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Abstract

We present a short proof of a folklore result: the Girard translation from the simply typed

lambda calculus to the linear lambda calculus is fully complete. The proof makes use of a notion

of logical predicates for intuitionistic linear logic. While the main result is of independent

interest, this paper can be read as a tutorial on this proof technique for reasoning about

relations between type theories.

Capsule Review

In this paper, the author shows that the well-known Girard translation of propositional

intuitionist logic into propositional linear logic is not only sound and conservative (in the

traditional sense that the interpretation preserves and reflects equality of terms), but that it is

also “fully complete”, meaning that each term of an interpreted type is provably equal to an

interpreted term.

The principal technical device used to prove the result is the notion of (parametrized)

logical predicate. The extension of this traditional notion of proof theory (deriving from

Tait’s computability predicates, via more recent work of Plotkin and Loader, among others)

to the present context is not at all trivial, and is one of the main points of interest in the

present paper.

The proof (and the notion of logical predicate) is presented syntactically (to make “the

presentation self-contained” and to make the paper more accessible “for a wider audience”,

according to the author). The reader is referred to a companion paper where the true

categorical underpinnings of the ideas may be found. This reviewer found that semantic

approach preferable – both technically and conceptually. However, for many readers, this

“category-free” presentation may be clearer, and indeed, may encourage them to investigate

the general tools provided by the semantic approach.

The paper is quite short, and is a good illustration of the power of the ideas behind it.

1 Introduction

There is a celebrated translation from the propositional intuitionistic logic to the

propositional (intuitionistic) linear logic called Girard translation (Girard, 1987),

which decomposes the intuitionistic implication “→” in terms of the linear im-

plication “(” and the modality “!”. Substantial work on this translation has

been carried out over decades, both from syntactic (proof-theoretic) and seman-

tic (category-theoretic) sides: here we shall mention only Danos et al. (1995) and
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78 M. Hasegawa

Benton et al. (1993a) as relevant sources of these two aspects. The soundness and

conservativity of Girard translation, not just at the provability (types) level but also

the proofs (terms) level, are widely known. In particular, the soundness has a clean

semantic explanation in terms of monoidal comonads (or symmetric monoidal ad-

junctions), see ibid. Many attempts to apply linear logic to functional programming

are based on these facts; see, for instance, Braüner (1995, 1996) for a study of the

translation from PCF to its linear variant.

Here we show that Girard translation satisfies a stronger property called full

completeness, which states that, in addition to the soundness and conservativity, if

a type of linear logic is definable in intuitionistic logic via Girard translation then

its proofs are also definable in the intuitionistic logic. More precisely, we show

the following result for the Girard translation (−)◦ from the simply typed lambda

calculus to the linear lambda calculus (Theorem 5.6; the detailed explanation of

notations will be given in sections 2 and 3):

Let Γ be a context and σ a type of the simply typed lambda calculus, and suppose that

Γ◦ ; ∅ ` M : σ◦ is derivable in the linear lambda calculus. Then there exists Γ ` N : σ

derivable in the simply typed lambda calculus such that Γ◦ ; ∅ `M = N◦ : σ◦ holds.

In other words, full completeness ensures that Girard translation involves no “junk”,

thus strengthens the claim that Girard translation is the canonical translation from

intuitionistic logic to linear logic. This seems to be folklore among specialists, though

we are not aware of this result explicitly mentioned in the literature.

Our proof (sections 4 and 5) is short, but not as straightforward as those of

soundness and conservativity. It involves a notion of logical predicates (unary logical

relations) for linear logic, which were originally introduced for category-theoretic

models of linear logic (Hasegawa, 1999a). The idea of logical relations is not new

at all, which goes back to the Tait–Girard methods (Tait, 1967; Girard, 1972) for

showing the strong normalization of typed lambda calculi. The applications to the

lambda-definability problems have been studied since Plotkin’s work (Plotkin, 1980).

The logical predicate used in this paper is parameterized; the significance of such

Kripke logical predicates (logical relations with varying arity) was demonstrated by

Jung and Tiuryn (1993) as a complete characterization of lambda-definability – see

also Alimohamed (1995). Technically, the most crucial point in our proof is that we

derive such a complete logical predicate for the simply typed lambda calculus from

a logical predicate for the linear lambda calculus, via the Girard translation. We will

explain this step in detail.

In this paper, we present the proof in an entirely syntactic manner, primarily

to make the presentation short, self-contained and also easier to access for wider

audience. It is true that the original insight of this proof came to the author when

he was studying the categorical approach to logical predicates mentioned as above.

However, while the categorical axiomatics provides a more uniform approach to this

kind of problems, it also requires several delicate issues on the category-theoretic

models, which are far from trivial. We believe that our “specialized” presentation

better shows the essential structure of the proof than an explanation involving the

category-theoretic details, even for those familiar with category-theoretic models of
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linear logic. See Section 6 for further discussions, including a sketch of how the

proof can be carried out within the categorical framework.

We hope that this paper serves as an accessible tutorial which demonstrates how

the traditional idea of logical relations can be applied for reasoning about linear

logic, and more generally about the relations between type theories.

2 Preliminaries

In this paper, we consider the minimal setting for discussing Girard translation,

thus that involving only the intuitionistic implication, linear implication and the

modality!. We use the standard simply typed lambda calculus as the source language.

The target language is the fragment of intuitionistic linear logic with ( and !,

formulated as a linear lambda calculus below. Our presentation is based on a dual-

context type system for intuitionistic linear logic (called DILL) due to Barber and

Plotkin (1997), but any equivalent theory should work as well – see Barber and

Plotkin (1997) for an equivalence result with a single-context system in Benton et

al. (1993b), and also with Benton’s LNL logic (Benton, 1995; Benton and Wadler,

1996).

A set of base types (b ranges over them) is fixed throughout this paper.

2.1 The simply typed lambda calculus

We employ a fairly standard syntax:

Types and Terms

σ ::= b | σ → σ

M ::= x | λxσ.M | MM

We may omit the type superscripts of the lambda abstraction for ease of presentation.

Typing

Γ1, x : σ,Γ2 ` x : σ

Γ, x : σ1 `M : σ2

Γ ` λxσ1 .M : σ1 → σ2

Γ `M : σ1 → σ2 Γ ` N : σ1

Γ `MN : σ2

where Γ is a context, i.e. a finite list of variables annotated with types, in which

a variable occurs at most once. We note that any typing judgement has a unique

derivation.

Axioms

(λx.M)N = M[N/x]

λx.Mx = M (x 6∈ FV (M))

We assume usual conditions on variables for avoiding undesirable captures. The

equality judgement Γ ` M = N : σ, where Γ ` M : σ and Γ ` N : σ, is defined

as the congruence relation on well-typed terms of the same type under the same

context, generated from these axioms.
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2.2 The linear lambda calculus

In this formulation of the linear lambda calculus, a typing judgement takes the form

Γ ; ∆ ` M : τ in which Γ represents an intuitionistic (or additive) context whereas

∆ is a linear (multiplicative) context.

Types and Terms

τ ::= b | τ( τ | !τ

M ::= x | λxτ.M | MM | !M | let !xτ be M in M

Typing

Γ ; x : τ ` x : τ Γ1, x : τ,Γ2 ; ∅ ` x : τ

Γ ; ∆, x : τ1 `M : τ2

Γ ; ∆ ` λxτ1 .M : τ1 ( τ2

Γ ; ∆1 `M : τ1 ( τ2 Γ ; ∆2 ` N : τ1

Γ ; ∆1]∆2 `MN : τ2

Γ ; ∅ `M : τ

Γ ; ∅ `!M :!τ

Γ ; ∆1 `M :!τ1 Γ, x : τ1 ; ∆2 ` N : τ2

Γ ; ∆1]∆2 ` let !xτ1 be M in N : τ2

where ∆1]∆2 is a merge of ∆1 and ∆2 (this notation is taken from (Barber and

Plotkin, 1997)). Thus, ∆1]∆2 represents one of possible merges of ∆1 and ∆2 as finite

lists. We assume that, when we introduce ∆1]∆2, there is no variable occurring both

in ∆1 and in ∆2. We write ∅ for the empty context. Again we note that any typing

judgement has a unique derivation.

Axioms
(λx.M)N = M[N/x]

λx.Mx = M

let !x be !M in N = N[M/x]

let !x be M in !x = M

C[let !x be M in N] = let !x be M in C[N]

where C[−] is a linear context (no ! binds [−]); formally it is generated from the

following grammar.

C ::= [−] | λx.C | CM | MC | let !x be C in M | let !x be M in C

The equality judgement Γ ; ∆ ` M = N : τ is defined in the same way as the case

of the simply typed lambda calculus.

Notation: We will use ≡ for the syntactic identity on terms, and ≡α for the α-

congruence relation.

As discussed by Barber and Plotkin (1997), we can regard our linear lambda

calculus as a term-assignment system for a natural deduction presentation of (the

!, (-fragment of) intuitionistic linear logic. It can be easily shown that one can

derive a judgement x1 : τ1, . . . , xm : τm ; y1 : τ′1, . . . , yn : τ′n ` M : τ iff one can prove

!τ1, . . . , !τm, τ
′
1, . . . , τ

′
n ` τ in the original sequent calculus by Girard.
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3 Girard translation

The Girard translation from the simply typed lambda calculus to the linear lambda

calculus is described as follows.

b◦ = b

(σ1 → σ2)◦ = !σ◦1 ( σ◦2

x◦ ≡ x

(λxσ.M)◦ ≡ λy!σ◦ .let !xσ
◦

be y in M◦
(MN)◦ ≡ M◦(!N◦)

Note that the translation of lambda abstraction involves a new variable y, thus

depends on a choice of such variables. This means that some results on this

translation are stated only up to α-congruence.

Proposition 3.1 (type soundness)

If Γ `M : σ is derivable in the simply typed lambda calculus, then Γ◦ ; ∅ `M◦ : σ◦
is derivable in the linear lambda calculus, where Γ◦ = x1 : σ◦1 , . . . , xn : σ◦n for

Γ = x1 : σ1, . . . , xn : σn.

Proof

See the derivations

Γ◦1, x : σ◦,Γ◦2 ; ∅ ` x : σ◦

Γ◦ ; y :!σ◦1 ` y :!σ◦1 Γ◦, x : σ◦1 ; ∅ `M◦ : σ◦2
Γ◦ ; y :!σ◦1 ` let !x be y in M◦ : σ◦2

Γ◦ ; ∅ ` λy.let !x be y in M◦ :!σ◦1 ( σ◦2

Γ◦ ; ∅ `M◦ :!σ◦1 ( σ◦2

Γ◦ ; ∅ ` N◦ : σ◦1
Γ◦ ; ∅ `!N◦ :!σ◦1

Γ◦ ; ∅ `M◦(!N◦) : σ◦2
q

Lemma 3.2

M◦[N◦/x] ≡α (M[N/x])◦.

Proposition 3.3 (soundness)

If Γ `M = N : σ then Γ◦ ; ∅ `M◦ = N◦ : σ◦ holds.
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Proof

It suffices to see that the axioms are soundly interpreted:

((λx.M)N)◦ ≡ (λy.let !x be y in M◦)(!N◦)
= let !x be !N◦ in M◦
= M◦[N◦/x]

= (M[N/x])◦ (by Lemma 3.2)

(λx.Mx)◦ ≡ λy.let !x be y in M◦!x
= λy.M◦(let !x be y in !x)

= λy.M◦y
= M◦

q

Proposition 3.4 (conservativity)

If Γ◦ ; ∅ `M◦ = N◦ : σ◦ then Γ `M = N : σ holds.

Proof

This can be shown by defining an “inverse” (−)• of (−)◦ which forgets any infor-

mation on linearity: b• = b, (τ1 ( τ2)• = τ•1 → τ•2, (!τ)• = τ• and

x• ≡ x

(λxτ.M)• ≡ λxτ
•
.M•

(MN)• ≡ M•N•
(!M)• ≡ M•

(let !xτ be M in N)• ≡ N•[M•/x]

With little effort, one can show that (σ◦)• = σ and (M◦)• ≡α M, and also (−)• satisfies

the type soundness and soundness. So we can conclude that Γ◦ ; ∅ `M◦ = N◦ : σ◦
implies Γ `M ≡α (M◦)• = (N◦)• ≡α N : σ. q

4 Logical predicates

Let us first sketch our plan. We are going to answer a “lambda-definability problem”

of the following form: any term of the linear lambda calculus of a lambda-definable

type is lambda-definable via Girard translation (up to the provable equality). Logical

predicates are suitable for proving such issues. In particular, from Jung and Tiuryn

(1993) and Alimohamed (1995), we know that there exist “complete” logical pred-

icates which characterize all definable elements in arbitrary models of the simply

typed lambda calculus. These logical predicates are parameterized, for dealing with

free variables properly.

Our situation calls for one more twist. Since we are reasoning about a translation

between type theories, we also need to relate a logical predicate on the target theory

to a logical predicate on the source theory. Suppose that we have a sound translation

Φ : T1 → T2 from a type theory T1 to another T2, defined inductively along the

type structure of T1. Moreover suppose that we are able to define a notion of logical

predicates on T2 by induction along the type structure of T2. We then should be able
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to show the “Basic Lemma” for logical predicates, that is, any term of T2 satisfies

a logical predicate. On the other hand, a logical predicate on T2 induces a logical

predicate on T1 via the translation Φ – a predicate on a T1-type σ is given by the

predicate on Φ(σ). If the induced logical predicate is complete, i.e. characterizes all

T1-definable elements, then we are done; following the Basic Lemma, we know that

any elements of T2 of the T1-definable types satisfy the complete logical predicate,

thus are definable in T1 via Φ.

The critical step in this proof is to find the logical predicate on T2 so that it induces

a complete logical predicate on T1. Fortunately, in the case of Girard translation,

this is achieved quite smoothly, as will be shown in the next section.

In the rest of this section, we introduce a notion of parameterized logical predicates

and show the Basic Lemma.

Notation: We write Λ and Λ` for the sets of terms of the simply typed lambda calculus

and the linear lambda calculus, respectively, and use the following notation:

Λσ(Γ) = {M ∈ Λ | Γ `M : σ}
Λ`
τ(Γ; ∆) = {M ∈ Λ` | Γ ; ∆ `M : τ}

Also, we introduce a partial order 6 on the contexts of the simply typed lambda

calculus by Γ1 6 Γ2 iff Γ2 = Γ,Γ1 for some Γ.

Definition 4.1

Let τ be a type of the linear lambda calculus. A family P of sets indexed by the

contexts of the simply typed lambda calculus is called a Λ-predicate on τ when

P (Γ) ⊆ Λ`
τ(Γ
◦ ; ∅) and

• (renaming) for Γ = x1 : σ1, . . . , xn : σn and Γ′ = y1 : σ1, . . . , yn : σn, M ∈ P (Γ)

implies M[y1/x1, . . . , yn/xn] ∈ P (Γ′);
• (weakening) P (Γ) ⊆ P (Γ′) if Γ 6 Γ′;
• (equality) if M ∈ P (Γ) and Γ◦ ; ∅ ` M = M ′ : τ is provable in the linear

lambda calculus, then M ′ ∈ P (Γ).

The following lemmas determine how to interpret the connectives ( and ! on

Λ-predicates.

Lemma 4.2

Let P1, P2 be Λ-predicates on τ1 and τ2, respectively. Then there is a Λ-predicate

P1 ( P2 on τ1 ( τ2 defined by

(P1 ( P2)(Γ) =

{M ∈ Λ`
τ1(τ2

(Γ◦ ; ∅) | N ∈ P1(Γ′) and Γ 6 Γ′ imply MN ∈ P2(Γ′)}.
Lemma 4.3

Let P be a Λ-predicate on τ. Then we have a Λ-predicate !P on !τ given by

(!P )(Γ) = {M ∈ Λ`
!τ(Γ

◦ ; ∅) | M =!N for ∃N ∈ P (Γ)}.
Definition 4.4

A family {Pτ} of Λ-predicates is called a logical Λ-predicate when
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• Pτ is a Λ-predicate on τ; and

• Pτ1(τ2
= Pτ1

( Pτ2
and P!τ =!Pτ hold.

Proposition 4.5 (Basic Lemma)

Let {Pτ} be a logical Λ-predicate. For Mi ∈ P!τi(Γ) (1 6 i 6 m), M ′j ∈ Pτ′j (Γ)

(1 6 j 6 n) and x1 : τ1, . . . , xm : τm ; y1 : τ′1, . . . , yn : τ′n ` N : τ, it follows that

let !x1 be M1 in . . . let !xm be Mm in N[M ′1/y1, . . . ,M
′
n/yn] ∈ Pτ(Γ).

Proof

Induction on the derivation of terms (typing judgements). Below we write Σ for

x1 : τ1, . . . , xm : τm and ∆ for y1 : τ′1, . . . , yn : τ′n. Since P!τi =!Pτi , the statement above

is equivalent to the following: for Mi ∈ Pτi(Γ) (1 6 i 6 m), M ′j ∈ Pτ′j (Γ) (1 6 j 6 n)
and Σ ; ∆ ` N : τ, it follows that

N[M1/x1, . . . ,Mm/xm,M
′
1/y1, . . . ,M

′
n/yn] ∈ Pτ(Γ).

So we often consider this statement instead of the one above.

1. (The cases of variables) The statement obviously holds.

2. (Introduction of () Consider Σ ; ∆ ` λz.N : τ′′1 ( τ′′2. Suppose Mi ∈ Pτi(Γ)

(1 6 i 6 m) and M ′j ∈ Pτ′j (Γ) (1 6 j 6 n). Then λz.N[Mi/xi,M
′
j/yj] ∈ Pτ1(τ′′2 (Γ)

because, for any L ∈ Pτ′′1 (Γ′) (Γ 6 Γ′),

(λz.N[Mi/xi,M
′
j/yj])L = N[Mi/xi,M

′
j/yj , L/z] ∈ Pτ′′2 (Γ′)

by the induction hypothesis on N.

3. (Elimination of () Consider Σ ; ∆ ` N1N2 : τ′′2 derived from Σ ; ∆1 ` N1 :

τ′′1 ( τ′′2 and Σ ; ∆2 ` N2 : τ′′1 (thus ∆ = ∆1]∆2). Suppose that Mi ∈ Pτi(Γ)

(1 6 i 6 m) and M ′j ∈ Pτ′j (Γ) (1 6 j 6 n). Then (N1N2)[Mi/xi,M
′
j/yj] ∈ Pτ′′2 (Γ)

because

(N1N2)[Mi/xi,M
′
j/yj] ≡ (N1[Mi/xi,M

′
j/yj])(N2[Mi/xi,M

′
j/yj])

while N1[Mi/xi,M
′
j/yj] ∈ Pτ′′1(τ′′2 (Γ) and N2[Mi/xi,M

′
j/yj] ∈ Pτ′′1 (Γ) by induc-

tion hypotheses.

4. (Introduction of !) Consider Σ ; ∅ `!N :!τ. Suppose that Mi ∈ Pτi(Γ) (1 6
i 6 m). Then (!N)[Mi/xi] ≡!(N[Mi/xi]) ∈ P!τ as N[Mi/xi] ∈ Pτ by induction

hypothesis.

5. (Elimination of !) Consider Σ ; ∆ ` let !z be N1 in N2 : τ′′2 derived from

Σ ; ∆1 ` N1 :!τ′′1 and Σ, z : τ′′1 ; ∆2 ` N2 : τ′′2 (thus ∆ = ∆1]∆2). Suppose that

Mi ∈ Pτi(Γ) (1 6 i 6 m) and M ′j ∈ Pτ′j (Γ) (1 6 j 6 n). Then

(let !z be N1 in N2)[Mi/xi,M
′
j/yj] ≡

let !z be N1[Mi/xi,M
′
j/yj] in N2[Mi/xi,M

′
j/yj] ∈ Pτ′′2 (Γ)

by the induction hypothesis on N2, where N1[Mi/xi,M
′
j/yj] ∈ P!τ′′1 (Γ) because

of the induction hypothesis on N1.

q

Note that for closed terms Basic Lemma takes a simpler from:
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Corollary 4.6 (Basic Lemma for closed terms)

Let {Pτ} be a logical Λ-predicate. Then, for any ∅ ; ∅ ` M : τ, it follows that

M ∈ Pτ(∅).

5 Proof of fullness

Definition 5.1

For a type σ and a context Γ of the simply typed lambda calculus, define:

Pσ(Γ) = {N ∈ Λ`
σ◦ (Γ

◦ ; ∅) | N = M◦ for ∃M ∈ Λσ(Γ)}.
Thus Pσ(Γ) is the set of the terms of linear lambda calculus with type σ◦ and

context Γ◦ ; ∅ which are definable in the simply typed lambda calculus via Girard

translation. It is immediate to see that

Lemma 5.2

Pσ is a Λ-predicate on σ◦.

Notice that the family {Pσ} is not a logical Λ-predicate, as they are defined only

on the types of the form σ◦. However, the following lemma shows that {Pσ} can

be seen a logical predicate for the simply typed lambda calculus, if we define the

arrow-type construction on Λ-predicates by P→P ′ = !P(P ′.

Lemma 5.3

Pσ1→σ2
= !Pσ1

( Pσ2
.

Proof

Suppose that M ∈ Pσ1→σ2
(Γ), thus M = M ′◦ for some M ′ ∈ Λσ1→σ2

(Γ). Let N ∈
!Pσ1

(Γ′) for some Γ′ > Γ; this means that N =!N ′ for some N ′ ∈ Pσ1
(Γ′), therefore

N =!N ′ =!(N ′′◦) for some N ′′ ∈ Λσ1
(Γ′). Then MN = M ′◦(!(N ′′◦)) ≡ (M ′N ′′)◦, hence

MN ∈ Pσ2
(Γ′). Therefore M ∈ (!Pσ1

( Pσ2
)(Γ).

Conversely, suppose that M ∈ (!Pσ1
( Pσ2

)(Γ). Since !z ∈!Pσ1
(z : σ1,Γ), we have

M(!z) ∈ Pσ2
(z : σ1,Γ), hence there exists N ∈ Λσ2

(z : σ1,Γ) such that M(!z) = N◦.
Now observe that

M = λy!σ◦1 .My

= λy!σ◦1 .M(let !zσ
◦
1 be y in !z)

= λy!σ◦1 .let !zσ
◦
1 be y in M(!z)

= λy!σ◦1 .let !zσ
◦
1 be y in N◦

≡α (λzσ1 .N)◦.
So we conclude that M ∈ Pσ1→σ2

(Γ). q

It is instructive to observe that how parameters are used to provide free variables

in this proof; if we begin with a notion of logical predicates with no parameters

(which completely makes sense), we have only Pσ1→σ2
⊆ !Pσ1

(Pσ2
in general.

As explained at the beginning of the previous section, our goal is to find a logical

Λ-predicate {P∗τ} which induces {Pσ}, i.e. P∗σ◦ agrees with Pσ . This is achieved by

the following observation, which may be seen the Girard translation on the logical

predicates.
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Proposition 5.4

Consider a family {Pσ} indexed by the types of the simply typed lambda calculus,

such that Pσ is a Λ-predicate on σ◦ and satisfies Pσ1→σ2
= !Pσ1

(Pσ2
. Then there is

a logical Λ-predicate {P ∗τ } such that P ∗σ◦ = Pσ holds for any σ.

Proof

Define the logical Λ-predicate {P ∗τ } by P ∗b = Pb, P
∗
τ1(τ2

= P ∗τ1
( P ∗τ2

and P ∗!τ =!P ∗τ .

We proceed by induction on types. The case of base types trivially holds. For arrow

types σ1 → σ2, we have

P ∗(σ1→σ2)◦ = P ∗!σ◦1(σ◦2
= !P ∗σ◦1 ( P ∗σ◦2
= !Pσ1

( Pσ2
(by induction hypothesis)

= Pσ1→σ2
(by assumption on {Pσ})

q

Putting these observations together, we have

Corollary 5.5

Define a logical Λ-predicate {P∗τ} by P∗b = Pb, P∗τ1(τ2
= P∗τ1

( P∗τ2
and P∗!τ =!P∗τ .

Then P∗σ◦ = Pσ holds for any type σ of the simply typed lambda calculus.

Theorem 5.6 (fullness)

Let Γ be a context and σ a type of the simply typed lambda calculus, and suppose

that Γ◦ ; ∅ ` M : σ◦ is derivable in the linear lambda calculus. Then there exists

Γ ` N : σ derivable in the simply typed lambda calculus such that Γ◦ ; ∅ ` M =

N◦ : σ◦ holds.

Proof

We apply the Basic Lemma to the logical Λ-predicate {P∗τ}. Suppose that Γ◦ ; ∅ `
M : σ◦ and Γ = x1 : σ1, . . . , xn : σn. Since xi ∈ Pσi(Γ) = P∗σ◦i (Γ), it follows that

M ≡M[x1/x1, . . . , xn/xn] ∈ P∗σ◦ (Γ) = Pσ(Γ). Hence there exists N ∈ Λσ(Γ) such that

M = N◦ is provable in the linear lambda calculus. q

Note that one can take M• as N, since M = N◦ implies M• = (N◦)• ≡α N.

6 Discussion

6.1 Adding constants, axioms and other connectives

Our proof works well under the presence of constants, where we assume that the

linear lambda calculus has, for each constant c of type σ of the simply typed lambda

calculus, a constant (say c) of type σ◦. Then Girard translation is extended on

constants by c◦ ≡ c, and all the results are shown in the same way as above.

It is also natural to ask if we can have additional axioms (equations) without

destroying fullness of Girard translation. As easily seen, this is the case, provided the

translation is sound for the additional axioms, i.e. respects the induced congruence

relations. On the other hand, its conservativity becomes nontrivial, especially when
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we have axioms on the terms of types of the linear lambda calculus which are not

definable in the simply typed lambda calculus.

One may wish to deal with other connectives, like cartesian products and the

singleton type (for both the source and target calculi), and also the tensor products

and the unit type (for the linear lambda calculus). We can apply our proof technique

for such extensions, without essential change. Alternatively, it is possible to use

a more semantics-oriented notion of logical predicates, provided the notion of

“models” of the system with such connectives is well-established – see below.

6.2 Categorical logical predicates

As noted in the introduction, our logical predicates are a syntactic variant of those

introduced in Hasegawa (1999a) for category-theoretic models of intuitionistic linear

type theories. Since the semantic models of such linear type theories are reasonably

well-understood in terms of symmetric monoidal categories and related structures,

we can obtain a logical predicate using model-construction techniques for such

structures.

In particular, it is known that a term model of intuitionistic linear logic (with I ,

⊗, ( and !) may be given as a symmetric monoidal adjunction C →⊥← D between

a cartesian closed category (ccc) C and a symmetric monoidal closed category D

(Bierman, 1995; Benton, 1995; Benton and Wadler, 1996; Barber and Plotkin, 1997),

and Girard translation amounts to the ccc-functor from a free ccc (the term model of

the simply typed lambda calculus) to C. Then full completeness of Girard translation

is no other than the full faithfulness of this functor, which can be shown using the

technique of categorical glueing (Mitchell and Scedrov, 1992). Using the categorical

axiomatics, we can formulate (and generalize) the notion of logical predicates for

arbitrary categorical models, and carry out the proof. We can show that any logical

predicate on C can be derived from a logical predicate on D (though it seems that

this step does not follow directly from the axiomatics alone), which subsumes the

proof in the last section.

The benefit of this semantics-oriented view is not only the conceptual simplicity

(for those familiar with the correspondence between syntax and semantics) but also

the elegant proofs which avoid handling (often too complicated) syntax directly.

Also, for some connectives (including products) the proofs work smoothly. We think

that sums do cause nontrivial difficulties, firstly because the lambda-definability

problem with sums itself is a substantial question (see Fiore and Simpson (1999) for

relevant results), and also because the relation of sums in C and in D seems less

clear.

Let us emphasize that these category-theoretic techniques are available only

after establishing the tight correspondence between the syntax and the categorical

models. In particular, we have to describe the intended structure explicitly, because

the proof makes essential use of the notion of structure-preserving functors. While

the categorical axiomatics provides a clean and general understanding of the subject,

it requires far more technical delicacy than the type-theoretic language does.
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6.3 Further applications, related work

In this work we used parameterized logical predicates for showing Lemma 5.3

(the crucial lemma saying Pσ1→σ2
= !Pσ1

( Pσ2
) which fails to hold if we use

non-parameterized predicates. The role of parameters is the same as that of the

parameters of the complete logical predicates of Alimohamed (1995) and Jung and

Tiuryn (1993). On the other hand, we have introduced (Hasegawa, 1999a, b) param-

eterized logical predicates for overcoming the difficulties arising from the linearity.

The key trick there is that the parameters are asked to form not just a poset (as in

this paper) but a category with structure (typically a symmetric monoidal category),

which provides a rich structure on the category of predicates.

Since the source language of Girard translation is not a linear type theory, we

did not need the full expressive power of parameterized logical predicates in ibid.

which, for example, can be used for showing the full completeness of translations

from MILL (multiplicative intuitionistic linear logic) to its extension with ! called

DILL (Barber and Plotkin, 1997), from the type theory for action calculi (Barber et

al., 1998) to DILL (or Benton’s LNL logic (Benton, 1995)), and also from MILL to

MLL (Multiplicative Linear Logic). For the last case we use the technique of double

glueing (Tan, 1997), which generalizes Loader’s linear logical predicates (Loader,

1994). In the recent work by Streicher (1999), an application of logical predicates

for a definability problem on full classical propositional linear logic is developed.
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