* f[{*\z\N-nZln-^\)in f[
n=l

Although all these excitations are fundamental ones in the finite matrix model, they
can not be regarded directly as the physical low-lying excitations. The physical exciting
states must obey the constraint condition, which is nothing but the spin singlet condition
of the physical states. Using the lemmas shown by us in the previous section, one finds
that all fundamental excitations can be equivalently expressed in the following form

(56) Pln2\0,k)
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N N _
where, ni = 5Z i<k and n2 = Yl "*• Indeed, they are exciting states with respect to the

Laughlin-type ground state |0,A;). The physical excitation states can be constructed by
using the expression (56) of the fundamental excitations, together with the spin singlet
condition of the physical states.

Following Haldane [9], we can construct the collective ground state of the two-
dimensional quantum Hall fluid from our matrix model by condensing the quasi-particle
and quasi-hole excitations. The condensation here means that the physical state including
the excitations becomes the Laughlin-type fluid state, like the physical ground state |0, k).
This Laughlin-type fluid state is given by

(57) (
^ n=l

where N\ = N/pi + 1, TV are divisible by pu and P u ' , P2 t ' stand for pJ0, P ^ , which
are defined by (56). In fact, the condition N\ = N/pi -I-1 is required by the fact that if
one uses the operators {<2in} and {Q^n} as a s e t 0I> independent creation operators, the
condition of operator powers n ^ N must be satisfied, otherwise, the constructed creation
operators will not be independent. Using the lemmas in the previous section, one can
easily check that the excitation fluid state indeed satisfies the spin singlet condition of
the physical states in the matrix model.

We can also construct the excitation states of the two-dimensional excitation fluid
by the procedure similar that used in the construction of the excitation states of |0, k).

To do this it is more convenient to use the latter basis for the Fock space of the matrix

model. Introducing operators Ps
ltj = J2 P^j a n ( i PV* = 2 Pi?tji w e c a n write theJ2 ^ V 2

n=l n=l
excitation states of the excitation fluid as

(58) \{cu},{cu},Pi,k) = n ^ ^ ^ ^ l O , * , * ) .

Although these states do not generally satisfy all the constraint conditions of the phys-
ical states in the matrix model, they are useful intermediate states for constructing the
physical ground state of the excitation fluid in the next level. Here, the further constraint
condition of the physical excitation states is the spin singlet condition. One can get the
next level of the Laughlin-type fluid state by further condensing the 'quasi-particle' and
'quasi-hole' excitations of the excitation fluid. Furthermore, the process of constructing
the two-dimensional excitation fluids in our matrix model can be iterated, which leads
to a hierarchy of two-dimensional quantum Hall fluid states. We here give the result of
the iterated quantum Hall states

(59) io,Pm,... ,P1, *>=nf^1 *"• n (
? = 1 ^ n=l
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where the iterated relation is given by pq(Nq — 1) + Nq+i = Nq-i with Nq = 0 for q > m

and No = N. The fundamental excitation operators of the excitation fluids, P$ = Pffi

and P$* = PQJ, are determined by the equations

Nm

f f\C\\ P \ f ) In <n >n 1"\ —

Nm Nm

where ni = J2 Jcj a n d ™i = Yl fij- The symmetric operators in (60) are defined as

Nm Nm

Psm-i = H{Pm-i)i an<^ ^sm-i = Z^O^m-i)*- IQ fec^i m t n e process of constructing
i=l ' 1=1

the hierarchy of the two-dimensional quantum Hall fluids, we have also constructed all
quasi-particle and quasi-hole excitations of the quantum Hall excitation fluids.

Haldane's idea on constructing the hierarchy of the fluid states is to consider a
field strength slightly different from its parent one. The hierarchical fluid states are
the low-energy states corresponding to this field strength, which can be considered as
being derived from the Laughlin-type fluid state associated with the parent field strength
through imbalancing quasi-particle and quasi-hole excitations. In our matrix model, the
physical states \0,pm,...,pi,k) correspond to Haldane's low-energy states. Physically,
the imbalance of quasi-particle and quasi-hole excitations leads to the degeneracy of the
lowest Landau level state in the hierarchical fluids so that

where Ny is the contribution from the imbalance of the quasi-particle and quasi-hole
excitations in the background of the quantum Hall fluid of electrons. Such Ni can be
obtained by solving the iterated equations pq{Nq — 1) + Nq+i = Nq-\. The result is

(62) N N • X

Pi + (I/PS + • • • + (1/Pm)) (Pi + (1/P2 + • • • + (1/Pm)))
1 I " f P m - 1 - 1

Pm-l "

The filling factor means the occupation factor of the lowest Landau level. For general
hierarchical fluid states, the imbalancing of excitations in the background of the quantum
Hall fluid of electrons can be affected by the imbalance of excitations of the excitation
fluids. This results in a different Ni. The spins of electrons in the hierarchical fluid state
are given by (l/2)k~(N-1) + Nr/2, where we have applied the level shifting k ->• ~k = k +1
while keeping the number of electrons N intact. So we obtain the filling factor of the
m-th hierarchical fluid state in the thermodynamic limit

N 1
(63) v = lim = = = .

" •" k{N - 1) + Nr + 1 k + (1/pi + (1/P2 + • • • + (l/pm)))
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Since the hierarchical quantum Hall fluid states are derived directly from the con-
densation of the excitations in the quantum Hall fluid of electrons, we find the energies of
these hierarchical fluid states by using the Hamiltonian expression of the matrix model.
Explicitly,

H\0,Pm, . • • ,Pi, k) = UJ \kN(N - 1) + 5>,JV,(AT, - 1)1 |0,pm,. . . , P l , fc).(64)

Substituting the iterated equations pq{Nq — 1) + Nq+i = Nq-\ into the above equation,
we obtain the energy of the m-th hierarchical fluid state

(65) E(pm,... ,pi, *) = u[kN(N - 1) + NNt].

The term involving Ni in the energy comes from the contribution of condensing the
excitations. This implies that these hierarchical fluid states are the sub-stable states of
the matrix model since their energies are higher than the energy of the parent fluid state,
that is, the physical ground state of the matrix model. It should be emphasised that
the hierarchical quantum Hall fluids are dynamically formed by condensing the 'quasi-
particle' and 'quasi-hole' excitations level by level. In other words, such hierarchical fluid
states consistently exist in our matrix model without the need of any modifications of
the model.

5. SUMMARY AND OUTLOOK

If one considers particle motion on the two-sphere in a radial monopole magnetic
field, the configurations of the particle coordinates can not be smoothly defined globally
over the entire S2 due to the singularity resulting from the Dirac monopole. The effective
action of the system can be described in a singularity-free way by using a nontrivial bundle
over S2, which can be obtained by the Hopf fibration with base S2. The existence of the
Dirac monopole in the 2-dimensional quantum Hall system makes the particle coordinates
on the two-sphere noncommutative. The appearance of such monopole also results in the
irreducible representations of the SU(2) algebra satisfied by the particle coordinates on
S2 to be truncated, leading to the fuzzy S2 geometry. We have explicitly shown that the
noncommutative structure of the fuzzy S2 appears indeed in the Haldane model of the
quantum Hall effect by restricting to the lowest Landau level state. In order to establish
the noncommutative field theory for the quantum Hall system, we have provided the
Hopf mapping for the fuzzy S2, that is, (14) and (15). This mapping plays an essential
role in our model. The Hopf fibration of S2 can be regarded as a principal fibre bundle
with the base space S2 and the U(l) structure group. This U(l) gauge group is iterated
in the formulation of the noncommutative field theory for the quantum Hall fluids on
S2. This implies that our model is a finite matrix version of the f/(l) noncommutative
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Chern-Simons theory on S2. It involves matrix vector fields of spinors, different from the
finite matrix model proposed by Polychronakos. In fact, the Hopf mapping of the fuzzy
manifolds related to the second Hopf map is very important for the description of the
quantum Hall effect on S4 and the open two-brane in M theory [21, 6]. It should be
interesting to further recognise the mathematical implication of Hopf mappings between
fuzzy manifolds and their applications in physics.

Hellerman and Raamsdonk [10] had speculated that the secondly-quantised field
theoretical description of the quantum Hall fluids for various filling fractions is given by
a regularised matrix version of the noncommutative f/(l) Chern-Simons theory on the
plane. We have attempted to establish the secondly-quantised field theoretical descrip-
tion of the quantum Hall fluids on the two-sphere for various filling fractions, and have
determined some essential physical properties of the quantum Hall fluids. Moreover, we
have determined the complete set of the physical quantum states for the finite matrix
model on S2, and shown the correspondence between the physical ground state of our
model and the Laughlin-type wave function. Although such a determination of physical
states is a generalisation of the work of Hellerman and Raamsdonk for the finite matrix
model on the plane, it is nontrivial because the spinor matrix vector fields are included
in our finite matrix model.

It is an interesting conclusion of our work that the hierarchical Hall fluid states
can be dynamically generated in the finite matrix model on S2. The formation of these
hierarchical Hall fluid states originates from the condensing of excitations of the quantum
Hall fluids level by level. This dynamical mechanism is consistent with the original idea
of Haldane. In the process of constructing the hierarchical Hall fluid states, we have
found the explicit forms of 'quasi-particle' and 'quasi-hole' excitations in each level of
the hierarchy. We believe that these results are helpful for studying the correlation and
interaction behaviour of the excitations in the quantum Hall effect.
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