ON CONFORMALLY FLAT SPACES WITH COMMUTING CURVATURE AND RICGI TRANSFORMATIONS

R. L. BISHOP AND S. I. GOLDBERG

Let (M, g) be a C^{∞} Riemannian manifold and A be the field of symmetric endomorphisms corresponding to the Ricci tensor S; that is,

$$
S(X, Y)=g(A X, Y)
$$

We consider a condition weaker than the requirement that A be parallel ($\nabla A=0$), namely, that the "second exterior covariant derivative" vanish $\left(\nabla_{X} \nabla_{Y} A-\nabla_{Y} \nabla_{X} A-\nabla_{[X, Y]} A=0\right)$, which by the classical interchange formula reduces to the property

$$
\begin{equation*}
R(X, Y) \circ A=A \circ R(X, Y) \tag{P}
\end{equation*}
$$

where $R(X, Y)$ is the curvature transformation determined by the vector fields X and Y.

The property (P) is equivalent to

$$
\begin{equation*}
R(A X, X)=0 \tag{Q}
\end{equation*}
$$

To see this we observe first that a skew symmetric and a symmetric endomorphism commute if and only if their product is skew symmetric. Thus we have

$$
\begin{aligned}
(P) & \Leftrightarrow R(Z, W) A \text { is skew symmetric } \\
& \Leftrightarrow g(R(Z, W) A X, X)=0 \\
& \Leftrightarrow g(R(A X, X) Z, W)=0 \\
& \Leftrightarrow(Q) .
\end{aligned}
$$

Let M be a connected conformally flat manifold of dimension $n, n \geqq 3$. Then the Ricci endomorphisms determine the curvature according to the formula

$$
\begin{equation*}
R(X, Y)=\frac{1}{n-2}(A X \wedge Y+X \wedge A Y)-\frac{r}{(n-1)(n-2)} X \wedge Y \tag{1}
\end{equation*}
$$

where $r=\operatorname{trace} A$ and $X \wedge Y$ denotes the endomorphism

$$
Z \rightarrow g(Y, Z) X-g(X, Z) Y .
$$

In this paper the connected conformally spaces satisfying (P) are classified.
Lemma 1. Let M be an n-dimensional conformally flat space satisfying (P).

Received July 27, 1971.

Then

$$
\begin{equation*}
A^{2}-\frac{r}{n-1} A=\rho I, \tag{2}
\end{equation*}
$$

where ρ is a C^{∞} function on M and I is the identity field.
Proof. Setting $Y=A X$ in (1) and then applying (Q) gives

$$
\begin{equation*}
B X \wedge X=0 \tag{3}
\end{equation*}
$$

where

$$
B=A^{2}-\frac{r}{n-1} A
$$

Since (3) may be interpreted as an exterior product, we conclude that every X is an eigenvector of B, so $B=\rho I$ for some scalar field ρ.

Lemma 2. Under the conditions in Lemma 1, A has at most the two eigenvalues

$$
\frac{r \pm\left[r^{2}+4(n-1) \rho\right]^{\frac{1}{2}}}{2(n-1)}
$$

Let M^{\prime} be the open subset of M on which $r^{2}+4(n-1) \rho \neq 0$. Then the eigenspaces of A form smooth complementary orthogonal distributions on each connected component of M^{\prime}.

The eigenvalues are the roots of

$$
\mu^{2}-\frac{r}{n-1} \mu-\rho=0 ;
$$

the rest is also routine.
Let us fix notation as follows: The eigenvalues of A are μ_{1} and μ_{2}. They are defined and continuous on all of M and distinct on M^{\prime}. The eigenspaces on M^{\prime} are D_{1} and D_{2}, of dimensions k and $n-k$. We shall use adapted orthonormal frames and coframes $\left\{X_{a}, X_{\alpha}\right\}$ and $\left\{\omega_{a}, \omega_{\alpha}\right\}, a, b=1, \ldots, k$ and $a, \beta=$ $k+1, \ldots, n$; moreover, $i, j=1, \ldots, n$. The corresponding connection and curvature forms are $\omega_{a b}$, etc. and $\Omega_{a b}$, etc.

Lemma 3. Let $K=\left(\mu_{1}-\mu_{2}\right) /(n-2)$. On D_{1} the sectional curvature is K, on D_{2} it is $-K$, and on mixed sections it vanishes; that is,

$$
\begin{aligned}
& \Omega_{a b}=K \omega_{a} \wedge \omega_{b} \\
& \Omega_{\alpha \beta}=-K \omega_{\alpha} \wedge \omega_{\beta} \\
& \Omega_{a \beta}=0
\end{aligned}
$$

Proof. Noting that $r /(n-1)=\mu_{1}+\mu_{2}$, formula (1) becomes

$$
R(X, Y)=\frac{1}{n-2}\left\{A X \wedge Y+X \wedge A Y-\left(\mu_{1}+\mu_{2}\right) X \wedge Y\right\}
$$

The rest follows by taking orthonormal eigenvectors for X and Y.

Note that M^{\prime} is just the set on which $K \neq 0$.
Theorem. Let M be an n-dimensional connected conformally flat space satisfying (P), $n \geqq 3$. Then M is one of four types:
(a) M is flat (M^{\prime} empty).

In the remaining cases $M=M^{\prime}$; that is, M is either flat everywhere or has no flat points; moreover, k is constant.
(b) M has constant curvature ($k=0$ or n).
(c) M is locally the Riemannian product of a k-dimensional space of constant curvature K and an $(n-k)$-dimensional space of constant curvature $-K(1 \leqq k \leqq n-1)$.
(d) There is an open C^{∞} mapt: $M \rightarrow \mathbf{R}^{+}$(positive reals) such that $K=K_{0} / t^{2}$ for some constant K_{0}. The map t is a Riemannian submersion having fibres which are totally umbilical hypersurfaces of constant (intrinsic) curvature $\left(1+K_{0}\right) / t^{2}(k=1$ or $n-1)$.

Proof. Define the vector valued 1-form $F=F^{i} \otimes X_{i}$ by

$$
F^{i}=A^{i}{ }_{j} \omega^{j}-\frac{r}{2(n-1)} \omega^{i},
$$

where $A^{i}{ }_{j}$ are the components of A. (The summation convention is employed here and in the sequel.) The X_{i} and ω^{i} are any local vector field basis and the dual basis of 1 -forms, respectively. If $\omega^{i}{ }_{j}$ are the connection forms for this basis we define the exterior covariant derivative $D F$ of F as the vector-valued 2 -form $(D F)^{i} \otimes X_{i}$, where

$$
(D F)^{i}=d F^{i}+\omega^{i}{ }_{j} \wedge F^{j} .
$$

It is easily checked that $D F$ is independent of the choice of basis. Using the first structural equation viz., $d \omega^{i}=-\omega^{i}{ }_{j} \wedge \omega^{j}$, and the coefficients $\Gamma_{k j}^{i}$ of $\omega^{i}{ }_{j}\left(\omega^{i}{ }_{j}=\Gamma_{k j}^{i} \omega^{k}\right)$, we obtain

$$
\begin{aligned}
(D F)^{i} & =\left(X_{k} A^{i}{ }_{j}+A^{i}{ }_{h} \Gamma_{k j}^{h}+A^{h}{ }_{j} \Gamma_{k h}^{i}-\frac{1}{2(n-1)} \delta^{i} X_{k} r\right) \omega^{k} \wedge \omega^{j} \\
& =\left(\nabla_{k} A^{i}{ }_{j}-\frac{1}{2(n-1)} \delta^{i}{ }_{j} \nabla_{k} r\right) \omega^{k} \wedge \omega^{j},
\end{aligned}
$$

where $\delta^{i}{ }_{j}$ is the Kronecker delta. As a tensor, this has the components

$$
(n-2) C_{j k}^{i}=\nabla_{k} A_{j}^{i}-\nabla_{j} A_{k}^{i}-\frac{1}{2(n-1)}\left(\delta_{j}^{i} \nabla_{k} r-\delta_{k}^{i} \nabla_{j} r\right),
$$

where $C^{i}{ }_{j k}$ is Weyl's 3 -index tensor. For a conformally flat space it is known that $C^{i}{ }_{j k}=0$. We use this by calculating $D F$ in terms of an orthonormal basis adapted to the distributions D_{i}. In particular we can lower all superscripts.

Thus,

$$
\begin{aligned}
F_{a} & =A_{a i} \omega_{i}-\frac{r}{2(n-1)} \omega_{a} \\
& =\mu_{1} \omega_{a}-\frac{1}{2}\left(\mu_{1}+\mu_{2}\right) \omega_{a} \\
& =L \omega_{a},
\end{aligned}
$$

where $L=(n-2) K / 2$, and

$$
\begin{aligned}
F_{\alpha} & =A_{\alpha i} \omega_{i}-\frac{r}{2(n-1)} \omega_{\alpha} \\
& =\mu_{2} \omega_{\alpha}-\frac{1}{2}\left(\mu_{1}+\mu_{2}\right) \omega_{\alpha} \\
& =-L \omega_{\alpha},
\end{aligned}
$$

from which

$$
\begin{align*}
d F_{a} & =d L \wedge \omega_{a}+L d \omega_{a}+\omega_{a b} \wedge L \omega_{b}-\omega_{a \beta} \wedge L \omega_{\beta} \tag{4}\\
& =d L \wedge \omega_{a}-L \omega_{a i} \wedge \omega_{i}+L\left(\omega_{a b} \wedge \omega_{b}-\omega_{a \beta} \wedge \omega_{\beta}\right) \\
& =d L \wedge \omega_{a}-2 L \omega_{a \beta} \wedge \omega_{\beta} \\
& =0, \\
d F_{\alpha} & =-d L \wedge \omega_{\alpha}+2 L \omega_{\alpha b} \wedge \omega_{b} \tag{5}\\
& =0 .
\end{align*}
$$

When $k=n, K$ is constant and $M^{\prime}=M$ follows immediately from Schur's theorem (or (4)).

Otherwise, by Cartan's lemma, (4) says that for each $a, d L$ and the $\omega_{a \beta}$ are dependent at most on ω_{a} and the ω_{α} and (5) says that the same forms are dependent at most on ω_{α} and the ω_{b}. Thus if $2 \leqq k \leqq n-2$ we can make two choices of α for each a and vice-versa, showing that $d L=0$ and $\omega_{a \beta}=0$. Consequently, L and $K=2 L /(n-2)$ are constant and D_{1} and D_{2} are parallel (in particular, completely integrable).

When $k=1$ we still have by (5) that $d L$ and $\omega_{\alpha 1}$ are dependent at most on ω_{α} and ω_{1}. Making two choices of α, we get $d L=H \omega_{1}$ for some C^{∞} function H. Then, (4) reduces to $\omega_{1 \beta} \wedge \omega_{\beta}=0$, so the $\omega_{1 \beta}$ cannot depend on ω_{1}. Hence $\omega_{1 \alpha}=C_{\alpha} \omega_{\alpha}$ (α not summed) for some scalar field C_{α}. But then by (5) again

$$
-H \omega_{1} \wedge \omega_{\alpha}+2 L\left(-C_{\alpha} \omega_{\alpha}\right) \wedge \omega_{1}=0
$$

that is, $C=C_{\alpha}=H / 2 L$ is the same for all α. The geometrical interpretation of the relation $\omega_{1 \alpha}=C \omega_{\alpha}$ is that D_{2} (the distribution annihilated by ω_{1}) is completely integrable and has totally umbilical leaves. In fact, $d \omega_{1}=$ $-\omega_{1 \alpha} \wedge \omega_{\alpha}=0$, so locally ω_{1} has a primitive u; that is, $d u=\omega_{1}$.

A differential equation for C may be obtained from the fact that the curvature of the section $X_{1} \wedge X_{\alpha}$ vanishes:

$$
\begin{aligned}
\Omega_{1 \alpha} & =d \omega_{1 \alpha}+\omega_{1 \beta} \wedge \omega_{\beta \alpha} \\
& =d C \wedge \omega_{\alpha}+C d \omega_{\alpha}+\omega_{1 \beta} \wedge \omega_{\beta \alpha} \\
& =d C \wedge \omega_{\alpha}-C \omega_{\alpha i} \wedge \omega_{i}+C \omega_{\beta} \wedge \omega_{\beta \alpha} \\
& =\left(\frac{d C}{d u}-C^{2}\right) \omega_{1} \wedge \omega_{\alpha} .
\end{aligned}
$$

Therefore,

$$
\frac{d C}{d u}-C^{2}=0
$$

Solving this, we obtain either $C=0$ or

$$
C=-\frac{1}{u-u_{0}}=-\frac{1}{t},
$$

where u_{0} is a constant and hence t is another primitive for ω_{1}. The signs of C and ω_{1} can be changed, if necessary, so as to make $t>0$.

If $C=0$, then it must be so on connected sets. Hence $H=d L / d u=$ $2 L C=0$ and L, and hence K, are constant. Moreover, $C=0$ says D_{1} and D_{2} are parallel so we are back in case (c).

If $C \neq 0$, then we solve $H=2 L C$ for L, obtaining $L=L_{0} / t^{2}$, and hence $K=K_{0} / t^{2}$ for constants L_{0} and K_{0}. Thus, $t=\left(K_{0} / K\right)^{\frac{1}{2}}$ is a primitive for ω_{1} in each component of M^{\prime}. We don't know yet whether there is only one component, so K_{0} might have several values. As a map $t: M^{\prime} \rightarrow \mathbf{R}^{+}, t$ is clearly a Riemannian submersion whose fibres are the leaves of D_{2}. As such it is distance-non-increasing. Now suppose that $M^{\prime} \neq M$. Let γ be a curve entirely in M^{\prime} except for the last point $\gamma(1) \in M-M^{\prime}$. The length of $t \gamma$ is at most that of γ and is therefore bounded. Hence $t \gamma(1)=\lim _{s \rightarrow 1}-t \gamma(s)$ exists and is not ∞. It cannot be 0 either, for then there would be a sequence of plane sections converging to a section at $\gamma(1)$ and having curvatures diverging to $\lim _{t \rightarrow 0} K_{0} / t^{2}$. A similar difficulty is presented at any other finite limit for $t_{\gamma}(1)$, since we would then have curvatures converging to nonzero values contradicting the fact that $M-M^{\prime}$ is flat. Hence, $M=M^{\prime}$.

To complete the proof we calculate the intrinsic curvature of the leaves of D_{2}. The connection forms $\omega_{\alpha \beta}$, restricted to a leaf, become the connection forms of the leaf. Thus, denoting the curvature forms of a leaf by $\Phi_{\alpha \beta}$, the second structural equation for a leaf is

$$
\begin{aligned}
d \omega_{\alpha \beta} & =-\omega_{\alpha \gamma} \wedge \omega_{\gamma \beta}+\Phi_{\alpha \beta} \\
& =-\omega_{\alpha i} \wedge \omega_{i \beta}+\Omega_{\alpha \beta} \\
& =-\omega_{\alpha \gamma} \wedge \omega_{\gamma \beta}+\left(C^{2}+K\right) \omega_{\alpha} \wedge \omega_{B} .
\end{aligned}
$$

Evidently the curvature forms of the leaf are

$$
\Phi_{\alpha \beta}=\left(C^{2}+K\right) \omega_{\alpha} \wedge \omega_{\beta},
$$

so the curvature of the leaves of D_{2} is $\left(1+K_{0}\right) / t^{2}$.
Remark. If M is complete, then the case (d) cannot occur, since the base of a complete Riemannian submersion must be complete.

University of Illinois,
Urbana, Illinois

