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Varieties of soluble groups
and a dichotomy of P. Hall

J.R.J. Groves

Let A denote the variety of all abelian groups and, for each

prime p , let A be the variety of all elementary abelian

p-groups. Let V lie a subvariety of a product of (finitely

many) varieties each of which is either soluble or Cross. The

results of this paper are the following.

(i) If £ contains no AA , then V. is finite exponent by

nilpotent.

(ii) If £ contains no A A , then V. is nilpotent by finite

exponent.

(iii) If V contains no A A and no AA , then V is the= =p= =p =

join of a nilpotent variety and a variety of finite

exponent.

(iv) If V, does not contain (var <?)A for any nonabelian

finite simple group G , then ^ is soluble by finite

exponent.

For soluble V. , the results (i)-(iii) are shown to extend a

dichotomy discussed by P. Ha I I.

1. Introduction

In this paper, we prove a number of results on varieties of groups.
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392 J.R.J. Groves

These are 'external results' in the sense of Kovacs and Newman [72]; that

is, they take the form 'if V. is a variety with no subvariety from a class

W , then . . .' . We also show how our results contribute to giving an

extension of a dichotomy of P. Hal I .

By means of commutator-subgroup functions, Ha I I defined a special

class of varieties of groups - the class of all varieties obtainable from

the trivial variety by commutation. He then showed that certain natural

dichotomies of this class can be used to distinguish properties of soluble

groups (see [5; pp. U22-U23], [7; pp. 601-603], [S; pp. 328, 333] for a

discussion of these dichotomies).

It is natural to ask whether one may find similar dichotomies of all

soluble varieties of groups and whether these also distinguish interesting

group theoretical properties. Among other dichotomies, the special class

of varieties defined by Ha I I splits into those which are nilpotent and

those which contain the variety of all metabelian groups. Here we show

that there is a reasonably complete set of dichotomies in the class of all

soluble varieties which extend this dichotomy.

Before we state our results, we refer to Hanna Neumann's book [74] for

notation, terminology and basic results, with the following exceptions: we

use doubly underlined Roman capitals, rather than German capitals, for

varieties; we use V.(G) for the verbal subgroup of a group

corresponding to the variety V. ; and we do not reserve G, H for

relatively free groups nor F for an absolutely free group.

We first state our main theorem in a somewhat restricted form. (This

is the version we require to extend the Hall dichotomy. The result appears

in full strength as Theorem C.)

THEOREM A. Let ^ be a soluble variety.

(i) If AA ^ ^ for all primes p , there exist natural numbers

k, I and a such that V 5 A ^ .

(ii) If A A ^ V for all primes p , there exist -natural numbers

k, I and a such that V S N ^ .
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Varieties of soluble groups 393

(Hi) If AA ^ V_ and A A ^ V for all primes p , there exist a

nilpotent variety B. and a variety £ of finite exponent such

that ^ = W v P .

We note that (Hi) follows immediately from (i) and (ii) and

LEMMA A. Let V__ be a (not necessarily soluble) variety and suppose

that V. - B N A jj B for some natural numbers n and a . Then there

exist a nilpotent variety M and a variety £ of finite exponent such

that V = JJ v P .

We require two more results for this discussion.

PROPOSITION 1. Let V be a soluble variety such that

(i) all subvarieties of V_ A AH^A can be generated by the finite

groups they contain.

o
Then, if V, does not contain A ,

(ii) there exist natural numbers n and c such that V s B K B
= rtc=*

PROPOSITION 2. Let V, be a soluble variety. If A A ^V for all

(not necessarily distinct) primes p and q , then \f is nilpotent.

Proposition 1 is proved in [3]. Although Proposition 2 appears to be

well known, we are not aware of a proof in the literature and so we sketch

one here. Suppose, then, that A A i V for all primes p and q .

=p=q

Firstly, by Theorem A (iii) , we may suppose that V_ has finite exponent.

Thus, since it is soluble, V̂  is locally finite and so can be generated by

its finite groups. However, as Kov£cs and Newman have noted 111; p. 222],

a nonnilpotent finite group of least order in V. would generate an A A
~ ~~y~°and so all the finite groups of \f must be nilpotent. But by a result of

the same authors [JZ; Theorem 5], there is a bound on the class of the

nilpotent groups in V_ , since A A ^ ̂  for all primes p . The

proposition follows.

Although we have stated these results as external results - in which

form they naturally arose - rather than as dichotomies, it is easily seen

that they may all be regarded as natural extensions of the relevant
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dichotomy of Ha I I (with the proviso that if there exist varieties which do

not satisfy (i) of Proposition 1, the extension will not be quite so

natural in this case). Now Hall [7; p. 602] commented that his dichotomy

distinguished the properties 'nilpotent', 'locally polycyclic' and 'locally

finitely related'. We note that the dichotomies described in Proposition 1

and in (ii) of Theorem A distinguish, for a soluble variety V_ , the

properties 'all torsion-free groups of V_ are locally polycyclic (locally

finitely related)' and 'all groups of V, are locally polycyclic (locally

finitely related)', respectively. Also, the dichotomies described in (i)

of Theorem A and in Proposition 2 distinguish the properties 'all

torsion-free groups of V_ are nilpotent' and 'all groups of V. are

nilpotent', respectively. Thus these results give a reasonably complete

extension of Hall's dichotomy.

In order to state a generalization of Theorem A we shall require a

definition. We shall say that a variety is an SC-variety if it is a

subvariety of a product of varieties each of which is either soluble or

Cross. Thus the class of SC-varieties is precisely the smallest class of

varieties which contains all soluble varieties and all Cross varieties and

which is closed under the product operation and the operation of taking

subvarieties.

As a step towards extending Theorem A (and as an interesting parallel

to (ii) of Theorem A ) , we shall prove

THEOREM B. Let V be an SC-variety. If (var G)A $ V for all

nonabelian finite simple groups G , then there exist natural numbers I

and n such that V £ A B .
= = =n

By a straightforward induction on the minimal number of varieties

required when we express V as a subvariety of a product of soluble and

Cross varieties, it is easily seen that it will be sufficient to prove

LEMMA B. Let S, be a Cross variety and suppose that Y. £ §A for

some natural number I . If (var G)k^ $ V_ for all nonabelian finite
simple groups G , then there exist natural numbers m and n suah that
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Finally, we come to our generalization of Theorem A.

THEOREM C. Let V be an SC-variety.

(i) If AA ^ V̂  for all primes p , then there exist natural

numbers n and c such that V 5 B N .

(ii) If A A | V for all primes p , then there exist natural

numbers n and c such that V « N B

(iii) If AA ^ V. and A A $ £ /br al£ primes p 3 then there exist

a nilpotent variety j| and a variety J? 0/ finite exponent

such that X = I v £ •

We note, firstly, that (iii) is an immediate consequence of CiJ and

(ii) and Lemma A. Also, (ii) follows immediately from Theorem B and (ii)

of Theorem A. Hence it only remains to prove (i), and by an induction

similar to that in the reduction of Theorem B to Lemma B, it will suffice

to prove

LEMMA C. Let V. be an SC-variety contained in AB for some

natural number m . If AA ^ V_ for all primes p , then there exist

natural numbers n and c such that V^ 5 B N .

2. Preliminary results

In many ways, our results were motivated by the classification of

metabelian varieties of exponent zero, due to Kovacs and Newman and given

as 6.1.1 and 6.1.2 of Bryce [2]. We quote these here for convenience. (We

call a variety torsion-free if i ts free groups are torsion-free.)

p
PROPOSITION 3. Let V be a proper subvariety of A and suppose

that X is not of finite exponent. Then there exist a unique torsion-free

variety J? and a unique natural number n , such that

V = T v A A v P
= = —ft— —

where £ has finite exponent.

PROPOSITION 4. The varieties N A A A are torsion-free and
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join-irreducible. Every torsion-free proper subvariety of A can be

uniquely expressed as an irredundant join of some of these torsion-free

join-irreducibles.

The following lemma, which is a consequence of Proposition 3, is

proved in [3; p. 9?].

LEMMA 1. Let n and I be natural numbers and V_ a variety such

that A A ^ V. for every prime divisor p of n . Then there exists a

natural number m (depending only on n, I and V̂  ) such that B (C)

centralises H whenever H 5 G and H € A A B .
= =n

The first of the next two lemmas, which appears as Lemma 6 of

Smel'kin [19] (and which is proved in [4]), may be regarded as the

'torsion-free counterpart' of a theorem of Hall [6] (as sharpened by-

Stewart [20]]. The second is a varietal corollary which follows from the

first by an easy induction on the solubility length of the variety, using

the information obtainable from Proposition 1* as a starting point. (if

A? is a torsion-free nilpotent group and L 2 N , we denote the isolator of

L in N by I^L) .]

LEMMA 2. Suppose that N is a torsion-free nilpotent group of class

a j that N is a normal subgroup of a group G and that G/IAN') is

nilpotent of class d . Then G is nilpotent of class at most

cd + (

LEMMA 3. Let ^ be a variety such that A 2 | v , and let I be a

natural number. Then there is a bound on the nilpotency class of the

torsion-free nilpotent groups of h. A V .

We also recall the concept of the verbal Fitting subgroup, introduced

in [3], which is defined as the product of the nilpotent verbal subgroups

of a group. Since, as we noted in [3], in a relatively free group of

infinite rank the centraliser of a verbal subgroup is verbal, the verbal

Fitting subgroup contains its centraliser in this case.

It is well known that a finitely generated nilpotent group has a

torsion-free subgroup of finite index. We shall next prove a
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generalization of this result which applies to arbitrary nilpotent groups.

If G is an arbitrary group, we denote the fe-th term of the upper central

series of G by Z,(G) (so that Z (G) is the centre of G ) .

LEMMA 4. Let N be a nilpotent group of class a whose torsion

subgroup T is of finite exponent, m say. Then, for some natural number

k s &A
N^ 1-s t°psion-free.

Proof. Step 1. Suppose firstly that a 2 2 and N' 5 T . Let

a, b 6 N . Then, since N has class at most 2 ,

[ab)n = anbn[b, a

for any natural number n . Hence, since [b, a] ( N' , which has exponent

dividing m , the map of N defined by T : a •*• a will be an

endomorphism of N with kernel T and image B« (#) . Hence

B__(il/) = N/T which is torsion-free and so the lemma is proved in this

Step 2. Suppose now that N' 5 T and N has class a . Step 1

enables us to commence an inductive proof and so we may suppose that

£,(ff/N 1(^)j , that is B-(N) .^ ^N)/® ^N) , is torsion-free for some

natural number I . Thus

5 Bj(ff) n N' 5 Bj(ff) n T < B^(ff) n !fic_1(ff)

Hence B.(iV) has class at most 2 and (BAN))' < BAN) n 2" , the torsion

subgroup of £i(^) • We may now apply Step 1 to show that, for some

k d K (the set of natural numbers), JkdyCtf)) , and so B,AN) , is

torsion-free, completing the proof of the lemma in this case.

Step 3. We claim that, if N satisfies the conditions of the lemma,

then the torsion subgroup of N/2 AN) has finite exponent dividing m .

For, let a € N , n I N and suppose that a" f Z AN) • Then, for all
C™'-I-

sequences b , ..., b . of elements of N , a", fc., ..., b \ = e .
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Thus [a, b±, ..., hQ_^\
n = e and so [a, b±

 b
a-^\

 € T • H e n c e

[a, b±, ..., bo_^\
m = [a™, bv ..., bc_^ = e

and so a € Z (tf) , proving our claim.

Step 4. We are now ready to complete the proof of the lemma by-

induction on a . The case a = 1 was included in Step 1. As the torsion

subgroup T n 2 ,(#) of Z (W) is certainly of finite exponent, we may

apply the induction hypothesis to show that there is a natural number j

such that B. (Z 1(ff)) is torsion-free. Now J3.(Z _x(ff)J 2 # and, since

by Step 3 the torsion subgroup of N/Z AN) has finite exponent, so also

does that of ff/j3.(Z (N)) . Since N' < Z (ff) , U/B.(Z ,(»))] has

finite exponent. Thus we may apply Step 2 to show that, for some natural

number i , J^U/JI-tZ 1(^)) » that is

is torsion-free. Since J5-(Z (71/)) is torsion-free, this implies that so

is B.(iV).J.(Z -,(#)] , and therefore also B.(tf) , completing the proof of

the lemma.

The following lemma was inspired by Lemma 2.2 of Neumann [75] and may

be regarded as an 'upside-down' version of that result.

LEMMA 5. Let G be a group which generates the variety J/ and let

A be an infinite set of natural numbers. Let {H \ n t A} be a set of

groups with the following property:

there is a normal subgroup L of H and an epimorphism

X : L •*• G and an element h of H , such that, if n

denotes the restriction to L of the inner automorphism

induced by h 3 then the eptmorphisms r\ X : L -*• G

(0 < i 2 n) are independent in the sense that, whenever
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gQ, ..., g is a sequence of elements of G , there exists an

element I of L such that

ir^X = g. (o 2 i 5 n) .
n n 1*

Then VA 5 var{# | n € A} .

(Note: The purpose of this rather unwieldy looking lemma is to deal

with the case where L has a normal subgroup K - the kernel of X
n n n

II Hnsuch that LI (I K is isomorphic to a direct power of G . The

epimorphisms r\ X give the canonical epimorphisms onto the direct factors

and their independence expresses the fact that the above quotient is indeed

a direct power.)

Proof. Let w = w[x. , . .. , x } be a word which is not a law of VA .

It will evidently suffice to show, for some n t. A , that w is not a law

of E . Now the independence of the epimorphisms n X implies that h
n * e * n n n

has order at least n + 1 . Since A is an infinite set,

4 < var{# | n ( A} and we may suppose that W fc X' .

Let C = gp(c) be an infinite cyclic group. Then, by 22.M* of [14],

G wr C generates VA . Hence w is not a law of G wr C and therefore

there is a homomorphism £ : X •*• G wr C such that w£, # e . Suppose that

£ : x. •+ a <j>. where s{i) is an integer and <j>. is an element of the

base group of G wr C . Define 6 : X + X by

and £ ' : ^ + C v r C by

C : x x * c , i ^ <()i_1 ( i n ) .

Then 6 £ ' = £ and s o w6£' * e . Now, by 22.31* o f [ 7 4 ] ,
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where E(J) = + 1 , 1 5 i(j) £ r , fc(«7') is an integer. But, since

W i X' ,

Hence

and so, for some a € C ,

Denote - mln[{k{j)}) by a and max({fe(j)}) by b and let n be

J 3

an element of A such that n i. a+b . We shall show that w is not a law

of H ; to ease notation we shall drop the subscript n . For each

ordered pair of integers u, v satisfying 1 5 w £ r , 0 5 u £ n define

g = <p [a ) . Then, using the independence condition on the f| X ,

there exist, for each u , elements I in L such that

u

Define T : ̂r •+ H by

T : a; H- h

: x. H- Z (2 < i s r+1)

: x. H- e otherwise.

'Z'

Then
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Hence

r

m+a-a-k(j]

Thus W 6 T # e and so u is not a law of # , completing the proof.

For the proof of Lemma B, we shall also need the following lemma - a

varietal analogue to Theorem 5-3 of Neumann [73]t

LEMMA 6. If £ is a locally finite variety, then [E, g] < B^A for

some natural number n .

Proof. Let the exponent of P be JI . By a theorem of Bryant [J],

B V Â  is finitely based; suppose that w = w[x , ..., x.) is a basis

for its laws. Denote » £]) F and let ^, ..., y,be a free

generating set of F . Then F/g(F) is a finitely generated group of g

and so is finite. Hence g(F) is a central subgroup of finite index in F

and so, by Theorem 5-3 of [13], F' is finite. In particular, B (F) n F'

is of finite exponent, I say. Thus, since u(i/. , ..., y,) € B (F) n F' ,

Denote ^([.E, £]) by H and let j/ , ..., y,, ... be a free

generating set of H . Then the relation w[y., ..., yA = e holds in H

also. But the word w is a basis for the laws £>f the variety A v B and

so (A v B )(H) 5 fl1 n B (fl) is generated by all endomorphic images of

w[y , ..., y,) . Evidently each of these images is of order dividing I .
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Since H' n B^U) is abelian, even central, (A V B ) (ff) is thus of

finite exponent dividing Z- . Therefore # € B7 (A V B } £ B7B A £ B7 A
=t *= =m' =l—m— —IMF*

and so [IS, £] £ B A where n = Im .

The proof of the following lemma is not difficult and we shall omit

it.

LEMMA 7. Let G be a group with torsion-free derived group. Then

var G is either abelian or torsion-free.

Finally, we formalize a technique introduced in [3; p. 99] for finding

minimal counterexamples in results of the type we consider.

LEMMA 8. Suppose that A is a set of finitely based varieties and

that U = {£ | £ ^ V̂  for all ^ € A} . Then each element of U contains

a minimal element of 0, .

3. Proof of Theorem A

3.1 Proof of (i). For a proof by contradiction, we suppose that V.

is a counterexample to (i) of Theorem A. Since W_ is soluble, the

condition that jV £ B N for some natural numbers n and a is

equivalent to the condition that V_ £ A,N for some natural numbers

k, Z and a . However, by 3't.l't of [74] and repeated application of

Theorem 3.1 of Higman [9], every variety in the set jikJL I ̂ > 1, o E Nf

is finitely based. Thus an application of Lemma 8 shows that V̂  contains

a subvariety which is a minimal counterexample. We may suppose without

loss of generality that V̂  is this minimal counterexample.

Denote FJ^J by F and let T be a verbal torsion subgroup of F .

Since T is soluble, if it were non-trivial, there would be a non-trivial

abelian subgroup A of T , verbal in T and so verbal in F . Also A

would have a fully invariant subgroup, B , of finite exponent and so B

would be verbal in F (for example, since A must have a non-trivial

p-element for some prime p , we could take B as the subgroup of all

elements of order dividing p ). Then F/B would generate a proper

subvariety of V, and it is immediate that X could not be a minimal
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counterexample in this case. Thus T is trivial. In particular, every

nilpotent verbal subgroup of F is torsion-free. Since the conditions of

the theorem imply that A ^ V_ , Lemma 3 shows that V. has a bound on the

class of its torsion-free nilpotent groups. Thus the verbal Fitting

subgroup of F , N say, is nilpotent and torsion-free.

Suppose that F/N is non-trivial. Then there is a verbal subgroup,

A say, of F such that A/N is abelian and non-trivial. Since A' 5 N .

A/I~{N') is a metabelian group with torsion-free derived group. By Lemma

7, var [A/I^(N' )) is either abelian or torsion-free. The conditions of

the theorem, together with Proposition k, however, show that the

torsion-free metabelian subvarieties of V. are nilpotent. Hence, in

either case, A/I(N') is nilpotent. Thus, by Lemma 2, A is nilpotent.

Then, since A is verbal in F , A < N , contradicting the assumption

that A/N is non-trivial. So F/N is trivial and V_ is nilpotent and so

certainly not a counterexample as we supposed. The proof of (i) is

complete.

3.2 Proof of (ii). The proof is again by contradiction. Since, by

Theorem 3.1 of Higman [9] all varieties of the set {N. B | a, n i N} are

finitely based, we may, as in 3.1 suppose that V is a minimal

counterexample to (ii) of Theorem A. Denote F (V.) by F . Then the

proof splits into two cases:

a) F has a non-trivial, verbal, torsion subgroup.

In this case, as in 3.1, F has a non-trivial, elementary abelian, verbal

subgroup, A say. Then F/A generates a proper subvariety of V, and so

F/A £ H B for some natural numbers a, n . Since A A i V. for all

primes p , Lemma 1 shows that B [F) centralises A for some natural

number m . Now

(B(F).A n B^(F).A)/A < B (F).A/A = B (F/A) ,

which is nilpotent. Thus, since A is central in B (F).A , and so in

).A n B (F).A) , the latter subgroup is also nilpotent. Since
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*V(jL(F)-A n B (F)-A) is of finite exponent, T/ cannot be a

counterexample as we supposed, which completes the proof in this case,

b) F has no non-trivial, verbal, torsion subgroup.

In this case, as in 3.1, the verbal Fitting subgroup, N say, of F is

nilpotent and torsion-free. Since F is soluble N is non-trivial and so

F/H generates a proper subvariety of V_ ; suppose that F/N 6 N. B

(c, n € N) . Let A be the subgroup of F defined by A/N = Z (B {F/N)) .

Then A is verbal in F and since B (F/N) is nilpotent, A/N is

non-trivial. Let I denote -^M(^' ) • Then A/I is metabelian and the

derived group of A/I is torsion-free. Hence, by Lemma 7 and Proposition

'•j A/I i N jS for some natural numbers d, m . Put B {A/I) = B/2 .
—c*—in ^TW

Then B is verbal in F , and B/I , and so BN/I , is nilpotent. Hence,

by Lemma 2, Bff is nilpotent. Thus B 5 I and so A/N £ B . But

was defined as Z1(^j(F/ff)}, so by Corollary 1.62 of [JS], j3̂ (F/ff) has

finite exponent. Thus F/ff has finite exponent, V. cannot be a

counterexample in this case either, and the proof is complete.

3.3 Proof of Lemma A. Denote F^V) by F , B (F) by B , N^F)

by N , and the torsion subgroup of the nilpotent group B by T . Since

B n N € B , T > B n N . Thus T/B n N = T/T n N = TN/N . But F//I7 , as

a nilpotent free group, has maximum condition on its fully invariant

subgroups (this follows from 3U.lU of [J4]); in particular, the torsion

subgroup of F/N has finite exponent. Thus TN/N = T/BnN has finite

exponent and so T has finite exponent. Hence, by Lemma it, ^,(5) n T = E

for some natural number m . Therefore,

B (B) n N = B (S) n (BnN) 5 B (B) n T = F. .

Since B (B) > B (F) and N = N (F) , V = (B A V ) V (N A v) and the

proof is complete.

4. Proof of Lemma B

The proof is by contradiction; we suppose that V is a
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counterexample to the lemma. By repeated application of Theorem 3.1 of

Higman [9], every variety P^B is finitely based. Thus an application of

Lemma 8 shows that V, contains a subvariety which is a minimal

counterexample and evidently we may suppose that V_ is this minimal

counterexample. Denote ?„,{!£,) by F and let y be a free generator of

F .

Since F € SA and the Cross variety S^ has only finitely many

subvarieties, A_ (F) has a minimal verbal subgroup, W say; evidently,

W is verbally simple and is verbal in F . Since W € ̂  and subvarieties

of Cross varieties are Cross, var W can be generated by a finite group.

Let 0 be a finite group of least order generating var W .

We claim that G is simple. For, let N 5 G . Then

W € var G < (var N) (vax(G/N)) . But since W is verbally simple, the

verbal subgroup of W corresponding to var{G/N) is either trivial or W

itself. In the first case, W t var(G/iV) and so N = E , by the

minimality of G ; in the second case, W € var N and so N = G , again

by the minimality of G . Thus G is simple. If G is abelian, then

V^ 5 JV vax(F/W) 5 AN ,B for some natural numbers d and m , as F/W

generates a proper subvariety of V , and by Theorem A this contradicts the

choice of Tf as a minimal counterexample. Hence G is a non-abelian

finite simple group. Denote the subvariety of var G generated by the

proper sections of G by R. .

Let r be the set {N\N 2 W and W/N = G] . We claim that

PI N = E . Evidently, it will suffice to show that, if e + w d W , then

there is a normal subgroup N of W such that w § N and W/N = G .

With this in mind, let N be a normal subgroup of W maximal with respect

to avoiding w and let M denote the normal subgroup of W generated by

W and N ; the existence of N is guaranteed by Zorn's lemma. Then M/N

is a chief factor of W and W/N is monolithic. Also M/N is finite,

since W lies in the Cross variety S. [of. 52.21 of 1141). In order to

show that W/N = G , we must firstly show that M/N is non-abelian.

Since var W = var G and W is verbally simple, R[W) = W . Now
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R, , being a Cross var ie ty , i s f in i te ly based (see, for example, 52.12 of

[ J4 ] ) ; l e t the word r (x , • • - , x,) be a basis for the laws of I* .

Since w i W = £((/) , there are elements a. . ( l 5 i £ k, 1 < j < I) of
to

W such that

1<J<£ ^ "*

Let 7 = gp({a. . | 1 < i < i, 1 < J < J},tf) . Then Y/M is a finitely

generated group of the Cross variety J[ and therefore it is finite. Since

M/N is also finite, Y/N is finite. Now wN € g(Y/N)nM/N and Wtf is

non-trivial. Thus &(Y/N)rM/N is non-trivial. As Peter M. Neumann noted

([16], p. 77), the proof of Lemma 3.2 of Oates [J7J shows that the

R_-subgroups of the finite groups in var G are direct powers of G (the

additional hypotheses of Oates being unnecessary). Hence B{Y/N)rM/N ,

being a normal subgroup of R^Y/iV) , is also such a direct power. In

particular, M/N is non-abelian. By Theorem h of Kovacs and Newman [JO],

W/N is isomorphic to a section of G . Since B<iW/N) = RjiW)H/S = W/N is

non-trivial, this section cannot be a group of R . Hence W/N = G , as

required.

The proof now splits into two cases. Suppose, firstly, that for some

n
n £ N , iV̂  = N for all N i V - Then yn normalises N and, if m is

the exponent of Aut G , y centralises W/N , for all N (. F . Hence

Lw, y™"] - n N = E and so y™ (. C (W) , the centralizer of W in F .

But C p W is verbal in F and so, since y is a free generator of F ,

^m{F) 5 Cp(J/) . Now Bfm(F)W/W is soluble by finite exponent and

therefore so also is B (F)/[B(F)CN) . But we have shown that

Snm(
F) n W is central in Srm^

B"> • T*"13 \^F^ > a n d s o F' itself, is

soluble by finite exponent, which contradicts the choice of V_ as a

minimal counterexample.

Thus we may reject the hypothesis in the first case and suppose that,

for all n t N , there is an N i T such that N° + N . In
n n n

preparation for an application of Lemma 5, we will show that
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w/ D A# = Gn+1 (that is, the direct product of n + 1 copies of G ).

(// D r = W 0 i^ and R-subgroups of finite groups in var G

direct powers of G , w/ fl ir is such a direct power. Also,

/ *
W fl AT evidently has order at most \G\n and has at least n + 1

distinct maximal normal subgroups. Thus W fl N° = Gn , as required.

Transferring from the notation of Lemma 5, we let A = N , # = F ,

h = y , L = W , and let 6 be the homamorphism 6 :(/->• G with

kernel ff . Then r| is the restriction to W of the inner automorphism

i
of F induced by y and the kernel of rfb is i\̂  (0 < i < n) .

Let TI_, ..., IT. ,..., IT be the canonical projections IT. : G -*• G
yJ 1^ 7t "l,

which define G . It is a defining property of (cartesian) products

that, given the homomorphisms 6 , n < $ , . . . , r i 6 : W •*• G , there is a

unique homamorphism 0 : W -*• u such that 6TT . = o 6 ( 0 £ t 5 n ) and

v n n
ker6 = D kerr) 6 . Then)

I / I I n'1 K+1
|V0| = \w/ 0 kerTT6 = W/ 0 tP = \Gn \

I ' <•< " ' n<'< "

and therefore, as Gw+1 is f i n i t e , J/8 5 Gn+1 . Thus, i f

g , ..., g € G , we may take an element h of G such that

TZTT. = £ . (0 5 i < n)

and then an element v of V such that u8 = fc , so that

https://doi.org/10.1017/S0004972700047389 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700047389


408 J.R.J. Groves

vr\ 6 = vBv. = g. (0 5 i < n) .

Hence the requirements of Lemma 5 are satisfied and so (var G)A 5 V_ ,

contradicting the hypotheses of the lemma and completing the proof.

5. Proof of Lemma C

The proof is by contradiction; we suppose that V is a

counterexample to the lemma. By Lemma A, a subvariety of ^ satisfies the

conclusion of the lemma if (and only if) it is a subvariety of one of the

varieties of the set {N V B | s, « f K} . Since, by a theorem of

Bryant [I], every variety of this set is finitely based, we may apply Lemma

8 and suppose that V is a minimal counterexample.

Let F denote F^Vj and B denote B (F) . Now the torsion

subgroup of B is fully invariant in B and so verbal in F ; if it were

non-trivial, it would give rise to a non-trivial elementary abelian verbal

subgroup of F . In this case, as in 3-1, V. could not be a minimal

counterexample. Hence B is torsion-free. Let x € F . Then, if

H = gp(B, x) , B i AA and H' < B is torsion-free. Thus by Lemma 7,

var H is a torsion-free subvariety of AA ; now the conditions of the

lemma and Proposition h show that var H = A . This shows that every

element of F commutes with B ; that is, B S Z (F) and so

V, S Q|, V, A B ] . Since V̂  A B is an SC-variety of finite exponent, it

is locally finite and so Lemma 6 shows that V < B A for some natural

number n , contradicting the choice of \A as a counterexample and

completing the proof of the lemma.
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