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Abstract
Kottwitz’s conjecture describes the contribution of a supercuspidal representation to the cohomology of a local
Shimura variety in terms of the local Langlands correspondence. A natural extension of this conjecture concerns
Scholze’s more general spaces of local shtukas. Using a new Lefschetz–Verdier trace formula for v-stacks, we prove
the extended conjecture, disregarding the action of the Weil group, and modulo a virtual representation whose
character vanishes on the locus of elliptic elements. As an application, we show that, for an irreducible smooth
representation of an inner form of GL𝑛, the L-parameter constructed by Fargues–Scholze agrees with the usual
semisimplified parameter arising from local Langlands.
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1. Introduction

Let F be a finite extension of the field Q𝑝 of p-adic numbers, and let G be a connected reductive
group defined over F. Scholze [SW20, §23] introduced a tower of moduli spaces of mixed-characteristic
shtukas

Sht𝐺,𝑏,𝜇 = lim←−−
𝐾

Sht𝐺,𝑏,𝜇,𝐾

depending on a 𝜎-conjugacy class of 𝑏 ∈ 𝐺 (�̆�) (where �̆� is the completion of the maximal unramified
extension of F) and on a conjugacy class of cocharacters 𝜇 : Gm → 𝐺 defined over 𝐹. Here, K ranges
over open compact subgroups of 𝐺 (𝐹). Each Sht𝐺,𝑏,𝜇,𝐾 is a locally spatial diamond defined over Spd �̆� ,
where E is the field of definition of the conjugacy class of 𝜇.

When 𝜇 is minuscule, Sht𝐺,𝑏,𝜇,𝐾 is the diamond associated to a rigid-analytic variety M𝐺,𝑏,𝜇,𝐾

[SW20, §24]. The latter is a local Shimura variety, whose general existence was conjectured in [RV14].
The theory of Rapoport–Zink spaces [RZ96] provides instances of M𝐺,𝑏,𝜇,𝐾 admitting a moduli
interpretation, as the generic fiber of a deformation space of p-divisible groups.

The Kottwitz conjecture [Rap95, Conjecture 5.1], [RV14, Conjecture 7.3] relates the cohomology
of M𝐺,𝑏,𝜇,𝐾 to the local Langlands correspondence in the case that b lies in the unique basic class in
𝐵(𝐺, 𝜇). There is a natural generalization of this conjecture for Sht𝐺,𝑏,𝜇,𝐾 , as we now explain.

Let 𝐺𝑏 the inner form of G associated to b. The tower Sht𝐺,𝑏,𝜇,𝐾 admits commuting actions of
𝐺𝑏 (𝐹) and 𝐺 (𝐹). The action of 𝐺𝑏 (𝐹) preserves each Sht𝐺,𝑏,𝜇,𝐾 , whereas the action of 𝑔 ∈ 𝐺 (𝐹)
sends Sht𝐺,𝑏,𝜇,𝐾 to Sht𝐺,𝑏,𝜇,𝑔𝐾𝑔−1 . There is furthermore a (not necessarily effective) Weil descent
datum on this tower from �̆� down to E.

Let ℓ be a prime distinct from p. The geometric Satake equivalence produces an object S𝜇 in the
derived category of étale Zℓ-sheaves on Sht𝐺,𝑏,𝜇,𝐾 ; this is compatible with the actions of 𝐺 (𝐹) and
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𝐺𝑏 (𝐹) on the tower. Let C be the completion of an algebraic closure of �̆� . For a smooth representation
𝜌 of 𝐺𝑏 (𝐹) with coefficients in Qℓ , we define:

𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌] = lim−−→
𝐾

𝑅 Hom𝐺𝑏 (𝐹 ) (𝑅Γ𝑐 (Sht𝐺,𝑏,𝜇,𝐾 ,𝐶 ,S𝜇), 𝜌).

Then 𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌] lies in the derived category of smooth representations of 𝐺 (𝐹) × 𝑊𝐸 with
coefficients in Qℓ , where 𝑊𝐸 is the Weil group. Informally, this is the 𝜌-isotypic component of the
cohomology of the tower Sht𝐺,𝑏,𝜇.

A recent result of Fargues–Scholze [FS21, Corollary I.7.3] states that, if 𝜌 is finite length and
admissible, then 𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌] is a complex of finite length admissible representations of 𝐺 (𝐹)
admitting a continuous action of 𝑊𝐸 .

Let Groth(𝐺𝑏 (𝐹)) be the Grothendieck group of the category of finite length admissible represen-
tations of 𝐺 (𝐹) with Qℓ coefficients. Also, let Groth(𝐺 (𝐹) ×𝑊𝐸 ) be the Grothendieck group of the
category of finite length admissible representations of 𝐺 (𝐹) with Qℓ coefficients, which come equipped
with a continuous action of 𝑊𝐸 commuting with the 𝐺 (𝐹)-action. Following [Shi11], we define a map

Mant𝑏,𝜇 : Groth(𝐺𝑏 (𝐹)) → Groth(𝐺 (𝐹) ×𝑊𝐸 )

(for ‘Mantovan’, referencing [Man04]) sending 𝜌 to the Euler characteristic of 𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌].
The Kottwitz conjecture (appropriately generalized) describes Mant𝑏,𝜇 (𝜌) in terms of the local

Langlands correspondence when 𝜌 lies in a supercuspidal L-packet. The complex dual groups of G and
𝐺𝑏 are canonically identified, and we write 𝐺 for either. Let 𝐿𝐺 = 𝐺 �𝑊𝐹 be the L-group. The basic
form of the local Langlands conjecture predicts that the set of isomorphism classes of essentially square-
integrable representations of 𝐺 (𝐹) (resp., 𝐺𝑏 (𝐹)) is partitioned into L-packets Π𝜙 (𝐺) (resp., Π𝜙 (𝐺𝑏))
and that each such packet is indexed by a discrete Langlands parameter 𝜙 : 𝑊𝐹 ×SL2(C) → 𝐿𝐺. When
𝜙 is discrete and trivial on SL2 (C), we say 𝜙 is supercuspidal; in this case, it is expected that the packets
Π𝜙 (𝐺) and Π𝜙 (𝐺𝑏) consist entirely of supercuspidal representations.

Our generalized Kottwitz conjecture is conditional on the refined local Langlands correspondence
for supercuspidal L-parameters in the formulation of [Kal16a, Conjecture G]. In particular, it relies
crucially on the endoscopic character identities satisfied by L-packets. These are reviewed in Appendix
A. Note that we do not assume any compatibility between the validity of [Kal16a, Conjecture G] and
the construction of [FS21], i.e., we do not require that the construction of [FS21] satisfy any portion of
[Kal16a, Conjecture G].

We take this opportunity to give a brief summary of the status of [Kal16a, Conjecture G]. In short,
the full conjecture is known for regular supercuspidal parameters [Kal19a, Definition 5.2.3] provided G
splits over a tame extension of F, F has characteristic zero and p is sufficiently large (at least (𝑒 + 2)𝑛,
where e is the ramification index of 𝐹/Q𝑝 and n is the smallest size of a faithful algebraic representation
of G). The proof is contained in [Kal19a, §5.3] and [FKS19, §4.4]. However, various parts of that
conjecture are known under less restrictive assumptions. To describe this, we remind the reader that
[Kal16a, Conjecture G] consists of the following assertions:

1. The existence of a finite set Π𝜙 of representations of rigid inner forms of G for each tempered
L-parameter 𝜙.

2. The existence and uniqueness of a generic constituent of Π𝜙 for a fixed Whittaker datum.
3. A bijection between Π𝜙 and the set Irr(𝜋0 (𝑆+𝜙)) of irreducible representations of the refined central-

izer component group associated to 𝜙.
4. The character identities of ordinary endoscopy, as recalled in Appendix A.

At the moment, a set Π𝜙 has been constructed in [Kal19b, §§4.1,4.2] for every supercuspidal parameter
𝜙 provided G splits over a tame extension of F and p does not divide the order of the Weyl group of G
(this assumption on p implies that any supercuspidal parameter maps wild inertia into a torus of 𝐺; under
weaker assumptions on p, this is not automatically true, but for parameters 𝜙 that do have this property,
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the construction of [Kal19b] works under weaker assumptions on p). A bijection between Π𝜙 and
Irr(𝜋0 (𝑆+𝜙)) has been constructed in [Kal19b, §§4.3-4.5] for any supercuspidal parameter 𝜙. Assuming
F has characteristic zero and 𝑝 ≥ (𝑒 + 2)𝑛, the existence and uniqueness of a generic constituent in
Π𝜙 (𝐺), as well as the character identities of ordinary endoscopy, are proved in [FKS19, §4.4] for all
regular supercuspidal parameters 𝜙. They are also proved for nonregular supercuspidal parameters 𝜙
but only for certain endoscopic elements.

Returning to the subject of this paper, let 𝑆𝜙 = Cent(𝜙, 𝐺). For any 𝜋 ∈ Π𝜙 (𝐺) and 𝜌 ∈ Π𝜙 (𝐺𝑏),
the refined form of the local Langlands conjecture implies the existence of an algebraic representation
𝛿𝜋,𝜌 of 𝑆𝜙 , which can be thought of as measuring the relative position of 𝜋 and 𝜌. (The representation
𝛿𝜋,𝜌 also depends on b, but we suppress this from the notation.) The conjugacy class of 𝜇 determines
by duality a conjugacy class of weights of 𝐺; we denote by 𝑟𝜇 the irreducible representation of 𝐺 of
highest weight 𝜇. There is a natural extension of 𝑟𝜇 to 𝐿𝐺𝐸 , the L-group of the base change of G to E
[Kot84a, Lemma 2.1.2]. Write 𝑟𝜇 ◦ 𝜙𝐸 for the representation of 𝑆𝜙 ×𝑊𝐸 , given by

𝑟𝜇 ◦ 𝜙𝐸 (𝑠, 𝑤) = 𝑟𝜇 (𝑠 · 𝜙(𝑤)).

Conjecture 1.0.1. Let 𝜙 : 𝑊𝐹 → 𝐿𝐺 be a supercuspidal Langlands parameter. Given 𝜌 ∈ Π𝜙 (𝐺𝑏),
we have the following equality in Groth(𝐺 (𝐹) ×𝑊𝐸 ):

Mant𝑏,𝜇 (𝜌) =
∑

𝜋∈Π𝜙 (𝐺)
𝜋 � Hom𝑆𝜙 (𝛿𝜋,𝜌, 𝑟𝜇 ◦ 𝜙𝐸 ). (1.0.1)

This conjecture is more general than the formulation of Kottwitz’s conjecture in [Rap95] and
[RV14], in that two conditions are removed. The first is that we are allowing the cocharacter 𝜇 to
be nonminuscule—this is what requires passage from the local Shimura varieties M𝐺,𝑏,𝜇 to the local
shtuka spaces Sht𝐺,𝑏,𝜇. The second is that we do not require G to be a B-inner form of its quasi-split
inner form 𝐺∗. This condition, reviewed in §2.2, has the effect of making the definition of 𝛿𝜋,𝜌 straight-
forward. To remove it, we use the formulation of the refined local Langlands correspondence [Kal16a,
Conjecture G] based on the cohomology sets 𝐻1(𝑢 → 𝑊, 𝑍 → 𝐺) of [Kal16b]. The definition of 𝛿𝜋,𝜌
in this setting is a bit more involved and is given in §2.3; see Definition 2.3.2.

We now present our main theorem.

Theorem 1.0.2. Assume the refined local Langlands correspondence [Kal16a, Conjecture G]. Let
𝜙 : 𝑊𝐹 × SL2 → 𝐿𝐺 be a discrete Langlands parameter with coefficients in Qℓ , and let 𝜌 ∈ Π𝜙 (𝐺𝑏)
be a member of its L-packet. After ignoring the action of 𝑊𝐸 , we have an equality in Groth(𝐺 (𝐹)):

Mant𝑏,𝜇 (𝜌) =
∑

𝜋∈Π𝜙 (𝐺)

[
dim Hom𝑆𝜙 (𝛿𝜋,𝜌, 𝑟𝜇)

]
𝜋 + err,

where err ∈ Groth(𝐺 (𝐹)) is a virtual representation whose character vanishes on the locus of elliptic
elements of 𝐺 (𝐹).

If the packet Π𝜙 (𝐺) consists entirely of supercuspidal representations and the semisimple L-
parameter 𝜑𝜌 associated with 𝜌 as in [FS21, §I.9.6] is supercuspidal, then in fact err = 0.

Of course we expect that 𝜑𝜌 = 𝜙ss so that, if 𝜙 is supercuspidal, the error term should vanish. In that
case, we obtain Conjecture 1.0.1 modulo ignoring the action of 𝑊𝐸 . For a discrete but nonsupercuspidal
parameter 𝜙, the error term in Theorem 1.0.2 is often provably nonzero; cf. [Ima] for some examples.
However, for applications to the local Langlands correspondence, it is crucial to have Theorem 1.0.2 in
this extra generality.

The shtukas appearing in our work have only one ‘leg’. Scholze defines moduli spaces of mixed-
characteristic shtukas Sht𝐺,𝑏, {𝜇𝑖 } with arbitrarily many legs, fibered over a product

∏𝑟
𝑖=1 Spd �̆�𝑖 . It is
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straightforward to extend Conjecture 1.0.1 and Theorem 1.0.2 to this setting as well. In fact, Theorem
1.0.2 in this extended level of generality follows immediately from the results already proved in this
paper, by allowing the legs to coalesce and using the fact that cohomology of shtuka spaces forms a
local system over (Div1)𝐼 . We leave the details to the interested reader.

Theorem 1.0.2 has an application to the local Langlands correspondence.

Theorem 1.0.3. Let G be any inner form of GL𝑛/𝐹, and let 𝜋 be an irreducible smooth representation
of 𝐺 (𝐹). Then the L-parameter 𝜑𝜋 associated with 𝜋 by the construction of Fargues–Scholze [FS21,
§I.9] agrees with the usual semisimplified L-parameter attached to 𝜋.

1.1. Remarks on the proof and relation with prior work

Ultimately, Theorem 1.0.2 is proved by an application of a Lefschetz–Verdier trace formula. Let us
illustrate the idea in the Lubin–Tate case: Say 𝐹 = Q𝑝 , 𝐺 = GL𝑛, 𝜇 = (1, 0, . . . , 0), and b is basic of
slope 1/𝑛. Let 𝐻0 be the p-divisible group over F𝑝 with isocrystal b so that 𝐻0 has dimension 1 and
height n. In this case, 𝐺𝑏 (𝐹) = Aut0 𝐻0 = 𝐷×, where 𝐷/Q𝑝 is the division algebra of invariant 1/𝑛.
The spaces M𝐾 = M𝐺,𝑏,𝜇,𝐾 are known as the Lubin–Tate tower; we consider these as rigid-analytic
spaces over C, where 𝐶/Q𝑝 is a complete algebraically closed field.

Atop the tower sits the infinite-level Lubin–Tate space M = lim←−−𝐾 M𝐾 as described in [SW13]. This
is a perfectoid space admitting an action of 𝐺 (Q𝑝) ×𝐺𝑏 (Q𝑝). The C-points of M classify equivalence
classes of triples (𝐻, 𝛼, 𝜄), where 𝐻/O𝐶 is a p-divisible group, 𝛼 : Q𝑛𝑝 → 𝑉𝐻 is a trivialization of the
rational Tate module and 𝜄 : 𝐻0 ⊗F𝑝

O𝐶/𝑝 → 𝐻 ⊗O𝐶 O𝐶/𝑝 is an isomorphism in the isogeny category.
(Equivalence between two such triples is a quasi-isogeny between p-divisible groups which makes both
diagrams commute.) Then M admits an action of 𝐺 (Q𝑝) × 𝐺𝑏 (Q𝑝) via composition with 𝛼 and 𝜄,
respectively.

The Hodge–Tate period map exhibits M as a pro-étale 𝐷×-torsor over Drinfeld’s upper half-space
Ω𝑛−1 (the complement in P𝑛−1 of all Q𝑝-rational hyperplanes). This map M→ Ω𝑛−1 is equivariant for
the action of 𝐺 (Q𝑝).

Now suppose 𝑔 ∈ 𝐺 (Q𝑝) is a regular elliptic element (that is, an element with irreducible character-
istic polynomial). Then g has exactly n fixed points on Ω𝑛−1. For each such fixed point 𝑥 ∈ (Ω𝑛−1)𝑔, the
element g acts on the fiber M𝑥 . Because M→ Ω𝑛−1 is a 𝐺𝑏 (𝐹)-torsor, there must exist 𝑔′ ∈ 𝐺𝑏 (Q𝑝)
such that (𝑔, 𝑔′) fixes a point in the fiber M𝑥 .

Key observation. The elements 𝑔 ∈ 𝐺 (Q𝑝) and 𝑔′ ∈ 𝐺𝑏 (Q𝑝) are related, meaning they become
conjugate over Q𝑝 .

We sketch the proof of this claim. Suppose y corresponds to the triple (𝐻, 𝛼, 𝜄). This means there
exists an automorphism 𝛾 of H (in the isogeny category) which corresponds to g on the Tate module
and 𝑔′ on the special fiber, respectively. We verify now that g and 𝑔′ are related. Let 𝐵cris = 𝐵cris(𝐶) be
the crystalline period ring. There are isomorphisms

𝐵𝑛cris→𝑉𝐻 ⊗Q𝑝 𝐵cris→𝑀 (𝐻0) ⊗ 𝐵cris,

where the first map is induced from 𝛼, and the second map comes from the comparison isomorphism
between étale and crystalline cohomology of H (using 𝜄 to identify the latter with 𝑀 (𝐻0)). The composite
map carries the action of g onto that of 𝑔′, which is to say that g and 𝑔′ become conjugate over 𝐵cris.
This implies that g and 𝑔′ are related.

Suppose that 𝜌 is an admissible representation of 𝐷× with coefficients in Qℓ . There is a corresponding
Qℓ-local system L𝜌 on Ω𝑛−1

𝐶,ét.
Let 𝑔 ∈ 𝐺 (𝐹) be elliptic. A naïve form of the Lefschetz trace formula would predict that:

tr
(
𝑔 |𝑅Γ𝑐 (Ω𝑛−1,L𝜌)

)
=

∑
𝑥∈(Ω𝑛−1)𝑔

tr(𝑔 |L𝜌,𝑥).
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For each fixed point x, the key observation above gives tr(𝑔 |L𝜌,𝑥) = tr 𝜌(𝑔′), where g and 𝑔′ are related.
By the Jacquet–Langlands correspondence, there exists a discrete series representation 𝜋 of 𝐺 (Q𝑝)
satisfying tr 𝜋(𝑔) = (−1)𝑛−1 tr 𝜌(𝑔′) (here tr 𝜋(𝑔) is interpreted as a Harish–Chandra character). Thus,
the Euler characteristic of 𝑅Γ𝑐 (Ω𝑛−1,L𝜌) equals (−1)𝑛−1𝑛𝜋 up to a virtual representation with trace
zero on the elliptic locus.

In this situation, S𝜇 = Zℓ [𝑛 − 1] (up to a Tate twist), and we find that 𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌] is the shift by
𝑛 − 1 of the dual of 𝑅Γ𝑐 (Ω𝑛−1,L𝜌∨). Therefore, in Groth(GL𝑛 (Q𝑝)), we have

Mant𝑏,𝜇 (𝜌) = 𝑛𝜋 + err,

where the character of err vanishes on the locus of elliptic elements. This is in accord with Theorem
1.0.2.

This argument goes back at least to the 1990s, as discussed in [Har15, Chap. 9] and as far as we know
first appears in [Fal94]. The present article is our attempt to push this argument as far as it will go. If a
suitable Lefschetz formula is valid, then the equality in Theorem 1.0.2 can be reduced to an endoscopic
character identity relating representations of 𝐺 (𝐹) and 𝐺𝑏 (𝐹) (Theorem 3.2.9), which we prove in §3.

Therefore, the difficulty in Theorem 1.0.2 lies in proving the validity of the Lefschetz formula. Prior
work of Strauch and Mieda proved Theorem 1.0.2 in the case of the Lubin–Tate tower [Str05], [Str08],
[Mie12], [Mie14a] and also in the case of a basic Rapoport–Zink space for GSp(4) [Mie].

In applying a Lefschetz formula to a nonproper rigid space, care must be taken to treat the boundary.
For instance, if X is the affinoid unit disc {|𝑇 | ≤ 1} in the adic space A1, then the automorphism
𝑇 ↦→ 𝑇 + 1 has Euler characteristic 1 on X, despite having no fixed points. The culprit is that this
automorphism fixes the single boundary point in 𝑋\𝑋 . Mieda [Mie14b] proves a Lefschetz formula for
an operator on a rigid space under an assumption that the operator has no topological fixed points on
a compactification. Now, in all of the above cases, M𝐺,𝑏,𝜇,𝐾 admits a cellular decomposition. This
means (approximately) that M𝐺,𝑏,𝜇,𝐾 contains a compact open subset, whose translates by Hecke
operators cover all of M𝐺,𝑏,𝜇,𝐾 . This is enough to establish the ‘topological fixed point’ hypothesis
necessary to apply Mieda’s Lefschetz formula. Shen [She14] constructs a cellular decomposition for a
basic Rapoport–Zink space attached to the group 𝑈 (1, 𝑛 − 1), which paves the way for a similar proof
of Theorem 1.0.2 in this case as well. For general (𝐺, 𝑏, 𝜇), however, the M𝐺,𝑏,𝜇,𝐾 do not admit a
cellular decomposition, and so there is probably no hope of applying the methods of [Mie14b].

We had no idea how to proceed until we learned of the shift of perspective offered by Fargues’ program
on the geometrization of local Langlands [Far], followed by the work [FS21]. At the center of that
program is the stack Bun𝐺 of G-bundles on the Fargues–Fontaine curve. This is a geometrization of the
Kottwitz set 𝐵(𝐺): There is a bijection 𝑏 ↦→ E𝑏 between 𝐵(𝐺) and points of the underlying topological
space of Bun𝐺 . For basic b, there is an open substack Bun𝑏𝐺 ⊂ Bun𝐺 classifing G-bundles which
are everywhere isomorphic to E𝑏; in this situation, Aut E𝑏 = 𝐺𝑏 (𝐹), and so we have an isomorphism
Bun𝑏𝐺 � [∗/𝐺𝑏 (𝐹)].

Let 𝜇 be a cocharacter of G. As in geometric Langlands, there is a stack Hecke𝐺,≤𝜇 lying over the
product Bun𝐺 ×Bun𝐺 , which parametrizes 𝜇-bounded modifications of G-bundles at one point of the
curve. For each 𝜇, one uses Hecke𝐺,≤𝜇 to define a Hecke operator 𝑇𝜇 on a suitable derived category
𝐷 (Bun𝐺 , Zℓ) of étale Zℓ-sheaves on Bun𝐺 . If 𝑏 ∈ 𝐵(𝐺, 𝜇), then the moduli space of local shtukas
Sht𝐺,𝑏,𝜇 appears as the fiber of Hecke𝐺,≤𝜇 over the point (E𝑏 , E1) of Bun𝐺 ×Bun𝐺 . Consequently,
there is an expression for 𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌] in terms of the Hecke operators 𝑇𝜇; see Proposition 6.4.5.

Heavy use is made in [FS21] of the notion of universal local acyclity (ULA) as a property of objects
𝐴 ∈ 𝐷 (𝑋, Zℓ) for Artin v-stacks X. When 𝑋 = [∗/𝐺𝑏 (𝐹)], a ULA object is an admissible complex of
representations of 𝐺𝑏 (𝐹). It is proved in [FS21] that the Hecke operators 𝑇𝜇 preserve ULA objects; the
admissibility of 𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌] is deduced from this.

We learned from [LZ22] that the ULA condition is precisely the right hypothesis necessary to prove
a Lefschetz–Verdier trace formula applicable to the cohomology of A. This explains the counterexample
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above: 𝑗!Zℓ fails to be ULA, where j is the inclusion of the affinoid disc X into its compactification 𝑋 . In
fact, [LZ22] is written in the context of schemes, but their formalism applies equally well in the context
of rigid-analytic spaces and diamonds. Indeed, some interesting new phenomena occur in the diamond
context. For instance, if H is a locally profinite group acting continuously on a proper diamond X and
𝐴 ∈ 𝐷 (𝑋, Zℓ) is a ULA object which is H-equivariant, then 𝑅Γ(𝑋, 𝐴) is an admissible H-module. One
gets a formula for the trace distribution of H acting on 𝑅Γ(𝑋, 𝐴) in terms of local terms living on the
fixed-point locus in 𝐻 × 𝑋 . We explain the Lefschetz–Verdier trace formula for diamonds in §4.

In §5, we study the Lefschetz–Verdier trace formula as it pertains to the mixed-characteristic affine
Grassmannian Gr𝐺,≤𝜇. The object S𝜇 is ULA on Gr𝐺,≤𝜇 and 𝐺 (𝐹)-equivariant, so it makes sense to
ask for its local term loc𝑔 (𝑥, 𝐴) at a fixed point x of a regular element 𝑔 ∈ 𝐺 (𝐹). (Such fixed points are
all isolated.) We found quickly that that result we needed for Theorem 1.0.2 would follow if we knew
that loc𝑔 (𝑥, 𝐴) agreed with the naïve local term tr(𝑔 |𝐴𝑥). We asked Varshavsky, who devised a method
for proving this agreement in the scheme setting. We show how to deduce the required statement for
Gr𝐺,≤𝜇, using the Witt vector affine Grassmannian as a bridge between diamonds and schemes. (We
thank the referee for pointing out that an earlier argument we had here was incorrect.)

Finally, in §6, we prove Theorem 1.0.2 by applying our trace formula to the Hecke stack Hecke𝐺,𝑏,≤𝜇.
An important step is to show that fixed points of elliptic elements 𝑔 ∈ 𝐺 (𝐹) acting on Gr𝐺,≤𝜇 are
admissible, as we observed above in the Lubin–Tate case.

2. Review of the objects appearing in Kottwitz’s conjecture

2.1. Basic notions

Let �̆� be the completion of the maximal unramified extension of F, and let 𝜎 ∈ Aut �̆� be the Frobenius
automorphism. Let G be a connected reductive group defined over F. Fix a quasi-split group 𝐺∗ and a
𝐺∗(𝐹)-conjugacy class Ψ of inner twists 𝐺∗ → 𝐺; thus, elements 𝜓 ∈ Ψ are isomorphisms 𝐺∗

𝐹
→ 𝐺𝐹

such that for each 𝜏 ∈ Γ the automorphism 𝜓−1 ◦ 𝜏(𝜓) of 𝐺∗
𝐹

is inner. Given an element 𝑏 ∈ 𝐺 (�̆�),
there is an associated inner form 𝐺𝑏 of a Levi subgroup of 𝐺∗ as described in [Kot97, §3.3,§3.4]. Its
group of F-points is given by

𝐺𝑏 (𝐹) �
{
𝑔 ∈ 𝐺 (�̆�)



 Ad(𝑏)𝜎(𝑔) = 𝑔
}

.

Up to isomorphism, the group 𝐺𝑏 depends only on the 𝜎-conjugacy class [𝑏]. It will be convenient
to choose b to be decent [RZ96, Definition 1.8]. Then there exists a finite unramified extension 𝐹 ′/𝐹
such that 𝑏 ∈ 𝐺 (𝐹 ′). This allows us to replace �̆� by 𝐹 ′ in the above formula. The slope morphism
𝜈 : D → 𝐺 �̆� of b [Kot85, §4] is also defined over 𝐹 ′. The centralizer 𝐺𝐹 ′,𝜈 of 𝜈 in 𝐺𝐹 ′ is a Levi
subgroup of 𝐺𝐹 ′ . The 𝐺 (𝐹 ′)-conjugacy class of 𝜈 is defined over F and then so is the 𝐺 (𝐹 ′)-conjugacy
class of 𝐺𝐹 ′,𝜈 . There is a Levi subgroup 𝑀∗ of 𝐺∗ defined over F and 𝜓 ∈ Ψ that restricts to an inner
twist 𝜓 : 𝑀∗ → 𝐺𝑏; see [Kot97, §4.3].

From now on, assume that b is basic. This is equivalent to 𝑀∗ = 𝐺∗ so that 𝐺𝑏 is in fact an inner form
of 𝐺∗ and of G. Furthermore, Ψ is an equivalence class of inner twists 𝐺∗ → 𝐺 as well as 𝐺∗ → 𝐺𝑏 .
This identifies the dual groups of 𝐺∗, G and 𝐺𝑏 , and we write 𝐺 for either of them.

Let 𝜙 : 𝑊𝐹 × SL2(C) → 𝐿𝐺 be a discrete Langlands parameter, and let 𝑆𝜙 = Cent(𝜙, 𝐺). For
𝜆 ∈ 𝑋∗(𝑍 (𝐺)Γ), write Rep(𝑆𝜙 , 𝜆) for the set of isomorphism classes of algebraic representations of
the algebraic group 𝑆𝜙 whose restriction to 𝑍 (𝐺)Γ is 𝜆-isotypic, and write Irr(𝑆𝜙 , 𝜆) for the subset of
irreducible such representations. The class of b corresponds to a character 𝜆𝑏 : 𝑍 (𝐺)Γ → C× via the
isomorphism 𝐵(𝐺)bas → 𝑋∗(𝑍 (𝐺)Γ) of [Kot85, Proposition 5.6]. Assuming the validity of the refined
local Langlands conjecture [Kal16a, Conjecture G], we will construct in the following two subsections
for any 𝜋 ∈ Π𝜙 (𝐺) and 𝜌 ∈ Π𝜙 (𝐺𝑏) an element 𝛿𝜋,𝜌 ∈ Rep(𝑆𝜙 , 𝜆𝑏) that measures the relative position
of 𝜋 and 𝜌.

https://doi.org/10.1017/fmp.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.7


8 David Hansen et al.

2.2. Construction of 𝜹𝝅,𝝆 in a special case

The statements of the Kottwitz conjecture given in [Rap95, Conjecture 5.1] and [RV14, Conjecture
7.3] make the assumption that G is a B-inner form of 𝐺∗. In that case, the construction of 𝛿𝜋,𝜌 is
straightforward, and we shall now recall it.

The assumption on G means that some 𝜓 ∈ Ψ can be equipped with a decent basic 𝑏∗ ∈ 𝐺∗(𝐹nr)
such that 𝜓 is an isomorphism 𝐺∗𝐹nr → 𝐺𝐹nr satisfying 𝜓−1𝜎(𝜓) = Ad(𝑏∗). In other words, 𝜓 becomes
an isomorphism over F from the group 𝐺∗𝑏∗ to G. Under this assumption and after choosing a Whittaker
datum 𝔴 for 𝐺∗, the isocrystal formulation of the refined local Langlands correspondence [Kal16a,
Conjecture F], which is implied by the rigid formulation [Kal16a, Conjecture G] according to [Kal18],
predicts the existence of bijections

Π𝜙 (𝐺) � Irr(𝑆𝜙 , 𝜆𝑏∗)
Π𝜙 (𝐺𝑏) � Irr(𝑆𝜙 , 𝜆𝑏∗ + 𝜆𝑏),

where we have used the isomorphisms 𝐵(𝐺)bas � 𝑋∗(𝑍 (𝐺)Γ) � 𝐵(𝐺∗)bas of [Kot85, Proposition 5.6]
to obtain from [𝑏] ∈ 𝐵(𝐺)bas and [𝑏∗] ∈ 𝐵(𝐺∗)bas characters 𝜆𝑏 and 𝜆𝑏∗ of 𝑍 (𝐺)Γ.

These bijections are uniquely characterized by the endoscopic character identities which are part of
[Kal16a, Conjecture F]. Write 𝜋 ↦→ 𝜏𝑏∗ ,𝔴, 𝜋 , 𝜌 ↦→ 𝜏𝑏∗ ,𝔴,𝜌 for these bijections, and define

𝛿𝜋,𝜌 := 𝜏𝑏∗ ,𝔴, 𝜋 ⊗ 𝜏𝑏∗ ,𝔴,𝜌 . (2.2.1)

While these bijections depend on the choice of Whittaker datum 𝔴 and the choice of 𝑏∗, we will argue
in Subsection 2.3 that for any pair 𝜋 and 𝜌 the representation 𝛿𝜋,𝜌 is independent of these choices. Of
course, it does depend on b, but this we take as part of the given data.

2.3. Construction of 𝜹𝝅,𝝆 in the general case

We now drop the assumption that G is a B-inner form of 𝐺∗. Because of this, we no longer have
the isocrystal formulation of the refined local Langlands correspondence. However, we do have the
formulation based on rigid inner twists [Kal16a, Conjecture G]. What this means with regards to the
Kottwitz conjecture is that neither 𝜋 nor 𝜌 correspond to representations of 𝑆𝜙 . Rather, they correspond
to representations 𝜏𝜋 and 𝜏𝜌 of a different group 𝜋0 (𝑆+𝜙). Nonetheless, it will turn out that 𝜏𝜋 ⊗ 𝜏𝜌
provides in a natural way a representation 𝛿𝜋,𝜌 of 𝑆𝜙 .

In order to make this precise, we will need the material of [Kal16b] and [Kal18], some of which
is summarized in [Kal16a]. First, we will need the cohomology set 𝐻1(𝑢 → 𝑊, 𝑍 → 𝐺∗) defined in
[Kal16b, §3] for any finite central subgroup 𝑍 ⊂ 𝐺∗ defined over F. As in [Kal18, §3.2], it will be
convenient to package these sets for varying Z into the single set

𝐻1(𝑢 → 𝑊, 𝑍 (𝐺∗) → 𝐺∗) := lim−−→𝐻1(𝑢 → 𝑊, 𝑍 → 𝐺∗).

The transition maps on the right are injective, so the colimit can be seen as an increasing union.
Next, we will need the reinterpretation, given in [Kot], of 𝐵(𝐺) as the set of cohomology classes of

algebraic 1-cocycles of a certain Galois gerbe 1→ D(�̄�) → E→ Γ → 1. This reinterpretation is also
reviewed in [Kal18, §3.1]. For this, we recall that inflation along 𝑊𝐹 → Z induces an isomorphism
between 𝐵(𝐺) = 𝐻1(〈𝜎〉, 𝐺 (𝐿)) and 𝐻1(𝑊𝐹 , 𝐺 ( �̄�)), where we have written 𝐿 = �̆� to ease typesetting.
In [Kot97, App B], Kottwitz constructs a continuous homomorphism 𝑊𝐹 → E whose composition
with the natural projection E → Γ is the natural map 𝑊𝐹 → Γ. He proves in [Kot97, §8 and App B]
that pulling back along this homomorphism and pushing along the inclusion 𝐺 (�̄�) → 𝐺 ( �̄�) gives an
isomorphism 𝐻1

alg(E, 𝐺 (�̄�)) → 𝐵(𝐺) and, in particular, 𝐻1
bas(E, 𝐺 (�̄�)) → 𝐵bas(𝐺). While the section

𝑊𝐹 → E is not completely canonical, the induced isomorphism on cohomology is independent of the
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choice of section. Strictly speaking, Kottwitz gives the proof only in the case of tori, but the general
case is immediate from that.

Finally, we will need the comparison map

𝐻1
bas(E, 𝐺 (�̄�)) → 𝐻1(𝑢 → 𝑊, 𝑍 (𝐺) → 𝐺)

of [Kal18, §3.3].
After this short review, we turn to the construction of 𝛿𝜋,𝜌 ∈ Rep(𝑆𝜙 , 𝜆𝑏). For this, it is not enough

to work with the cohomology class of b, because 𝛿𝜋,𝜌 is an invariant of the equivalence class of the
triple (𝑏, 𝜋, 𝜌), and changing b within its cohomology class must be accompanied with a corresponding
change in 𝜌. Therefore, we must work with cocycles.

To that end, fix the section 𝑊𝐹 → E. If 𝑧𝑏 ∈ 𝑍1
bas(E, 𝐺 (�̄�)) denotes a representative of the element of

𝐻1
bas(E, 𝐺 (�̄�)) corresponding to the class of b, there exists 𝑔 ∈ 𝐺 ( �̄�), unique up to right multiplication

by elements of 𝐺𝑏 (𝐹) such that

𝑔−1𝑧𝑏 (𝑤)𝑤(𝑔) = 𝑏 · 𝜎(𝑏) · · ·𝜎 |𝑤 |−1(𝑏) ∀𝑤 ∈ 𝑊𝐹 → E, (2.3.1)

where |𝑤 | is the image of w under 𝑊𝐹 → Z. Note that the image of g in 𝐺ad( �̄�) lies in 𝐺ad (�̄�) and that
Ad(𝑔) induces an F-isomorphism 𝐺𝑧𝑏 → 𝐺𝑏 . Therefore, 𝜌 ◦ Ad(𝑔) is an irreducible representation of
𝐺𝑧𝑏 (𝐹) whose isomorphism class does not depend on the choice of g.

Choose any inner twist 𝜓 ∈ Ψ and let 𝑧𝜎 := 𝜓−1𝜎(𝜓) ∈ 𝐺∗ad(𝐹). Then 𝑧 ∈ 𝑍1 (𝐹, 𝐺∗ad) and
the surjectivity of the natural map 𝐻1(𝑢 → 𝑊, 𝑍 (𝐺∗) → 𝐺∗) → 𝐻1(𝐹, 𝐺∗ad) asserted in [Kal16b,
Corollary 3.8] allows us to choose 𝑧 ∈ 𝑍1 (𝑢 → 𝑊, 𝑍 (𝐺∗) → 𝐺∗) lifting 𝑧. Then (𝜓, 𝑧) : 𝐺∗ → 𝐺 is a
rigid inner twist, and (𝜓, 𝜓−1(𝑧) · 𝑧𝑏) : 𝐺∗ → 𝐺𝑧𝑏 is also a rigid inner twist.

The L-packets Π𝜙 (𝐺) and Π𝜙 (𝐺𝑧𝑏 ) are now parameterized by representations of a certain cover 𝑆+𝜙
of 𝑆𝜙 . While [Kal16a, Conjecture G] is formulated in terms of a finite cover depending on an auxiliary
choice of a finite central subgroup 𝑍 ⊂ 𝐺∗, we will adopt here the point of view of [Kal18] and work
with a canonical infinite cover, namely the preimage of 𝑆𝜙 in the universal cover of 𝐺. Following
[Kal18, §3.3], we can present this universal cover as follows. Let 𝑍𝑛 ⊂ 𝑍 (𝐺) be the subgroup of
those elements whose image in 𝑍 (𝐺)/𝑍 (𝐺der) is n-torsion, and let 𝐺𝑛 = 𝐺/𝑍𝑛. Then 𝐺𝑛 has adjoint
derived subgroup and connected center. More precisely, 𝐺𝑛 = 𝐺ad × 𝐶𝑛, where 𝐶𝑛 = 𝐶1/𝐶1 [𝑛] and
𝐶1 = 𝑍 (𝐺)/𝑍 (𝐺der). It is convenient to identify 𝐶𝑛 = 𝐶1 as algebraic tori and take the 𝑚/𝑛-power map
𝐶1 → 𝐶1 as the transition map 𝐶𝑛 → 𝐶𝑚 for 𝑛|𝑚. The isogeny 𝐺 → 𝐺𝑛 dualizes to 𝐺𝑛 → 𝐺, and
we have 𝐺𝑛 = 𝐺sc × 𝐶1. Note that 𝐶1 = 𝑍 (𝐺)◦. The transition map 𝐺𝑚 → 𝐺𝑛 is then the identity
on 𝐺sc, and the 𝑚/𝑛-power map on 𝐶1. Set ̂̄𝐺 = lim←−−𝐺𝑛 = 𝐺sc × 𝐶∞, where 𝐶∞ = lim←−−𝐶𝑛. Then ̂̄𝐺 is

the universal cover of 𝐺. Elements of ̂̄𝐺 can be written as (𝑎, (𝑏𝑛)𝑛), where 𝑎 ∈ 𝐺sc and (𝑏𝑛)𝑛 is a
sequence of elements 𝑏𝑛 ∈ 𝐶1 satisfying 𝑏𝑛 = (𝑏𝑚)

𝑚
𝑛 for 𝑛|𝑚. In this presentation, the natural map̂̄𝐺 → 𝐺 sends (𝑎, (𝑏𝑛)) to 𝑎der · 𝑏1, where 𝑎der ∈ 𝐺der is the image of 𝑎 ∈ 𝐺sc under the natural map

𝐺sc → 𝐺der.

Definition 2.3.1. Let 𝑍 ( ̂̄𝐺)+ ⊂ 𝑆+𝜙 ⊂
̂̄𝐺 be the preimages of 𝑍 (𝐺)Γ ⊂ 𝑆𝜙 ⊂ 𝐺 under ̂̄𝐺 → 𝐺.

Given a character 𝜆 : 𝜋0 (𝑍 ( ̂̄𝐺)+) → C× (which we will always assume trivial on the kernel of
𝑍 ( ̂̄𝐺)+ → 𝐺𝑛 for some n), let Rep(𝜋0 (𝑆+𝜙), 𝜆) denote the set of isomorphism classes of representations

of 𝜋0 (𝑆+𝜙) whose pullback to 𝜋0 (𝑍 ( ̂̄𝐺)+) is 𝜆-isotypic, and let Irr(𝜋0 (𝑆+𝜙), 𝜆) be the (finite) subset of
irreducible representations. Let 𝜆𝑧 be the character corresponding to the class of z under the Tate–
Nakayama isomorphism

𝐻1 (𝑢 → 𝑊, 𝑍 (𝐺∗) → 𝐺∗) → 𝜋0 (𝑍 ( ̂̄𝐺)+)∗
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of [Kal16b, Corollary 5.4], and let 𝜆𝑧𝑏 be the character corresponding to the class of 𝑧𝑏 in 𝐻1 (𝑢 →
𝑊, 𝑍 (𝐺) → 𝐺). Then according to [Kal16a, Conjecture G], upon fixing a Whittaker datum 𝔴 for 𝐺∗,
there are bijections

Π𝜙 (𝐺) � Irr(𝜋0 (𝑆+𝜙), 𝜆𝑧)
Π𝜙 (𝐺𝑧𝑏 ) � Irr(𝜋0 (𝑆+𝜙), 𝜆𝑧 + 𝜆𝑧𝑏 )

again uniquely determined by the endoscopic character identities. We write 𝜋 ↦→ 𝜏𝑧,𝔴, 𝜋 , 𝜌 ↦→ 𝜏𝑧,𝔴,𝜌
for these bijections and 𝜏 ↦→ 𝜋𝑧,𝔴,𝜏 , 𝜏 ↦→ 𝜌𝑧,𝔴,𝜏 for their inverses. We form the representation
𝜏𝑧,𝔴, 𝜋 ⊗ 𝜏𝑧,𝔴,𝜌 ∈ Rep(𝜋0 (𝑆+𝜙), 𝜆𝑧𝑏 ), where we are identifying 𝜌 with the representation 𝜌 ◦ Ad(𝑔) of
𝐺𝑧𝑏 (𝐹).

Recall the map [Kal18, (4.7)]

𝑆+𝜙 → 𝑆𝜙 , (𝑎, (𝑏𝑛)) ↦→
𝑎der · 𝑏1

𝑁𝐸/𝐹 (𝑏 [𝐸 :𝐹 ] )
. (2.3.2)

Here, 𝑎der ∈ 𝐺der is the image of 𝑎 ∈ 𝐺sc under the natural map 𝐺sc → 𝐺der and 𝐸/𝐹 is a sufficiently
large finite Galois extension. This map is independent of the choice of 𝐸/𝐹. According to [Kal18,
Lemma 4.1], pulling back along this map defines a natural bijection Irr(𝜋0 (𝑆+𝜙), 𝜆𝑧𝑏 ) � Irr(𝑆𝜙 , 𝜆𝑏).
Note that since 𝜙 is discrete the group 𝑆

♮
𝜙 defined in loc. cit. is equal to 𝑆𝜙 . The lemma remains valid,

with the same proof, if we remove the requirement of the representations being irreducible, and we
obtain the bijection Rep(𝜋0 (𝑆+𝜙), 𝜆𝑧𝑏 ) → Rep(𝑆𝜙 , 𝜆𝑏).

Definition 2.3.2. Let 𝛿𝜋,𝜌 be the image of 𝜏𝑧,𝔴, 𝜋 ⊗ 𝜏𝑧,𝔴,𝜌 under the bijection Rep(𝜋0 (𝑆+𝜙), 𝜆𝑧𝑏 ) →
Rep(𝑆𝜙 , 𝜆𝑏).

In the situation when G is a B-inner form of 𝐺∗, this definition of 𝛿𝜋,𝜌 agrees with the one of
Subsection 2.2, because then we can obtain z from 𝑏∗ just like we obtained 𝑧𝑏 from b, and then 𝜏𝑧,𝔴, 𝜋
and 𝜏𝑏∗ ,𝔴, 𝜋 are related via equation (2.3.2) and so are 𝜏𝑧,𝔴,𝜌 and 𝜏𝑏∗ ,𝔴,𝜌; see [Kal18, §4.2].

Lemma 2.3.3. Assume [Kal16a, Conjecture G]. The representation 𝛿𝜋,𝜌 is independent of the choices
of Whittaker datum 𝔴 and of a rigidifying 1-cocycle 𝑧 ∈ 𝑍1 (𝑢 → 𝑊, 𝑍 (𝐺∗) → 𝐺∗).

Proof. Both of these statements follow from [Kal16a, Conjecture G]. For the independence of Whittaker
datum, one can prove that the validity of this conjecture implies that if 𝔴 is replaced by another choice
𝔴′, then there is an explicitly constructed character (𝔴,𝔴′) of 𝜋0 (𝑆𝜙/𝑍 (𝐺)Γ) whose inflation to 𝜋0 (𝑆+𝜙)
satisfies 𝜏𝑧,𝔴,𝜎 = 𝜏𝑧,𝔴′,𝜎 ⊗ (𝔴,𝔴′) for any 𝜎 ∈ Π𝜙 (𝐺)∪Π𝜙 (𝐺𝑏). See §4 and in particular Theorem 4.3
of [Kal13], the proof of which is valid for a general G that satisfies [Kal16a, Conjecture G], bearing in
mind that the transfer factor we use here is related to the one used there by 𝑠 ↦→ 𝑠−1. The independence
of z follows from the same type of argument but now using [Kal18, Lemma 6.2]. �

2.4. Spaces of local shtukas and their cohomology

We recall here some material from [SW20] and [Far] regarding the Fargues–Fontaine curve and moduli
spaces of local shtukas.

Let k be the residue field of F. For a perfectoid space S over k, we have the Fargues–Fontaine curve
𝑋𝑆 [FF18], an adic space over F. For 𝑆 = Spa(𝑅, 𝑅+) affinoid with pseudouniformiser 𝜛, the adic space
𝑋𝑆 is defined as follows:

𝑌𝑆 = (Spa 𝑊O𝐹 (𝑅+))\ {𝑝[𝜛] = 0}
𝑋𝑆 = 𝑌𝑆/FrobZ .

Here, Frob is the qth power Frobenius on S.
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For an affinoid perfectoid space S lying over the residue field of F, the following sets are in bijection:

1. S-points of Spd 𝐹,
2. Untilts 𝑆♯ of S over F,
3. Cartier divisors of 𝑌𝑆 of degree 1.

Given an untilt 𝑆♯, we let 𝐷𝑆♯ ⊂ 𝑌𝑆 be the corresponding divisor. If 𝑆♯ = Spa(𝑅♯, 𝑅♯+) is affinoid, then
the completion of 𝑌𝑆 along 𝐷𝑆♯ is Spf 𝐵+dR (𝑅

♯), where 𝐵+dR (𝑅
♯) is the de Rham period ring attached to

the perfectoid algebra 𝑅♯. The untilt 𝑆♯ determines a Cartier divisor on 𝑋𝑆 , which we still refer to as 𝐷𝑆♯ .
There is a functor 𝑏 ↦→ E𝑏 from the category of isocrystals with G-structure to the category of G-

bundles on 𝑋𝑆 (for any S). When S is a geometric point this functor induces a bijection between the sets
of isomorphism classes [Far20].

We now recall Scholze’s definition of the local shtuka space. It is a set-valued functor on the pro-étale
site of perfectoid spaces over F𝑝 and is equipped with a morphism to Spd 𝐶. Thus, it can be described
equivalently as a set-valued functor on the pro-étale site of perfectoid spaces over C.

Definition 2.4.1. The local shtuka space Sht𝐺,𝑏,𝜇 inputs a perfectoid C-algebra (𝑅, 𝑅+) and outputs the
set of isomorphisms

𝛾 : E1 |𝑋
𝑅♭
\𝐷𝑅 � E𝑏 |𝑋

𝑅♭
\𝐷𝑅

of G-torsors that are meromorphic along 𝐷𝑅 and bounded by 𝜇 pointwise on Spa 𝑅.

Let us briefly recall the condition of being pointwise bounded by 𝜇. If Spa(𝐶, 𝑂𝐶 ) → Spa 𝑅 is a
geometric point, we obtain via pullback 𝛾 : E1 |𝑋

𝐶♭ \{𝑥𝐶 } → E𝑏 |𝑋
𝐶♭ \{𝑥𝐶 }, where we have written 𝑥𝐶 in

place of 𝐷𝐶 to emphasize that this a point on 𝑋𝐶♭ . The completed local ring of 𝑋𝐶♭ at 𝑥𝐶 is Fointaine’s
ring 𝐵+dR (𝐶). A trivialization of both bundles E1 and E𝑏 on a formal neighborhood of 𝑥𝐶 , together with
𝛾, leads to an element of 𝐺 (𝐵dR (𝐶)), well-defined up to left and right multiplication by elements of
𝐺 (𝐵+dR (𝐶)). The corresponding element of the double coset space 𝐺 (𝐵+dR (𝐶))\𝐺 (𝐵dR(𝐶))/𝐺 (𝐵+dR(𝐶))
is indexed by a conjugacy class of cocharacters of 𝐺/𝐶 according to the Cartan decomposition, and we
demand that this conjugacy class is dominated by 𝜇 in the usual order (given by the simple roots of the
universal Borel pair).

The space Sht𝐺,𝑏,𝜇 is a locally spatial diamond [SW20, §23]. Since the automorphism groups of
E1 and E𝑏 are the constant group diamonds 𝐺 (Q𝑝) and 𝐺𝑏 (Q𝑝), respectively, the space Sht𝐺,𝑏,𝜇 is
equipped with commuting actions of 𝐺 (Q𝑝) and 𝐺𝑏 (Q𝑝), acting by pre- and postcomposition on 𝛾.

Remark 2.4.2. According to [SW20, Corollary 23.2.2], the above definition recovers the moduli space
of local shtukas with one leg and infinite level structure. We have dropped the subscript ∞ used in
[SW20] to denote the infinite level structure.

We will use the cohomology theory developed in [Sch17]. For any compact open subgroup 𝐾 ⊂ 𝐺 (𝐹),
the quotient Sht𝐺,𝑏,𝜇,𝐾 = Sht𝐺,𝑏,𝜇/𝐾 is again a locally spatial diamond [SW20, §23]. For each
𝑛 = 1, 2, . . . , let 𝑉𝜇,𝑛 ∈ Rep(𝐺, Z/ℓ𝑛Z) be the Weyl module associated to 𝜇. By the geometric Satake
equivalence (Theorem 5.1.1), there is a corresponding object S𝜇,𝑛 of 𝐷 ét (Gr𝐺,𝑏,≤𝜇, Z/ℓ𝑛Z[√𝑞]).
Define

𝑅Γ𝑐 (Sht𝐺,𝑏,𝜇/𝐾,S𝜇) = lim−−→
𝑈

𝑅Γ𝑐 (𝑈,S𝜇),

where 𝑈 ⊂ Sht𝐺,𝑏,𝜇/𝐾 runs over quasicompact open subsets and where we have put

𝑅Γ𝑐 (𝑈,S𝜇) = lim←−−
𝑛

𝑅Γ𝑐 (𝑈,S𝜇,𝑛).

Then 𝑅Γ𝑐 (Sht𝐺,𝑏,𝜇/𝐾,S𝜇) is a complex of Zℓ [
√

𝑞]-modules carrying an action of 𝐺𝑏 (𝐹) ×𝑊𝐸 .
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Definition 2.4.3. Let 𝜌 be a finite-length admissible representation of 𝐺𝑏 (𝐹) with coefficients in Qℓ .
Then we define

𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌] = lim−−→
𝐾 ⊂𝐺 (𝐹 )

𝑅 Hom𝐺𝑏 (𝐹 ) (𝑅Γ𝑐 (Sht𝐺,𝑏,𝜇/𝐾,S𝜇) ⊗ Qℓ , 𝜌),

where K runs over the set of open compact subgroups of 𝐺 (𝐹).

By Proposition 6.4.5 below, this defines a finite-length 𝑊𝐸 -equivariant object in the derived category
of smooth representations of 𝐺 (𝐹) with coefficients in Qℓ , and we write Mant𝑏,𝜇 (𝜌) for the image of
𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌] in Groth(𝐺 (𝐹) ×𝑊𝐸 ).

Remark 2.4.4. We now discuss the relationship between our definition of Mant𝑏,𝜇 (𝜌) and the virtual
representation 𝐻∗(𝐺, 𝑏, 𝜇) [𝜌] defined in [RV14].

When 𝜇 is minuscule, Sht𝐺,𝑏,𝜇,𝐾 is the diamond M�
𝐺,𝑏,𝜇,𝐾 associated to the local Shimura variety

M𝐺,𝑏,𝜇,𝐾 [SW20, §24.1]. The latter is a rigid-analytic variety of dimension 𝑑 = 〈𝜇, 2𝜌𝐺〉, where 2𝜌𝐺
is the sum of the positive roots. Moreover, in that case, S𝜇 = Zℓ [

√
𝑞] [𝑑] ( 𝑑2 ) is a shift and twist of the

constant sheaf. In [RV14], 𝐻∗(𝐺, 𝑏, 𝜇) [𝜌] is defined as the alternating sum∑
𝑖, 𝑗∈Z
(−1)𝑖+ 𝑗𝐻𝑖, 𝑗 (𝐺, 𝑏, 𝜇) [𝜌] (−𝑑),

where

𝐻𝑖, 𝑗 (𝐺, 𝑏, 𝜇) [𝜌] = lim−−→
𝐾

Ext𝑖𝐺𝑏 (𝐹 ) (𝐻
𝑗
𝑐 (M𝐺,𝑏,𝜇,𝐾 , Zℓ) ⊗ Qℓ , 𝜌)

Note that 𝐻𝑖, 𝑗 (𝐺, 𝑏, 𝜇) [𝜌] vanishes for all but finitely many (𝑖, 𝑗), and each 𝐻𝑖, 𝑗 (𝐺, 𝑏, 𝜇) [𝜌] is an
admissible representation of 𝐺𝑏 (𝐹) by the analysis in [FS21]. On the other hand, unwinding definitions,
we see that there is a spectral sequence 𝐻𝑖, 𝑗−𝑑 (𝐺, 𝑏, 𝜇) [𝜌] (− 𝑑2 ) =⇒ 𝐻𝑖+ 𝑗 (𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌]).

Putting these observations together, we get the equality

Mant𝑏,𝜇 (𝜌) = (−1)𝑑𝐻∗(𝐺, 𝑏, 𝜇) [𝜌] ( 𝑑2 ).

Note that in our formulation, the Tate twist appearing in [RV14, Conjecture 7.3] has been absorbed into
the normalization of Mant𝑏,𝜇.

3. Transfer of conjugation-invariant functions from 𝑮 (𝑭) to 𝑮𝒃 (𝑭)

Throughout, 𝐹/Q𝑝 is a finite extension, and 𝐺/𝐹 is a connected reductive group.

3.1. The space of strongly regular conjugacy classes in 𝑮 (𝑭)

The following definitions are important for our work.

• 𝐺rs ⊂ 𝐺 is the open subvariety of regular semisimple elements, meaning those whose connected
centralizer is a maximal torus.

• 𝐺sr ⊂ 𝐺 is the open subvariety of strongly regular semisimple elements, meaning those regular
semisimple elements whose centralizer is connected, i.e., a maximal torus.

• 𝐺 (𝐹)ell ⊂ 𝐺 (𝐹) is the open subset of strongly regular elliptic elements, meaning those strongly
regular semisimple elements in 𝐺 (𝐹) whose centralizer is an elliptic maximal torus.

We put 𝐺 (𝐹)sr = 𝐺sr (𝐹) and 𝐺 (𝐹)rs = 𝐺rs (𝐹). Note that 𝐺 (𝐹)ell ⊂ 𝐺 (𝐹)sr ⊂ 𝐺 (𝐹)rs. The inclusion
𝐺 (𝐹)sr ⊂ 𝐺 (𝐹)rs is dense.
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If g is regular semisimple, then it is necessarily contained in a unique maximal torus T, namely the
neutral component Cent(𝑔, 𝐺)◦, but this is not necessarily all of Cent(𝑔, 𝐺). If 𝐺der is simply connected,
then Cent(𝑔, 𝐺) is connected; thus, in such a group, regular semisimple and strongly regular semisimple
mean the same thing.

Observe that if g is regular semisimple, then 𝛼(𝑔) ≠ 1 for all roots 𝛼 relative to the action of T. Indeed,
if 𝛼(𝑔) = 1, then the root subgroup of 𝛼 would commute with g, and then it would have dimension
strictly greater than dim𝑇 .

All of the sets 𝐺 (𝐹)sr, 𝐺 (𝐹)rs, 𝐺 (𝐹)ell are conjugacy-invariant, so we may for instance consider the
quotient 𝐺 (𝐹)sr � 𝐺 (𝐹), considered as a topological space.

Lemma 3.1.1. 𝐺 (𝐹)rs � 𝐺 (𝐹) is locally profinite, in fact equal to the disjoint union of the locally
profinite sets 𝑇 (𝐹)rs/𝑁 (𝑇, 𝐺) (𝐹), where T runs over the set of 𝐺 (𝐹)-conjugacy classes of F-rational
maximal tori in G, and 𝑁 (𝑇, 𝐺) is the normalizer of T in G. The same is true with ‘rs’ replaced by ‘sr’.

Proof. Let 𝑇 ⊂ 𝐺 be a F-rational maximal torus. The set 𝐻1(𝐹, 𝑁 (𝑇, 𝐺)) classifies conjugacy classes
of F-rational tori, as follows: Given a F-rational torus 𝑇 ′, we must have 𝑇 ′ = 𝑥𝑇𝑥−1 for some 𝑥 ∈ 𝐺 (𝐹).
Then for all 𝜎 ∈ Gal(𝐹/𝐹), 𝑥−1𝑥𝜎 normalizes T. We associate to 𝑇 ′ the class of 𝜎 ↦→ 𝑥−1𝑥𝜎 in
𝐻1 (𝐹, 𝑁 (𝑇, 𝐺)), and it is a simple matter to see that this defines a bijection as claimed. (In fact
𝐻1 (𝐹, 𝑁 (𝑇, 𝐺)) is finite.)

There is a map 𝐺 (𝐹)rs � 𝐺 (𝐹) → 𝐻1(𝐹, 𝑁 (𝑇, 𝐺)), sending the conjugacy class of 𝑔 ∈ 𝐺 (𝐹)rs to
the conjugacy class of the unique F-rational torus containing it, namely Cent(𝑔, 𝐺)◦. We claim that this
map is locally constant.

To prove the claim, we consider

𝜑 : 𝐺 (𝐹) × 𝑇rs (𝐹) → 𝐺rs (𝐹), (𝑔, 𝑡) ↦→ 𝑔𝑡𝑔−1,

a morphism of p-adic analytic varieties. We would like to show that 𝜑 is open. To do this, we will
compute its differential at the point (𝑔, 𝑡) by means of a change of variable. Consider the map

𝜓 = 𝐿−1
𝑔𝑡𝑔−1 ◦ 𝜑 ◦ (𝐿𝑔 × 𝐿𝑡 ).

Explicitly, for (𝑧, 𝑤) ∈ 𝐺 (𝐹) × 𝑇 (𝐹), we have 𝜓(𝑧, 𝑤) = 𝑔𝑡−1𝑧𝑡𝑤𝑧−1𝑔−1.
Let 𝔤 = Lie 𝐺, 𝔱 = Lie𝑇 . The derivative 𝑑𝜓(1, 1) : 𝔤 × 𝔱 → 𝔤 is given by the formula

𝑑𝜓(1, 1) (𝑍, 𝑊) = Ad(𝑔) [(Ad(𝑡−1) − id)𝑍 +𝑊] .

We would like to check that 𝑑𝜓(1, 1) is surjective. We may decompose 𝔤 = 𝔱 ⊕ 𝔱⊥, where 𝔱⊥ is the
descent to F of the direct sum of all root subspaces of 𝔤𝐹 for the action of T.

The element t is regular, hence 𝛼(𝑡) ≠ 1 for all roots of 𝔤 for the action of T. Therefore, Ad(𝑡−1) − id :
𝔤/𝔱 → 𝔱⊥ is an isomorphism. It follows that 𝑑𝜓 is surjective. The derivative of 𝜑 at (𝑔, 𝑡) is

𝑑𝜑(𝑔, 𝑡) = 𝑑𝐿𝑔𝑡𝑔−1 (𝑔𝑡𝑔−1) ◦ 𝑑𝜓(1, 1) ◦ (𝑑𝐿𝑔 (1) × 𝑑𝐿𝑡 (1)).

All terms 𝑑𝐿 are isomorphisms, so 𝑑𝜑(𝑔, 𝑡) is also surjective. Thus, 𝜑 is a submersion in the sense
of Bourbaki VAR §5.9.1; hence, it is open by loc. cit. §5.9.4.

Therefore, if 𝑔 ∈ 𝑇 (𝐹)rs and 𝑔′ is sufficiently close to g in 𝐺 (𝐹), then 𝑔′ is conjugate in 𝐺 (𝐹)
to an element of 𝑇 (𝐹), which proves the claim about the local constancy of 𝐺 (𝐹)rs � 𝐺 (𝐹) →
𝐻1 (𝐹, 𝑁 (𝑇, 𝐺)).

The fiber of this map over 𝑇 ′ is 𝑇 ′(𝐹)rs modulo the action of the finite group 𝑁 (𝑇 ′, 𝐺) (𝐹)/𝑇 ′(𝐹).
Since 𝑇 ′(𝐹)rs is locally profinite so is its quotient by the action of a finite group. �
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3.2. Hecke transfer maps

Suppose that 𝑏 ∈ 𝐺 (�̆�) is basic. The goal of this section is to define a family of explicit maps, which input
a conjugation-invariant function on 𝐺 (𝐹)sr and output a conjugation-invariant function on 𝐺𝑏 (𝐹)sr. We
shall call them Hecke transfer maps as a way of foreshadowing their relation to the Hecke operators
defined on the stack Bun𝐺 .

Given a sufficiently strong version of the local Langlands conjectures, we will show that the Hecke
transfer maps act predictably on the trace characters attached to irreducible admissible representations.

We begin by recalling the concept of related elements and the definition of their invariant in the
isocrystal setting from [Kal14].

Lemma 3.2.1. Suppose 𝑔 ∈ 𝐺 (𝐹) and 𝑔′ ∈ 𝐺𝑏 (𝐹) are strongly regular elements which are conjugate
over an algebraic closure of �̆�. Then they are conjugate over �̆�.

Proof. Let K be an algebraic closure of �̆�. Say 𝑔′ = 𝑧𝑔𝑧−1 with 𝑧 ∈ 𝐺 (𝐾). Let 𝑇 = Cent(𝑔, 𝐺); then for
all 𝜏 in the inertia group Gal(𝐹/𝐹nr), 𝑧−𝜏𝑧 commutes with g and therefore lies in 𝑇 (𝐾). Then 𝜏 ↦→ 𝑧−𝜏𝑧
is a cocycle in 𝐻1(�̆�, 𝑇). Since T is a connected algebraic group, 𝐻1(�̆�, 𝑇) = 0 [Ste65, Theorem 1.9].
If 𝑥 ∈ 𝑇 (𝐾) splits the cocycle, then 𝑦 = 𝑧𝑥−1 ∈ 𝐺 (�̆�), and 𝑔′ = 𝑦𝑔𝑦−1 so that g and 𝑔′ are related. �

It is customary to call elements 𝑔, 𝑔′ as in the above lemma stably conjugate, or related. Suppose we
have strongly regular elements 𝑔 ∈ 𝐺 (𝐹)sr and 𝑔′ ∈ 𝐺𝑏 (𝐹)sr which are related. Let 𝑇 = Cent(𝑔, 𝐺), and
suppose 𝑦 ∈ 𝐺 (�̆�) with 𝑔′ = 𝑦𝑔𝑦−1. The rationality of g means that 𝑔𝜎 = 𝑔, whereas the rationality of
𝑔′ in 𝐺𝑏 means that (𝑔′)𝜎 = 𝑏−1𝑔′𝑏. Combining these statements shows that 𝑏0 := 𝑦−1𝑏𝑦𝜎 commutes
with g and therefore lies in 𝑇 (�̆�).

Definition 3.2.2. For strongly regular related elements 𝑔 ∈ 𝐺 (𝐹)sr and 𝑔′ ∈ 𝐺𝑏 (𝐹)sr, the invariant
inv[𝑏] (𝑔, 𝑔′) is the class of 𝑦−1𝑏𝑦𝜎 in 𝐵(𝑇), where 𝑦 ∈ 𝐺 (�̆�) satisfies 𝑔′ = 𝑦𝑔𝑦−1.

Fact 3.2.3. The invariant inv[𝑏] (𝑔, 𝑔′) ∈ 𝐵(𝑇) only depends on b, g and 𝑔′ and not on the element y
which conjugates g into 𝑔′. It depends on the rational conjugacy classes of g and 𝑔′ as follows:

• For 𝑧 ∈ 𝐺 (𝐹), we have inv[𝑏] ((ad 𝑧) (𝑔), 𝑔′) = (ad 𝑧) (inv[𝑏] (𝑔, 𝑔′)), a class in 𝐵((ad 𝑧) (𝑇)).
• For 𝑧 ∈ 𝐺𝑏 (𝐹), we have inv[𝑏] (𝑔, (ad 𝑧) (𝑔′)) = inv[𝑏] (𝑔, 𝑔′).

The image of inv[𝑏] (𝑔, 𝑔′) under the composition of 𝐵(𝑇) → 𝐵(𝐺) and 𝜅 : 𝐵(𝐺) → 𝜋1 (𝐺)Γ equals
𝜅(𝑏).

Definition 3.2.4. We define a diagram of topological spaces

Rel𝑏

�����
���

���
�

����
���

���
���

𝐺 (𝐹)sr�𝐺 (𝐹) 𝐺𝑏 (𝐹)sr�𝐺𝑏 (𝐹).

(3.2.1)

as follows. The space Rel𝑏 is the set of conjugacy classes of triples (𝑔, 𝑔′, 𝜆), where 𝑔 ∈ 𝐺 (𝐹)sr and 𝑔′ ∈
𝐺𝑏 (𝐹)sr are related, and 𝜆 ∈ 𝑋∗(𝑇), where 𝑇 = Cent(𝑔, 𝐺). It is required that 𝜅(inv[𝑏] (𝑔, 𝑔′)) agrees
with the image of 𝜆 in 𝑋∗(𝑇)Γ. We consider (𝑔, 𝑔′, 𝜆) conjugate to ((ad 𝑧) (𝑔), (ad 𝑧′) (𝑔′), (ad 𝑧) (𝜆))
whenever 𝑧 ∈ 𝐺 (𝐹) and 𝑧′ ∈ 𝐺𝑏 (𝐹). We give Rel𝑏 ⊂ (𝐺 (𝐹) ×𝐺𝑏 (𝐹) × 𝑋∗(𝐺))/(𝐺 (𝐹) ×𝐺𝑏 (𝐹)) the
subspace topology, where 𝑋∗(𝐺) is taken to be discrete.

Remark 3.2.5. Given 𝑔 ∈ 𝐺 (𝐹)sr and 𝜆 a cocharacter of its torus, there is at most one conjugacy class of
𝑔′ ∈ 𝐺𝑏 (𝐹) with (𝑔, 𝑔′, 𝜆) ∈ Rel𝑏 . In other words, g and inv[𝑏] (𝑔, 𝑔′) determine the conjugacy class of
𝑔′. Indeed, suppose (𝑔, 𝑔′, 𝜆) and (𝑔, 𝑔′′, 𝜆) are both in Rel𝑏 . Then 𝑔′ = 𝑦𝑔𝑦−1 and 𝑔′′ = 𝑧𝑔𝑧−1 for some
𝑦, 𝑧 ∈ 𝐺 (𝐹nr), and 𝑦−1𝑏𝑦𝜎 and 𝑧−1𝑏𝑧𝜎 are 𝜎-conjugate in 𝑇 (�̆�). This means there exists 𝑡 ∈ 𝑇 (�̆�)
such that 𝑦−1𝑏𝑦𝜎 = (𝑧𝑡)−1𝑏(𝑧𝑡)𝜎 . We see that 𝑥 = 𝑧𝑡𝑦−1 ∈ 𝐺𝑏 (𝐹), and that x conjugates 𝑔′ onto 𝑔′′.
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Lemma 3.2.6. The map Rel𝑏 → 𝐺 (𝐹)sr � 𝐺 (𝐹) is a homeomorphism locally on the source. Its image
consists of those classes that transfer to 𝐺𝑏 . In particular, the image is open and closed.

The analogous statement is true for Rel𝑏 → 𝐺𝑏 (𝐹)sr � 𝐺𝑏 (𝐹).

Proof. The proof of Lemma 3.1.1 shows that 𝐺 (𝐹)sr �𝐺 (𝐹) is the disjoint union of spaces 𝑇 (𝐹)sr/𝑊𝑇 ,
as 𝑇 ⊂ 𝐺 runs through the finitely many conjugacy classes of F-rational maximal tori, and 𝑊𝑇 =
𝑁 (𝑇, 𝐺) (𝐹)/𝑇 (𝐹) is a finite group. By the above remark, Rel𝑏 injects into the disjoint union of the
spaces 𝑇 (𝐹)sr/𝑊𝑇 ×𝑋∗(𝑇), with the map to 𝐺 (𝐹)sr�𝐺 (𝐹) corresponding to the projection 𝑇 (𝐹)sr/𝑊𝑇 ×
𝑋∗(𝑇) → 𝑇 (𝐹)sr/𝑊𝑇 . Since 𝑋∗(𝑇) is discrete, this map is a homeomorphism locally on the source. The
other statements are evident from the definitions. �

The definition of Rel𝑏 already suggests a means for transferring functions from 𝐺 (𝐹)sr �𝐺 (𝐹) to
𝐺𝑏 (𝐹)sr �𝐺𝑏 (𝐹), namely, by pulling back from 𝐺 (𝐹)sr �𝐺 (𝐹) to Rel𝑏 , multiplying by a compactly
supported kernel function and then pushing forward to 𝐺𝑏 (𝐹)sr�𝐺𝑏 (𝐹). We will define one such kernel
function for each geometric conjugacy class of cocharacters 𝜇 : Gm → 𝐺𝐹 .

Let 𝐺 be the Langlands dual group. It comes equipped with a splitting, in particular with a torus and
Borel 𝑇 ⊂ 𝐵 ⊂ 𝐺. Given a conjugacy class of cocharacters 𝜇 for G as above, we obtain a character
𝜇 : 𝑇 → Gm which is 𝐵-dominant. Let 𝑟𝜇 be the Weyl module of the dual group 𝐺 whose highest
weight with respect to (𝑇, 𝐵) is 𝜇.

A cocharacter 𝜆 ∈ 𝑋∗(𝑇) corresponds to a character 𝜆 ∈ 𝑋∗(𝑇). Let 𝑟𝜇 [𝜆] be the 𝜆-weight space of
𝑟𝜇. The quantity dim 𝑟𝜇 [𝜆] will give us our kernel function. While we will not need it here, we note that
there is an explicit formula for dim 𝑟𝜇 [𝜆] coming from the Weyl character formula.

We now fix a commutative ring Λ in which p is invertible. For a topological space X, we let 𝐶 (𝑋,Λ)
be the space of continuous Λ-valued functions on X, where Λ is given the discrete topology.

Definition 3.2.7. Let 𝑑 = 〈𝜇, 2𝜌𝐺〉, where 2𝜌𝐺 is the sum of the positive roots of G. We define the
Hecke transfer map

𝑇𝐺→𝐺𝑏

𝑏,𝜇 : 𝐶 (𝐺 (𝐹)sr�𝐺 (𝐹),Λ) → 𝐶 (𝐺𝑏 (𝐹)sr�𝐺𝑏 (𝐹),Λ)

by

[𝑇𝐺→𝐺𝑏

𝑏,𝜇 𝑓 ] (𝑔′) = (−1)𝑑
∑

(𝑔,𝑔′,𝜆) ∈Rel𝑏

𝑓 (𝑔) dim 𝑟𝜇 [𝜆] .

Analogously, we define

𝑇𝐺𝑏→𝐺
𝑏,𝜇 : 𝐶 (𝐺𝑏 (𝐹)sr�𝐺𝑏 (𝐹),Λ) → 𝐶 (𝐺 (𝐹)sr�𝐺 (𝐹),Λ)

by

[𝑇𝐺𝑏→𝐺
𝑏,𝜇 𝑓 ′] (𝑔) = (−1)𝑑

∑
(𝑔,𝑔′,𝜆) ∈Rel𝑏

𝑓 ′(𝑔′) dim 𝑟𝜇 [𝜆] .

Since 𝑟𝜇 is finite-dimensional, the sum is finite. If 𝑓 ′ has compact support, then so does its image.

Lemma 3.2.8. The Hecke transfer map 𝑇𝐺→𝐺𝑏

𝑏,𝜇 is zero unless [𝑏] is the unique basic class in 𝐵(𝐺, 𝜇).

Proof. Suppose there exists an F-rational maximal torus 𝑇 ⊂ 𝐺 and a cocharacter 𝜆 ∈ 𝑋∗(𝑇) such that
𝑟𝜇 [𝜆] ≠ 0. Then 𝜇 and 𝜆 must agree when restricted to the center 𝑍 (𝐺), which is to say that 𝜇 and 𝜆 have
the same image in 𝑋∗(𝑍 (𝐺)). Equivalently, if we conjugate 𝜇 so as to assume it is a cocharacter of T,
then 𝜇 and 𝜆 have the same image under 𝑋∗(𝑇) � 𝜋1 (𝑇) → 𝜋1 (𝐺). By Fact 3.2.3 and the functoriality
of 𝜅 the image of 𝜆 in 𝜋1 (𝐺)Γ equals 𝜅(𝑏). We conclude that 𝜅([𝑏]) equals the image of 𝜇 in 𝜋1 (𝐺)Γ.
This means that [𝑏] is the unique basic class in 𝐵(𝐺, 𝜇). �
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Assume therefore that [𝑏] is the unique basic class in 𝐵(𝐺, 𝜇). We may define a ‘truncation’
Rel𝑏,𝜇 ⊂ Rel𝑏 , consisting of conjugacy classes of triples (𝑔, 𝑔′, 𝜆) for which 𝜆 ≤ 𝜇. Then the kernel
function (𝑔, 𝑔′, 𝜆) ↦→ dim 𝑟𝜇 [𝜆] is supported on Rel𝑏,𝜇. In the diagram

Rel𝑏,𝜇

�����
���

���
�

����
���

���
���

𝐺 (𝐹)sr�𝐺 (𝐹) 𝐺𝑏 (𝐹)sr�𝐺𝑏 (𝐹),

(3.2.2)

both maps are finite étale over their respective images.
The following theorem is proved in §3.3. It relates the Hecke transfer map 𝑇𝐺→𝐺𝑏

𝑏,𝜇 to the local
Jacquet–Langlands correspondence for G.

Theorem 3.2.9. Assume that 𝑏 ∈ 𝐵(𝐺, 𝜇) is basic and that Λ is an algebraically closed field of
characteristic 0 abstractly isomorphic to C. Let 𝜙 : 𝑊𝐹 × SL2 → 𝐿𝐺 be a discrete L-parameter with
coefficients in Λ, and let 𝜌 ∈ Π𝜙 (𝐺𝑏). Let Θ𝜌 ∈ 𝐶 (𝐺𝑏 (𝐹)sr �𝐺𝑏 (𝐹),Λ) be its Harish–Chandra
character. Then for any 𝑔 ∈ 𝐺 (𝐹)sr that transfers to 𝐺𝑏 (𝐹), we have[

𝑇𝐺𝑏→𝐺
𝑏,𝜇 Θ𝜌

]
(𝑔) =

∑
𝜋∈Π𝜙 (𝐺)

dim Hom𝑆𝜙 (𝛿𝜋,𝜌, 𝑟𝜇)Θ𝜋 (𝑔), (3.2.3)

assuming the validity of the refined local Langlands conjecture, i.e., [Kal16a, Conjecture G].

Example 3.2.10. Let 𝐺 = GL2, and let 𝜇 : Gm → G the cocharacter sending x to the diagonal matrix
with entries (𝑥, 1). We have 𝜋1 (𝐺) = Z as a trivial Γ-module. Let 𝑏 ∈ 𝐵(𝐺, 𝜇) be the basic class.
Then b corresponds to the isocrystal of slope 1/2, and 𝐺𝑏 (𝐹) is the multiplicative group of the nonsplit
quaternion algebra over F. Let 𝜙 be a discrete Langlands parameter. The L-packets Π𝜙 (𝐺) = {𝜋} and
Π𝜙 (𝐺𝑏) = {𝜌} are singletons. We have 𝑆𝜙 = 𝑍 (𝐺) = C×, and 𝛿𝜋,𝜌 is the identity character of 𝑆𝜙 .
The representation 𝑟𝜇 is the standard representation of 𝐺 = GL2 (C), and dim Hom𝑆𝜙 (𝛿𝜋,𝜌, 𝑟𝜇) = 2.
Therefore, the right-hand side of equation (3.2.3) equals 2Θ𝜋 (𝑔).

Let 𝑤𝜇 be the cocharacter sending x to the diagonal matrix with entries (1, 𝑥). The map 𝜆 ↦→ 𝑟𝜇 [𝜆]
sends 𝜇 and 𝑤𝜇 to 1 and all other cocharacters to 0. For any strongly regular 𝑔′ ∈ 𝐺𝑏 (𝐹), there is a
unique 𝐺 (𝐹)-conjugacy class of strongly regular 𝑔 ∈ 𝐺 (𝐹) related to 𝑔′. Let 𝑆 ⊂ 𝐺 be the centralizer
of one such g. Then 𝑋∗(𝑆) � Z[Γ𝐸/𝐹 ] for a quadratic extension 𝐸/𝐹, and the map 𝜋1 (𝑆)Γ → 𝜋1 (𝐺)Γ
is an isomorphism. There are exactly two elements 𝜆, 𝑤𝜆 ∈ 𝑋∗(𝑆) that map to inv[𝑏] (𝑔, 𝑔′). Finally,
𝑑 = 1. Therefore, 𝑇𝐺→𝐺𝑏

𝑏,𝜇 𝑓 (𝑔′) = −2 𝑓 (𝑔). Setting 𝑓 = Θ𝜌, we find that Theorem 3.2.9 reduces to the
Jacquet–Langlands character identity

Θ𝜌 (𝑔′) = −Θ𝜋 (𝑔).

3.3. Proof of Theorem 3.2.9

We now give the proof of Theorem 3.2.9. We will use the notation and results of §A.1.
We are given a discrete L-parameter 𝜙, a representation 𝜌 ∈ Π𝜙 (𝐺𝑏) in its L-packet, and an element

𝑔 ∈ 𝐺 (𝐹)sr. We assume that g is related to an element of 𝐺𝑏 (𝐹). This means there exists a triple in
Rel𝑏 of the form (𝑔, 𝑔′, 𝜆). For the moment, we fix such a triple (𝑔, 𝑔′, 𝜆).

Let 𝑠 ∈ 𝑆𝜙 be a semisimple element, and let �𝑠 ∈ 𝑆+𝜙 be a lift of it. Then we have the refined endoscopic
datum �𝔢 = (𝐻,H, �𝑠, 𝜂) defined in equation (A.1.1); we choose as in that section a z-pair 𝔷 = (𝐻1, 𝜂1).
Then
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𝑒(𝐺𝑏)
∑

𝜌′ ∈Π𝜙 (𝐺𝑏)
tr 𝜏𝑧,𝔴,𝜌′ ( �𝑠)Θ𝜌′ (𝑔′)

(𝐴.1.2)
=

∑
ℎ1∈𝐻1 (𝐹 )/st

Δ (ℎ1, 𝑔′)𝑆Θ𝜙𝑠 (ℎ1)

(𝐴.1.4)
=

∑
ℎ1∈𝐻1 (𝐹 )/st

Δ (ℎ1, 𝑔)
〈
inv[𝑏] (𝑔, 𝑔′), 𝑠

♮
ℎ,𝑔

〉
𝑆Θ𝜙𝑠 (ℎ1)

=
∑

ℎ1∈𝐻1 (𝐹 )/st
Δ (ℎ1, 𝑔)𝜆(𝑠♮ℎ,𝑔)𝑆Θ𝜙𝑠 (ℎ1).

We now multiply this expression by the kernel function dim 𝑟𝜇 [𝜆] and then sum over all 𝐺𝑏 (𝐹)-
conjugacy classes of elements 𝑔′ ∈ 𝐺𝑏 (𝐹) and all 𝜆 ∈ 𝑋∗(𝑇𝑔) such that (𝑔, 𝑔′, 𝜆) lies in Rel𝑏 . We
obtain

𝑒(𝐺𝑏)
∑
(𝑔′,𝜆)

∑
𝜌′ ∈Π𝜙 (𝐺𝑏)

tr 𝜏𝑧,𝔴,𝜌′ ( �𝑠)Θ𝜌′ (𝑔′) dim 𝑟𝜇 [𝜆]

=
∑

ℎ1∈𝐻1 (𝐹 )/st
Δ (ℎ1, 𝑔)𝑆Θ𝜙𝑠 (ℎ1)

∑
(𝑔′,𝜆)

𝜆(𝑠♮ℎ,𝑔) dim 𝑟𝜇 [𝜆]

(∗)
=

∑
ℎ1∈𝐻1 (𝐹 )/st

Δ (ℎ1, 𝑔)𝑆Θ𝜙𝑠 (ℎ1) tr 𝑟𝜇 (𝑠♮ℎ,𝑔)

(∗∗)
= tr 𝑟𝜇 (𝑠♮)

∑
ℎ1∈𝐻1 (𝐹 )/st

Δ (ℎ1, 𝑔)𝑆Θ𝜙𝑠 (ℎ1)

(𝐴.1.2)
= tr 𝑟𝜇 (𝑠♮)𝑒(𝐺)

∑
𝜋∈Π𝜙 (𝐺)

tr 𝜏𝑧,𝔴, 𝜋 ( �𝑠)Θ𝜋 (𝑔).

We justify (∗∗): Let 𝑇 ⊂ 𝐺 be the centralizer of g. The image of 𝑠
♮
ℎ,𝑔 under any admissible embedding

𝑇 → 𝐺 is conjugate to 𝑠♮ in 𝐺 and tr 𝑟𝜇 is conjugation-invariant. Recall here that 𝑠♮ ∈ 𝑆𝜙 is the image
of �𝑠 under equation (2.3.2).

We justify (∗): 𝜆 ∈ 𝑋∗(𝑇) determines the 𝐺𝑏 (𝐹)-conjugacy class of 𝑔′ since inv[𝑏] (𝑔, 𝑔′) ∈ 𝐵(𝑇)
determines it. Therefore, the sum over (𝑔′, 𝜆) is in reality a sum only over 𝜆. There exists 𝑔′ ∈ 𝐺𝑏 (𝐹)
with 𝜅(inv[𝑏] (𝑔, 𝑔′)) being the image of 𝜆 in 𝑋∗(𝑇)Γ if and only if the image of 𝜆 under 𝑋∗(𝑇) →
𝑋∗(𝑇)Γ → 𝜋1 (𝐺)Γ equals 𝜅(𝑏). Since the image of 𝜇 in 𝜋1 (𝐺)Γ also equals 𝜅(𝑏), the sum over (𝑔′, 𝜆)
is in fact the sum over 𝜆 ∈ 𝑋∗(𝑇) having the same image as 𝜇 in 𝜋1 (𝐺)Γ. In terms of the dual torus 𝑇 ,
this is the sum over 𝜆 ∈ 𝑋∗(𝑇) whose restriction to 𝑍 (𝐺)Γ equals that of 𝜇. Since, for 𝜆 not satisfying
this condition the number dim𝑟𝜇 [𝜆] is zero, we may extend the sum to be over all 𝜆 ∈ 𝑋∗(𝑇) = 𝑋∗(𝑇).

We now continue with the equation. Multiply both sides of the above equation by tr 𝜏𝑧,𝔴,𝜌 ( �𝑠). As
functions of �𝑠 ∈ 𝑆+𝜙 , both sides then become invariant under 𝑍 ( ̂̄𝐺)+ and thus become functions of

the finite quotient 𝑆𝜙 = 𝑆+𝜙/𝑍 (
̂̄𝐺)+ = 𝑆𝜙/𝑍 (𝐺)Γ. Now apply



𝑆𝜙 

−1 ∑
𝑠∈�̄�𝜙 to both sides to obtain an

equality between



𝑆𝜙 

−1
𝑒(𝐺𝑏)

∑
𝑠∈�̄�𝜙

∑
(𝑔′,𝜆)

∑
𝜌′ ∈Π𝜙 (𝐺𝑏)

tr 𝜏𝑧,𝔴,𝜌 ( �𝑠) tr 𝜏𝑧,𝔴,𝜌′ ( �𝑠)Θ𝜌′ (𝑔′) dim 𝑟𝜇 [𝜆] (3.3.1)

and



𝑆𝜙 

−1
𝑒(𝐺)

∑
𝑠∈�̄�𝜙

tr 𝑟𝜇 (𝑠♮)
∑

𝜋∈Π𝜙 (𝐺)
tr 𝜏𝑧,𝔴,𝜌 ( �𝑠) tr 𝜏𝑧,𝔴, 𝜋 ( �𝑠)Θ𝜋 (𝑔), (3.3.2)
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where in both formulas �𝑠 is an arbitrary lift of 𝑠 and 𝑠♮ ∈ 𝑆𝜙 is the image of �𝑠 under equation (2.3.2).
Executing the sum over 𝑠 in equation (3.3.1) gives

𝑒(𝐺𝑏)
∑
(𝑔′,𝜆)

Θ𝜌 (𝑔′) dim 𝑟𝜇 [𝜆] = 𝑒(𝐺𝑏) [𝑇𝐺𝑏→𝐺
𝑏,𝜇 Θ𝜌] (𝑔).

To treat equation (3.3.2) note that 𝜏𝑧,𝔴,𝜌 ⊗ 𝜏𝑧,𝔴, 𝜋 ( �𝑠) = 𝛿𝜋,𝜌 (𝑠♮). Furthermore, the composition
of the map (2.3.2) with the natural projection 𝑆𝜙 → 𝑆𝜙/𝑍 (𝐺)Γ is equal to the natural projection
𝑆+𝜙 → 𝑆+𝜙/𝑍 (

̂̄𝐺)+ = 𝑆𝜙/𝑍 (𝐺)Γ = 𝑆𝜙 . Thus, 𝑠♮ is simply a lift of 𝑠 to 𝑆𝜙 . We find that equation (3.3.2)
equals

𝑒(𝐺)


𝑆𝜙 

−1 ∑

𝑠∈�̄�𝜙

tr 𝑟𝜇 (𝑠♮) tr 𝛿𝜋,𝜌 (𝑠♮) = 𝑒(𝐺) dim Hom𝑆𝜙 (𝛿𝜋,𝜌, 𝑟𝜇).

We have now reduced Theorem 3.2.9 to the identity

𝑒(𝐺)𝑒(𝐺𝑏) = (−1) 〈2𝜌𝐺 ,𝜇〉 , (3.3.3)

where 𝜌𝐺 is the sum of the positive roots. Recall that 𝐺∗ is a quasi-split inner form of G. Let 𝜇1, 𝜇2 ∈
𝑋∗(𝑍 (𝐺sc)Γ) be the elements corresponding to the inner twists 𝐺∗ → 𝐺 and 𝐺∗ → 𝐺𝑏 by Kottwitz’s
homomorphism [Kot86, Theorem 1.2]. By Lemma A.2.1, we have 𝑒(𝐺𝑏)𝑒(𝐺) = (−1) 〈2𝜌,𝜇2−𝜇1 〉 . But
since 𝐺𝑏 is obtained from G by twisting by b, the difference 𝜇2 − 𝜇1 is equal to the image of 𝜅(𝑏) ∈
𝑋∗(𝑍 (𝐺)Γ) under the map 𝑋∗(𝑍 (𝐺)Γ) → 𝑋∗(𝑍 (𝐺sc)Γ) dual to the natural map 𝑍 (𝐺sc) → 𝑍 (𝐺).
Since 𝑏 ∈ 𝐵(𝐺, 𝜇), we see that 𝜇2 − 𝜇1 = 𝜇, and equation (3.3.3) follows. The proof of Theorem 3.2.9
is complete.

3.4. An adjointness property

In this section, we will discuss an adjointness property of the Hecke transfer maps 𝑇𝐺→𝐺𝑏

𝑏,𝜇 . This will be
used in §6.3.

Let Λ be an algebraically closed field of characteristic zero. For a topological space X, we let
𝐶𝑐 (𝑋,Λ) be the space of compactly supported locally constant Λ-valued functions. The space of
distributions Dist(𝐺 (𝐹),Λ) is theΛ-linear dual of 𝐶𝑐 (𝐺 (𝐹),Λ). The subspace of invariant distributions
Dist(𝐺 (𝐹),Λ)𝐺 (𝐹 ) is the linear dual of the space of coinvariants 𝐶𝑐 (𝐺 (𝐹),Λ)𝐺 (𝐹 ) .

Given a Λ-valued Haar measure 𝑑𝑥 on 𝐺 (𝐹), integration against a function 𝑓 ∈ 𝐶 (𝐺 (𝐹)�𝐺 (𝐹),Λ)
is a 𝐺 (𝐹)-invariant distribution on 𝐺 (𝐹). Due to the functions in 𝐶𝑐 (𝐺 (𝐹),Λ) being locally constant
and having compact support, the ‘integral’ is in reality a finite sum. For our purposes, we will work with
functions 𝑓 ∈ 𝐶 (𝐺 (𝐹)sr�𝐺 (𝐹),Λ) and integrate them against test functions in 𝐶𝑐 (𝐺 (𝐹)sr).

The Weyl integration formula can be used to compute this distribution in terms of orbital integrals.
In fact, we will need a ‘stable’ variant of this formula. Before we can explain this, we need to discuss
choices of measures.

Choose a Λ-valued Haar measure on F. Then a choice of an element 𝜂 ∈
∧dim(𝐺) (Lie(𝐺) (𝐹)∗) =∧dim(𝐺) (Lie(𝐺)∗) (𝐹) leads to a Λ-valued Haar measure 𝑑𝑥𝜂 on 𝐺 (𝐹); note that multiplying 𝜂 by an

element of O×𝐹 doesn’t affect the measure 𝑑𝑥𝜂 . More generally, any element of
∧dim(𝐺) (Lie(𝐺)∗) (�̆�)

leads to a Λ-valued Haar measure 𝑑𝑥𝜂 on 𝐺 (𝐹) by choosing 𝑎 ∈ O×
�̆�

with the property that 𝑎𝜂 ∈∧dim(𝐺) (Lie(𝐺)∗) (𝐹) and defining 𝑑𝑥𝜂 := 𝑑𝑥𝑎𝜂 , noting that this does not depend on the choice of a.
In fact, this procedure allows us to even attach a measure to an element 𝜂 ∈

∧dim(𝐺) (Lie(𝐺)∗) (𝐹) by
taking 𝑎 ∈ 𝐹

× such that 𝑎𝜂 ∈
∧dim(𝐺) (Lie(𝐺)∗) (𝐹) and letting 𝑑𝑥𝜂 := |𝑎 |−1

Λ 𝑑𝑥𝑎𝜂 . But for this we need
to make sense of |𝑎 |Λ, which requires choosing a compatible system of roots of p in Λ. For us, elements
of

∧dim(𝐺) (Lie(𝐺)∗) (�̆�) will suffice, so we will not make such a choice.
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This procedure allows us to choose Haar measures compatibly in the following two situations. First,
consider the inner forms G and 𝐺𝑏 . They are canonically identified over �̆�, which gives an identification∧dim(𝐺) (Lie(𝐺)∗) (�̆�) =

∧dim(𝐺) (Lie(𝐺𝑏)∗) (�̆�). Haar measures on 𝐺 (𝐹) and 𝐺𝑏 (𝐹) corresponding
to the same 𝜂 will be called compatible. Second, consider two maximal F-rational tori 𝑇1 and 𝑇2, each
either in G or 𝐺𝑏 . They are called related if there exists 𝑔 ∈ 𝐺 (𝐹) or, equivalently (cf. Lemma 3.2.1)
𝑔 ∈ 𝐺 (�̆�) such that 𝑔𝑇1𝑔−1 = 𝑇2 and the isomorphism Ad(𝑔) : 𝑇1 → 𝑇2 is F-rational; we are using
here the identification 𝐺 �̆� = (𝐺𝑏)�̆� . We obtain an isomorphism Ad(𝑔) :

∧dim(𝐺) (Lie(𝑇1)∗) (�̆�) =∧dim(𝐺) (Lie(𝑇2)∗) (�̆�), which leads again to the notion of compatible measures on 𝑇1 (𝐹) and 𝑇2 (𝐹).
The choice of 𝑔 ∈ 𝐺 (�̆�) is unique up to multiplication by 𝑁 (𝑇1, 𝐺) (�̆�), and since this group acts on∧dim(𝐺) (Lie(𝑇1)∗) (�̆�) via a O×

�̆�
-valued character of the Weyl group, the notion of compatible measures

does not depend on the choice of g.
From now on, we assume that the Haar measures on 𝐺 (𝐹) and 𝐺𝑏 (𝐹) have been chosen compatibly,

and the Haar measures on all tori of G and 𝐺𝑏 that are related to each other have been chosen compatibly.
We now return to the discussion of distributions. For 𝜙 ∈ 𝐶𝑐 (𝐺 (𝐹)sr,Λ), let 𝜙𝐺 ∈ 𝐶𝑐 (𝐺 (𝐹)sr �

𝐺 (𝐹),Λ) be the orbital integral function,

𝜙𝐺 (𝑦) =
∫
𝑥∈𝐺 (𝐹 )/𝐺 (𝐹 )𝑦

𝜙(𝑥𝑦𝑥−1) 𝑑𝑥.

As remarked by the referee, the map 𝜙→ 𝜙𝐺 induces an isomorphism

𝐶𝑐 (𝐺 (𝐹)sr,Λ)𝐺 (𝐹 ) → 𝐶𝑐 (𝐺 (𝐹)sr�𝐺 (𝐹),Λ), (3.4.1)

cf. Lemma 3.1.1. The stable Weyl integration formula states∫
𝐺 (𝐹 )

𝑓 (𝑥)𝜙(𝑥) 𝑑𝑥 = 〈 𝑓 , 𝜙𝐺〉𝐺 . (3.4.2)

We explain now the notation 〈 𝑓 , 𝜙𝐺〉𝐺 . For a function ℎ ∈ 𝐶𝑐 (𝐺 (𝐹)sr�𝐺 (𝐹),Λ), we define

〈 𝑓 , ℎ〉𝐺 =
∑
𝑇

|𝑊 (𝑇, 𝐺) (𝐹) |−1
∫
𝑡 ∈𝑇 (𝐹 )sr

|𝐷 (𝑡) |
∑
𝑡0∼𝑡

𝑓 (𝑡0)ℎ(𝑡0)𝑑𝑡,

where

• T runs over a set of representatives for the stable classes of maximal tori,
• 𝑊 (𝑇, 𝐺) = 𝑁 (𝑇, 𝐺)/𝑇 is the absolute Weyl group,

• 𝐷 (𝑡) = det
(
Ad(𝑡) − 1





 Lie 𝐺/Lie𝑇

)
is the usual Weyl discriminant and

• 𝑡0 runs over the 𝐺 (𝐹)-conjugacy classes inside of the stable class of t.

Note that the integral does not depend on the chosen representative since any two are isomorphic over F
by definition of stable conjugacy, and the isomorphism is canonical up to the action of the Weyl group
𝑊 (𝑇, 𝐺) (𝐹), which is irrelevant given the sum 𝑡0 ∼ 𝑡.

The following lemma shows that the Hecke transfer maps 𝑇𝐺→𝐺𝑏

𝑏,𝜇 and 𝑇𝐺𝑏→𝐺
𝑏,𝜇 are adjoint with

respect to the pairing 〈·, ·〉𝐺 and its analogue 〈·, ·〉𝐺𝑏
, defined similarly.

Lemma 3.4.1. Given 𝑓 ′ ∈ 𝐶 (𝐺𝑏 (𝐹)sr �𝐺𝑏 (𝐹),Λ) and 𝑓 ∈ 𝐶 (𝐺 (𝐹)sr �𝐺 (𝐹),Λ), one of which has
compact support, we have

〈𝑇𝐺𝑏→𝐺
𝑏,𝜇 𝑓 ′, 𝑓 〉𝐺 = 〈 𝑓 ′, 𝑇𝐺→𝐺𝑏

𝑏,𝜇 𝑓 〉𝐺𝑏 .
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Proof. By definition 〈𝑇𝐺𝑏→𝐺
𝑏,𝜇 𝑓 ′, 𝑓 〉𝐺 equals

(−1)𝑑
∑
𝑇

|𝑊 (𝑇, 𝐺) (𝐹) |−1
∫
𝑡 ∈𝑇 (𝐹 )sr

|𝐷 (𝑡) |
∑
𝑡0∼𝑡

∑
(𝑡0 ,𝑡′0 ,𝜆)

𝑟𝜇,𝜆 𝑓 ′(𝑡 ′0) 𝑓 (𝑡0)𝑑𝑡. (3.4.3)

The first sum runs over a set of representatives for the stable classes of maximal tori in G. The second
sum runs over the set 𝑡0 of 𝐺 (𝐹)-conjugacy classes of elements that are stably conjugate to t. Let 𝑇𝑡0
denote the centralizer of 𝑡0. The third sum runs over triples (𝑡0, 𝑡 ′0, 𝜆), where 𝑡 ′0 is a 𝐺𝑏 (𝐹)-conjugacy
class that is stably conjugate to 𝑡0, and 𝜆 ∈ 𝑋∗(𝑇𝑡0 ) maps to inv(𝑡0, 𝑡 ′0) ∈ 𝑋∗(𝑇𝑡0 )Γ. Note that if T does
not transfer to 𝐺𝑏 , then it does not contribute to the sum because the sum over (𝑡0, 𝑡 ′0, 𝜆) is empty. Let
X be a set of representatives for those stable classes of maximal tori in G that transfer to 𝐺𝑏 . The above
expression becomes

(−1)𝑑
∑
𝑇 ∈X
|𝑊 (𝑇, 𝐺) (𝐹) |−1

∫
𝑡 ∈𝑇 (𝐹 )sr

|𝐷 (𝑡) |
∑
(𝑡0 ,𝑡′0 ,𝜆)

𝑟𝜇,𝜆 𝑓 ′(𝑡 ′0) 𝑓 (𝑡0)𝑑𝑡,

where now the second sum runs over triples (𝑡0, 𝑡 ′0, 𝜆) with 𝑡0 a 𝐺 (𝐹)-conjugacy class and 𝑡 ′0 a 𝐺𝑏 (𝐹)-
conjugacy class, both stably conjugate to t, and 𝜆 ∈ 𝑋∗(𝑇𝑡0 ) mapping to inv(𝑡0, 𝑡 ′0) ∈ 𝑋∗(𝑇𝑡0 )Γ.

Let X′ be a set of representatives for those stable classes of maximal tori of 𝐺𝑏 that transfer to G.
We have a bijection X ↔ X′. Fix arbitrarily an admissible isomorphism 𝑇 → 𝑇 ′ for any 𝑇 ∈ X and
𝑇 ′ ∈ X′ that correspond under this bijection. It induces an isomorphism 𝑊 (𝑇, 𝐺) → 𝑊 (𝑇 ′, 𝐺𝑏) of
finite algebraic groups, as well as an isomorphism 𝑇 (𝐹) → 𝑇 ′(𝐹) of toplogical groups that preserves
the chosen measures (since we have arranged the measures to be compatible). Given 𝑡 ∈ 𝑇 (𝐹)sr, let
𝑡 ′ ∈ 𝑇 ′(𝐹)sr be its image under the admissible isomorphism. Then |𝐷 (𝑡) | = |𝐷 (𝑡 ′) |, and equation (3.4.3)
becomes

(−1)𝑑
∑
𝑇 ′ ∈X′

|𝑊 (𝑇 ′, 𝐺𝑏) (𝐹) |−1
∫
𝑡′ ∈𝑇 ′sr (𝐹 )

|𝐷 (𝑡 ′) |
∑
(𝑡0 ,𝑡′0 ,𝜆)

𝑟𝜇,𝜆 𝑓 ′(𝑡 ′0) 𝑓 (𝑡0)𝑑𝑡, (3.4.4)

where now the second sum runs over triples (𝑡0, 𝑡 ′0, 𝜆), where 𝑡0 is a 𝐺 (𝐹)-conjugacy class, 𝑡 ′0 is a 𝐺𝑏 (𝐹)-
conjugacy class, both are stably conjugate to 𝑡 ′ and 𝜆 ∈ 𝑋∗(𝑇𝑡0 ) maps to inv(𝑡0, 𝑡 ′0) ∈ 𝑋∗(𝑇𝑡0 )Γ. Reversing
the arguments from the beginning of this proof, we see that this expression equals 〈 𝑓 ′, 𝑇𝐺→𝐺𝑏

𝑏,𝜇 𝑓 〉𝐺𝑏 . �

In §6.3, we will define by geometric means an operator

𝑇𝐺→𝐺𝑏

𝑏,𝜇 : 𝐶𝑐 (𝐺 (𝐹)ell,Λ)𝐺 (𝐹 ) → 𝐶𝑐 (𝐺𝑏 (𝐹)ell,Λ)𝐺 (𝐹 )

and show (Proposition 6.3.3) that 𝑇𝐺→𝐺𝑏

𝑏,𝜇 corresponds to 𝑇𝐺→𝐺𝑏

𝑏,𝜇 under equation (3.4.1).

4. The Lefschetz–Verdier trace formula for v-stacks

The goal of this section is to build up some machinery related to the Lefschetz–Verdier trace formula.
We briefly review the setup in the context of a separated finite-type morphism of schemes 𝑝 : 𝑋 →

Spec 𝑘 , where k is an algebraically closed field. Let ℓ be a prime unequal to the characteristic of k, and
let A be an object of 𝐷 (𝑋ét, Qℓ), the derived category of étale Qℓ-sheaves on X. Suppose 𝑓 : 𝑋 → 𝑋 is
a k-linear endomorphism. If we are given the additional datum of a morphism1 𝑅 𝑓! 𝐴 → 𝐴, we obtain
an operator 𝑅𝑝! 𝐴 � 𝑅𝑝!𝑅 𝑓! 𝐴→ 𝑅𝑝! 𝐴 on the compactly supported cohomology 𝑅𝑝! 𝐴 = 𝑅Γ𝑐 (𝑋, 𝐴).

1Equivalently, a morphism 𝐴→ 𝑅 𝑓 !𝐴. A special case occurs when f is an automorphism, A is an honest sheaf on 𝑋ét and
𝐴→ 𝑓 ∗𝐴 is a morphism, such as the identity morphism on the constant sheaf 𝐴 = Qℓ . More generally, we may replace f with
an algebraic correspondence 𝑐 = (𝑐1, 𝑐2) : 𝐶 → 𝑋 ×𝑘 𝑋 . In that setting, the required extra datum is a morphism 𝑐∗1F→ 𝑐!

2F:
This is the notion of a cohomological correspondence lying over c.
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In the special case that X is proper over k so that 𝑅Γ𝑐 (𝑋, 𝐴) = 𝑅Γ(𝑋, 𝐴), the Lefschetz–Verdier trace
formula [SGA77], [Var07] expresses tr( 𝑓 |𝑅Γ(𝑋, 𝐴)) in terms of data living on the fixed point locus
Fix( 𝑓 ) of f. In particular, at isolated fixed points 𝑥 ∈ Fix( 𝑓 ), there are local terms loc𝑥 ( 𝑓 , 𝐴) ∈ Qℓ , and
if all fixed points are isolated, then tr( 𝑓 |𝑅Γ(𝑋, 𝐴)) is the sum of the loc𝑥 ( 𝑓 , 𝐴).

In order to apply the Lefschetz–Verdier trace formula, we need to assume that A satisfies a suitable
finiteness hypothesis (constructible of bounded amplitude). Under this hypothesis, one establishes an
isomorphism [SGA77, Exposé III, (3.1.1)]

D𝐴 �L
𝑘 𝐴 � RHom(pr∗1 𝐴, pr!

2 𝐴) (4.0.1)

in 𝐷 ((𝑋 ×𝑘 𝑋)ét, Qℓ), where pr1, pr2 : 𝑋 ×𝑘 𝑋 → 𝑋 are the projection maps, and D is Verdier duality
relative to k. Once equation (4.0.1) is established, the definition of local terms and the validity of the
Lefschetz–Verdier trace formula can be derived by applying Grothendieck’s six functor formalism. The
special case where 𝑋 = Spec 𝑘 is instructive; the finiteness condition on A is that it be a perfect complex
of Qℓ-vector spaces, and then equation (4.0.1) reduces to the fact that 𝐴∨ ⊗L 𝐴 → RHom(𝐴, 𝐴) is an
isomorphism. This allows us to express the trace of an endomorphism 𝑓 ∈ End 𝐴 as the image of f
under the evaluation map 𝐴∨ ⊗L 𝐴→ Qℓ .

In this section, we extend the formalism of the Lefschetz–Verdier trace formula to the setting of
perfectoid spaces, diamonds and v-stacks. The main result is Theorem 4.3.8 and its Corollary 4.3.9.
We very closely follow the approach of [LZ22], putting a suitable symmetric monoidal 2-category
of cohomological correspondences at center stage. In both the schematic and perfectoid settings, the
finiteness condition required of the object A can be stated in terms of the property of universal local
acyclicity (ULA); as noted in [FS21, Theorem IV.2.23], this is precisely the hypothesis necessary to
obtain the isomorphism in equation (4.0.1).

The statement of Lefschetz–Verdier is formally identical in the schematic and perfectoid settings.
However, in the perfectoid setting, there arises the possibility that the fixed point locus Fix( 𝑓 ) has the
structure of a locally profinite set, in which case the local terms appearing in Lefschetz–Verdier are not
a function on Fix( 𝑓 ), but rather a distribution on Fix( 𝑓 ). This observation is critical to our applications.

For our applications, we have included two additional theorems concerning local terms in the per-
fectoid setting, which could also have been stated in the schematic setting and may be of independent
interest. Theorem 4.5.3 is a sort of Künneth isomorphism for local terms on a fiber product of stacks.
Theorem 4.6.1 states that, in the situation of a smooth group G acting on a diamond X, the local terms cor-
responding to individual elements 𝑔 ∈ 𝐺 agree with local terms computed on the quotient stack [𝑋/𝐺].

4.1. Decent v-stacks and the six-functor formalism

We recall here some material from [Sch17] and [GHW22] on the main classes of geometric ob-
jects we deal with—perfectoid spaces, diamonds and v-stacks—and their associated étale cohomology
formalism.

Let Perf be the category of perfectoid spaces in characteristic p. There are four topologies we consider
on Perf, which we list from coarsest to finest: the analytic topology, the étale topology, the pro-étale
topology and the v-topology. The v-topology is a rough analogue of the fpqc topology on schemes. All
representable presheaves on Perf are sheaves for the v-topology [Sch17, Theorem 1.2].

A diamond is a pro-étale sheaf on Perf of the form 𝑋/𝑅, where X is a perfectoid space and 𝑅 ⊂ 𝑋×𝑋
is a pro-étale equivalence relation. Diamonds are automatically v-sheaves [Sch17, Proposition 11.9]. A
particularly well-behaved class of diamonds is locally spatial diamonds [Sch17, Definition 1.4]. There
is a natural functor 𝑋 ↦→ 𝑋� from analytic adic spaces over Z𝑝 to locally spatial diamonds.

A v-sheaf Y on Perf is small if there exists a surjective map 𝑋 → 𝑌 from a perfectoid space X. A
v-stack is a stack over Perf with its v-topology. A small v-stack [Sch17, Definition 12.4] is a v-stack Y
on Perf such that there exists a surjective map 𝑋 → 𝑌 from a perfectoid space X such that 𝑋 ×𝑌 𝑋 is a
small v-sheaf.
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As with any category of stacks, v-stacks form a strict (2, 1)-category. The objects of this category
are v-stacks X, which are themselves categories fibered in groupoids over Perf. The morphisms between
v-stacks 𝑋 → 𝑌 are functors between fibered categories. Given two morphisms 𝑓1, 𝑓2 : 𝑋 → 𝑌 , a
2-morphism 𝛼 : 𝑓1 ⇒ 𝑓2 is an invertible natural transformation between functors.

Example 4.1.1. Let S be a diamond, and let 𝐺 → 𝑆 be a group diamond. The stack 𝐵𝐺 = [𝑆/𝐺]
classifying G-torsors is a small v-stack, as 𝑆 ×[𝑆/𝐺 ] 𝑆 � 𝐺 is already a diamond. Let 𝐻 → 𝑆 be another
group diamond. The morphisms [𝑆/𝐺] → [𝑆/𝐻] correspond to S-homomorphisms 𝐺 → 𝐻. Suppose
we are given two homomorphisms 𝑓1, 𝑓2 : 𝐺 → 𝐻, inducing morphisms 𝜙1, 𝜙2 : [𝑆/𝐺] → [𝑆/𝐻]. The
set of 2-morphisms 𝜙1 ⇒ 𝜙2 may be identified with the set of ℎ ∈ 𝐻 (𝑆) satisfying 𝑓1 = (ad ℎ) ◦ 𝑓2.

We use the notation ∗ to indicate ‘horizontal’ composition between 2-morphisms. Thus, if 𝑋,𝑌, 𝑍
are v-stacks, 𝑓1, 𝑓2 : 𝑋 → 𝑌 and 𝑔1, 𝑔2 : 𝑌 → 𝑍 are morphisms, and 𝛼 : 𝑓1 ⇒ 𝑓2 and 𝛽 : 𝑔1 ⇒ 𝑔2 are
2-morphisms, then 𝛽 ∗ 𝛼 : 𝑔1 ◦ 𝑓1 ⇒ 𝑔2 ◦ 𝑓2 is another 2-morphism.

Let Λ be a ring which is n-torsion for some n prime to p. For every small v-stack X, there is
a triangulated category 𝐷 ét (𝑋,Λ) [Sch17, Definition 1.7]. If X is a locally spatial diamond, then
𝐷 ét (𝑋,Λ) is equivalent to the left-completion of the derived category of sheaves of Λ-modules on the
étale topology of X [Sch17, Proposition 14.15].

The familiar six functors of Grothendieck have analogues in the world of small v-stacks [Sch17,
Definition 1.7]. There is a derived tensor product ⊗L

Λ and a derived internal hom RHomΛ. For any
morphism 𝑓 : 𝑌 → 𝑋 of small v-stacks, there is a pair of adjoint functors 𝑓 ∗ and 𝑅 𝑓∗.

Remark 4.1.2. The adjointness between 𝑓 ∗ and 𝑅 𝑓∗ is compatible with 2-morphisms, in the following
sense. Suppose 𝛼 : 𝑓 ⇒ 𝑔 is a 2-morphism between 𝑓 , 𝑔 : 𝑌 → 𝑋 . Then there are natural isomorphisms
𝛼∗ : 𝑓∗ → 𝑔∗ and 𝛼∗ : 𝑓 ∗ → 𝑔∗ such that the following diagrams commute:

id𝐷ét (𝑋,Λ)
unit ��

unit ����
���

���
�

𝑓∗ 𝑓 ∗

𝛼∗𝛼∗

��
𝑔∗𝑔
∗

𝑓 ∗ 𝑓∗
counit ��

𝛼∗𝛼∗

��

id𝐷ét (𝑌 ,Λ) .

𝑔∗𝑔∗

counit

���������������

We propose for convenience the following definition.

Definition 4.1.3. A morphism 𝑓 : 𝑌 → 𝑋 is representable in nice diamonds or simply nice if is
compactifiable [Sch17, Definition 22.2], representable in locally spatial diamonds [Sch17, Definition
13.3] and locally of finite geometric transcendence degree [Sch17, Definition 21.7].

If 𝑓 : 𝑌 → 𝑋 is representable in nice diamonds, then there is an adjoint pair of functors 𝑅 𝑓! and 𝑅 𝑓 !

[Sch17, Sections 22 and 23].

Theorem 4.1.4 ([Sch17, Theorem 1.8]). The six operations ⊗Λ, RHomΛ, 𝑓 ∗, 𝑅 𝑓∗, 𝑅 𝑓! and 𝑅 𝑓 ! obey
the rules:

(P1.) 𝑓 ∗𝐴 ⊗L
Λ 𝑓 ∗𝐵 � 𝑓 ∗(𝐴 ⊗L

Λ 𝐵),
(P2.) 𝑅 𝑓∗RHomΛ ( 𝑓 ∗𝐴, 𝐵) � RHomΛ(𝐴, 𝑅 𝑓∗𝐵),
(P3.) 𝑅 𝑓!(𝐴 ⊗L

Λ 𝑓 ∗𝐵) � 𝑅 𝑓! 𝐴 ⊗L
Λ 𝐵 (the projection formula),

(P4.) RHomΛ (𝑅 𝑓! 𝐴, 𝐵) � 𝑅 𝑓∗RHomΛ (𝐴, 𝑅 𝑓 !𝐵) (local Verdier duality),
(P5.) 𝑅 𝑓 !RHomΛ (𝐴, 𝐵) � RHomΛ( 𝑓 ∗𝐴, 𝑅 𝑓 !𝐵).

We also need the following base change results.
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Theorem 4.1.5 ([Sch17, Theorem 1.9]). Let

𝑌 ′
𝑔 ��

𝑓 ′

��

𝑌

𝑓

��
𝑋 ′ 𝑔

�� 𝑋

(4.1.1)

be a Cartesian diagram of small v-stacks.

(BC1.) If f is representable in nice diamonds, then 𝑔∗𝑅 𝑓! � 𝑅 𝑓 ′! �̃�∗.
(BC2.) If g is representable in nice diamonds, then 𝑅𝑔!𝑅 𝑓∗ � 𝑅 𝑓 ′∗𝑅�̃�!.

There is a notion of cohomological smoothness [Sch17, Definition 23.8] for morphisms between
small v-stacks which are representable in nice diamonds. Let Λ be an n-torsion ring for some n not
divisible by p. For a morphism 𝑓 : 𝑌 → 𝑋 of small v-stacks which is representable in nice diamonds,
there is a natural map of functors

𝑅 𝑓 !Λ𝑋 ⊗L
Λ 𝑓 ∗ → 𝑅 𝑓 !, (4.1.2)

adjoint to

𝑅 𝑓!(𝑅 𝑓 !Λ𝑋 ⊗L
Λ 𝑓 ∗𝐴)

(𝑃3)
�−→ 𝑅 𝑓!𝑅 𝑓 !Λ𝑋 ⊗L

Λ 𝐴
counit→ 𝐴.

If f is cohomologically smooth, then equation (4.1.2) is an equivalence [Sch17, Theorem 1.10]. Fur-
thermore, the object 𝑅 𝑓 !Λ𝑋 is invertible in the monoidal category 𝐷 ét(𝑌,Λ). (For X a small v-stack, an
object A of 𝐷 ét(𝑋,Λ) is invertible if and only if étale locally on X there is an isomorphism 𝐴 � 𝐿 [𝑛]
for some invertible Λ-module L.)

There is also the following base change theorem for cohomologically smooth morphisms.

Theorem 4.1.6 ([Sch17, Theorem 1.10]). In the Cartesian diagram (4.1.1), assume that f is cohomo-
logically smooth. Then �̃�∗𝑅 𝑓 ! � 𝑅( 𝑓 ′)!𝑔∗ and ( 𝑓 ′)∗𝑅𝑔! � 𝑅�̃�! 𝑓 ∗.

In our applications, we will crucially need to deal with stacky morphisms 𝑓 : 𝑌 → 𝑋 between v-
stacks. These morphisms are never representable in nice diamonds, and the hoped-for functors 𝑅 𝑓! and
𝑅 𝑓 ! were not constructed in [Sch17]. In the companion paper [GHW22], we have extended the !-functor
formalism to certain stacky maps between certain small v-stacks, using the∞-categorical machinery of
[LZ]. Here, we briefly recall the main results from [GHW22], referring the reader to that paper for a
more detailed discussion.

Definition 4.1.7 ([GHW22, Definition 1.1]). A decent v-stack is a small v-stack X such that the diagonal
Δ𝑋 : 𝑋 → 𝑋×𝑋 is representable in locally separated locally spatial diamonds [GHW22, Definition 4.3]
and such that there is a locally separated locally spatial diamond U with a morphism 𝑈 → 𝑋 which is
strictly surjective [GHW22, Definition 4.1], representable in locally spatial diamonds and which locally
on U is compactifiable of finite dim.trg and cohomologically smooth. Any such morphism 𝑈 → 𝑋 is
called a chart for X.

A morphism 𝑓 : 𝑋 → 𝑌 between decent v-stacks is fine if there exists a commutative diagram

𝑊

𝑏

��

𝑔 �� 𝑉

𝑎

��
𝑋

𝑓 �� 𝑌,

where the vertical maps are charts and g is locally on W compactifiable of finite dim.trg.
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Note that these definitions rely on the notion of cohomological smoothness for morphisms repre-
sentable in nice diamonds.

In our applications, we will often need to deal with decent v-stacks equipped with a structure map to
a fixed v-stack S. We refer to such objects as decent S-v-stacks.

In [GHW22], we showed that decent v-stacks and fine morphisms between them are very reasonable
notions:
• Any locally separated locally spatial diamond is a decent v-stack. In particular, if X is any analytic

adic space over Spa Z𝑝 , the associated diamond 𝑋♦ is a decent v-stack.
• Decent v-stacks are Artin v-stacks in the sense of [FS21].
• Any absolute product or fiber product of decent v-stacks is decent.
• Fine morphisms are stable under composition and (decent) base change.
• Any morphism of decent v-stacks which is representable in nice diamonds is fine.

The key motivation for singling out fine morphisms of decent v-stacks is the following result.
Theorem 4.1.8 ([GHW22, Theorem 1.4]). If 𝑓 : 𝑌 → 𝑋 is any fine map of decent v-stacks, there exist
functors 𝑅 𝑓! and 𝑅 𝑓 ! satisfying the properties listed in Theorems 4.1.4 and 4.1.5 and agreeing with the
constructions in [Sch17] when f is representable in nice diamonds. Moreover, the associations 𝑓 � 𝑅 𝑓!
and 𝑓 � 𝑅 𝑓 ! naturally have the structure of pseudo-functors, and on the class of proper morphisms,
there is a pseudo-natural isomorphism 𝑅 𝑓! → 𝑅 𝑓∗.

Finally, there is a notion of cohomological smoothness for fine maps between decent v-stacks, which
can be defined extrinsically in terms of charts or intrinsically in terms of the !-functors [GHW22,
Proposition 4.17], agreeing with the notion discussed above for morphisms representable in nice
diamonds and with the same formal properties as in the representable case. In particular, the map
(4.1.2) is an isomorphism for cohomologically smooth morphisms, and the evident analogue of Theorem
4.1.6 holds.

Again, we refer the reader to [GHW22] for a complete discussion.
Finally, we need the notion of the relative dualising complex for v-stacks.

Definition 4.1.9 (The dualising complex). Let 𝑓 : 𝑋 → 𝑆 be a fine morphism of decent v-stacks. We
define 𝐾𝑋/𝑆 = 𝑅 𝑓 !Λ, an object in 𝐷 ét (𝑋,Λ).

Suppose that S is connected, and that f is proper. Then 𝑅 𝑓∗ = 𝑅 𝑓!, and so there is a morphism
𝑅 𝑓∗𝐾𝑋/𝑆 = 𝑅 𝑓!𝑅 𝑓 !Λ

counit−→ Λ, which induces a morphism on the level of global sections2

𝐻0(𝑋, 𝐾𝑋/𝑆) = 𝐻0(𝑆, 𝑅 𝑓∗𝐾𝑋/𝑆) → 𝐻0(𝑆,Λ) = Λ,

which we notate as 𝜔 ↦→
∫
𝑋

𝜔.
We record the following lemmas for convenience.

Lemma 4.1.10. Let 𝑓 : 𝑌 → 𝑋 be a fine morphism of decent v-stacks, and let 𝐴, 𝐼 ∈ 𝐷 ét (𝑋,Λ) be
any objects with I invertible. The natural map 𝑅 𝑓 ! 𝐴 ⊗L

Λ 𝑓 ∗𝐼 → 𝑅 𝑓 !(𝐴 ⊗L
Λ 𝐼) of equation (4.1.2) is an

isomorphism.
Proof. Let 𝑤𝐴,𝐼 be this morphism. We also get a map 𝑤𝐴⊗L

Λ𝐼 ,𝐼
−1 : 𝑅 𝑓 !(𝐴 ⊗L

Λ 𝐼) ⊗L
Λ 𝑓 ∗𝐼−1 → 𝑅 𝑓 ! 𝐴,

which induces 𝑅 𝑓 !(𝐴 ⊗L
Λ 𝐼) → 𝑅 𝑓 ! 𝐴 ⊗L

Λ 𝑓 ∗𝐼. This is the inverse to 𝑤𝐴,𝐼 . �

Lemma 4.1.11. Let 𝑓 : 𝑌 → 𝑋 be a fine morphism of decent v-stacks which is cohomologically smooth.
Then there is a canonical isomorphism

𝑅Δ !
𝑌 /𝑋Λ𝑌×𝑋𝑌 ⊗

L
Λ 𝑅 𝑓 !Λ𝑋 � Λ𝑌 (4.1.3)

so that 𝐾𝑌 /𝑌×𝑋𝑌 � 𝐾−1
𝑌 /𝑋 is invertible.

2Here and elsewhere, we write 𝐻 0 (𝑋, 𝐴) as shorthand for Hom(Λ𝑋 , 𝐴) whenever 𝐴 ∈ 𝐷ét (𝑋,Λ) .
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Proof. Let pr1, pr2 : 𝑌 ×𝑋 𝑌 → 𝑌 be the projection morphisms; each is cohomologically smooth. We
have

Λ𝑌 � 𝑅 id!
𝑌 Λ𝑌 � 𝑅Δ !

𝑌 /𝑋𝑅 pr!
1 Λ𝑌 � 𝑅Δ !

𝑌 /𝑋Λ𝑌×𝑋𝑌 ⊗
L
Λ Δ∗𝑌 /𝑋𝑅 pr!

1 Λ𝑌 ,

where in the last isomorphism we used Lemma 4.1.10 combined with the cohomological smoothness
of pr1. Now use Theorem 4.1.6 to obtain an isomorphism Δ∗

𝑌 /𝑋𝑅 pr!
1 𝑓 ∗Λ𝑋 � Δ∗

𝑌 /𝑋 pr∗2 𝑅 𝑓 !Λ𝑋 �

𝑅 𝑓 !Λ𝑋 . �

For the remainder of the section, we fix Λ, an n-torsion ring for some n not divisible by p. We will
now start writing 𝑓! for 𝑅 𝑓! and ⊗ for ⊗L

Λ, etc.

4.2. Examples

We wish to illustrate the behavior of the functors 𝑓! and 𝑓 ! through a long list of examples. In the
following, assume 𝑆 = Spd 𝐶 for an algebraically closed perfectoid field C or else 𝑆 = Spd 𝑘 for
an algebraically closed discrete field of characteristic p. In both cases, we freely identify 𝐷 ét (𝑆,Λ)
with the derived category of Λ-modules. Observe that, in both cases, S is decent: This is trivial for
𝑆 = Spd 𝐶, while for 𝑆 = Spd 𝑘 the condition on the diagonal is easy to check, and one can show that
𝑈 = 𝑆 × Spd F𝑝 ((𝑡1/𝑝∞)) → 𝑆 is a chart.
Example 4.2.1. Let T be a locally profinite set, and let 𝑇𝑆 = 𝑇 × 𝑆 be the associated constant diamond
over S. Then 𝑓 : 𝑇𝑆 → 𝑆 is representable in nice diamonds. Let 𝐶 (𝑇,Λ) be the ring of continuous
functions 𝑇 → Λ, for the discrete topology on Λ. We may naturally identify 𝐷 ét (𝑇𝑆 ,Λ) with the
derived category of the abelian category of smooth 𝐶 (𝑇,Λ)-modules in the sense of §B.2. Indeed,
𝐷 ét (𝑇𝑆 ,Λ) � 𝐷 (𝑇𝑆,ét,Λ) since 𝑇𝑆 locally has cohomological dimension zero, and then the site 𝑇𝑆,ét
agrees with the site associated with the topological space T. Finally, Lemma B.2.5 identifies Sh(𝑇,Λ)
with the category of smooth 𝐶 (𝑇,Λ)-modules. This identification matches the constant sheaf Λ with
the smooth 𝐶 (𝑇,Λ)-module 𝐶𝑐 (𝑇,Λ). Under this identification, we have concrete descriptions of the
four operations associated with 𝑓 : 𝑇𝑆 → 𝑆. Here, we freely use some language and notation from §B.2.
• 𝑓 ∗ sends a Λ-module M to the smooth 𝐶 (𝑇,Λ)-module 𝐶𝑐 (𝑇,Λ) ⊗Λ 𝑀 .
• 𝑓∗ sends a smooth 𝐶 (𝑇,Λ)-module M to 𝑀𝑐 regarded as a Λ-module.
• 𝑓! sends a smooth 𝐶 (𝑇,Λ)-module M to its underlying Λ-module.
• 𝑓 ! sends a Λ-module M to RHomΛ (𝐶𝑐 (𝑇,Λ), 𝑀)𝑠. In particular, 𝐻0(𝑇𝑆 , 𝑓 !Λ𝑆) � Dist(𝑇,Λ), the

module of Λ-valued distributions on T.
Example 4.2.2. Suppose G is a locally pro-p group. Let [𝑆/𝐺𝑆] be the classifying v-stack of 𝐺𝑆-
torsors. Assume that there is a separated locally spatial diamond X together with a strictly surjective
cohomologically smooth map 𝑋 → 𝑆 and admitting a free 𝐺𝑆-action.3 Then [𝑆/𝐺𝑆] is a decent v-
stack. Indeed, the condition on the diagonal is easy to check, and one can also check that the natural
map 𝑋/𝐺𝑆 → [𝑆/𝐺𝑆] is a chart.

Let 𝑞 : 𝑆 → [𝑆/𝐺𝑆] be the quotient map. Then q is representable in nice diamonds. The functor 𝑞∗ is
an equivalence of monoidal categories between 𝐷 ét ([𝑆/𝐺𝑆],Λ) and the derived category of Λ-modules
with a smooth G-action [FS21, Theorem V.1.1]. (Strictly speaking, if M is an object of 𝐷 ét ([𝑆/𝐺𝑆],Λ),
then 𝑞∗𝑀 is a bare Λ-module, but then for each 𝑔 ∈ 𝐺 there is a 2-morphism 𝛼𝑔 : 𝑞 =⇒ 𝑞 as in
Example 4.1.1, inducing an automorphism of 𝑞∗𝑀 .)

With respect to this equivalence of categories, the functors 𝑞∗, 𝑞! (resp., 𝑞∗, 𝑞!) take the following
values on a Λ-module M (resp., a Λ-module M with smooth G-action).

3In particular, these hypotheses are satisfied when G is a closed subgroup of GL𝑛 (𝐸) for E a finite extension of Q𝑝 or F𝑝 ( (𝑡)) ,
which will cover all the cases we need. In this situation, we may simply take 𝑋 = GL♦𝑛,𝐸 × 𝑆 with its evident 𝐺𝑆-action, where
GL𝑛,𝐸 is regarded as a rigid analytic group over E. See [FS21, Example IV.1.9.iv] for some additional discussion.
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• 𝑞∗𝑀 = 𝑀 with its G-action forgotten.
• 𝑞∗𝑀 = 𝐶 (𝐺, 𝑀)𝐺-sm, the module of continuous M-valued functions on G which are smooth with

respect to the action of G by right translation.
• 𝑞!𝑀 = 𝐶𝑐 (𝐺, 𝑀) = 𝐶𝑐 (𝐺,Λ) ⊗ 𝑀 .
• 𝑞!𝑀 = Hom𝐺 (𝐶𝑐 (𝐺,Λ), 𝑀). In particular, 𝑞!Λ = Haar(𝐺,Λ) is the module of left-invariant Haar

measures on G.

We give justifications for these expressions in the next example, which is more general.

Example 4.2.3. This example generalizes the previous one. Let G be a locally pro-p group as in Example
4.2.2. Suppose 𝐻 ⊂ 𝐺 is a closed subgroup. Then [𝑆/𝐻𝑆] is also a decent v-stack. Let

𝑞 : [𝑆/𝐻𝑆] → [𝑆/𝐺𝑆]

be the quotient map, so q is representable in nice diamonds. The functors 𝑞∗, 𝑞! (resp., 𝑞∗, 𝑞!) take the
following values on a Λ-module M with smooth G-action (resp., smooth H-action):

• 𝑞∗𝑀 is the restriction of M from G to H.
• 𝑞∗𝑀 = Ind𝐺𝐻𝑀 is the smooth induction of M from H to G.
• 𝑞!𝑀 = cInd𝐺𝐻𝑀 is the compact induction of M from H to G.
• 𝑞!𝑀 seems difficult to describe explicitly in general, but there are two special cases:

1. If 𝐻 ⊂ 𝐺 is open, then 𝑞!𝑀 � 𝑞∗𝑀 is the restriction of M from G to H.
2. If H is a direct factor of G so that 𝐺 = 𝐻 × 𝐻 ′, then

𝑞!𝑀 = Hom𝐻 ′ (𝐶𝑐 (𝐻 ′,Λ), 𝑀)𝐻−sm.

For the claims regarding 𝑞∗ and 𝑞∗: Let 𝑞𝐻 : 𝑆 → [𝑆/𝐻𝑆] be the quotient map for H and similarly for
𝑞𝐺 : 𝑆 → [𝑆/𝐺𝑆]. Then the underlying module of 𝑞∗𝑀 is 𝑞∗𝐻 𝑞∗𝑀 = 𝑞∗𝐺𝑀 , which we have identified
with M itself. For ℎ ∈ 𝐻, we have a 2-morphism 𝛽ℎ : 𝑞𝐻 =⇒ 𝑞𝐻 , which induces an action of ℎ ∈ 𝐻 on
𝑞∗𝐺𝑀 , as well as the 2-morphism 𝛼ℎ : 𝑞𝐺 =⇒ 𝑞𝐺 inducing the action of ℎ ∈ 𝐺 on 𝑞∗𝐺𝑀 as discussed
in Example 4.2.2; these actions agree because 𝛼ℎ = id𝑞 ∗𝛽ℎ . Since 𝑞∗ is restriction, 𝑞∗ must be its right
adjoint, which is smooth induction.

For the claim about 𝑞!, consider the Cartesian diagram:

(𝐺/𝐻)𝑆

𝑞

��

𝑞𝐺 �� [𝑆/𝐻𝑆]

𝑞

��
𝑆 𝑞𝐺

�� [𝑆/𝐺𝑆] .

The underlying module of 𝑞!𝑀 is 𝑞∗𝐺𝑞!𝑀 . By base change property (BC1), we have 𝑞∗𝐺𝑞!𝑀 � 𝑞!𝑞
∗
𝐺𝑀 ,

which by Example 4.2.1 is identified with the underlying Λ-module of 𝑞∗𝐺𝑀 . The latter is the descent
of M along the H-torsor in topological spaces 𝐺 → 𝐺/𝐻. In our dictionary between sheaves on 𝐺/𝐻
and smooth 𝐶 (𝐺/𝐻,Λ)-modules, 𝑞∗𝐺𝑀 is the module of smooth H-equivariant functions 𝐺 → 𝑀
which are compactly supported modulo H. This is none other than the compact induction of M from H
to G. (To show that the action of G is by right translation on such functions, one has to appeal to the
compatibility of base change with the 2-isomorphisms 𝛼𝑔 : 𝑞𝐺 =⇒ 𝑞𝐺 .)

We now turn to the claims for 𝑞!. In the case that 𝐻 ⊂ 𝐺 is open, q is étale, and so 𝑞! � 𝑞∗. In the case
that 𝐺 = 𝐻 × 𝐻 ′, suppose M is a smooth H-module; we have an isomorphism of smooth G-modules

𝑞!𝑀 = cInd𝐺𝐻𝑀 � 𝑀 � 𝐶𝑐 (𝐻 ′,Λ),

from which it is easy to see that the right adjoint to 𝑞!𝑀 is as claimed.
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Example 4.2.4. Suppose G is a locally pro-p-group as in Example 4.2.2. Let 𝑓 : [𝑆/𝐺𝑆] → 𝑆 be the
structure morphism. Then f is fine and, in fact, is cohomologically smooth. The functors associated
with f have the following descriptions:

• 𝑓 ∗𝑀 = 𝑀 with trivial G-action.
• 𝑓∗𝑀 = 𝑀𝐺 is the (derived) G-invariants of M, that is, the group cohomology.
• 𝑓!𝑀 = (𝑀 ⊗ Haar(𝐺,Λ))𝐺 is the group homology of M twisted by the module of Haar measures.
• 𝑓 !𝑀 = Haar(𝐺,Λ)∗ ⊗ 𝑀 is M (with trivial G-action) twisted by the dual of the module of Haar

measures. In particular, 𝐾 [𝑆/𝐺𝑆 ]/𝑆 = Haar(𝐺,Λ)∗.

The claim about 𝑓 ∗ is clear from the definitions, and 𝑓∗ is the right adjoint to 𝑓 ∗. Next, we consider 𝑓 !.
Since f is cohomologically smooth, we have 𝑓 !𝑀 � 𝑓 ∗𝑀 ⊗ 𝑓 !Λ. Let 𝑞 : 𝑆 → [𝑆/𝐺𝑆] be as in Example
4.2.2 so that 𝑓 ◦ 𝑞 = id𝑆 . We have 𝑀 = 𝑞! 𝑓 !𝑀 = Haar(𝐺,Λ) ⊗ 𝑓 !𝑀 so that 𝑓 !𝑀 = Haar(𝐺,Λ)∗ ⊗ 𝑀
as claimed. From here, it is easy to compute 𝑓! as the left adjoint of 𝑓 !.

Example 4.2.5. This example combines Examples 4.2.1 with 4.2.4. Let G be a locally pro-p group as
in Example 4.2.2. Let T be a locally profinite set equipped with a continuous action of G, and let 𝑇𝑆 be
the constant diamond over S. Then the stacky quotient [𝑇𝑆/𝐺𝑆] is a decent v-stack, and the structure
map [𝑇𝑆/𝐺𝑆] → 𝑆 is fine. Indeed, we have already seen that [𝑆/𝐺𝑆] is a decent v-stack fine over S, and
the evident morphism [𝑇𝑆/𝐺𝑆] → [𝑆/𝐺𝑆] is representable in nice diamonds, so the claim immediately
follows from [GHW22, Proposition 4.11]. The stack [𝑇𝑆/𝐺𝑆] is not in general cohomologically smooth
over S. The category 𝐷 ét([𝑇𝑆/𝐺𝑆],Λ) may be identified with the derived category of G-equivariant
smooth 𝐶 (𝑇,Λ)-modules. Using this identification, we get a natural isomorphism

𝐻0([𝑇𝑆/𝐺𝑆], 𝐾 [𝑇𝑆/𝐺𝑆 ]/𝑆) � Hom𝐺 (𝐶𝑐 (𝑇,Λ) ⊗ Haar(𝐺,Λ),Λ) (4.2.1)

which we can think of as the space of G-invariant distributions on T with values in Haar(𝐺,Λ)∗. If G is
unimodular and if we choose a Haar measure on G, then 𝐻0([𝑇𝑆/𝐺𝑆], 𝐾 [𝑇𝑆/𝐺𝑆 ]/𝑆) becomes isomorphic
to Dist(𝑇,Λ)𝐺 , the module of G-invariant distributions on T.

4.3. The category of cohomological correspondences

The Lefschetz–Verdier trace formula was expressed elegantly by Lu and Zheng [LZ22] in the language
of symmetric monoidal 2-categories. In brief, [LZ22] constructs such a category of cohomological
correspondences, where the objects are pairs (𝑋, 𝐴), where X is a scheme over a fixed base scheme S and
A is an object of 𝐷 (𝑋ét,Λ), and a morphism (𝑋, 𝐴) → (𝑋 ′, 𝐴′) is a correspondence 𝑐 = (𝑐1, 𝑐2) : 𝐶 →
𝑋 ×𝑆 𝑋 ′ together with a morphism 𝑐∗1 𝐴 → 𝑐!

2 𝐴′. An endomorphism of a dualizable object (𝑋, 𝐴) has
a categorical trace, which lives over the fixed point locus of c. In the special case that 𝑋 = 𝑋 ′ = 𝐶 = 𝑆
and A is a perfect complex of Λ-modules, the categorical trace is just the Euler characteristic of an
endomorphism of A. The trace formula is interpreted as the statement that the categorical trace is
compatible with proper pushforwards.

We adapt here [LZ22] to the setting of v-stacks, but the same language could be used in the world of
stacks in the scheme setting. The main point of departure from [LZ22] is that stacks form a 2-category,
and so one must keep track of the 2-morphisms witnessing commutativity of diagrams of stacks. This
means that the definition of cohomological correspondences we give (Definition 4.3.4) is a little more
delicate than its analogue in [LZ22].

First, we recall some definitions and constructions concerning the categorical trace.

Definition 4.3.1 ([LZ22, Definition 1.1, Construction 1.6]). An object X of a symmetric monoidal 2-
category (C, ⊗, 1C) is dualizable if there exists an object 𝑋∨ together with morphisms ev𝑋 : 𝑋∨⊗𝑋 → 1C
and coev𝑋 : 1C → 𝑋 ⊗ 𝑋∨ such that the compositions

𝑋
coev𝑋 ⊗id𝑋 �� 𝑋 ⊗ 𝑋∨ ⊗ 𝑋

id𝑋 ⊗ev𝑋 �� 𝑋
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and

𝑋∨
id𝑋∨ ⊗coev𝑋 �� 𝑋∨ ⊗ 𝑋 ⊗ 𝑋∨

ev𝑋 ⊗id𝑋 �� 𝑋∨

are isomorphic to the identities on X and 𝑋∨, respectively. Consequently, the functor𝑌 ↦→ 𝑋⊗𝑌 has right
adjoint 𝑌 ↦→ 𝑋∨ ⊗ 𝑌 . If X is dualizable, then 𝑋∨ ⊗ 𝑌 serves as an internal mapping object Hom(𝑋,𝑌 ).

Let ΩC = End(1C) be the (1-)category of endomorphisms of the unit object of C. Let 𝑓 ∈ End 𝑋 be
an endomorphism of a dualizable object X. Define the categorical trace tr( 𝑓 ) as the composite:

1C
coev𝑋 �� 𝑋 ⊗ 𝑋∨

𝑓 ⊗id𝑋∨ �� 𝑋 ⊗ 𝑋∨
ev𝑋 �� 1C

so that tr( 𝑓 ) is an object of ΩC.

Example 4.3.2. Let Λ be an arbitrary ring, and let 𝐷 (Λ) be the derived category of Λ-modules. An
object A of 𝐷 (Λ) is dualizable if and only if it is a perfect complex, in which case D𝐴 = RHom(𝐴,Λ[0])
is a dual object. (See Lemma B.1.2 in the Appendix for a proof of this claim and related conditions.)
If f is an endomorphism of the perfect complex of A, then the categorical trace tr( 𝑓 ) agrees with the
Euler characteristic tr( 𝑓 |𝐴) of f.

Next, we define the symmetric monoidal 2-category Corr𝑆 of correspondences of v-stacks and its
cohomological enhancement CoCorr𝑆 → Corr𝑆 . In the following discussion, we fix a decent v-stack S.

Definition 4.3.3 (The category of correspondences). We define a symmetric monoidal 2-category Corr𝑆
as follows:

• The objects of Corr𝑆 are decent S-v-stacks X whose structure map 𝑋 → 𝑆 is fine.
• Given objects X and 𝑋 ′, the category HomCorr𝑆 (𝑋, 𝑋 ′) has for its objects the correspondences:

𝐶
𝑐1

����
��
��
�� 𝑐2

		�
��

��
��

�

𝑋 𝑋 ′,

(4.3.1)

where each 𝑐𝑖 a morphism of decent v-stacks, and 𝑐2 is assumed to be fine.4 The composition of
(𝑐1, 𝑐2) : 𝐶 → 𝑋 ×𝑆 𝑋 ′ with (𝑑1, 𝑑2) : 𝐷 → 𝑋 ′ ×𝑆 𝑋 ′′ is the correspondence (𝑐1𝑑 ′1, 𝑑2𝑐′2) defined
by the diagram:

𝐶 ×𝑋 ′ 𝐷
𝑑′1



		
		
		
		
	 𝑐′2

��
















𝐶
𝑐1

����
��
��
�� 𝑐2

��














 𝐷
𝑑1

����
��
��
��
�

𝑑2



�
��

��
��

�

𝑋 𝑋 ′ 𝑋 ′′.

(4.3.2)

4By [GHW22, Proposition 4.10], it is then automatic that the composition𝐶 → 𝑋 ′ → 𝑆 is fine and then also that 𝑐1 : 𝐶 → 𝑋
is fine.
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• If 𝑐 = (𝑐1, 𝑐2) : 𝐶 → 𝑋 ×𝑆 𝑋 ′ and 𝑑 = (𝑑1, 𝑑2) : 𝐷 → 𝑋 ×𝑆 𝑋 ′ represent two objects in
HomCorr𝑆 (𝑋, 𝑋 ′), a 2-morphism 𝑐 ⇒ 𝑑 is an equivalence class of 2-commutative diagrams

𝐶
𝑐1

�����
���

���
���

���
�

𝑐2

��
























𝑝

��

𝑋 ⇓ 𝛼1 𝛼2 ⇓ 𝑋 ′,

𝐷

𝑑1

��
















𝑑2

������������������

(4.3.3)

where p is proper and 𝛼𝑖 : 𝑐𝑖 ⇒ 𝑑𝑖 ◦ 𝑝 (for 𝑖 = 1, 2) is a 2-isomorphism witnessing the
2-commutativity of the appropriate triangle. We write (𝑝, 𝛼1, 𝛼2) as shorthand for the datum of such
a diagram or just p if the 2-isomorphisms are clear from context.
We declare two such diagrams (𝑝, 𝛼1, 𝛼2) and (𝑞, 𝛽1, 𝛽2) equivalent if there is a 2-isomorphism
𝛾 : 𝑝 ⇒ 𝑞 such that 𝛽𝑖 = (id𝑑𝑖 ∗𝛾) ◦ 𝛼𝑖 for 𝑖 = 1, 2.

• The monoidal structure is defined by 𝑋 ⊗ 𝑌 = 𝑋 ×𝑆 𝑌 , with unit object S. Given
𝑐 = (𝑐1, 𝑐2) : 𝐶 → 𝑋 ×𝑆 𝑋 ′ and 𝑑 = (𝑑1, 𝑑2) : 𝐷 → 𝑌 ×𝑆 𝑌 ′ representing objects in
HomCorr𝑆 (𝑋, 𝑋 ′) and HomCorr𝑆 (𝑌,𝑌 ′), respectively, we define the object 𝑐 ⊗ 𝑑 of
HomCorr𝑆 (𝑋 ×𝑆 𝑌, 𝑋 ′ ×𝑆 𝑌 ′) as the correspondence:

𝐶 ×𝑆 𝐷
𝑐1×𝑆𝑑1

����
��
��
��
�

𝑐2×𝑆𝑑2

����
���

���
��

𝑋 ×𝑆 𝑌 𝑋 ′ ×𝑆 𝑌 ′.

(4.3.4)

The next thing to do is to construct a symmetric monoidal 2-category CoCorr𝑆 of cohomological
correspondences, which lies over Corr𝑆 .

Definition 4.3.4 (The category of cohomological correspondences). We define a symmetric monoidal
2-category CoCorr𝑆 , which comes equipped with a functor to Corr𝑆 .

• An object of CoCorr𝑆 is a pair 𝔛 = (𝑋, 𝐴), where X is a decent S-v-stack whose structure map
𝑋 → 𝑆 is fine, and 𝐴 ∈ 𝐷 ét (𝑋,Λ) is arbitrary.

• Given objects 𝔛 = (𝑋, 𝐴) and 𝔛′ = (𝑋 ′, 𝐴′) of CoCorr𝑆 , the category HomCoCorr𝑆 (𝔛,𝔛′) consists
of pairs 𝔠 = (𝑐, 𝑢), where 𝑐 = (𝑐1, 𝑐2) is a correspondence as in equation (4.3.1), and
𝑢 : 𝑐∗1 𝐴→ 𝑐!

2 𝐴′ is a morphism in 𝐷 ét (𝐶,Λ). The composition of 𝔠 = (𝑐, 𝑢) : (𝑋, 𝐴) → (𝑋 ′, 𝐴′)
with 𝔡 = (𝑑, 𝑣) : (𝑋 ′, 𝐴′) → (𝑋 ′′, 𝐴′′) is 𝔡 ◦ 𝔠 = (𝑒, 𝑤), where 𝑒 : 𝐶 ×𝑋 ′ 𝐷 → 𝑋 ×𝑆 𝑋 ′′ is the
correspondence in equation (4.3.2), and w is the composition

(𝑑 ′1)
∗𝑐∗1 𝐴

𝑢→ (𝑑 ′1)
∗𝑐!

2 𝐴′
𝑎→ (𝑐′2)

!𝑑∗1 𝐴′
𝑣→ (𝑐′2)

!𝑑!
2 𝐴′′,

where the map labeled a is adjoint to the base change isomorphism (𝑐′2)!(𝑑
′
1)
∗ � 𝑑∗1 (𝑐2)!.

• Let 𝔛 = (𝑋, 𝐴) and 𝔛′ = (𝑋 ′, 𝐴′) be two objects of CoCorr𝑆 . Let 𝔠 = (𝑐, 𝑢) and 𝔡 = (𝑑, 𝑣) be two
objects in HomCoCorr𝑆 (𝔛,𝔛′), where 𝑐 = (𝑐1, 𝑐2) : 𝐶 → 𝑋 ×𝑆 𝑋 ′ and 𝑑 = (𝑑1, 𝑑2) : 𝐷 → 𝑋 ×𝑆 𝑋 ′

are correspondences, and 𝑢 : 𝑐∗1 𝐴→ 𝑐!
2 𝐴′ and 𝑣 : 𝑑∗1 𝐴→ 𝑑!

2 𝐴′ are morphisms. A 2-morphism
𝔭 : 𝔠 =⇒ 𝔡 is an equivalence class of triples (𝑝, 𝛼1, 𝛼2) as in the diagram (4.3.3) such that the
composition
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𝑑∗1 𝐴
unit−→ 𝑝∗𝑝

∗𝑑∗1 𝐴
(𝛼∗1 )

−1

−→ 𝑝∗𝑐
∗
1 𝐴

𝑢→ 𝑝∗𝑐
!
2 𝐴′

𝛼!
2−→ 𝑝∗𝑝

!𝑑!
2 𝐴′ � 𝑝! 𝑝

!𝑑!
2 𝐴′

counit−→ 𝑑!
2 𝐴′

agrees with 𝑣 : 𝑑∗1 𝐴→ 𝑑!
2 𝐴′. Here, 𝛼∗1 and 𝛼!

2 are the natural isomorphisms 𝑐∗1
�−→ 𝑝∗𝑑∗1 and

𝑐!
2
�−→ 𝑝!𝑑!

2, respectively.
We need to check that the condition on the aforementioned composition depends only on the
equivalence class of the triple (𝑝, 𝛼1, 𝛼2). To check this, let (𝑞, 𝛽1, 𝛽2) be another triple which is
equivalent to (𝑝, 𝛼1, 𝛼2) by a 2-isomorphism 𝛾 : 𝑝 ⇒ 𝑞 in the sense of Definition 4.3.3, so assume
that 𝛽𝑖 = (id𝑑𝑖 ∗𝛾) ◦ 𝛼𝑖 for 𝑖 = 1, 2. Consider the diagram in 𝐷 ét (𝐷,Λ):

𝑑∗1 𝐴

unit
��

= �� 𝑑∗1 𝐴

unit
��

𝑝∗𝑝
∗𝑑∗1 𝐴

𝛾∗𝛾∗
��

(𝛼∗1 )
−1

��

𝑞∗𝑞
∗𝑑∗1 𝐴

(𝛽∗1)
−1

��
𝑝∗𝑐
∗
1 𝐴 𝛾∗

��

𝑢

��

𝑞∗𝑐
∗
1 𝐴

𝑢

��
𝑝!𝑐

!
2 𝐴′ 𝛾!

��

𝛼!
2
��

𝑞!𝑐
!
2 𝐴′

𝛽!
2

��
𝑝! 𝑝

!𝑑!
2 𝐴′

𝛾!𝛾
!
��

counit
��

𝑞!𝑞
!𝑑!

2 𝐴′

counit
��

𝑑!
2 𝐴′ =

�� 𝑑!
2 𝐴′.

The first and fifth squares commute by the compatibility described in Remark 4.1.2, the second and
fourth squares commute because of the condition 𝛽𝑖 = (id𝑑𝑖 ∗𝛾) ◦ 𝛼𝑖 , taking into account the
pseudo-functor structures on the four nonbinary operations and the third square commutes because
of the equalities 𝑝∗ = 𝑝!, 𝑞∗ = 𝑞!, and 𝛾∗ = 𝛾!. The commutativity of the outside rectangle says that
if the composition along the left vertical arrow is v, then so is the composition along the right
vertical arrow. This shows that our notion of 2-morphsm in CoCorr𝑆 is well-defined.

• The symmetric monoidal structure on CoCorr𝑆 is given by (𝑋, 𝐴) ⊗ (𝑋 ′, 𝐴′) = (𝑋 ×𝑆 𝑋 ′, 𝐴 �𝑆 𝐴′).
The unit object is 1CoCorr𝑆 = (𝑆,Λ𝑆). Finally, given (𝑐, 𝑢) : (𝑋1, 𝐴1) → (𝑋 ′1, 𝐴′1) and
(𝑑, 𝑣) : (𝑋2, 𝐴2) → (𝑋 ′2, 𝐴′2), the tensor product (𝑐, 𝑢) ⊗ (𝑑, 𝑣) is (𝑐 ⊗ 𝑑, 𝑤), where 𝑐 ⊗ 𝑑 is the
correspondence in equation (4.3.4), and w is the composition

(𝑐1 ×𝑆 𝑑1)∗(𝐴1 �𝑆 𝐴2) � 𝑐∗1 𝐴1 � 𝑑∗1 𝐴2
𝑢�𝑆𝑣→ 𝑐!

2 𝐴′1 �𝑆 𝑑!
2 𝐴′2

𝜅→ (𝑐2 ×𝑆 𝑑2)!(𝐴2 � 𝐴′2),

where 𝜅 is adjoint to the Künneth isomorphism (𝑐2 × 𝑑2)!(𝐵1 �𝑆 𝐵2) � (𝑐2)!𝐵1 �𝑆 (𝑑2)!𝐵2.

The category CoCorr𝑆 has internal mapping objects: if 𝔛1 = (𝑋1, 𝐴1) and 𝔛2 = (𝑋2, 𝐴2), then
Hom(𝔛1,𝔛2) = (𝑋1 ×𝑆 𝑋2, RHom(pr∗1 𝐴1, pr!

2 𝐴2)), where pr𝑖 : 𝑋1 ×𝑆 𝑋2 → 𝑋𝑖 is the projection.

https://doi.org/10.1017/fmp.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.7


Forum of Mathematics, Pi 31

We have the following characterization of dualizable objects in CoCorr𝑆 .

Proposition 4.3.5. Let X be a decent S-v-stack whose structure map 𝜋 : 𝑋 → 𝑆 is fine, and let 𝐴 ∈
𝐷 ét (𝑋,Λ) be any object. The following are equivalent.

1. The object (𝑋, 𝐴) is dualizable in CoCorr𝑆 .
2. The natural map 𝑚 : D𝑋/𝑆𝐴 �𝑆 𝐴→ RHom(pr∗1 𝐴, pr!

2 𝐴) (see proof for construction) is an isomor-
phism.

In this situation, the dual of (𝑋, 𝐴) is (𝑋, D𝑋/𝑆𝐴).

Proof. Let 𝔛 = (𝑋, 𝐴), and let 𝔛′ = (𝑋, D𝑋/𝑆𝐴). There is a morphism 𝔢 : 𝔛′ ⊗ 𝔛 → 1CoCorr𝑆 , defined
as the pair (𝑐, 𝑢), where 𝑐 = (Δ𝑋/𝑆 , 𝜋) and u is the composition

Δ∗𝑋/𝑆 (D𝑋/𝑆𝐴 �𝑆 𝐴) �−→ D𝑋/𝑆𝐴 ⊗ 𝐴→ 𝐾𝑋/𝑆 = 𝜋!Λ𝑆 .

Then 𝔢 induces a morphism 𝔛′ ⊗ 𝔜→ Hom(𝔛,𝔜) for any object 𝔜 of CoCorr𝑆 . For 𝔜 = 𝔛, the map u
becomes the map m in (2).

Suppose 𝔛 is dualizable, with witnesses 𝔛∨, ev𝔛 , and coev𝔛 . Then 𝔛∨ ⊗ 𝔜 → Hom(𝔛,𝔜) is an
isomorphism for all objects 𝔜. Setting 𝔜 = 1CoCorr𝑆 , we find an isomorphism 𝔛∨ � 𝔛′ which identifies
ev𝔛 with 𝔢. Setting 𝔜 = 𝔛, we find that m is an isomorphism.

Conversely, if m is an isomorphism, let coev𝔛 = (𝑑, 𝑤), where 𝑑 = (𝜋,Δ𝑋/𝑆) and w is the composition

𝜋∗Λ𝑆 � Λ𝑋
𝜖→ RHomΛ(𝐴, 𝐴)

(𝑃5)
�−→ Δ !

𝑋/𝑆RHomΛ (pr∗1 𝐴, pr!
2 𝐴)

followed by 𝑚−1 : Δ !
𝑋/𝑆RHomΛ (pr∗1 𝐴, pr!

2 𝐴) → Δ !
𝑋/𝑆 (𝐴�𝑆D𝑋/𝑆𝐴). Here, 𝜖 is adjoint to id𝐴 : 𝐴→ 𝐴.

A diagram chase now shows that coev𝔛 and ev𝔛 witness the dualizability of 𝔛. �

In the scheme setting, a pair (𝑋, 𝐴) is dualizable if and only if A is locally acyclic over S [LZ22,
Theorem 2.16], under some mild assumptions. Similarly, if 𝑓 : 𝑋 → 𝑆 is a morphism of v-stacks
which is representable in nice diamonds, then (𝑋, 𝐴) is dualizable in CoCorr𝑆 if and only if A is f -
universally locally acyclic [FS21, Theorem IV.2.24]. This result extends immediately to the situation
of fine morphisms between decent v-stacks, using that universal local acyclicity is cohomologically
smooth-local on the source.

If 𝔛 is a dualizable object of CoCorr𝑆 , and 𝔣 : 𝔛 → 𝔛 is an endomorphism, we may define the
categorical trace tr(𝔣), an object of ΩCoCorr𝑆 = End 1CoCorr𝑆 . Let us make this explicit. The category
ΩCoCorr𝑆 has objects (𝑋, 𝜔), where X is a decent S-v-stack with fine structure map 𝑋 → 𝑆, and
𝜔 ∈ 𝐻0(𝑋, 𝐾𝑋/𝑆) is arbitrary. A morphism (𝑋, 𝜔) → (𝑋 ′, 𝜔′) is a diagram

𝑋
𝑝 ��

𝜋
���

��
��

��
� 𝑋 ′

𝜋′����
��
��
��

𝑆

with p proper such that 𝜔′ = 𝑝∗𝜔. Here,

𝑝∗ : 𝐻0(𝑋, 𝐾𝑋/𝑆) → 𝐻0(𝑋 ′, 𝐾𝑋 ′/𝑆)

is induced from 𝜋∗𝐾𝑋/𝑆 � 𝜋′∗𝑝∗𝑝
!𝐾𝑋 ′/𝑆 � 𝜋′∗𝑝! 𝑝

!𝐾𝑋 ′/𝑆
counit→ 𝜋′∗𝐾𝑋 ′/𝑆 .

Now let 𝔛 = (𝑋, 𝐴) be a dualizable object in CoCorr𝑆 , and let 𝔣 = (𝑐, 𝑢) : 𝔛 → 𝔛 be an endomor-
phism, with 𝑐 = (𝑐1, 𝑐2) : 𝐶 → 𝑋×𝑆𝑋 and 𝑢 : 𝑐∗1 𝐴→ 𝑐!

2 𝐴. By definition, tr(𝔣) = ev𝔛 ◦( 𝑓 ⊗id𝔛∨)◦coev𝔛 .
The object tr(𝔣) is represented by a pair (tr(𝑐), tr(𝑢)). Here, tr(𝑐) ∈ Ω1Corr𝑆 is the correspondence
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Fix(𝑐) → 𝑆 ×𝑆 𝑆 = 𝑆, where Fix(𝑐) is the fixed-point locus of the correspondence c, as in the Cartesian
diagram:

Fix(𝑐) 𝑐′ ��

Δ′
𝑋/𝑆

��

𝑋

Δ𝑋/𝑆

��
𝐶 𝑐

�� 𝑋 ×𝑆 𝑋.

For its part, the element tr(𝑢) is an element of 𝐻0(Fix(𝑐), 𝐾Fix(𝑐)/𝑆). 5It is the image of 𝑢 ∈
Hom(𝑐∗1 𝐴, 𝑐!

2 𝐴) under

𝐻0 (𝐶, RHom(𝑐∗1 𝐴, 𝑐!
2 𝐴))

(𝑃5)
�−→ 𝐻0(𝐶, 𝑐!RHom(pr∗1 𝐴, pr!

2 𝐴))
(4.0.1)
�−→ 𝐻0(𝐶, 𝑐! (D𝑋/𝑆𝐴 �𝑆 𝐴))
𝛼→ 𝐻0(𝐶, 𝑐! (Δ𝑋/𝑆)∗(D𝑋/𝑆𝐴 ⊗ 𝐴))

ev𝐴→ 𝐻0(𝐶, 𝑐! (Δ𝑋/𝑆)∗𝐾𝑋/𝑆)
(BC2)
�−→ 𝐻0(𝐶, (Δ ′

𝑋/𝑆)∗(𝑐
′)!𝐾𝑋/𝑆)

� 𝐻0(Fix(𝑐), 𝐾Fix(𝑐)/𝑆).

Here, the map labeled 𝛼 is adjoint to (Δ𝑋/𝑆)∗(D𝑋/𝑆𝐴 �𝑆 𝐴) �−→ D𝑋/𝑆𝐴 ⊗ 𝐴.

Definition 4.3.6 (Inertia stack, characteristic class). In the special case that 𝔣 = id𝔛 = (Δ𝑋/𝑆 , id𝐴), the
object tr(Δ𝑋/𝑆) = 𝑋 ×𝑋×𝑆𝑋 𝑋 is the inertia stack of X, which we notate as In𝑆 (𝑋). Its objects are pairs
(𝑥, 𝑔), where 𝑥 ∈ 𝑋 and 𝑔 ∈ Aut 𝑥. Then tr(id𝐴) is an element of 𝐻0(In𝑆 (𝑋), 𝐾In𝑆 (𝑋 ) ), which we call
the characteristic class of A. We notate this element as cc𝑋/𝑆 (𝐴).

We record one lemma here for later reference.

Lemma 4.3.7. Let 𝑖 : 𝑈 → 𝑋 be an open immersion of decent S-v-stacks fine over S. Then
In𝑆 (𝑖) : In𝑆 (𝑈) → In𝑆 (𝑋) is also an open immersion. If 𝐴 ∈ 𝐷 ét(𝑋,Λ) is ULA over S, then so is
𝑖∗𝐴, and then

cc𝑈/𝑆 (𝑖∗𝐴) = In𝑆 (𝑖)∗ cc𝑋/𝑆 (𝐴).

Proof. All constructions are local on X. �

Theorem 4.3.8 (Relative Lefschetz–Verdier trace formula). Let 𝔛 = (𝑋, 𝐴) be a dualizable object in
CoCorr𝑆 , and let 𝔣 ∈ End𝔛 lie over the correspondence 𝑐 : 𝐶 → 𝑋 ×𝑆 𝑋 . Suppose we are given a
diagram

𝑋

𝑞

��

𝐶�� ��

𝑝

��

𝑋

𝑞

��
𝑋 ′ 𝐶 ′�� �� 𝑋 ′

with 𝑝, 𝑞 proper. Then 𝔛′ = (𝑋 ′, 𝑞∗𝐴) is also dualizable. Let 𝔮 : 𝔛 → 𝔛′ be the evident 1-morphism
lying over q. There is a unique morphism 𝔣′ ∈ End𝔛′ lying over 𝐶 ′ → 𝑋 ′ ×𝑆 𝑋 ′ such that p defines a
2-morphism 𝑝 filling in the square

5We will sometime notate this element as tr𝑐 (𝑢, 𝐴) if we wish to emphasize the roles of c and A.
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𝔛
𝔣 ��

𝔮
��

𝔛

𝔮
��

𝔛′
𝔣′

�� 𝔛′.

Finally, there exists a (necessarily unique) 2-morphism tr(𝑝) : tr(𝔣) =⇒ tr(𝔣′) lying over
tr(𝑝) : tr(𝑐) =⇒ tr(𝑐′).

Proof. This is formally the same as the proof of (a special case of) [LZ22, Theorem 2.21], so we
give a brief sketch. (In [LZ22] one gets a statement about the more general Lefschetz–Verdier pairing,
which we also could have established.) The existence and uniqueness of 𝔣′ ∈ End𝔛′ follows from the
definition of 2-morphisms in CoCorr𝑆 . The dualizability of 𝔛′ is [LZ22, Proposition 2.23]. The dual of
𝔛′ is (𝔛′)∨ = (𝑋 ′, 𝑞∗D𝑋/𝑆𝐴); there is another natural map 𝔮∨ : 𝔛∨ → (𝔛′)∨ defined similarly to 𝔮.

Consider the diagram:

1CoCorr𝑆
coev𝔛 ��

coev𝔛′ ����
���

���
��

𝔛 ⊗ 𝔛∨

𝔮⊗𝔮∨

��

𝔣⊗id𝔛∨ �� 𝔛 ⊗ 𝔛∨

𝔮⊗𝔮∨

��

ev𝔛

����
���

���
���

𝔛′ ⊗ (𝔛′)∨
𝔣′ ⊗id𝔛′

�� 𝔛′ ⊗ (𝔛′)∨ ev𝔛′
�� 1CoCorr𝑆 .

The two outer triangles can be filled in with a 2-morphism, as can the inner square (via 𝑝 ⊗ id𝔮∨). See
[LZ22, Construction 1.7] for details. Composing, we find the required 2-morphism tr(𝑝) : tr(𝔣) =⇒
tr(𝔣′). �

Corollary 4.3.9. Let (𝑋, 𝐴) be a dualizable object, and let 𝑝 : 𝑋 → 𝑋 ′ be proper. Then (𝑋 ′, 𝑝! 𝐴) is
dualizable. The morphism In𝑆 (𝑝) : In𝑆 (𝑋) → In𝑆 (𝑋 ′) is proper, and

In𝑆 (𝑝)∗ cc𝑋/𝑆 (𝐴) = cc𝑋 ′/𝑆 (𝑝! 𝐴).

Example 4.3.10. We can immediately deduce a familiar-looking trace formula from Theorem 4.3.8 in
the case of proper diamonds. Suppose 𝑆 = Spd 𝐶 for an algebraically closed perfectoid field C, and
suppose 𝑞 : 𝑋 → 𝑆 is a nice diamond. Let 𝐴 ∈ 𝐷 ét (𝑋,Λ) be ULA over S. Then 𝔛 = (𝑋, 𝐴) is a
dualizable object of CoCorr𝑆 . Let 𝔣 = (𝑐, 𝑢) be an endomorphism of 𝔛 lying over a correspondence
𝑐 : 𝑌 → 𝑋 ×𝑆 𝑋 . The categorical trace tr(𝔣) is an endomorphism of 1CoCorr𝑆 consisting of the pair
(Fix(𝑐), 𝜔), where Fix(𝑐) = 𝑌 ×𝑐,𝑋×𝑆𝑋,Δ𝑋/𝑆 𝑋 is the fixed point locus of the correspondence, and 𝜔 is
a global section of 𝐾Fix(𝑐)/𝑆 .

Now suppose that X is proper over S. In the setting of Theorem 4.3.8, we put 𝔛′ = (𝑆, 𝑞∗𝐴) and
𝐶 ′ = 𝑆. The dualizability of 𝔛′ means that 𝑞∗𝐴 = 𝑅Γ(𝑋, 𝐴) is a perfect complex. The morphism
𝔣′ : 𝔛′ → 𝔛′ supplied by Theorem 4.3.8 is the endomorphism 𝑞∗(𝔣) : 𝑞∗𝐴→ 𝑞∗𝐴. Finally, the existence
of tr(𝑝) : tr(𝔣) =⇒ tr(𝔣′) lying over tr(𝑝) : tr(𝑐) =⇒ tr(id𝑆) implies that

tr
(
𝑞∗(𝔣)





 𝑅Γ(𝑋, 𝐴)
)
=
∫

Fix(𝑐)
𝜔. (4.3.5)

Definition 4.3.11. Let 𝑥 ∈ Fix(𝑐) be an isolated point such that 𝑥 → 𝑆 an isomorphism. The local term
loc𝑥 (𝔣) is the restriction of 𝜔 to x, considered as an element of Λ.

If 𝔣 arises from an automorphism 𝑔 : 𝑋 → 𝑋 along with a morphism 𝑢 : 𝑔∗𝐴 → 𝐴, we write the
local term as loc𝑥 (𝑔, 𝐴) (the dependence on u being implicit).
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In the latter situation, if it so happens that Fix(𝑔) consists of finitely many isolated S-points 𝑥1, . . . , 𝑥𝑛,
then equation (4.3.5) reduces to

tr
(
𝑞∗(𝑔)





 𝑅Γ(𝑋, 𝐴)
)
=

𝑛∑
𝑖=1

loc𝑥 (𝑔, 𝐴).

4.4. The trace distribution as a characteristic class

Let S be a geometric point, and let G be a locally pro-p group as in Example 4.2.2 so that [𝑆/𝐺𝑆] is a
decent v-stack and 𝑓 : [𝑆/𝐺𝑆] → 𝑆 is fine and cohomologically smooth. As in that example, we freely
identify 𝐷 ét ([𝑆/𝐺𝑆],Λ) with the derived category of Λ-modules with a smooth G-action. For an object
𝑀 ∈ 𝐷 ét([𝑆/𝐺𝑆],Λ), we let 𝑀∨ = RHom(𝑀,Λ); by [FS21, Corollary V.1.4], this is just the usual
(derived) smooth dual.

For a compact open subgroup 𝐾 ⊂ 𝐺, we let 𝑀𝐾 be the complex of derived K-invariants. If K is
pro-p, the map of complexes 𝑀𝐾 → 𝑀 admits a section, namely, averaging over K with respect to a
normalized Haar measure. Thus, 𝑀𝐾 is naturally a summand of M.

Proposition 4.4.1. Let M be an object of 𝐷 ét ([𝑆/𝐺𝑆],Λ). The following are equivalent:

1. The object ([𝑆/𝐺𝑆], 𝑀) of CoCorr𝑆 is dualizable, with dual ([𝑆/𝐺𝑆], D𝑀), where D𝑀 =
Haar(𝐺,Λ)∗ ⊗ 𝑀∨.

2. The object M is ULA over S.
3. For all compact open pro-p subgroups 𝐾 ⊂ 𝐺, the (derived) K-invariants 𝑀𝐾 are a perfect complex

of Λ-modules.

Proof. The equivalence between (1) dualizability in CoCorr𝑆 and (2) the ULA property is [FS21,
Theorem IV.2.23]. For the equivalence between (2) and (3), see [FS21, V.7.1]. (There, the authors work
in the more general context of Bun𝐺 , but the method of proof can be used in our situation of [𝑆/𝐺𝑆].)
The Verdier dual of M is RHom(𝑀, 𝑓 !Λ), and 𝑓 !Λ = Haar(𝐺,Λ)∗ by Example 4.2.4.

We note that is possible to give a direct proof of the implication (3) =⇒ (1). Let 𝔛 = ([𝑆/𝐺𝑆], 𝑀)
and 𝔛∨ = ([𝑆/𝐺𝑆], D𝑀). The evaluation map 𝔛∨ ⊗ 𝔛 → 1CoCorr𝑆 lies over the correspondence
Δ 𝑓 × 𝑓 : [𝑆/𝐺𝑆] → [𝑆/𝐺𝑆]2×𝑆; on the level of sheaves, it is a twist of the evaluation map 𝑀∨⊗𝑀 → Λ.
The coevaluation map 1CoCorr𝑆 → 𝔛⊗𝔛∨ lies over the correspondence 𝑓 ×Δ 𝑓 : [𝑆/𝐺𝑆] → 𝑆×[𝑆/𝐺𝑆]2.
Note that the diagonal map presents G as a direct factor of 𝐺2 so that Example 4.2.3 applies to give
an explicit description of Δ !

𝑓 . The result is that the Λ-module of cohomological correspondences lying
over 𝑓 × Δ 𝑓 :

𝑓 ∗Λ→ Δ !
𝑓 (𝑀 � D𝑀)

may be identified with the Λ-module

Hom𝐺×𝐺 (𝐶𝑐 (𝐺,Λ) ⊗ Haar(𝐺,Λ), 𝑀 � 𝑀∨).

In the latter expression, 𝐺×𝐺 acts on 𝐶𝑐 (𝐺,Λ) by left and right translation. We describe the coevaluation
map as a 𝐺 × 𝐺-equivariant function

𝐼 : 𝐶𝑐 (𝐺,Λ) ⊗ Haar(𝐺,Λ) → 𝐻0 (𝑀 ⊗ 𝑀∨).

Let ℎ ∈ 𝐶𝑐 (𝐺,Λ) and 𝜇 ∈ Haar(𝐺,Λ); then integration against ℎ 𝑑𝜇 describes an endomorphism
𝐼ℎ,𝜇 ∈ End 𝑀:

𝐼ℎ,𝜇 (𝑣) =
∫
𝑔∈𝐺

ℎ(𝑔)𝑔𝑣 𝑑𝜇(𝑔).
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The function h is left and right K-invariant for some sufficiently small pro-p open subgroup 𝐾 ⊂ 𝐺,
in which case 𝐼ℎ,𝜇 factors through a map 𝑀𝐾 → 𝑀𝐾 . Since 𝑀𝐾 is perfect by hypothesis, we have
described an element of

Hom(𝑀𝐾 , 𝑀𝐾 ) � 𝐻0(RHom(𝑀𝐾 , 𝑀𝐾 )) � 𝐻0(𝑀𝐾 ⊗ (𝑀𝐾 )∨).

Then 𝐼 (ℎ ⊗ 𝜇) is the image of 𝐼ℎ,𝜇 in 𝐻0(𝑀 ⊗ 𝑀∨). �

Definition 4.4.2. The object M of 𝐷 ét ([𝑆/𝐺𝑆],Λ) is admissible if it satisfies the equivalent conditions
of Proposition 4.4.1.

Suppose M is an admissible object of 𝐷 ét([𝑆/𝐺𝑆],Λ). The trace distribution of M is a canonical
element

tr. dist(𝑀) ∈ Hom𝐺 (𝐶𝑐 (𝐺,Λ) ⊗ Haar(𝐺,Λ),Λ), (4.4.1)

where G is meant to act on 𝐶𝑐 (𝐺,Λ) by conjugation and on Haar(𝐺,Λ) by the modular character.
Namely, tr. dist(𝑀) sends ℎ ⊗ 𝜇 (where ℎ ∈ 𝐶𝑐 (𝐺,Λ) and 𝜇 ∈ Haar(𝐺,Λ) to the Euler characteristic
of the operator 𝐼ℎ,𝜇 described in the proof of Proposition 4.4.1.

On the other hand, we have the inertia stack In𝑆 ([𝑆/𝐺𝑆]) and the characteristic class cc[𝑆/𝐺𝑆 ]/𝑆 (𝑀)
as in Definition 4.3.6. We have

In𝑆 ([𝑆/𝐺𝑆]) = [𝐺𝑆 � 𝐺𝑆],

the stack of conjugacy classes of G. (Reasoning: For a perfectoid space𝑌 → 𝑆, a Y-point of In𝑆 ([𝑆/𝐺𝑆])
is a 𝐺𝑆-torsor 𝑌 → 𝑌 together with a 𝐺𝑆-equivariant automorphism 𝑖 : 𝑌 → 𝑌 . Such an automorphism
arises as 𝑖(𝑦) = 𝑓 (𝑦).𝑦, where 𝑓 : 𝑌 → 𝐺𝑆 is a morphism satisfying 𝑓 (𝑔𝑦) = 𝑔 𝑓 (𝑦)𝑔−1. The pair
(𝑌, 𝑓 ) then constitutes a Y-point of [𝐺𝑆 � 𝐺𝑆].) For its part, the characteristic class cc[𝑆/𝐺𝑆 ]/𝑆 (𝑀) lies
in 𝐻0 (In𝑆 ([𝑆/𝐺𝑆]), 𝐾In𝑆 ( [𝑆/𝐺𝑆 ])/𝑆), and by Example 4.2.5 we have an isomorphism

𝐻0(In𝑆 ([𝑆/𝐺𝑆]), 𝐾In𝑆 ( [𝑆/𝐺𝑆 ])/𝑆) � Hom𝐺 (𝐶𝑐 (𝐺,Λ) ⊗ Haar(𝐺,Λ),Λ)

onto the same module appearing in equation (4.4.1).

Proposition 4.4.3. Let G be a locally pro-p group satisfying the hypotheses of Example 4.2.2. Let M be
an admissible object of 𝐷 ét ([𝑆/𝐺𝑆],Λ). Then

cc[𝑆/𝐺𝑆 ]/𝑆 (𝑀) = tr. dist(𝑀).

Proof. The characteristic class of M is the categorical trace of the identity on the object 𝔛 =
([𝑆/𝐺𝑆], 𝑀), which is ev𝔛 ◦ coev𝔛 . This equals the image of the identity map through the left side
of the following commutative diagram:

𝐻0 (RHom(𝑀, 𝑀)) � ��

coev𝔛
��

End𝐺 𝑀

coev𝑀
��

𝐻0 (Δ !
𝑓 (D𝑀 � 𝑀)) �

��

ev𝔛
��

Hom𝐺×𝐺 (𝐶𝑐 (𝐺,Λ) ⊗ Haar(𝐺,Λ), 𝑀∨ � 𝑀)

ev𝑀
��

𝐻0(𝐾In𝑆 ( [𝑆/𝐺𝑆 ]/𝑆) �
�� Hom𝐺 (𝐶𝑐 (𝐺,Λ) ⊗ Haar(𝐺,Λ),Λ),

https://doi.org/10.1017/fmp.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.7


36 David Hansen et al.

whereas on the right side of the diagram, the map labeled coev𝑀 carries the identity to the integration
map I described in the proof of Proposition 4.4.1, and then ev𝑀 carries I onto tr. dist(𝑀) by definition
of the latter. �

4.5. A Künneth theorem for characteristic classes

The goal of this section is to prove the compatibility of the categorical trace with fiber products to get
an analogue of the relation tr(𝐴 ⊗ 𝐵) = tr(𝐴) tr(𝐵) for square matrices. Again, throughout this section
we fix a decent base v-stack S.

As an example of what we will do, suppose 𝑋1, 𝑋2 → 𝑆 are two fine morphisms of decent v-stacks,
and suppose 𝐴𝑖 ∈ 𝐷 ét (𝑋𝑖 ,Λ) is ULA over S for 𝑖 = 1, 2. Then 𝐴1 �𝑆 𝐴2 is ULA over S, so we may
define the characteristic class cc𝑋1×𝑆𝑋2/𝑆 (𝐴1 �𝑆 𝐴2) in 𝐻0 (In𝑆 (𝑋1 ×𝑆 𝑋2), 𝐾In𝑆 (𝑋1×𝑆𝑋2) ). We have an
isomorphism In𝑆 (𝑋1 ×𝑆 𝑋2) � In𝑆 (𝑋1) ×𝑆 In𝑆 (𝑋2) and therefore a Künneth map

𝜅𝑆 : 𝐾In𝑆 (𝑋1)/𝑆 ⊗ 𝐾In𝑆 (𝑋2)/𝑆 → 𝐾In𝑆 (𝑋1×𝑆𝑋2)/𝑆 ,

which we notate as 𝜇1 ⊗ 𝜇2 ↦→ 𝜇1 �𝑆 𝜇2 for global sections 𝜇𝑖 of 𝐾In𝑆 (𝑋𝑖 )/𝑆 . Then it is straightforward
to show (and a corollary of Theorem 4.5.3 below) that

cc𝑋1/𝑆 (𝐴1) �𝑆 cc𝑋2/𝑆 (𝐴2) = cc𝑋1×𝑆𝑋2/𝑆 (𝐴1 �𝑆 𝐴2).

For our applications, we need a more general result involving fiber products over bases other than S.
First, we need a modification of the above Künneth map in a general setting.

Definition 4.5.1 (Modified Künneth map). Let 𝑈 → 𝑇 be a cohomologically smooth morphism of
decent S-v-stacks. Suppose we are given a 2-commutative diagram of decent S-v-stacks

𝑌𝑖
𝑓𝑖 ��

𝑔𝑖

��

𝑋𝑖

��
𝑈 �� 𝑇

for 𝑖 = 1, 2 such that 𝑓1 and 𝑓2 are fine. Let 𝑓 : 𝑌1 ×𝑈 𝑌2 → 𝑋1 ×𝑇 𝑋2 and 𝑔 : 𝑌1 ×𝑈 𝑌2 → 𝑈 be the
induced product maps. Let 𝐴𝑖 be an object of 𝐷 ét (𝑋𝑖 ,Λ) for 𝑖 = 1, 2. We define a map

𝜅𝑈/𝑇 : 𝑓 !
1 𝐴1 �𝑈 𝑓 !

2 𝐴2 → 𝑓 !(𝐴1 �𝑇 𝐴2) ⊗ 𝑔∗𝐾𝑈/𝑇

as follows. There is a Cartesian diagram

𝑌1 ×𝑈 𝑌2
Δ′
𝑈/𝑇 ��

𝑔

��

𝑌1 ×𝑇 𝑌2

𝑔1×𝑇 𝑔2

��
𝑈

Δ𝑈/𝑇
�� 𝑈 ×𝑇 𝑈.

The map 𝜅𝑈/𝑇 is defined as the composition

𝑓 !
1 𝐴1 �𝑈 𝑓 !

2 𝐴2

�(Δ ′𝑈/𝑇 )
∗( 𝑓 !

1 𝐴1 �𝑇 𝑓 !
2 𝐴2)

→(Δ ′𝑈/𝑇 )
∗( 𝑓1 ×𝑇 𝑓2)!(𝐴1 �𝑇 𝐴2)

(4.1.3)
� (Δ ′𝑈/𝑇 )

∗( 𝑓1 ×𝑇 𝑓2)!(𝐴1 �𝑇 𝐴2) ⊗ 𝑔∗(Δ𝑈/𝑇 )!Λ𝑇 ⊗ 𝑔∗𝐾𝑈/𝑇
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→(Δ ′𝑈/𝑇 )
∗( 𝑓1 ×𝑇 𝑓2)!(𝐴1 �𝑇 𝐴2) ⊗ (Δ ′𝑈/𝑇 )

!Λ𝑌1×𝑇𝑌2 ⊗ 𝑔∗𝐾𝑈/𝑇

→(Δ ′𝑈/𝑇 )
!( 𝑓1 ×𝑇 𝑓2)!(𝐴1 �𝑇 𝐴2) ⊗ 𝑔∗𝐾𝑈/𝑇

� 𝑓 !(𝐴1 �𝑇 𝐴2) ⊗ 𝑔∗𝐾𝑈/𝑇 .

In particular, the case 𝑋1 = 𝑋2 = 𝑇 = 𝑆 yields a map

𝜅𝑈/𝑆 : 𝐾𝑌1/𝑆 �𝑈 𝐾𝑌2/𝑆 → 𝐾𝑌1×𝑈𝑌2/𝑆 ⊗ 𝑔∗𝐾𝑈/𝑆 . (4.5.1)

We can now introduce the setup of the main theorem of this section. We consider bases 𝑇 → 𝑆
satisfying two hypotheses: (1) 𝑇 → 𝑆 is cohomologically smooth, and (2) Δ𝑇 /𝑆 : 𝑇 → 𝑇 ×𝑆 𝑇 is
cohomologically smooth. These are satisfied for instance when𝑇 = [𝑆/𝐺], where G is a cohomologically
smooth locally spatial group diamond over S. Considering the diagram

In𝑆 (𝑇) ��

��

𝑇

Δ𝑇 /𝑆

��
𝑇

Δ𝑇 /𝑆
�� 𝑇 ×𝑆 𝑇 ��

��

𝑇

��
𝑇 �� 𝑆

in which both squares are Cartesian, we see that In𝑆 (𝑇) → 𝑆 is also cohomologically smooth. Further-
more, we can trivialize the dualizing complex 𝐾In𝑆 (𝑇 )/𝑆 .

Lemma 4.5.2. Let T be a decent S-v-stack such that the structure map 𝜋 : 𝑇 → 𝑆 and diagonal
Δ𝑇 /𝑆 : 𝑇 → 𝑇 ×𝑆 𝑇 are both cohomologically smooth. Then the object 𝔗 = (𝑇,Λ𝑇 ) ∈ CoCorr𝑆 is
dualizable, and its characteristic class cc𝑇 /𝑆 (Λ𝑇 ), considered as a morphism ΛIn𝑆 (𝑇 ) → 𝐾In𝑆 (𝑇 )/𝑆 , is
an isomorphism.

In the case 𝑇 = [𝑆/𝐺], where G is a cohomologically smooth locally spatial group diamond over S,
the inertia stack is In𝑆 (𝑇) = [𝐺 � 𝐺], the stack of conjugacy classes of G. This is a cohomologically
smooth stack of dimension 0, so perhaps it is unsurprising that it has trivial dualizing complex; the
lemma states that the trivialization is in fact canonical.

Proof. Let pr1, pr2 : 𝑇 ×𝑆 𝑇 → 𝑇 be the projection morphisms. The morphism in 𝐷 ét (𝑇,Λ) associated
with the cohomological correspondence coev𝔗 : (𝑆,Λ𝑆) → (𝑇 ×𝑆 𝑇, pr∗2 𝐾𝑇 /𝑆) is an isomorphism:

𝜋∗Λ𝑆 � Δ !
𝑇 /𝑆 pr!

1 𝜋∗Λ𝑆
𝛼
� Δ !

𝑇 /𝑆 pr∗2 𝜋!Λ𝑆 = Δ !
𝑇 /𝑆 pr∗2 𝐾𝑇 /𝑆 .

Here, we the use cohomological smoothness of 𝜋 to get the isomorphism 𝛼, as in Theorem 4.1.6.
The morphism Δ∗

𝑇 /𝑆 pr∗2 𝐾𝑇 /𝑆 → 𝜋!Λ𝑆 associated with ev𝔗 : (𝑇 ×𝑆 𝑇, pr∗2 𝐾𝑇 /𝑆) → (𝑆,Λ𝑆) is also an
isomorphism (this is true without any hypotheses on 𝜋 or Δ𝑇 /𝑆). Referring to the diagram

In𝑆 (𝑇)
ℎ

����
��
��
��
�

ℎ

���
��

��
��

��

𝑇

𝜋

����
��
��
�� Δ𝑇 /𝑆

���
��

��
��

�� 𝑇
Δ𝑇 /𝑆

����
��
��
��
�

𝜋

���
��

��
��

�

𝑆 𝑇 ×𝑆 𝑇 𝑆,
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we may describe the characteristic class cc𝑇 /𝑆 (Λ𝑇 ) as the composition

ℎ∗𝜋∗Λ𝑆 � ℎ∗Δ !
𝑇 /𝑆 pr∗2 𝐾𝑇 /𝑆

𝛽
� ℎ!Δ∗𝑇 /𝑆 pr∗2 𝐾𝑇 /𝑆 � ℎ!𝐾𝑇 /𝑆 � 𝐾In𝑆 (𝑇 )/𝑆 ,

which is an isomorphism. Here, we once again applied Theorem 4.1.6, using the cohomological smooth-
ness of Δ𝑇 /𝑆 . �

Now suppose 𝑝𝑖 : 𝑋𝑖 → 𝑇 (𝑖 = 1, 2) is a fine morphism of decent S-v-stacks, with fiber product
𝑝 : 𝑋1 ×𝑇 𝑋2 → 𝑇 . Then there is an isomorphism

In𝑆 (𝑋1 ×𝑇 𝑋2) � In𝑆 (𝑋1) ×In𝑆 (𝑇 ) In𝑆 (𝑋2),

and therefore by the discussion above we have a modified Künneth map

𝜅In𝑆 (𝑇 )/𝑆 : 𝐾In𝑆 (𝑋1)/𝑆 �In𝑆 (𝑇 ) 𝐾In𝑆 (𝑋2)/𝑆 → 𝐾In𝑆 (𝑋1×𝑇 𝑋2)/𝑆 ⊗ In(𝑝)∗𝐾In𝑆 (𝑇 )/𝑆 .

Using the trivialization ΛIn𝑆 (𝑇 )/𝑆 � 𝐾In𝑆 (𝑇 )/𝑆 from Lemma 4.5.2, we obtain a map

𝐾In𝑆 (𝑋1)/𝑆 �In𝑆 (𝑇 ) 𝐾In𝑆 (𝑋2)/𝑆 → 𝐾In𝑆 (𝑋1×𝑇 𝑋2)/𝑆 , (4.5.2)

which on global sections we notate as 𝜇1 ⊗ 𝜇2 ↦→ 𝜇1 �In𝑆 (𝑇 ) 𝜇2.
Finally, we can state the main theorem of the section.

Theorem 4.5.3. Let T be a decent S-v-stack such that the structure map 𝜋 : 𝑇 → 𝑆 and the diagonal
Δ𝑇 /𝑆 : 𝑇 → 𝑇 ×𝑆 𝑇 are both cohomologically smooth. Let 𝑋1, 𝑋2 → 𝑇 be two fine morphisms of decent
v-stacks (so also the induced morphisms 𝑋1, 𝑋2 → 𝑆 are fine), and let 𝐴𝑖 ∈ 𝐷 ét (𝑋𝑖 ,Λ) be a sheaf which
is ULA over S. Then 𝐴1 �𝑇 𝐴2 is ULA over S, and

cc𝑋1/𝑆 (𝐴1) �In𝑆 (𝑇 ) cc𝑋2/𝑆 (𝐴2) = cc𝑋1×𝑇 𝑋2/𝑆 (𝐴1 �𝑇 𝐴2).

In order to prove Theorem 4.5.3, we need to enhance the category CoCorr𝑆 to include data coming
from a smooth base v-stack, which we allow to vary. At a first pass, one might think that such a category
would have objects (𝑋 → 𝑇, 𝐴), where 𝑇 → 𝑆 is cohomologically smooth, 𝑋 → 𝑇 is a morphism of
v-stacks and 𝐴 ∈ 𝐷 ét (𝑋,Λ). The morphisms (𝑋 → 𝑇, 𝐴) → (𝑋 ′ → 𝑇 ′, 𝐴′) would be pairs (𝑞♮, 𝛼),
where 𝑞♮ = (𝑝, 𝑞, 𝑝′) is a morphism of correspondences as in a 2-commutative diagram:

𝑋

𝑝

��

𝐶
𝑐��

𝑞

��

𝑐 �� 𝑋 ′

𝑝′

��
𝑇 𝑈

𝑢�� 𝑢′ �� 𝑇 ′,

(4.5.3)

and 𝛼 : 𝑐∗𝐴 → (𝑐′)! 𝐴′ is a morphism. We assume that 𝑢′ is cohomologically smooth. Given pairs
𝔛1 = (𝑋1 → 𝑇, 𝐴1) and 𝔛2 = (𝑋2 → 𝑇, 𝐴2) with common base T, we could then define 𝔛1 �𝑇 𝔛2 =
(𝑋1 ×𝑇 𝑋2 → 𝑇, 𝐴1 �𝑇 𝐴2).

However, it turns out that this definition is not functorial in 𝔛1 and 𝔛2. That is, given a morphism
𝑒 : 𝑇 → 𝑇 ′ in Corr𝑆 and morphisms 𝑓𝑖 : 𝔛𝑖 → 𝔛′𝑖 lying over e, one cannot in general define a map
𝑓1 ⊗𝑒 𝑓2 : 𝔛1 �𝑇 𝔛2 → 𝔛′1 �𝑇 ′ 𝔛

′
2. Essentially, this is due to the appearance of the invertible sheaf 𝐾𝑈/𝑆

appearing in the modified Künneth map (4.5.1).
To obtain a functorial definition of 𝔛1 �𝑇 𝔛2, we need to define an enhancement of the category

which keeps track of an invertible sheaf living on the base.
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Definition 4.5.4 (The category of based cohomological correspondences). We define a symmetric
monoidal 2-category BCoCorr𝑆 . The objects of BCoCorr𝑆 are triples (𝑋 → 𝑇, 𝐴, 𝐵), where 𝑋 → 𝑇
is a (fine) morphism of decent S-v-stacks whose structure maps to S are fine, where A is an object of
𝐷 ét (𝑋,Λ) and where B is an invertible object of 𝐷 ét (𝑇,Λ). We assume that the structure map 𝑇 → 𝑆
is cohomologically smooth.

Given objects 𝔛 = (𝑋 → 𝑇, 𝐴, 𝐵) and 𝔛′ = (𝑋 ′ → 𝑇 ′, 𝐴′, 𝐵′), an object of the category
HomBCoCorr𝑆 (𝔛,𝔛′) is a triple (𝑞♮, 𝛼, 𝛽). The first element in the triple is a morphism 𝑞♮ = (𝑝, 𝑞, 𝑝′) be-
tween correspondences as in equation (4.5.3), where 𝑢′ is cohomologically smooth. The second element
is a morphism 𝛼 : 𝑐∗𝐴→ (𝑐′)! 𝐴′, and the third is an isomorphism 𝛽 : 𝑢∗𝐵

�−→ (𝑢′)!𝐵′. Compositions of
morphisms are defined similarly as in Definition 4.3.4. (Note that the cohomological smoothness of 𝑢′ is
preserved under composition of correspondences.) Given objects (𝑋 → 𝑇, 𝐴, 𝐵) and (𝑋 ′ → 𝑇 ′, 𝐴′, 𝐵′),
and morphisms between them represented by 𝐶 → 𝑋×𝑈 𝑋 ′ (lying over 𝑈 → 𝑇×𝑆𝑇 ′) and 𝐷 → 𝑋×𝑉 𝑋 ′

(lying over 𝑉 → 𝑇 ×𝑆 𝑇 ′), a 2-morphism is an equivalence class of 2-commutative diagrams as in equa-
tion (4.3.3), together with a similar one involving morphisms 𝑈 → 𝑉 .

The monoidal structure on BCoCorr𝑆 is defined by

(𝑋 → 𝑇, 𝐴, 𝐵) ⊗ (𝑋 ′ → 𝑇 ′, 𝐴′, 𝐵′) = (𝑋 ×𝑆 𝑋 ′ → 𝑇 ×𝑆 𝑇 ′, 𝐴 �𝑆 𝐴′, 𝐵 �𝑆 𝐵′).

The unit object is (𝑆 id→ 𝑆,Λ𝑆 ,Λ𝑆).
Finally, we introduce the obvious monoidal functors B,S : BCoCorr𝑆 → CoCorr𝑆 , with B(𝑋 →

𝑇, 𝐴, 𝐵) = (𝑇, 𝐵) (the base) and S(𝑋 → 𝑇, 𝐴, 𝐵) = (𝑋, 𝐴) (the source).

So far, the objects A and B in Definition 4.5.4 have nothing to do with each other. They only begin to
interact when we talk about fiber products of objects of BCoCorr𝑆 over common bases. Given objects
𝔛𝑖 = (𝑋𝑖

𝑝𝑖→ 𝑇, 𝐴𝑖 , 𝐵) for 𝑖 = 1, 2 with common base 𝔗 = (𝑇, 𝐵), we define

𝔛1 �𝔗 𝔛2 = (𝑋1 ×𝑇 𝑋2
𝑝
→ 𝑇, (𝐴1 �𝑇 𝐴2) ⊗ 𝑝∗𝐵−1, 𝐵).

We claim that �𝔗 defines a monoidal functor

BCoCorr𝑆 ×B,CoCorr𝑆 BCoCorr𝑆 → BCoCorr𝑆 . (4.5.4)

A morphism in the category BCoCorr𝑆 ×B,CoCorr𝑆 BCoCorr𝑆 is a morphism 𝑒 : 𝔗 → 𝔗′ in CoCorr𝑆
together with a pair of morphisms 𝔣𝑖 : 𝔛𝑖 → 𝔛′𝑖 (𝑖 = 1, 2) lying over e. We may represent this state of
affairs with a diagram

𝑋𝑖

𝑝𝑖

��

𝐶𝑖
𝑐𝑖��

𝑞𝑖

��

𝑐′𝑖 �� 𝑋 ′𝑖

𝑝′𝑖
��

𝑇 𝑈
𝑢�� 𝑢′ �� 𝑇 ′

(4.5.5)

for 𝑖 = 1, 2, with 𝑢′ cohomologically smooth, together with morphisms 𝛼𝑖 : 𝑐∗𝑖 𝐴𝑖 → (𝑐′𝑖)! 𝐴′𝑖 for 𝑖 = 1, 2
and an isomorphism 𝛽 : 𝑢∗𝐵

�−→ (𝑢′)!𝐵′. Taking fiber products over the base correspondence, we obtain
a morphism of correspondences 𝑞♮ = (𝑝, 𝑞, 𝑝′) fitting into a diagram

𝑋1 ×𝑇 𝑋2

𝑝

��

𝐶1 ×𝑈 𝐶2

𝑞

��

𝑐�� 𝑐′ �� 𝑋 ′1 ×𝑇 ′ 𝑋 ′2

𝑝′

��
𝑇 𝑈𝑢
��

𝑢′
�� 𝑇 ′.

(4.5.6)

https://doi.org/10.1017/fmp.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.7


40 David Hansen et al.

The required morphism

𝑐∗
(
(𝐴1 �𝑇 𝐴2) ⊗ 𝑝∗𝐵−1

)
→ (𝑐′)!

(
(𝐴′1 �𝑇 ′ 𝐴′2) ⊗ (𝑝

′)∗ (𝐵′)−1
)

(4.5.7)

is defined as the composition

𝑐∗
(
(𝐴1 �𝑇 𝐴2) ⊗ 𝑝∗𝐵−1) � (𝑐∗1 𝐴1 �𝑈 𝑐∗2 𝐴2) ⊗ 𝑞∗𝑢∗𝐵−1

(𝛼1�𝑈 𝛼2) ⊗𝛽→ (𝑐′1)
! 𝐴′1 �𝑈 (𝑐

′
2)

! 𝐴′2 ⊗ 𝑞∗((𝑢′)!𝐵′)−1

𝜅𝑈/𝑇 ′→ (𝑐′)!(𝐴′1 �𝑇 ′ 𝐴′2) ⊗ 𝑞∗(𝐾𝑈/𝑇 ′ ⊗ ((𝑢′)!𝐵′)−1)
� (𝑐′)!(𝐴′1 �𝑇 ′ 𝐴′2) ⊗ 𝑞∗(𝑢′)∗ (𝐵′)−1

� (𝑐′)!
(
(𝐴′1 �𝑇 ′ 𝐴′2) ⊗ (𝑝

′)∗ (𝐵′)−1) ,

where in the last step we used Lemma 4.1.10.
To completely justify that equation (4.5.4) is a functor, one must also produce a 2-isomorphism

(𝔣′1 �𝑒′ 𝔣
′
2) ◦ (𝔣1 �𝑒 𝔣2) � (𝔣

′
1 ◦ 𝔣1) �𝑒′◦𝑒 (𝔣

′
2 ◦ 𝔣2) (4.5.8)

whenever all compositions are defined. Furthermore, one must also show that equation (4.5.4) is a
monoidal functor; that is, we have an isomorphism

(𝔛1 �𝔗 𝔛2) ⊗ (𝔛′1 �𝔗′ 𝔛
′
2) � (𝔛1 ⊗ 𝔛′1) �𝔗⊗𝔗′ (𝔛2 ⊗ 𝔛′2). (4.5.9)

The details are straightforward but tedious.
We can now prove Theorem 4.5.3. Let 𝑋1, 𝑋2 → 𝑇 be two morphisms satisfying the assumptions of

that theorem, and let 𝐴𝑖 ∈ 𝐷 ét (𝑋𝑖 ,Λ) be two sheaves which are ULA over S. Assume that the structure
map 𝜋 : 𝑇 → 𝑆 and the diagonal Δ𝑇 /𝑆 are both cohomologically smooth.

Let 𝔛𝑖 = (𝑋𝑖 → 𝑇, 𝐴𝑖 ,Λ𝑇 ) ∈ BCoCorr𝑆 for 𝑖 = 1, 2 so that B(𝔛1) = B(𝔛2) = 𝔗 = (𝑇,Λ𝑇 ). Then 𝔛𝑖
is dualizable, with dual 𝔛∨𝑖 = (𝑋𝑖 → 𝑇, D𝑋𝑖/𝑆𝐴𝑖 , 𝐾𝑇 /𝑆), as witnessed by coev𝔛𝑖

: 1BCoCorr𝑆 → 𝔛𝑖 ⊗ 𝔛∨𝑖
and ev𝔛𝑖

: 𝔛∨𝑖 ⊗𝔛𝑖 → 1BCoCorr𝑆 . Note that B(coev𝔛𝑖
) = coev𝔗 and S(coev𝔛𝑖

) = coevS(𝔛𝑖) , and similarly
for ev. Then the categorical trace of 1𝔛𝑖

is tr(1𝔛𝑖
) = ev𝔛𝑖

◦ coev𝔛𝑖
so that S(tr(1𝔛𝑖

)) = tr(1S(𝔛𝑖) ) =
cc𝑋𝑖/𝑆 (𝐴𝑖).

Now consider 𝔛 = 𝔛1 �𝔗 𝔛2 = (𝑋1 �𝑇 𝑋2 → 𝑇, 𝐴1 �𝑇 𝐴2,Λ𝑇 ). Define an object 𝔛∨ = 𝔛∨1 �𝔗∨ 𝔛
∨
2 ,

and define morphisms coev𝔛 and ev𝔛 via the diagrams

1BCoCorr𝑆
coev𝔛1 �coev𝔗 coev𝔛2 ��

coev𝔛
�������

������
������

������
������

��� (𝔛1 ⊗ 𝔛∨1 ) �𝔗⊗𝔗∨ (𝔛2 ⊗ 𝔛∨2 )

� (4.5.9)
��

𝔛 ⊗ 𝔛∨

and

𝔛 ⊗ 𝔛∨

(4.5.9)�
��

ev𝔛

�������
������

������
������

������
���

(𝔛∨1 ⊗ 𝔛1) �𝔗⊗𝔗∨ (𝔛∨2 ⊗ 𝔛2) ev𝔛1 �ev𝔗 ev𝔛2

�� 1BCoCorr𝑆 .

Then 𝔛∨, coev𝔛 and ev𝔛 witness the dualizability of 𝔛. It follows that S(𝔛) = (𝑋1 ×𝑇 𝑋2, 𝐴1 �𝑇 𝐴2)
is dualizable so that 𝐴1 �𝑇 𝐴2 is ULA over S. Now consider tr(1𝔛) = ev𝔛 ◦ coev𝔛 , an endomor-
phism of 1BCoCorr𝑆 . On the one hand, S(tr(1𝔛)) = tr(1S(𝔛) ) ∈ End 1CoCorr𝑆 is the datum of the
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inertia stack In𝑆 (𝑋1 ×𝑇 𝑋2) together with the characteristic class cc𝑋1×𝑇 𝑋2/𝑆 (𝐴) ∈ 𝐻0(In𝑆 (𝑋1 ×𝑇
𝑋2), 𝐾In𝑆 (𝑋1×𝑇 𝑋2)/𝑆). On the other hand, equation (4.5.8) gives a 2-isomorphism

tr(1𝔛) � (ev𝔛1 �ev𝔗 ev𝔛2) ◦ (coev𝔛1 �coev𝔗 coev𝔛2) � tr(1𝔛𝟞
) �tr(1𝔗 ) tr(1𝔛2).

The source of this morphism is the correspondence In𝑆 (𝑋1) ×In𝑆 (𝑇1) In𝑆 (𝑋2) → 𝑆 ×𝑆 𝑆 � 𝑆 together
with a global section of 𝐾In𝑆 (𝑋1×𝑇 𝑋2)/𝑆 . Reviewing the definition of � for morphisms in BCoCorr𝑆 as
in equation (4.5.7), we see that this section is the image of cc𝑋1/𝑆 (𝐴1) ⊗ cc𝑋2/𝑆 (𝐴2) under

𝐾In𝑆 (𝑋1)/𝑆 �In𝑆 (𝑇 ) 𝐾In𝑆 (𝑋2)/𝑆
𝜅In𝑆 (𝑇 )/𝑆→ 𝐾In𝑆 (𝑋1×𝑇 𝑋2)/𝑆 ⊗ In(𝑝)∗𝐾In𝑆 (𝑇 )
� 𝐾In𝑆 (𝑋1×𝑇 𝑋2)/𝑆 ,

where the last isomorphism is induced from the inverse to cc𝑇 /𝑆 (Λ𝑇 ) : ΛIn𝑆 (𝑇 ) → 𝐾In𝑆 (𝑇 )/𝑆 . The result
is exactly cc𝑋1/𝑆 (𝐴1) �In𝑆 (𝑇 ) cc𝑋2/𝑆 (𝐴2) as defined in Theorem 4.5.3.

4.6. The case of [𝑿/𝑮] for G smooth

Let X be a nice diamond over S which is equipped with an action of a cohomologically smooth S-group
diamond G. Let 𝛼 : 𝑋×𝑆𝐺 → 𝑋 be the action map (𝑥, 𝑔) ↦→ 𝑔(𝑥). Let 𝑌 = [𝑋/𝐺] be the stack quotient;
this is a decent S-v-stack whose structure map to S is fine. The point of this section is to compare two
contexts for the Lefschetz–Verdier trace formula: one for the identity correspondence on [𝑋/𝐺] and the
other for the morphism 𝑔 : 𝑋 → 𝑋 for an individual 𝑔 ∈ 𝐺 (𝑆).

Let 𝐴 ∈ 𝐷 ét (𝑌,Λ) be ULA over S. Then the pair (𝑌, 𝐴) is dualizable in CoCorr𝑆 , and we obtain a
characteristic class

cc𝑌 /𝑆 (𝐴) ∈ 𝐻0(In𝑆 (𝑌 ), 𝐾In𝑆 (𝑌 )/𝑆).

On the other hand, the pullback 𝐴𝑋 of A along 𝑋 → 𝑌 is also ULA over S (because 𝐺 → 𝑆 is
cohomologically smooth). For each element 𝑔 ∈ 𝐺 (𝑆), we have an isomorphism 𝑢𝑔 : 𝐴𝑋 → 𝑔∗𝐴𝑋
lying over 𝑔 : 𝑋 → 𝑋 . The pair (𝑔, 𝑢𝑔) constitutes an endomorphism of the dualizable object (𝑋, 𝐴𝑋 )
in CoCorr𝑆 , so we may define the categorical trace tr(𝑔, 𝑢𝑔) ∈ 𝐻0 (Fix(𝑔), 𝐾Fix(𝑔)/𝑆). Here, Fix(𝑔) =
𝑋 ×𝑔,𝑋×𝑆𝑋,Δ𝑋/𝑆 𝑋 is the fixed-point locus of g on X. The object is to show how the tr(𝑔, 𝑢𝑔) can be
derived from cc𝑌 /𝑆 (𝐴).

First, we give a concrete presentation of In𝑆 (𝑌 ). Define a correspondence c on X by

𝑐 = pr𝑋 ×𝑆𝛼 : 𝑋 ×𝑆 𝐺 → 𝑋 ×𝑆 𝑋

(𝑥, 𝑔) ↦→ (𝑥, 𝑔(𝑥)).

Then the fixed-point locus Fix(𝑐) ⊂ 𝑋 ×𝑆 𝐺 is G-stable for the G-action on 𝑋 ×𝑆 𝐺 given by ℎ(𝑥, 𝑔) =
(ℎ(𝑥), ℎ𝑔ℎ−1), and then In𝑆 (𝑌 ) � [Fix(𝑐)/𝐺]. With respect to this isomorphism, the canonical map
𝑝 : In𝑆 (𝑌 ) → In𝑆 ([𝑆/𝐺]) � [𝐺 � 𝐺] is the quotient by G of the projection map Fix(𝑐) → 𝐺.

The G-equivariance of 𝐴|𝑋 may be expressed an isomorphism 𝑢 : 𝐴|𝑋×𝐺 → 𝛼∗𝐴|𝑋 . This is not a
cohomological correspondence in general (as 𝛼∗ ≠ 𝛼!). To obtain a cohomological correspondence on
nonstacky objects, we work over the base G. Let 𝑋𝐺 = 𝑋 ×𝑆 𝐺, and consider the correspondence �̃�
defined by the diagram of diamonds over G:

𝑋𝐺
id𝑋𝐺

����
��
��
�� 𝛼 : (𝑥,𝑔) ↦→(𝑔 (𝑥) ,𝑔)



�
��

��
��

�

𝑋𝐺 𝑋𝐺 .
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By design, the fiber of this correspondence over 𝑔 ∈ 𝐺 (𝑆) is automorphism 𝑔 : 𝑋 → 𝑋 . Moreover,
there is a natural isomorphism Fix(𝑐) � Fix(�̃�), and the fiber of Fix(�̃�) over any 𝑔 ∈ 𝐺 (𝑆) is exactly
Fix(𝑔). The G-equivariance of 𝐴|𝑋 is encoded by an isomorphism �̃� : 𝐴|𝑋𝐺 → �̃�∗𝐴|𝑋𝐺 . Since �̃� is
an isomorphism, we have �̃�∗ � �̃�!, and therefore, the pair (�̃�, �̃�) constitutes an endomorphism of the
dualizable object (𝑋𝐺 , 𝐴|𝑋𝐺 ) of CoCorr𝐺 . The categorical trace of (�̃�, �̃�) is an element

tr(�̃�, �̃�) ∈ 𝐻0 (Fix(�̃�), 𝐾Fix(�̃�)/𝐺).

This is the ‘universal local term’ for the action of G on X, in the sense that, for any 𝑔 ∈ 𝐺 (𝑆), the
restriction map

𝐻0(Fix(�̃�), 𝐾Fix(�̃�)/𝐺) → 𝐻0(Fix(𝑔), 𝐾Fix(𝑔)/𝑆)

carries tr(�̃�, �̃�) onto tr(𝑔, 𝑢𝑔).
We want to compare the characteristic class cc𝑌 /𝑆 (𝐴) with the universal local term tr(�̃�, �̃�). To do

this, we first observe that from the Cartesian square

Fix(�̃�)

𝑞

��

�� 𝐺

��
In𝑆 (𝑌 ) �� [𝐺 � 𝐺]

we obtain a canonical map 𝑞∗𝐾In𝑆 (𝑌 )/[𝐺�𝐺 ] → 𝐾Fix(�̃�)/𝐺 , and thus a canonical pullback map

𝑞∗ : 𝐻0 (In𝑆 (𝑌 ), 𝐾In𝑆 (𝑌 )/[𝐺�𝐺 ] ) → 𝐻0(Fix(�̃�), 𝐾Fix(�̃�)/𝐺). (4.6.1)

Next, Lemma 4.5.2 applied to 𝑇 = [𝑆/𝐺] shows that cc𝑇 /𝑆 (Λ𝑇 ) is an isomorphism Λ[𝐺�𝐺 ]
�−→

𝐾 [𝐺�𝐺 ]/𝑆 . This induces an isomorphism

𝐾In𝑆 (𝑌 )/[𝐺�𝐺 ] � 𝑝!Λ[𝐺�𝐺 ]
�−→ 𝑝!𝐾 [𝐺�𝐺 ]/𝑆 � 𝐾In𝑆 (𝑌 )/𝑆 . (4.6.2)

Combining equations (4.6.1) and (4.6.2), we obtain a canonical map

𝜄 : 𝐻0 (In𝑆 (𝑌 ), 𝐾In𝑆 (𝑌 )/𝑆) → 𝐻0 (Fix(�̃�), 𝐾Fix(�̃�)/𝐺). (4.6.3)

The main result of this section is the following theorem.

Theorem 4.6.1. Notation and assumptions as above, we have an equality

𝜄
(
cc𝑌 /𝑆 (𝐴)

)
= tr�̃� (�̃�, 𝐴|𝑋𝐺 ).

Proof. We restate the theorem in the language of based cohomological correspondences. The main
players are

• 𝑇 = ([𝑆/𝐺],Λ[𝑆/𝐺 ] ), a dualizable object of CoCorr𝑆 .
• 𝔜 = (𝑌 → [𝑆/𝐺], 𝐴,Λ[𝑆/𝐺 ] ), a dualizable object of BCoCorr𝑆 with base T.
• 𝔛𝐺 = (𝑋𝐺 , 𝐴𝑋𝐺 ), a dualizable object of CoCorr𝐺 with base 1CoCorr𝐺 .
• 𝛼 ∈ End𝔛𝐺 , the endomorphism described by the pair (�̃�, �̃�).

We would like to relate tr(id𝔜) to tr(𝛼). The idea is to promote 𝛼 to an endomorphism of based
cohomological correspondences which lies over id𝑇 . To this end, we introduce some more objects in
BCoCorr𝑆:

• 𝔊 = (𝐺 → 𝑆,Λ𝐺 ,Λ𝑆) with base 1CoCorr𝑆 ,
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• 𝔊′ = (𝐺 → [𝑆/𝐺] ×𝑆 [𝑆/𝐺],Λ𝐺 ,Λ[𝑆/𝐺 ] �𝑆 𝐾 [𝑆/𝐺 ]/𝑆), with base 𝑇 ⊗ 𝑇∨, where the morphism
𝐺 → [𝑆/𝐺] ×𝑆 [𝑆/𝐺] is defined as the trivial 𝐺 ×𝑆 𝐺-torsor 𝐺𝐺×𝑆𝐺 = 𝐺 ×𝑆 𝐺 ×𝑆 𝐺.

We also define morphisms in BCoCorr𝑆:

• coev𝐺 : 𝔊→𝔊′, which has base coev𝑇 and source 1(𝐺,Λ𝐺 ) ,
• ev𝐺 : 𝔊′ →𝔊, which has base ev𝑇 and source 1(𝐺,Λ𝐺 ) .
• An automorphism 𝛼0 ∈ Aut𝔊′ lying over the identity on both base and source, coming from a

2-isomorphism of 𝐺 → [𝑆/𝐺]2 corresponding to the automorphism of the trivial torsor
𝐺𝐺×𝐺 → 𝐺𝐺×𝐺 defined by (𝑥, 𝑔, ℎ) ↦→ (𝑥, 𝑔𝑥, ℎ).

Now observe that tr𝐺 := ev𝐺 ◦𝛼0 ◦coev𝐺 is an endomorphism of𝔊 with base tr(id𝑇 ) and source idS(𝔊) ,
whose underlying based correspondence is shown in the diagram:

𝐺

��

𝐺
id𝐺��

��

id𝐺 �� 𝐺

��
𝑆 [𝐺 � 𝐺]�� �� 𝑆,

where the central horizontal arrow sends g to its own conjugacy class. (If we had omitted 𝛼0 from the
definition of tr𝐺 , the central horizontal arrow would send everything to the identity of G.)

Recall that S : BCoCorr𝑆 → CoCorr𝑆 takes a based cohomological corresponce onto its source. Let
F : CoCorr𝐺 → CoCorr𝑆 be the functor which forgets the base G. We have a diagram in CoCorr𝑆:

S(1BCoCorr𝑆 �1CoCorr𝑆
𝔊)

S(coev𝔜 �coev𝑇 coev𝐺 )
��

∼ �� F(1CoCorr𝐺 )

F(coev𝔛𝐺 )
��

S((𝔜 ⊗ 𝔜∨) �𝑇 ⊗𝑇 ∨ 𝔊′)

S(id𝔜⊗𝔜∨ �id𝑇 ⊗𝑇∨
𝛼0)

��

∼ �� F(𝔛𝐺 ⊗ 𝔛∨𝐺)

F(𝛼)
��

S((𝔜 ⊗ 𝔜∨) �𝑇 ⊗𝑇 ∨ 𝔊′)

S(ev𝔜 �ev𝑇 ev𝐺 )
��

∼ �� F(𝔛𝐺 ⊗ 𝔛∨𝐺)

F(ev𝔛𝐺 )
��

S(1BCoCorr𝑆 �1CoCorr𝑆
𝔊) ∼ �� F(1CoCorr𝐺 ),

where all squares are filled in with 2-isomorpisms. The functoriality property of � from equation (4.5.8)
now gives a 2-isomorphism

S
(
cc𝑌 /𝑆 (𝐴) �cc[𝑆/𝐺 ]/𝑆 (Λ[𝑆/𝐺 ] ) tr𝐺 (𝛼0)

)
�−→ F(tr(𝛼)). (4.6.4)

The isomorphism of v-stacks implicit in equation (4.6.4) is expressed by the fact that we have a Cartesian
diagram:

Fix(�̃�) ��

��

𝐺

��
In𝑆 (𝑌 ) �� [𝐺 � 𝐺] .

On the level of cohomology classes, equation (4.6.4) tells us that tr(𝛼), considered as an element of
𝐻0 (Fix(�̃�), 𝐾Fix(�̃�)/𝑆), can be derived from cc𝑌 /𝑆 (𝐴) in the manner described by the theorem. �
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We conclude the section with a remark about isolated fixed points. Assume there exists a conjugacy-
invariant open subset 𝑈 ⊂ 𝐺 whose elements act on X with only isolated fixed points. (This is the
case for the action of the positive loop group on the affine Grassmannian. We study that scenario in
the next section.) Write In𝑆 ([𝑋/𝐺])𝑈 for the pullback of [𝑈 � 𝐺] under In𝑆 ([𝑋/𝐺]) → [𝐺 � 𝐺].
Then In𝑆 ([𝑋/𝐺])𝑈 → [𝑈 � 𝐺] is étale over [𝑈 � 𝐺]; as such, we have a canonical trivialization
𝐾In𝑆 ( [𝑋/𝐺 ])𝑈 /𝑆 � ΛIn𝑆 ( [𝑋/𝐺 ])𝑈 . Therefore, the restriction over U of the characteristic class of A is an
element

𝑐𝑐 [𝑋/𝐺 ]/𝑆 (𝐴)𝑈 ∈ 𝐻0 (In𝑆 ([𝑋/𝐺])𝑈 ,Λ);

that is, it is a continuous function on the space of pairs (𝑥, 𝑔) ∈ 𝑋 ×𝑆 𝑈 with 𝑔(𝑥) = 𝑥. Theorem 4.6.1
implies that this function is (𝑥, 𝑔) ↦→ loc𝑥 (𝑔, 𝐴).

5. Local terms on the 𝑩dR-affine Grassmannian

The goal of this chapter is to explicitly compute certain local terms on the 𝐵dR-affine Grassmannian in
terms of the geometric Satake equivalence.

5.1. The main result

To explain the main result, let us fix some notation. Let 𝐹/Q𝑝 be a finite extension with residue field
F𝑞 . Let C be the completion of an algebraic closure of F. Let 𝐺/𝐹 be a connected reductive group, and
let Gr𝐺 = 𝐿𝐺/𝐿+𝐺 be the associated 𝐵dR-affine Grassmannian over Spd 𝐶. We explain the notation:
For a perfectoid C-algebra R, we have the loop group 𝐿𝐺 (𝑅) = 𝐵dR (𝑅) and its positive subgroup
𝐿+𝐺 (𝑅) = 𝐵+dR (𝑅). Then Gr𝐺 is an ind-spatial diamond admitting an action of 𝐿+𝐺 and in particular
its subgroup 𝐺 (𝐹). For a cocharacter 𝜇 of 𝐺𝐹 , we let Gr𝐺,≤𝜇 be the corresponding closed Schubert
cell; this is a proper diamond. Finally, define the local Hecke stack by

Heckeloc
𝐺 = [𝐿+𝐺\Gr𝐺] = [𝐿+𝐺\𝐿𝐺/𝐿+𝐺] .

We remark that there are versions of these objects living over Spd 𝐹, but we will not need these for our
results.

Fix a coefficient ring Λ ∈
{
Z/ℓ𝑛Z[√𝑞], Zℓ [

√
𝑞
}
. The Satake category

Sat𝐺 (Λ) ⊂ 𝐷 ét (Heckeloc
𝐺,𝐶 ,Λ)

is the subcategory of objects which are perverse, Λ-flat and ULA over Spd 𝐶 [FS21, Definition I.6.2].
It is a symmetric monoidal category under the convolution product.

Theorem 5.1.1 ([FS21, Theorem I.6.3]). There is an equivalence of symmetric monoidal categories:

Rep𝐺 (Λ)
�−→ Sat𝐺 (Λ)

𝑉 ↦→ S𝑉 ,

where 𝐺 is the Langlands dual group (considered over Λ), and Rep𝐺 (Λ) is the category of representa-
tions of 𝐺 on finite projective Λ-modules.

We continue to write S𝑉 for the pullback of this object along the quotient Gr𝐺 → [𝐿+𝐺\Gr𝐺].
Our next order of business is to determine, for 𝑔 ∈ 𝐺 (𝐹)sr, the fixed point locus Gr𝑔𝐺 . The answer is

the same regardless of which sort of affine Grassmannian we consider (classical, Witt vector, 𝐵dR), as
the following proposition shows.
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Proposition 5.1.2. Let 𝐾+ be a discrete valuation ring with algebraically closed residue field k and
fraction field K. Let G be a reductive group over 𝐾+. Let 𝑔 ∈ 𝐺 (𝐾+) be an element whose image in
𝐺 (𝑘) is strongly regular, and let 𝑇 = Cent(𝑔, 𝐺). The inclusion 𝑇 ⊂ 𝐺 induces a bijection

𝑇 (𝐾)/𝑇 (𝐾+) � (𝐺 (𝐾)/𝐺 (𝐾+))𝑔,

so that the fixed point locus of g may be identified with 𝑋∗(𝑇).
Consequently, if Gr𝐺 is any incarnation of the affine Grassmannian, then Gr𝑔𝐺,≤𝜇 is finite over its

base with underlying set 𝑋∗(𝑇)≤𝜇.

Proof. Let B be the (reduced) Bruhat–Tits building of the split reductive group 𝐺𝐾 over the discretely
valued field K. Thus, B is a locally finite simplicial complex admitting an action of 𝐿𝐺 = 𝐺 (𝐾). We
will identify the 𝐿𝐺-set Gr𝐺 with a piece of this building.

By [BT84, 5.1.40], there exists a hyperspecial point 𝑜 ∈ B corresponding to 𝐿+𝐺 = 𝐺 (𝐾+). The
point 𝑜 can be characterized by [BT84, 4.6.29] as the unique fixed point of 𝐿+𝐺. Let Bext be the extended
Bruhat–Tits building of 𝐺𝐾 . Recall that Bext = B × 𝑋∗(𝐴𝐺)R, where 𝐴𝐺 is the connected center of G.
The group 𝐿𝐺 acts on 𝑋∗(𝐴𝐺)R via the isomorphism 𝑋∗(𝐴𝐺)R → 𝑋∗(𝐴′𝐺)R, where 𝐴′𝐺 is the maximal
abelian quotient of G. Let 𝑜 = (𝑜, 𝑧) be any point in Bext lying over 𝑜. Then 𝐿+𝐺 can be characterized
as the full stabilizer of o in 𝐺 (𝐾): It is clear that 𝐿+𝐺 stabilizes o, and the reverse inclusion follows
from the Cartan decomposition 𝐿𝐺 = 𝐿+𝐺 · 𝑋∗(𝑇) · 𝐿+𝐺 (which relies on 𝑜 being hyperspecial) and
the fact that 𝑋∗(𝑇) acts on the apartment of T in Bext by translations. It follows that the action of 𝐿𝐺 on
Bext provides an 𝐿𝐺-equivariant bijection from Gr𝐺 to the orbit of 𝐿𝐺 through o.

Now suppose 𝑥 ∈ Gr𝐺 is fixed by a strongly regular element 𝑔 ∈ 𝐿+𝑇sr. Then its image in Bext is a
g-fixed point belonging to the orbit of o, and we can write 𝑥 = ℎ𝑜 for some ℎ ∈ 𝐿𝐺. For every root
𝛼 : 𝑇 → Gm, the element 𝛼(𝑔) does not lie in the kernel of 𝐿+Gm → Gm. According to [Tit79, 3.6.1],
the image of x in B belongs to the apartment A of T. At the same time, 𝑔 ∈ 𝐿+𝐺 also fixes 𝑜, so for the
same reason, 𝑜 ∈ A. Thus, 𝑜 belongs to both apartments A and ℎ−1A. Since 𝐿+𝐺 acts transitively on
the apartments containing 𝑜 [BT84, 4.6.28], we can multiply h on the right by an element of 𝐿+𝐺 to
ensure that ℎ−1A = A. By [BT72, 7.4.10], we then have ℎ ∈ 𝐿+𝑁 (𝑇, 𝐺). Since 𝑜 is hyperspecial, every
Weyl reflection is realized in 𝐿+𝐺, and hence, we may again modify h on the right to achieve ℎ ∈ 𝐿𝑇 .
We see now that 𝑥 = ℎ𝑜 is fixed by all of 𝐿𝑇 and that furthermore the coset 𝑥 = ℎ𝐿+𝐺 is the image of
the coset ℎ𝐿+𝑇 . �

Proposition 5.1.2 shows that, if we fix a split maximal torus 𝑇 ⊂ 𝐺, there is a natural finite-to-one map

Gr𝑔𝐺 → 𝑋∗+ (𝑇)
𝑥 ↦→ 𝜈𝑥 .

Note that 𝜈𝑥 simply records which open Schubert cell of Gr𝐺 contains the point x.
Now, for any 𝑉 ∈ Rep(𝐺) and any 𝑥 ∈ Gr𝑔𝐺 , there is an associated local term loc𝑥 (𝑔,S𝑉 ) ∈ Λ. The

main result of this chapter is the following theorem, giving an explicit computation of these local terms.

Theorem 5.1.3. Let 𝑉 ∈ Rep(𝐺) be an object of the Satake category, and let 𝑔 ∈ 𝐺 (𝐹)sr be a strongly
regular semisimple element. Then for any 𝑥 ∈ Gr𝑔𝐺 , there is an equality in Λ:

loc𝑥 (𝑔,S𝑉 ) = (−1) 〈2𝜌,𝜈𝑥 〉rankΛ𝑉 [𝜈𝑥] .

Note that, since V is (by hypothesis) a finite projectiveΛ-module and tori are reductive in the strongest
sense, the weight space 𝑉 [𝜈𝑥] is a finite projective Λ-module, so the right-hand side of this equality is
well-defined.
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Due to the highly inexplicit nature of local terms, the proof of Theorem 5.1.3 is rather indirect.
Indeed, we would be able to give a simple proof of Theorem 5.1.3 if we knew the equality between
‘true’ and ‘naive’ local terms on Gr𝐺 . Unfortunately, this equality seems to be a very difficult problem.
Even for schemes, the problem of comparing true and naive local terms was only settled very recently
by Varshavsky. Instead, our strategy reduces the computation of the local terms in Theorem 5.1.3 to an
analogous computation on the Witt vector affine Grassmannian, where a global-to-local argument can
be pushed through. The key theme in the proof is the idea that local terms are constant in families.

For our applications, the following restatement of the main results of this section in terms of
characteristic classes on the quotient [Gr𝐺,≤𝜇/𝐿+𝑚𝐺] will be useful.

Theorem 5.1.4. Let V be such that S𝑉 is supported on some Schubert cell Gr𝐺,≤𝜇. Choose some large
m such that the 𝐿+𝐺-action on this cell factors through the quotient 𝐿+𝑚𝐺, and set 𝑋 = [Gr𝐺,≤𝜇/𝐿+𝑚𝐺].

Then the set of connected components of In𝑆 (𝑋)sr may be identified with 𝑋+∗ (𝑇)≤𝜇/𝑊 , and the
dualizing complex of In𝑆 (𝑋)sr has a canonical trivialization. With respect to those identifications, the
restriction of cc𝑋/𝑆 (S𝑉 ) to In𝑆 (𝑋)sr is the function sending 𝜆 ∈ 𝑋∗(𝑇) to (−1) 〈2𝜌𝐺 ,𝜆〉 rankΛ 𝑉 [𝜆].

Proof. The first claim is proved in §5.4 below. Since 𝐿+𝑚𝐺 is a cohomologically smooth group diamond,
Theorem 4.6.1 applies to the quotient 𝑋 = [Gr𝐺,≤𝜇/𝐿+𝑚𝐺]. The remark following the proof of that
theorem applies to the locus 𝐿+𝑚𝐺sr so that we may relate cc𝑋/𝑆 (S𝑉 ) to the local terms loc𝑥 (𝑔,S𝑉 ).
The latter have been computed by Theorem 5.1.3. �

5.2. Strategy of proof

In this section, we reduce Theorem 5.1.3 to four auxiliary propositions stated below. The proofs of these
propositions will occupy the remainder of this chapter.

As a preliminary observation, note that all of the objects appearing in Theorem 5.1.3 depend on
G only through its base change to 𝐹, so we may enlarge F whenever convenient in the argument. In
particular, we can and do assume that G admits a split reductive model G/O𝐹 , and that G(O𝐹 ) contains
elements of finite prime-to-p order with strongly regular semisimple image in G(F𝑞).

Now we begin the argument. First, we show that the local terms appearing in Theorem 5.1.3 are
essentially independent of g.

Proposition 5.2.1. In the notation and setup of Theorem 5.1.3, loc𝑥 (𝑔,S𝑉 ) depends on g and x only
through the cocharacter 𝜈𝑥 . More precisely, if 𝑔, 𝑔′ ∈ 𝐺 (𝐹)sr are two strongly regular semisimple
elements and 𝑥 ∈ Gr𝑔𝐺 , resp., 𝑥 ′ ∈ Gr𝑔

′

𝐺 are fixed points such that 𝜈𝑥 = 𝜈𝑥′ , then

loc𝑥 (𝑔,S𝑉 ) = loc𝑥′ (𝑔′,S𝑉 ).

Next, we are going to degenerate from characteristic zero into characteristic p. For this, fix a split
reductive model G/O𝐹 of G, and let GrG be the associated Beilinson–Drinfeld affine Grassmannian over
𝑆 = SpdO𝐶 . Recall that this is a small v-sheaf which interpolates between the 𝐵dR-affine Grassmannian
Gr𝐺 and the Witt vector affine Grassmannian Gr𝑊G , in the sense that we have a commutative diagram

(Gr𝑊G )♦

��

𝑖 �� GrG

��

Gr𝐺

��

𝑗��

𝑠 = Spd F𝑞 �� 𝑆 𝜂 = Spd𝐶��

with Cartesian squares. We will crucially use the fact that all of these Grassmannians satisfy compatible
forms of geometric Satake, in the sense that there are natural monoidal functors
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𝐷 ét (Gr𝐺 ,Λ)

Rep(𝐺) ��

�������������

����
���

���
���

𝐷 ét (GrG,Λ)

𝑗∗

��

𝑖∗

��
𝐷 ét((Gr𝑊G )♦,Λ)

such that the vertical arrows are equivalences of categories on the essential images of Rep(𝐺).

Proposition 5.2.2. Let 𝑔 ∈ G(O𝐹 ) be an element such that 𝑔 ∈ G(F𝑞) is strongly regular semisimple.
Then T = Cent(𝑔, G) is a maximal torus, and there is a natural isomorphism

Gr𝑔G � GrT � 𝑋∗(T)𝑆 .

In particular, if 𝛽 � 𝑆 ⊂ Gr𝑔G is any connected component, then 𝛽𝜂 and 𝛽𝑠 are isolated fixed points
for the g-action in the generic and special fiber, respectively.

Proposition 5.2.3. Let 𝑔 ∈ G(O𝐹 ) be an element such that 𝑔 ∈ G(F𝑞) is strongly regular semisimple.
Then for any 𝑉 ∈ Rep(𝐺) and any connected component 𝛽 ⊂ Gr𝑔G, we have the equality

loc𝛽𝜂 (𝑔, 𝑗∗S𝑉 ) = loc𝛽𝑠 (𝑔, 𝑖∗S𝑉 )

of local terms.

Finally, we compute the local terms on the Witt vector affine Grassmannian by a direct argument.

Proposition 5.2.4. Let 𝑔 ∈ G(O𝐹 ) be an element with finite prime-to-p order such that 𝑔 ∈ G(F𝑞) is
strongly regular semisimple. Then for any 𝑥 ∈ Gr𝑊 ,𝑔G and any 𝑉 ∈ Rep(𝐺),

loc𝑥 (𝑔,S𝑉 ) = (−1) 〈2𝜌,𝜈𝑥 〉rankΛ𝑉 [𝜈𝑥],

where 𝜈𝑥 ∈ 𝑋∗+ (𝑇) is as before.

5.3. Local terms and base change

In this section, we prove two key technical results, namely that formation of local terms commutes with
any base change and with passage from perfect schemes to v-sheaves.

In order to fix notation, we briefly recall the key definitions concerning local terms; we apologize for
the overlap with Chapter 4. Let S be a small v-sheaf, which will be our base object. Let 𝑓 : 𝑋 → 𝑆 be a
map of v-sheaves representable in nice diamonds. Consider a correspondence 𝑐 = (𝑐1, 𝑐2) : 𝐶 → 𝑋×𝑆 𝑋
given by a map of v-sheaves representable in nice diamonds. This gives rise to a Cartesian diagram

Fix(𝑐)

𝑐′

��

Δ′ �� 𝐶

𝑐=(𝑐1 ,𝑐2)
��

𝑋
Δ

�� 𝑋 ×𝑆 𝑋

of small v-sheaves. We will sometimes assume that 𝑐1 is proper and that Fix(𝑐) is a disjoint union of
open-closed subspaces which are proper over S. These conditions will hold, e.g., if f and c are proper.
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Let F ∈ 𝐷 ét (𝑋,Λ) be an f -ULA object. Recall that a cohomological correspondence over c is a map
𝑢 : 𝑅𝑐2!𝑐

∗
1F→ F, i.e., an element 𝑢 ∈ Hom(𝑐∗1F, 𝑅𝑐!

2F). If 𝑐1 is proper, then applying 𝑅 𝑓! induces an
endomorphism

𝑅 𝑓!𝑢 : 𝑅 𝑓!F→ 𝑅 𝑓!𝑅𝑐1∗𝑐
∗
1F = 𝑅 𝑓!𝑅𝑐1!𝑐

∗
1F

� 𝑅 𝑓!𝑅𝑐2!𝑐
∗
1F

𝑢→ 𝑅 𝑓!F

of 𝑅 𝑓!F. On the other hand, there is a natural map

Hom(𝑐∗1F, 𝑅𝑐!
2F) → 𝐻0(Fix(𝑐), 𝐾Fix(𝑐)/𝑆),

cf. the discussion immediately before Definition 4.3.5, and we write tr𝑐 (𝑢,F) ∈ 𝐻0 (Fix(𝑐), 𝐾Fix(𝑐)/𝑆)
for the image of u under this map.

If 𝛽 ⊂ Fix(𝑐) is a closed-open subspace with proper structure map 𝑔 : 𝛽 → 𝑆, then 𝐻0(𝛽, 𝐾𝛽/𝑆) =
𝐻0 (𝛽, 𝑅𝑔!Λ) is canonically a direct summand of 𝐻0(Fix(𝑐), 𝐾Fix(𝑐)/𝑆), and we can further consider the
image of tr𝑐 (𝑢,F) under the map

𝐻0(Fix(𝑐), 𝐾Fix(𝑐)/𝑆) → 𝐻0 (𝛽, 𝑅𝑔!Λ) � 𝐻0 (𝑆, 𝑅𝑔∗𝑅𝑔!Λ)
� 𝐻0(𝑆, 𝑅𝑔!𝑅𝑔!Λ) → 𝐻0(𝑆,Λ).

By definition, this is the local term loc𝛽 (𝑢,F). In most situations we care about, S is connected, so
𝐻0 (𝑆,Λ) = Λ, and we simply regard loc𝛽 (𝑢,F) as an element of Λ. Note that local terms are additive
in the sense that if 𝛽 = 𝛽1

∐
𝛽2, then loc𝛽 (𝑢,F) = loc𝛽1 (𝑢,F) + loc𝛽2 (𝑢,F). If S is a geometric point, f

and c are proper, and 𝜋0 (Fix(𝑐)) is a discrete (and therefore finite) set, the usual Lefschetz trace formula
holds, and says that

tr(𝑢 |𝑅Γ𝑐 (𝑋,F)) =
∑

𝛽∈𝜋0 (Fix(𝑐))
loc𝛽 (𝑢,F).

We need to understand how local terms interact with base change on S. More precisely, assume we
are given a morphism 𝑎 : 𝑇 → 𝑆. Then all objects and morphisms above naturally base change to
objects over T. Note that Fix(𝑐)𝑇 = Fix(𝑐𝑇 ). We write 𝑎𝑋 : 𝑋𝑇 → 𝑋 , 𝑎𝐶 : 𝐶𝑇 → 𝐶, etc. for the base
changes of a. We naturally get a cohomological correspondence 𝑢𝑇 on F𝑇 = 𝑎∗𝑋F over 𝑐𝑇 by taking
the image of u under the map

Hom(𝑐∗1F, 𝑅𝑐!
2F) → Hom(𝑎∗𝐶𝑐∗1F, 𝑎∗𝐶𝑅𝑐!

2F) � Hom(𝑐∗1,𝑇 𝑎∗𝑋F, 𝑎∗𝐶𝑅𝑐!
2F)

→ Hom(𝑐∗1,𝑇 𝑎∗𝑋F, 𝑅𝑐!
2,𝑇 𝑎∗𝑋F).

The final arrow here is induced by the canonical map 𝑎∗𝐶𝑅𝑐!
2F → 𝑅𝑐!

2,𝑇 𝑎∗𝑋F. This map is a special
case of the natural transformation 𝛽 𝑓 ,𝑔 : �̃� ∗𝑅𝑔! → 𝑅�̃�! 𝑓 ∗ which exists for any Cartesian diagram

𝑋 ′
𝑓 ��

𝑔

��

𝑌 ′

𝑔

��
𝑋

𝑓
�� 𝑌

with g representable in nice diamonds. The transformation in question is adjoint to the map 𝑅�̃�! �̃� ∗𝑅𝑔! �
𝑓 ∗𝑅𝑔!𝑅𝑔! → 𝑓 ∗ (it is also adjoint to the map 𝑅𝑔! → 𝑅𝑔!𝑅 𝑓∗ 𝑓 ∗ � 𝑅 �̃�∗𝑅�̃�! 𝑓 ∗).

In this setup, the next proposition says that formation of local terms commutes with base change
along 𝑇 → 𝑆.
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Proposition 5.3.1. For any given 𝛽 ⊂ Fix(𝑐) as above, the natural map

𝐻0(𝑆,Λ) → 𝐻0(𝑇,Λ)

sends loc𝛽 (𝑢,F) to loc𝛽𝑇 (𝑢𝑇 ,F𝑇 ). In particular, if S and T are connected, then loc𝛽 (𝑢,F) =
loc𝛽𝑇 (𝑢𝑇 ,F𝑇 ) as elements of Λ.

Proof. By a straightforward argument, this reduces to showing that there is a natural map

𝐻0(Fix(𝑐), 𝐾Fix(𝑐)/𝑆) → 𝐻0(Fix(𝑐)𝑇 , 𝐾Fix(𝑐)𝑇 /𝑇 )

compatible with the map 𝐻0(𝑆,Λ) → 𝐻0 (𝑇,Λ) and sending tr𝑐 (𝑢,F) to tr𝑐𝑇 (𝑢𝑇 ,F𝑇 ). To obtain the
map itself, apply 𝐻0 (Fix(𝑐),−) to the composition

𝐾Fix(𝑐)/𝑆 = 𝑅( 𝑓 ◦ 𝑐′)!Λ→ 𝑅𝑎Fix(𝑐)∗𝑎
∗
Fix(𝑐)𝑅( 𝑓 ◦ 𝑐′)!Λ

𝛽𝑎, 𝑓 ◦𝑐′−→ 𝑅𝑎Fix(𝑐)∗𝑅( 𝑓𝑇 ◦ 𝑐′𝑇 )
!𝑎∗Λ = 𝑅𝑎Fix(𝑐)∗𝐾Fix(𝑐)𝑇 /𝑇 .

The claim about the relation between tr𝑐 and tr𝑐𝑇 now follows from the fact that the base change functor
CoCorr𝑆 → CoCorr𝑇 is symmetric monoidal and therefore preserves dualizable objects and traces of
endomorphisms thereof. �

We will also need to compare local terms associated with perfect schemes and with v-sheaves.
More precisely, fix a perfect field 𝑘/F𝑝 , and let PSch𝑘 be the category of perfect schemes over k.
There is a natural functor 𝑋 ↦→ 𝑋♦ from PSch𝑘 to small v-sheaves over Spd 𝑘 , characterized by
(Spec 𝑅)♦(𝐴, 𝐴+) = Hom𝑘 (𝑅, 𝐴). Said differently, 𝑋♦ sends Spec 𝑅 to Spa(𝑅, 𝑅+)♦ where 𝑅+ is the
integral closure of k in R. This functor commutes with finite limits. Moreover, if 𝑓 : 𝑋 → 𝑌 is separated
and perfectly of finite type, then 𝑓 ♦ is representable in locally spatial diamonds and compactifiable
with finite dim.trg. By [Sch17, §27], for any X there is a fully faithful symmetric monoidal functor
𝑐∗𝑋 : 𝐷 ét(𝑋,Λ) → 𝐷 ét (𝑋♦,Λ) compatible with 𝑓 ∗ and 𝑅 𝑓! in the evident senses. Moreover, one has
canonical natural transformations

𝑐∗𝑋𝑅ℋom(−,−) → 𝑅ℋom(𝑐∗𝑋−, 𝑐∗𝑋−)

and 𝑐∗𝑋𝑅 𝑓 ! → 𝑅 𝑓 ♦!𝑐∗𝑌 for f separated and perfectly of finite type.
Now let PSchft

𝑘 be the full subcategory of schemes separated and perfectly of finite type over k. Fix
𝑋 ∈ PSchft

𝑘 with structure map 𝑓 : 𝑋 → Spec 𝑘 , and let 𝑐 : 𝐶 → 𝑋 ×𝑘 𝑋 be a correspondence in PSchft
𝑘

such that 𝑐1 and 𝑓 ◦ 𝑐′ are perfectly proper. Let F ∈ 𝐷 ét(𝑋,Λ) be an f -ULA object equipped with a
cohomological correspondence u lying over c, so we get local terms loc𝛽 (𝑢,F) ∈ 𝐻0(Spec𝑘,Λ) = Λ
by the schematic version of the recipe recalled above.

On the other hand, applying (−)♦ and using commutation with finite limits, we get a correspondence
𝑐♦ : 𝐶♦ → 𝑋♦ ×Spd 𝑘 𝑋♦ of v-sheaves over 𝑆 = Spd 𝑘 with Fix(𝑐)♦ = Fix(𝑐♦), satisfying all of our
assumptions from above. Moreover, u naturally induces a cohomological correspondence 𝑢♦ on 𝑐∗𝑋F
lying over 𝑐♦, by taking the image of u under the natural map

Hom(𝑐∗1F, 𝑅𝑐!
2F) → Hom(𝑐∗𝐶𝑐∗1F, 𝑐∗𝐶𝑅𝑐!

2F) � Hom(𝑐♦∗1 𝑐∗𝑋F, 𝑐∗𝐶𝑅𝑐!
2F)

→ Hom(𝑐♦∗1 𝑐∗𝑋F, 𝑅𝑐♦!2 𝑐∗𝑋F).

Proposition 5.3.2. Maintain the previous setup and notation. Then 𝑐∗𝑋F is 𝑓 ♦-ULA, and for any open-
closed 𝛽 ⊂ Fix(𝑐), we have an equality

loc𝛽 (𝑢,F) = loc𝛽♦ (𝑢♦, 𝑐∗𝑋F)

of local terms.
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Proof. This is formally identical to the proof of Proposition 5.3.1, using the fact that (−)♦ induces a
symmetric monoidal functor on the appropriate categories of cohomological correspondences. �

5.4. Independence of g

In this section, we prove Proposition 5.2.1. In this section only, we set 𝑆 = Spd 𝐶.
Fix V as in the proposition. Decomposing V into isotypic summands for the action of 𝑍 (𝐺)◦, we can

assume that S𝑉 is supported on a single connected component of Gr𝐺 . We can then pick some 𝜇 such
that S𝑉 is supported on the Schubert cell Gr𝐺,≤𝜇. Choose some large m such that the 𝐿+𝐺 action on
Gr𝐺,≤𝜇 factors over the truncated loop group 𝐿+𝑚𝐺. The sheaf S𝑉 is naturally the pullback of a sheaf
again denoted S𝑉 on the quotient stack 𝑋 = [Gr𝐺,≤𝜇/𝐿+𝑚𝐺], so we can consider the characteristic class
cc𝑋/𝑆 (S𝑉 ).

To analyze this class, we need to understand the inertia stack of X. For this, we need some notation.
Let 𝐿+𝑚𝐺sr be the preimage of the strongly regular semisimple locus 𝐺sr ⊂ 𝐺 under the theta map
𝐿+𝑚𝐺 → 𝐺. Pick any maximal torus 𝑇 ⊂ 𝐺 with Weyl group W, and set 𝐿+𝑚𝑇sr = 𝐿+𝑚𝑇 ∩ 𝐿+𝑚𝐺sr.

Proposition 5.4.1. 1. The open substack

In𝑆 ([𝑆/𝐿+𝑚𝐺])sr = [𝐿+𝑚𝐺sr�𝐿+𝑚𝐺] ⊂ In𝑆 ([𝑆/𝐿+𝑚𝐺])

is canonically identified with [𝐿+𝑚𝑇sr/(𝑊 � 𝐿+𝑚𝑇)] via the natural map.
2. The open substack

In𝑆 (𝑋)sr = In𝑆 (𝑋) ×In𝑆 ( [𝑆/𝐿+𝐺 ]) [𝐿+𝑚𝐺sr�𝐿+𝑚𝐺] ⊂ In𝑆 (𝑋)

is canonically identified with 𝑋∗(𝑇)≤𝜇 ×𝑊 [𝐿+𝑚𝑇sr � 𝐿+𝑚𝑇] such that the natural map In𝑆 (𝑋)sr →
In𝑆 ([𝑆/𝐿+𝑚𝐺])sr coincides via the identification in part (1) with the evident projection onto [𝐿+𝑚𝑇sr/(𝑊�
𝐿+𝑚𝑇)].

Proof. The idea behind (1) is that any 𝑔 ∈ 𝐿+𝐺sr is conjugate to an element of 𝐿+𝑇sr, which is well-
defined up to the action of the normalizer of this group, which is 𝑊 � 𝐿+𝑇 .

For (2), we observe that an object of In𝑆 (𝑋)sr is a pair (𝑥, 𝑔), where 𝑔 ∈ 𝐿+𝑚𝐺sr fixes 𝑥 ∈ Gr𝐺,≤𝜇; the
automorphisms of this object are 𝐿+𝑚𝐺. The g can be conjugated to lie in 𝐿+𝑇sr, and then by Proposition
5.1.2, the x can be identified with an element of 𝑋∗ (𝑇)≤𝜇, which is well-defined up to an element of W. �

Corollary 5.4.2. There is a natural isomorphism

𝐻0 (In𝑆 (𝑋)sr, 𝐾In𝑆 (𝑋 )sr/𝑆) � 𝐶 (𝑋∗(𝑇)≤𝜇,Λ)𝑊

which sends cc𝑋/𝑆 (S𝑉 ) to the function sending 𝜆 ∈ 𝑋∗(𝑇)≤𝜇 to loc𝑥𝜆 (𝑔,S𝑉 ), where 𝑥𝜆 ∈ Gr𝐺,≤𝜇 is
the T-fixed point corresponding to 𝜆, and 𝑔 ∈ 𝐿+𝑚𝑇sr. In particular, loc𝑥𝜆 (𝑔,S𝑉 ) does not depend on the
choice of 𝑔 ∈ 𝐿+𝑚𝑇sr.

Proof. Combine Theorem 4.6.1 with the description of In𝑆 (𝑋)sr from Proposition 5.4.1. �

5.5. Degeneration to characteristic p

In this section, we prove Propositions 5.2.2 and 5.2.3.

Proof of Proposition 5.2.2. The isomorphism GrT � 𝑋∗(T)𝑆 is [SW20, Proposition 21.3.1]. There is
an evident map 𝑓 : GrT → Gr𝑔G, and it remains to see that f is an isomorphism. For this, we first note
that f is a closed immersion. This follows from the observation the source and target of f are both closed
subfunctors of GrG. For the source, this follows from [SW20, Proposition 20.3.7], while for the target
this follows from the fact that GrG → 𝑆 is separated.
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Since f is a closed immersion, it is both qcqs and specializing. By [Sch17, Lemma 12.5], it is enough
to check that f is a bijection on rank one geometric points. This can be checked separately on the generic
and special fibers. Both cases are handled by Proposition 5.1.2. �

Proof of Proposition 5.2.3. By two applications of (the connected case of) Proposition 5.3.1, applied
to the maps 𝜂→ 𝑆 and 𝑠→ 𝑆, we get equalities

loc𝛽𝜂 (𝑔, 𝑗∗S𝑉 ) = loc𝛽 (𝑔,S𝑉 ) = loc𝛽𝑠 (𝑔, 𝑖∗S𝑉 ),

and the result follows. �

5.6. Local terms on the Witt vector affine Grassmannian

Proof of Proposition 5.2.4. Fix g and V as in the statement, and let T ⊂ G be the connected centralizer of
g. For every 𝜈 ∈ 𝑋∗(T), let 𝑆𝜈 ⊂ Gr𝑊G be the associated semi-infinite orbit, with closure 𝑆𝜈 = ∪𝜈′≤𝜈𝑆𝜈 .

Let 𝑋 ⊂ Gr𝑊G be a finite union of closed Schubert cells containing the support of S𝑉 , so X is
a perfectly projective k-scheme by the results in [BS17]. Write 𝑋𝜈 = 𝑋 ∩ 𝑆𝜈 , 𝑋≤𝜈 = 𝑋 ∩ 𝑆𝜈 , and
𝜕𝑋≤𝜈 = 𝑋≤𝜈 \ 𝑋𝜈 . Note that all of these spaces are stable under g and in fact under T. Note also that
each 𝑋𝜈 contains a unique g-fixed point 𝑥𝜈 .

Proposition 5.6.1. The compactly supported Euler characteristic of S𝑉 on 𝑋𝜈 is

𝜒𝑐 (𝑋𝜈 ,S𝑉 ) = (−1) 〈2𝜌,𝜈〉 rank𝑉 [𝜈] .

Proof. This is a consequence of the integral-coefficients version of the geometric Satake equivalence
for the Witt vector affine Grassmannian given in [Yu19]. There it is shown (Proposition 4.2) that
𝐻𝑑𝑐 (𝑋𝜈 ,S𝑉 ) is zero unless 𝑑 = 〈2𝜌, 𝜈〉, and in that degree it corresponds exactly to the 𝜈-weight functor
in the Satake category. �

Any 𝑡 ∈ T must act trivially on 𝐻𝑑𝑐 (𝑋𝜈 ,S𝑉 ), so 𝜒𝑐 (𝑈,S𝑉 ) coincides with the trace of g on
𝑅Γ𝑐 (𝑋𝜈 ,S𝑉 ). The same is true for 𝑋≤𝜈 and 𝜕𝑋≤𝜈 . We compute:

(−1) 〈2𝜌,𝜈〉 rank𝑉 [𝜈] = 𝜒𝑐 (𝑋𝜈 ,S𝑉 )
= 𝜒𝑐 (𝑋≤𝜈 ,S𝑉 ) − 𝜒𝑐 (𝜕𝑋≤𝜈 ,S𝑉 )
= tr(𝑔 |𝑅Γ𝑐 (𝑋≤𝜈 ,S𝑉 )) − tr(𝑔 |𝑅Γ𝑐 (𝜕𝑋≤𝜈 ,S𝑉 ))
=

∑
𝜈′ ≤𝜈

loc𝑥𝜈′ (𝑔,S𝑉 |𝑋≤𝜈 ) −
∑

𝜈′≤𝜈,𝜈′≠𝜈
loc𝑥𝜈′ (𝑔,S𝑉 |𝜕𝑋≤𝜈 )

=
∑
𝜈′ ≤𝜈

loc𝑥𝜈′ (𝑔,S𝑉 ) −
∑

𝜈′≤𝜈,𝜈′≠𝜈
loc𝑥𝜈′ (𝑔,S𝑉 )

= loc𝑥𝜈 (𝑔,S𝑉 ).

The penultimate equality is the key technical fact and follows from Proposition 5.6.2 below together
with the assumptions on g. �

Proposition 5.6.2. Let 𝑘/F𝑝 be an algebraically closed field, and let X be a perfectly finite type k-
scheme with an automorphism 𝑔 : 𝑋 → 𝑋 of finite prime-to-p order. Let 𝐴 ∈ 𝐷𝑏𝑐 (𝑋, Zℓ) be an object
equipped with a morphism 𝑢 : 𝑔∗𝐴 → 𝐴. Then for every isolated g-fixed point x, the true local term
loc𝑥 (𝑔, 𝐴) equals the naive local term tr(𝑔 |𝐴𝑥).

In particular, if 𝑍 ⊂ 𝑋 is a g-stable closed subscheme, then loc𝑥 (𝑔, 𝐴) = loc𝑥 (𝑔, 𝐴|𝑍 ).

Proof. With the word ‘perfectly’ deleted, this is a recent result of Varshavsky [Var20] (combine Theorem
4.10(b) and Corollary 5.4(b)). We will reduce to Varshavsky’s result by deperfecting.
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Precisely, since loc𝑥 (𝑔, 𝐴) is insensitive to replacing 𝑋, 𝐴 by 𝑈, 𝐴|𝑈 for 𝑈 ⊂ 𝑋 any g-invariant
open neighborhood of x, we can assume that X is affine, so 𝑋 = Spec 𝑅 with R perfectly of finite type.
Let 𝑅0 ⊂ 𝑅 be a finite type k-algebra with 𝑅

perf
0 = 𝑅, and let 𝑅1 ⊂ 𝑅 be the k-algebra generated by

𝑔𝑖𝑅0 for all 1 ≤ 𝑖 ≤ ord(𝑔). Then 𝑅1 ⊂ 𝑅 is a finite-type k-algebra stable under g, with 𝑅
perf
1 = 𝐴,

so 𝑋1 = Spec 𝑅1 is a deperfection of X equipped with an automorphism 𝑔1 deperfecting g; since
𝑋 → 𝑋1 is a homeomorphism, there is a unique 𝑔1-fixed point 𝑥1 under x. Next, 𝑔∗𝐴 → 𝐴 deperfects
uniquely to a complex 𝐴1 on 𝑋1 equipped with a map 𝑔∗1 𝐴1 → 𝐴1, using the equivalence of categories
𝐷 (𝑋et,Λ) � 𝐷 (𝑋1,ét,Λ). Finally, we compute that

loc𝑥 (𝑔, 𝐴) = loc𝑥1 (𝑔1, 𝐴1) = tr(𝑔1 |𝐴1,𝑥1 ) = tr(𝑔 |𝐴𝑥),

where the first equality is formal nonsense (the six functors on k-varieties and on perfectly finite type
k-schemes are compatible under perfection), the second equality is Varshavsky’s theorem and the third
equality is trivial. �

6. Application to the Hecke stacks

In this final, chapter we prove Theorem 1.0.2 by applying the technology of the Lefschetz–Verdier trace
formula to the Hecke stacks over Bun𝐺 .

6.1. Bun𝑮, the local and global Hecke stacks and their relation to shtuka spaces

Let 𝐹/Q𝑝 be a finite extension, and let 𝐺/𝐹 be a connected reductive group. Let k be an algebraically
closed perfectoid field containing the residue field of F.

For an algebraically closed perfectoid field 𝐶/𝑘 , there is a bijection [Far20]

𝑏 ↦→ E𝑏

between Kottwitz’ set 𝐵(𝐺) and isomorphism classes of G-bundles on the Fargues–Fontaine curve 𝑋𝐶 .
Therefore, the moduli stack of G-bundles is some geometric version of the set 𝐵(𝐺).

Definition 6.1.1 ([FS21, Definition III.0.1 and Theorem III.0.2]). Let Bun𝐺 be the v-stack which
assigns to a perfectoid space 𝑆/𝑘 the groupoid of G-bundles on 𝑋𝑆 . Given a class 𝑏 ∈ 𝐵(𝐺), let
𝑖𝑏 : Bun𝑏𝐺 → Bun𝐺 be the locally closed substack classifying G-bundles which are isomorphic to E𝑏 at
every geometric point.

Then Bun𝐺 is a cohomologically smooth Artin v-stack over Spd 𝑘 [FS21, Theorem I.4.1(vii)]. Central
to its study are the substacks Bun𝑏𝐺 . For each 𝑏 ∈ 𝐵(𝐺), we have an isomorphism Bun𝑏𝐺 � [Spd 𝑘/𝐺𝑏],
where

𝐺𝑏 = Aut E𝑏

is a group diamond over Spd 𝑘 . This fits in an exact sequence of group diamonds over Spd 𝑘:

0→ 𝐺◦𝑏 → 𝐺𝑏 → 𝐺𝑏 (𝐹)Spd 𝑘 → 0

Here, the neutral component 𝐺◦𝑏 ⊂ 𝐺𝑏 is a cohomologically smooth group diamond over Spd 𝑘 , and
𝐺𝑏 is the automorphism group of the isocrystal b. The group 𝐺𝑏 is an inner form of a Levi subgroup of
the quasisplit inner form of G. If b is basic, then 𝑖𝑏 is an open immersion, and 𝐺𝑏 = 𝐺𝑏 (𝐹)Spd 𝑘 .

We next recall the Hecke correspondence on Bun𝐺 and its relation to the local shtuka spaces
Sht𝐺,𝑏,𝜇. Since our main result on the cohomology of local Shimura varieties does not concern the
action of a Weil group, all objects in this discussion will live over the base 𝑆 = Spd 𝐶, where C is
an algebraically closed perfectoid field containing F, whose residue field contains k. In particular, we
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have Bun𝐺,𝐶 = Bun𝐺 ×Spd 𝑘𝑆. If T is a perfectoid space over C, the Fargues–Fontaine curve 𝑋𝑇 comes
equipped with a degree 1 Cartier divisor 𝐷𝑇 , corresponding to the untilt T of 𝑇♭.

We introduce now a diagram of v-stacks over Spd 𝐶 containing both local and global Hecke corre-
spondences:

Bun𝐺,𝐶

��

Hecke𝐺,𝐶
ℎ1 ��

��

ℎ2�� Bun𝐺,𝐶

��
Bunloc

𝐺,𝐶 Heckeloc
𝐺,𝐶

ℎloc
1

��
ℎloc

2

�� Bunloc
𝐺,𝐶 .

(6.1.1)

We explain below the objects and morphisms appearing in equation (6.1.1). Let 𝑇 = Spa(𝑅, 𝑅+) be an
affinoid perfectoid space over Spa 𝐶.

• The T-points of the stack Hecke𝐺,𝐶 classify triples (E1, E2, 𝑓 ), where E1 and E2 are G-bundles on
𝑋𝑇 , and

𝑓 : E1 |𝑋𝑇 \𝐷𝑇 � E2 |𝑋𝑇 \𝐷𝑇

is an isomorphism which is meromorphic along 𝐷𝑇 .
• The morphism ℎ𝑖 sends a triple as above to E𝑖 for 𝑖 = 1, 2.
• The T-points of Bunloc

𝐺,𝐶 classify G-bundles on Spec 𝐵+dR (𝑅), this being the completion of 𝑋𝑇 along
𝐷𝑇 . Such G-bundles are v-locally trivial on T so that we have an isomorphism

Bunloc
𝐺,𝐶 � [Spd 𝐶/𝐿+𝐺],

where 𝐿+𝐺 = 𝐺 (𝐵+dR) is the positive loop group.
• The T-points of Heckeloc

𝐺,𝐶 classify triples (E1, E2, 𝑓 ), where E1 and E2 are G-bundles on
Spec 𝐵+dR(𝑅), and f is an isomorphism between their restrictions to Spec 𝐵dR(𝑅), meromorphic
along 𝐷𝑇 . We have an isomorphism

Heckeloc
𝐺,𝐶 � [𝐿

+𝐺\𝐿𝐺/𝐿+𝐺],

where 𝐿𝐺 = 𝐺 (𝐵dR) is the full loop group. Put another way, we have the 𝐵dR-affine Grassmannian
Gr𝐺,𝐶 = 𝐿𝐺/𝐿+𝐺 and then Heckeloc

𝐺,𝐶 = [𝐿+𝐺\Gr𝐺,𝐶 ].
• The morphism ℎloc

𝑖 sends such a triple to E𝑖 for 𝑖 = 1, 2.
• The vertical maps send an object to its completion along 𝐷𝑇 in the evident manner.

The squares in equation (6.1.1) are Cartesian by Beauville–Laszlo gluing.
It is a basic fact that Bun𝐺,𝐶 is a decent v-stack, and the structure map Bun𝐺,𝐶 → 𝑆 = Spd 𝐶 is

fine. With some care, it is possible to ‘truncate’ some of the other objects appearing in equation (6.1.1)
to obtain decent S-v-stacks with fine structure maps to S. In particular, let 𝜇 be a dominant cocharacter
of G, and let Hecke𝐺,≤𝜇,𝐶 be the substack of Hecke𝐺,𝜇 consisting of triples (E1, E2, 𝑓 ), where the
meromorphy of f is fiberwise bounded by 𝜇. Then Hecke𝐺,≤𝜇,𝐶 is decent, and the maps to Bun𝐺,𝐶
induced by restricting ℎ1 and ℎ2 are fine. We may define Heckeloc

𝐺,≤𝜇,𝐶 analogously; this is isomorphic
to [Gr𝐺,≤𝜇,𝐶/𝐿+𝐺], where Gr𝐺,≤𝜇,𝐶 is the bounded Grassmannian. This is not quite a decent v-stack.
However, if we instead form the quotient [Gr𝐺,≤𝜇,𝐶/𝐿+𝑚𝐺] for some sufficiently large truncation as
in Theorem 5.1.4, we do obtain a decent S-v-stack with fine structure map. This is sufficient for our
purposes.
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Now let 𝑏 ∈ 𝐵(𝐺, 𝜇) be basic. We explain the relation between Hecke stacks and local shtuka spaces.
It will be helpful to refer to the commutative diagram of stacks

Hecke𝑏,1𝐺,≤𝜇,𝐶

ℎ𝑏,11

		

ℎ𝑏,12

��𝑖′′𝑏 ��

𝑖′′1
��

Hecke∗,1𝐺,≤𝜇,𝐶
ℎ∗,12 ��

𝑖′1

��

Bun1
𝐺,𝐶

𝑖1

��
Hecke𝑏,∗𝐺,≤𝜇,𝐶 𝑖′𝑏

��

ℎ𝑏,∗1
��

Hecke𝐺,≤𝜇,𝐶

ℎ1

��

ℎ2
�� Bun𝐺,𝐶

Bun𝑏𝐺,𝐶 𝑖𝑏
�� Bun𝐺,𝐶

(6.1.2)

in which all squares are Cartesian, the morphisms labeled with i are open immersions and the morphisms
ℎ1 and ℎ2 are proper.

The top row of equation (6.1.2) can be described via the diagram:

[Gr1,adm
𝐺,≤𝜇,𝐶/𝐺 (𝐹)] ��

�
��

[Gr1
𝐺,≤𝜇/𝐺 (𝐹)] ��

�
��

[∗/𝐺 (𝐹)]

�

��
Hecke𝑏,1≤𝜇,𝐶 𝑖′′𝑏

�� Hecke∗,1≤𝜇,𝐶
ℎ∗,12

�� Bun1
𝐺,𝐶 .

Explanation: Gr1
𝐺,≤𝜇,𝐶 assigns to 𝑇 = Spa(𝑅, 𝑅+) the set of pairs (E, 𝑓 ), where E is a G-bundle

on 𝑋𝑆 , and 𝑓 : E1 |𝑋𝑇 \𝐷𝑇 � E|𝑋𝑇 \𝐷𝑇 is an isomorphism, which is bounded by 𝜇 along 𝐷𝑇 . The
bundle E1 can be canonically trivialized over Spa 𝐵+dR (𝑅), and in so doing, we obtain an isomorphism
Gr1
𝐺,≤𝜇,𝐶 � Gr𝐺,≤𝜇,𝐶 . Within Gr1

𝐺,≤𝜇, we have the open locus Gr1,adm
𝐺,≤𝜇, consisting of those pairs (E, 𝛾),

where E is everywhere isomorphic to E𝑏 .
Similarly, the leftmost column of equation (6.1.2) can be described via the diagram:

[Gr𝑏,adm
𝐺,≤𝜇,𝐶/𝐺𝑏 (𝐹)]

� ��

��

Hecke𝑏,1𝐺,≤𝜇,𝐶

𝑖′′1
��

[Gr𝑏𝐺,≤𝜇,𝐶/𝐺𝑏 (𝐹)]
� ��

��

Hecke𝑏,∗𝐺,≤𝜇,𝐶

ℎ𝑏,∗1
��

[Spd 𝐶/𝐺𝑏 (𝐹)] �
�� Bun𝑏𝐺,𝐶 .

Explanation: Gr𝑏𝐺,≤𝜇,𝐶 assigns to 𝑇 = Spa(𝑅, 𝑅+) the set of pairs (E, 𝑓 ), where E is a G-bundle, and
𝑓 : E|𝑋𝑇 \𝐷𝑇 � E𝑏 |𝑋𝑇 \𝐷𝑇 is an isomorphism, which is bounded by 𝜇 along 𝐷𝑇 . We have an isomorphism
Gr𝑏𝐺,≤𝜇,𝐶 � Gr𝐺,≤−𝜇,𝐶 . Within Gr𝑏𝐺,≤𝜇,𝐶 , we have the open admissible locus Gr𝑏,adm

𝐺,≤𝜇,𝐶 consisting of
pairs (E, 𝑓 ), where E is everywhere isomorphic to E1.
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The moduli space of local shtukas Sht𝐺,𝑏,𝜇,𝐶 appears as the fiber product:

Sht𝐺,𝑏,𝜇,𝐶 ��

��

Spd 𝐶

��
Hecke𝑏,1𝐺,≤𝜇,𝐶

ℎ𝑏,11 ×ℎ
𝑏,1
2

�� Bun𝑏𝐺,𝐶 ×Bun1
𝐺,𝐶 ,

(6.1.3)

where the right vertical morphism corresponds to E𝑏×E1. This is evident from the definition of Sht𝐺,𝑏,𝜇:
Its S-points are morphisms 𝑓 : E1

𝑋𝑆\𝐷𝑆
� E𝑏𝑋𝑆\𝐷𝑆

which are bounded by 𝜇 on 𝐷𝑆 .
We also have the period morphisms:

Sht𝐺,𝑏,𝜇,𝐶
𝜋1

�����
���

���
�

𝜋2

����
���

���
��

Gr𝑏𝐺,≤𝜇,𝐶 Gr1
𝐺,≤𝜇,𝐶.

(6.1.4)

The morphism 𝜋1 is a 𝐺𝑏 (𝐹)𝑆-equivariant 𝐺 (𝐹)𝑆-torsor over the admissible locus Gr𝑏,adm
𝐺,≤𝜇,𝐶 . Similarly,

𝜋2 is a 𝐺 (𝐹)𝑆-equivariant 𝐺𝑏 (𝐹)𝑆-torsor over the admissible locus Gr1,adm
𝐺,≤𝜇,𝐶 .

6.2. The inertia stack of the Hecke stack; admissibility of elliptic fixed points

We continue to put 𝑆 = Spd 𝐶. Here, we investigate the inertia stack In𝑆 (Hecke𝐺,≤𝜇,𝐶 ), or at least the
part of it lying over the strongly regular locus in In𝑆 ([𝑆/𝐺 (𝐹)𝑆]) � [𝐺 (𝐹)𝑆�𝐺 (𝐹)𝑆].

It will help to introduce some notation. Suppose E is a G-bundle on 𝑋𝐶 equipped with a trivialization
over the completion at∞ = 𝐷𝐶 . Let 𝑇 ⊂ 𝐺 be a maximal torus. We have seen in Proposition 5.1.2 that
there is a bijection 𝜆 ↦→ 𝐿𝜆 between 𝑋∗(𝑇) and the set of T-fixed points of Gr𝐺 . Given 𝜆 ∈ 𝑋∗(𝑇), we
let E[𝜆] be the modification of E corresponding to 𝐿𝜆.

Lemma 6.2.1 ([CS17, Lemma 3.5.5], see also [CFS21, §2.2], but note that we use the opposite
convention concerning Schubert cells). Let E be a G-bundle on 𝑋𝐶 equipped with a trivialization at∞,
let 𝑇 ⊂ 𝐺 be a maximal torus, let 𝜆 ∈ 𝑋∗(𝑇) be a cocharacter and let 𝜆 ∈ 𝑋∗(𝑇) be the corresponding
character. In the group 𝑋∗(𝑍 (𝐺)Γ), we have

𝜅(E[𝜆]) = 𝜅(E) + 𝜆 |𝑍 (𝐺)Γ .

Proposition 6.2.2. Suppose a pair (𝑔, 𝑔′) ∈ 𝐺 (𝐹)sr × 𝐺𝑏 (𝐹)sr fixes a point 𝑥 ∈ Sht𝐺,𝑏,𝜇 (𝐶). Let
𝑇 = Cent(𝑔, 𝐺) and 𝑇 ′ = Cent(𝑔′, 𝐺𝑏). Then 𝜋1 (𝑥) ∈ Gr𝑔

′

𝐺,≤−𝜇 and 𝜋2 (𝑥) ∈ Gr𝑔𝐺,≤𝜇 correspond to
cocharacters 𝜆′ ∈ 𝑋∗(𝑇 ′)≤−𝜇 and 𝜆 ∈ 𝑋∗(𝑇)≤𝜇, respectively.

There exists 𝑦 ∈ 𝐺 (�̆�) such that ad 𝑦 is an F-rational isomorphism 𝑇 → 𝑇 ′, which carries g to
𝑔′ and 𝜆 onto −𝜆′. The invariant inv[𝑏] (𝑔, 𝑔′) ∈ 𝐵(𝑇) � 𝑋∗(𝑇)Γ agrees with the image of 𝜆 under
𝑋∗(𝑇) → 𝑋∗(𝑇)Γ. Therefore, (𝑔, 𝑔′, 𝜆) lies in Rel𝑏,𝜇.

Proof. The point x corresponds to an isomorphism 𝛾 : E1 [𝜆] → E𝑏 and also to an isomorphism
𝛾′ : E1 → E𝑏 [𝜆′]. Each of these interlaces the action of g with 𝑔′ and furthermore 𝛾 = 𝛾′ away
from ∞. Trivializing E1 and E𝑏 away from ∞, we see that g and 𝑔′ become conjugate over the ring
𝐵𝑒 = 𝐻0 (𝑋𝐶\ {∞} ,O𝑋𝐶 ), which implies they are conjugate over 𝐹 and (by Lemma 3.2.1) they are
even conjugate over �̆�. Let 𝑦 ∈ 𝐺 (�̆�) be an element such that (ad 𝑦) (𝑔) = 𝑔′. Then ad 𝑦 is a �̆�-rational
isomorphism 𝑇 → 𝑇 ′ which carries g onto 𝑔′. In fact, since there is only one such isomorphism, we can
conclude that ad 𝑦 is an F-rational isomorphism 𝑇 → 𝑇 ′. Let 𝜆0 = (ad 𝑦−1) (𝜆′) ∈ 𝑋∗(𝑇).
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Let 𝑏0 = 𝑦−1𝑏𝑦𝜎 . Then (cf. Definition 3.2.2) we have 𝑏0 ∈ 𝑇 (𝐹). The element y induces isomor-
phisms 𝑦 : E𝑏0 → E𝑏 and 𝑦 : E𝑏0 [𝜆0] → E𝑏 [𝜆′]. Then the isomorphism 𝑦−1𝛾′ : E1 → E𝑏0 [𝜆0] descends
to an isomorphism of T-bundles; comparing this with the isomorphism 𝛾𝑦−1 : E1 [𝜆] → E𝑏0 shows that
𝜆0 = −𝜆. In light of the isomorphism of T-bundles E1 [𝜆] � E𝑏0 , Lemma 6.2.1 implies that the iden-
tity 𝜅(E𝑏0) = 𝜆 holds in 𝐵(𝑇). But also 𝜅(E𝑏0) is the class of [𝑏0] in 𝐵(𝑇), which is inv[𝑏] (𝑔, 𝑔′) by
definition. �

Proposition 6.2.2 shows that if (𝑔, 𝑔′) ∈ 𝐺 (𝐹)sr × 𝐺𝑏 (𝐹)sr fixes a point of Sht𝐺,𝑏,𝜇, then g and 𝑔′

are related. However the converse may fail: If a pair of related strongly regular elements (𝑔, 𝑔′) is given,
it is not necessarily true that (𝑔, 𝑔′) fixes a point of Sht𝐺,𝑏,𝜇. Indeed, a necessary condition for this is
that the action of 𝑔′ on Gr𝑏𝐺,≤−𝜇 has a fixed point in the admissible locus, and this is not automatic.

This converse result is always true, however, if g (or equivalently, 𝑔′) is an elliptic element.

Theorem 6.2.3. Let 𝑔 ∈ 𝐺 (𝐹)ell. Then the fixed points of g acting on Gr1
𝐺,≤𝜇 lie in the admissible locus

Gr1,adm
𝐺,≤𝜇. Similarly, if 𝑔′ ∈ 𝐺𝑏 (𝐹)ell, then the fixed points of 𝑔′ acting on Gr𝑏𝐺,≤−𝜇 lie in the admissible

locus Gr𝑏,adm
𝐺,≤−𝜇.

Proof. We prove the first statement; the second is similar. Let 𝑔 ∈ 𝐺 (𝐹)ell, and let 𝑇 = Cent(𝑔, 𝐺) be
the elliptic maximal torus containing g. Suppose we are given a g-fixed point 𝑥 ∈ Gr𝐺,≤𝜇 (𝐶). Then x
corresponds to a cocharacter 𝜆 ∈ 𝑋∗(𝑇), which in turn corresponds to a modification E1 [𝜆] of the trivial
G-bundle E1. We wish to show that E1 [𝜆] � E𝑏 . First, we will show that it is semistable.

Let 𝑏′ ∈ 𝐺 (�̆�) be an element whose class in 𝐵(𝐺) corresponds to the isomorphism class of E1 [𝜆].
We wish to show that 𝑏′ is basic. We have the algebraic group 𝐺𝑏′/𝐹, which is a priori an inner form
of a Levi subgroup 𝑀∗ of 𝐺∗, where 𝐺∗ is the quasi-split inner form of G. Showing that 𝑏′ is basic is
equivalent to showing that 𝑀∗ = 𝐺∗.

We have an isomorphism 𝛾 : E1 [𝜆] � E𝑏′ . The action of 𝑔 ∈ 𝑇 (𝐹) on E1 extends to an action on
E1 [𝜆], which can be transported via 𝛾 to obtain an automorphism 𝑔′ ∈ 𝐺𝑏′ (𝐶) = Aut E𝑏′ . Let 𝑔′ be the
image of 𝑔′ under the projection 𝐺𝑏′ (𝐶) → 𝐺𝑏′ (𝐹).

The G-bundles E1 and E𝑏′ may be trivialized over Spec 𝐵+dR(𝐶). In doing so, we obtain embeddings
of 𝐺 (𝐹) = Aut E1 and 𝐺𝑏′ (𝐶) = Aut E𝑏′ into 𝐺 (𝐵+dR (𝐶)); we denote both of these by ℎ ↦→ ℎ∞. We also
have the isomorphism 𝛾∞ between E1 and E𝑏′ over Spec 𝐵dR(𝐶); we may identify 𝛾∞ with an element
of 𝐺 (𝐵dR (𝐶)), and then 𝑔′∞ = 𝛾∞𝑔∞𝛾−1

∞ holds in 𝐺 (𝐵dR (𝐶)).
The element �̄�′∞ is conjugate to 𝑔′∞, so �̄�′∞ is conjugate to 𝑔∞ in 𝐺 (𝐵dR). Since g and 𝑔′ are both

regular semisimple �̄�-points of G, being conjugate in 𝐺 (𝐵dR) is the same as being conjugate in 𝐺 (�̄�).
Their centralizers, being F-rational tori, are thus isomorphic over F. Thus, 𝐺𝑏′ contains a maximal torus
that is elliptic for G. Elliptic maximal tori transfer across inner forms [Kot86, §10], which means that
the Levi subgroup 𝑀∗ ⊂ 𝐺∗ of which 𝐺𝑏′ is an inner form contains a maximal torus that is elliptic for
𝐺∗. Therefore, 𝑀∗ = 𝐺∗.

We have shown that E1 [𝜆] � E𝑏′ is semistable, implying that Aut E𝑏′ = 𝐺𝑏′ (𝐹) and that 𝑔′ ∈ 𝐺𝑏′ (𝐹).
Lemma 6.2.1 shows that 𝜅([𝑏′]) equals the image of 𝜆 in 𝜋1 (𝐺)Γ; this is the same as the image of 𝜇,
which in turn is the same as 𝜅([𝑏]) because 𝑏 ∈ 𝐵(𝐺, 𝜇). Since 𝑏′ is basic, we have [𝑏′] = [𝑏] by
[Kot85, Proposition 5.6]. �

Recall the locally profinite set Rel𝑏,≤𝜇 from Definition 3.2.4. This is the set of conjugacy classes of
triples (𝑔, 𝑔′, 𝜆), where 𝑔 ∈ 𝐺 (𝐹) and 𝑔′ ∈ 𝐺𝑏 (𝐹) are related strongly regular elements, and 𝜆 is a
cocharacter of 𝑇 = Cent(𝑔, 𝐺), bounded by 𝜇 such that 𝜅(inv[𝑏] (𝑔, 𝑔′)) agrees with the image of 𝜆 in
𝑋∗(𝑇)Γ. Let Rel𝑏,≤𝜇,ell be the subset, where g (equivalently, 𝑔′) is elliptic.

Theorem 6.2.3 has the following corollary. For a v-stack X, we write |𝑋 | for the underlying topological
space.
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Corollary 6.2.4. Let In𝑆 (Hecke𝑏,∗𝐺,≤𝜇,𝑆)ell be the preimage under In𝑆 (ℎ1) of In𝑆 (Bun𝑏𝐺,𝑆)ell. Similarly
let In𝑆 (Hecke∗,1𝐺,≤𝜇,𝑆)ell be the preimage under In𝑆 (ℎ2) of In𝑆 (Bun1

𝐺,𝑆)ell. Then

In𝑆 (Hecke𝑏,∗𝐺,≤𝜇,𝑆)ell = In𝑆 (Hecke∗,1𝐺,≤𝜇,𝑆)ell = In𝑆 (Hecke𝑏,1𝐺,≤𝜇,𝑆)ell.

There is a homeomorphism



In𝑆 (Hecke𝑏,1𝐺,𝑏,≤𝜇,𝑆)ell




 � Rel𝑏,𝜇,ell.

Proof. The first claim is just the statement that fixed points of elliptic elements on Gr𝑏𝐺 and Gr1
𝐺

are admissible. For the second claim: Since Hecke∗,1𝐺,≤𝜇,𝑆 � [Gr𝐺,≤𝜇,𝑆/𝐺 (𝐹)𝑆], we can think of


In𝑆 (Hecke𝑏,1𝐺,𝑏,≤𝜇)ell




 as the set of conjugacy classes of pairs (𝑔, 𝜆), where 𝑔 ∈ 𝐺 (𝐹)ell and 𝜆 ∈ 𝑋∗(𝑇)≤𝜇,
where 𝑇 = Cent(𝑔, 𝐺). We have an isomorphism E1 [𝜆] � E𝑏 . The element 𝑔 ∈ 𝐺 (𝐹) � Aut E1

determines an element 𝑔′ ∈ 𝐺𝑏 (𝐹) � Aut E𝑏 , up to conjugacy. By Proposition 6.2.2, the triple (𝑔, 𝑔′, 𝜆)
determines an element of Rel𝑏,𝜇,ell. Conversely, given such a triple (𝑔, 𝑔′, 𝜆), the pair (𝑔, 𝜆) determines
an element 𝑔′′ ∈ 𝐺𝑏 (𝐹) as we have just argued, but then 𝑔′ and 𝑔′′ are conjugate by Remark 3.2.5. �

6.3. Transfer of distributions from 𝑮𝒃 to G

We continue to let b be a basic element of 𝐵(𝐺). Let Λ be a ring in which p is invertible. Recall the
Hecke transfer map

𝑇𝐺𝑏→𝐺
𝑏,𝜇 : 𝐶 (𝐺𝑏 (𝐹)sr�𝐺𝑏 (𝐹),Λ) → 𝐶 (𝐺 (𝐹)sr�𝐺 (𝐹),Λ)

from 3.2.7. As promised, we can now promote this to a transfer of distributions, at least after restriction
to elliptic loci (and assuming, as we have been doing all along, that the Λ-valued Haar measures on
𝐺 (𝐹) and 𝐺𝑏 (𝐹) are chosen compatibly).

Recall the period morphisms:

Gr𝑏𝐺,≤𝜇,𝐶
𝜋1← Sht𝐺,𝑏,𝜇,𝐶

𝜋2→ Gr1
𝐺,≤𝜇,𝐶 ,

in which 𝜋1 is a 𝐺 (𝐹)𝑆-torsor over its image, and 𝜋2 is a 𝐺𝑏 (𝐹)𝑆-torsor over its image. Consider the
action map on Sht𝐺,𝑏,𝜇,𝐶 :

𝛼Sht : 𝐺 (𝐹)𝑆 × 𝐺𝑏 (𝐹)𝑆 × Sht𝐺,𝑏,𝜇,𝐶 → Sht𝐺,𝑏,𝜇,𝐶

and also those on the period domains:

𝛼1 : 𝐺 (𝐹)𝑆 × Gr1
𝐺,≤𝜇,𝐶 → Gr1

𝐺,≤𝜇,𝐶

𝛼𝑏 : 𝐺𝑏 (𝐹)𝑆 × Gr𝑏𝐺,≤𝜇,𝐶 → Gr𝑏𝐺,≤𝜇,𝐶 .

For ? ∈ {Sht, 1, 𝑏} we can define the elliptic fixed-point locus Fix(𝛼?)ell of the corresponding action
map, consisting of pairs (𝑔, 𝑥) with g elliptic and 𝑔.𝑥 = 𝑥; let us think of each Fix(𝛼?) as a locally
profinite set. For instance, Fix(𝛼1)ell is the set of pairs (𝑔, 𝜆), where 𝑔 ∈ 𝐺 (𝐹)ell, and 𝜆 ∈ 𝑋∗(𝑇𝑔)
(𝑇𝑔 = Cent(𝑔, 𝐺)) is bounded by 𝜇. These fit into a diagram

Fix(𝛼𝑏)ell

𝑞1

��

Fix(𝛼Sht)ell
𝑝1�� 𝑝2 �� Fix(𝛼1)ell

𝑞2

��
𝐺𝑏 (𝐹)ell 𝐺 (𝐹)ell

(6.3.1)
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of locally profinite sets, in which 𝑝1 is a 𝐺𝑏 (𝐹)-equivariant 𝐺 (𝐹)-torsor, 𝑝2 is a 𝐺 (𝐹)-equivariant
𝐺𝑏 (𝐹)-torsor and 𝑞1 and 𝑞2 are finite étale. (The maps 𝑝𝑖 are surjective by Theorem 6.2.3.) Furthermore,
let us observe that, for (𝑔, 𝑔′, 𝑥) ∈ Fix(𝛼Sht), the image of x in Gr1

𝐺 (𝐶)𝑔 may be identified with a
cocharacter 𝜆 ∈ 𝑋∗(𝑇) of 𝑇 = Cent(𝑔, 𝐺), and then the triple (𝑔, 𝑔′, 𝜆) lies in Rel𝑏,𝜇 by Proposition
6.2.2. A key observation is that we have a diagram of stacks in locally profinite sets, in which both
squares are Cartesian:

[𝐺𝑏 (𝐹)ell � 𝐺𝑏 (𝐹)]

��

[Fix(𝛼Sht)ell/(𝐺𝑏 (𝐹) × 𝐺 (𝐹))]��

��

�� [𝐺 (𝐹)ell � 𝐺 (𝐹)]

��
𝐺𝑏 (𝐹)ell � 𝐺𝑏 (𝐹) Rel𝑏,𝜇,ell ���� 𝐺 (𝐹)ell � 𝐺 (𝐹).

(6.3.2)

Thus, at least over the elliptic locus, we have promoted a correspondence between sets of conjugacy
classes to a correspondence between stacks of conjugacy classes. Formally, this is exactly what is
required to promote our transfer of functions to a transfer of distributions.

Lemma 6.3.1. Let H be a locally pro-p group, and let Λ be a commutative ring in which p is invertible.
Choose a Λ-valued Haar measure on H. Let ℎ : 𝑇 → 𝑇 be an H-torsor in locally profinite sets. The
integration-along-fibers map 𝐶𝑐 (𝑇,Λ) → 𝐶𝑐 (𝑇,Λ) induces an isomorphism of 𝐶 (𝑇,Λ)-modules

ℎ∗ : 𝐶𝑐 (𝑇,Λ)𝐻 → 𝐶𝑐 (𝑇,Λ)

and, dually, an isomorphism of 𝐶 (𝑇,Λ)-modules

ℎ∗ : Dist(𝑇,Λ)𝐻 → Dist(𝑇,Λ).

Proof. The 𝐶 (𝑇,Λ)-modules 𝐶𝑐 (𝑇,Λ) and 𝐶𝑐 (𝑇,Λ) are smooth in the sense of Definition B.2.1.
Therefore, by Lemma B.2.5 the statement is local on T, so we may assume that the torsor 𝑇 = 𝑇 × 𝐻
is split. Then 𝐶𝑐 (𝑇,Λ)𝐻 = 𝐶𝑐 (𝑇,Λ) ⊗Λ 𝐶𝑐 (𝐻,Λ)𝐻 . The integration map 𝐶𝑐 (𝐻,Λ)𝐻 → Λ is an
isomorphism so that 𝐶𝑐 (𝑇,Λ)𝐻 � 𝐶𝑐 (𝑇,Λ). �

Recall from §3.4 that we have chosen compatible Haar measures on 𝐺 (𝐹) and 𝐺𝑏 (𝐹).

Definition 6.3.2. With notation as in equation (6.3.1), we define a Λ-linear map

𝑇𝐺→𝐺𝑏

𝑏,𝜇 : 𝐶𝑐 (𝐺 (𝐹)ell,Λ)𝐺 (𝐹 ) → 𝐶𝑐 (𝐺𝑏 (𝐹)ell,Λ)𝐺𝑏 (𝐹 ) (6.3.3)

as the composition

𝐶𝑐 (𝐺 (𝐹)ell,Λ)𝐺 (𝐹 )
𝑞∗2→ 𝐶𝑐 (Fix(𝛼1)ell,Λ)𝐺 (𝐹 )
(𝑝2)−1

∗
�−→ 𝐶𝑐 (Fix(𝛼Sht)ell,Λ)𝐺 (𝐹 )×𝐺𝑏 (𝐹 )
(𝑝1)∗
�−→ 𝐶𝑐 (Fix(𝛼𝑏)ell,Λ)𝐺𝑏 (𝐹 )
·𝐾𝜇→ 𝐶𝑐 (Fix(𝛼𝑏)ell,Λ)𝐺𝑏 (𝐹 )
𝑞1∗→ 𝐶𝑐 (𝐺𝑏 (𝐹)ell,Λ)𝐺𝑏 (𝐹 ) ,

where 𝑞∗2 means pullback, 𝑞1∗ means pushforward (i.e., sum over fibers), the isomorphisms (𝑝𝑖)∗ are
induced by our choices of Haar measures as in Lemma 6.3.1, and finally 𝐾𝜇 ∈ 𝐶 (Fix(𝛼𝑏),Λ)𝐺𝑏 (𝐹 ) is
the function (𝑔′, 𝜆′) ↦→ (−1)𝑑 rank𝑉∨𝜇 [𝜆′], where 𝑑 = 〈𝜇, 2𝜌𝐺〉.

https://doi.org/10.1017/fmp.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.7


Forum of Mathematics, Pi 59

Proposition 6.3.3. Assume that Λ = Qℓ . Let 𝜙 ∈ 𝐶𝑐 (𝐺 (𝐹)ell,Λ), and let 𝜙′ ∈ 𝐶𝑐 (𝐺𝑏 (𝐹)ell,Λ) be any
lift of 𝑇𝐺→𝐺𝑏

𝑏,𝜇 𝜙. Then the orbital integrals of 𝜙 and 𝜙′ are related by

𝜙′𝐺𝑏
= 𝑇𝐺→𝐺𝑏

𝑏,𝜇 𝜙𝐺 .

Proof. For 𝑔′ ∈ 𝐺𝑏 (𝐹)ell, with centralizer 𝑇 ′, we have:

𝜙′𝐺𝑏
(𝑔′)

=
∫
ℎ′ ∈𝐺𝑏 (𝐹 )/𝑇 ′ (𝐹 )

𝜙′(ℎ′𝑔′(ℎ′)−1) 𝑑ℎ′

= (−1)𝑑
∑

𝜆′ ∈𝑋∗ (𝑇 ′)≤−𝜇

rank𝑉∨𝜇 [𝜆′]
∫
ℎ′ ∈𝐺𝑏 (𝐹 )

𝑇 ′ (𝐹 )

[(𝑝1)∗(𝑝2)−1
∗ 𝑞∗2𝜙] (ℎ′.(𝑔′, 𝜆′))𝑑ℎ 𝑑ℎ′.

Let T be a transfer of the elliptic torus 𝑇 ′ to G. Since Fix(𝛼Sht)ell → Fix(𝛼𝑏)ell is a 𝐺 (𝐹)-torsor, we may
choose for each 𝜆′ a lift 𝑦𝜆′ = (𝑔𝜆′ , 𝑔′, 𝑥𝜆′ ) of (𝑔′, 𝜆′) to Fix(𝛼Sht) with 𝑔𝜆′ ∈ 𝑇 (𝐹). Then 𝜙′𝐺𝑏

(𝑔′) equals

(−1)𝑑
∑

𝜆′ ∈𝑋∗ (𝑇 ′)≤−𝜇

rank𝑉∨𝜇 [𝜆′]
∫
ℎ′ ∈𝐺𝑏 (𝐹 )/𝑇 ′ (𝐹 )

∫
ℎ∈𝐺 (𝐹 )

[(𝑝2)−1
∗ 𝑞∗2𝜙] ((ℎ, ℎ′).(𝑦𝜆′ )) 𝑑ℎ 𝑑ℎ′.

We rewrite the inner integral as a nested integral so that our expression for 𝜙′𝐺𝑏
(𝑔′) equals:

(−1)𝑑
∑
𝜆′

rank𝑉∨𝜇 [𝜆′]
∫
ℎ′ ∈𝐺𝑏 (𝐹 )/𝑇 ′ (𝐹 )

∫
ℎ∈𝐺 (𝐹 )/𝑇 (𝐹 )

∫
𝑡 ∈𝑇 (𝐹 )

[(𝑝2)−1
∗ 𝑞∗2𝜙]

(
(ℎ𝑡−1, ℎ′).𝑦𝜆′

)
𝑑𝑡 𝑑ℎ 𝑑ℎ′

= (−1)𝑑
∑
𝜆′

rank𝑉∨𝜇 [𝜆′]
∫
ℎ′ ∈𝐺𝑏 (𝐹 )/𝑇 ′ (𝐹 )

∫
ℎ∈𝐺 (𝐹 )/𝑇 (𝐹 )

∫
𝑡′ ∈𝑇 ′ (𝐹 )

[(𝑝2)−1
∗ 𝑞∗2𝜙] ((ℎ, ℎ′𝑡 ′).𝑦𝜆′ ) 𝑑𝑡 ′ 𝑑ℎ 𝑑ℎ′.

Here, we have used Proposition 6.2.2: There is an isomorphism 𝜄 : 𝑡 ↦→ 𝑡 ′ between 𝑇 (𝐹) and 𝑇 ′(𝐹)
satisfying (𝑡, 𝑡 ′).𝑦𝜆′ = 𝑦𝜆′ . This induces a bijection 𝜆 ↦→ 𝜆′ = −𝜄∗𝜆 between 𝑋∗(𝑇)≤𝜇 and 𝑋∗(𝑇 ′)≤−𝜇.
Given 𝜆 ∈ 𝑋∗(𝑇)≤𝜇, we let 𝑔𝜆 = 𝑔𝜆′ . Then by Proposition 6.2.2, the preimage of 𝑔′ in Rel𝑏,𝜇 is exactly
{(𝑔𝜆, 𝑔, 𝜆)}𝜆∈𝑋∗ (𝑇 )≤𝜇 .

Noting that rank𝑉𝜇 [𝜆] = rank𝑉∨𝜇 [𝜆′], we exchange the order of the first two integrals above to obtain

𝜙′𝐺𝑏
(𝑔′) = (−1)𝑑

∑
𝜆∈𝑋∗ (𝑇 )≤𝜇

rank𝑉𝜇 [𝜆]
∫
ℎ∈𝐺 (𝐹 )/𝑇 (𝐹 )

∫
ℎ′ ∈𝐺𝑏 (𝐹 )

[(𝑝2)−1
∗ 𝑞∗2𝜙] ((ℎ, ℎ′) · 𝑦𝜆′ ) 𝑑ℎ′ 𝑑ℎ

= (−1)𝑑
∑

𝜆∈𝑋∗ (𝑇 )≤𝜇

rank𝑉𝜇 [𝜆′]
∫
ℎ∈𝐺 (𝐹 )/𝑇 (𝐹 )

𝜙(ℎ𝑔𝜆ℎ−1) 𝑑ℎ

= (−1)𝑑
∑

𝜆∈𝑋∗ (𝑇 )≤𝜇

rank𝑉𝜇 [𝜆]𝜙𝐺 (𝑔𝜆)

= [𝑇𝐺→𝐺𝑏

𝑏,𝜇 𝜙𝐺] (𝑔′).
�

Definition 6.3.4. Let

T 𝐺𝑏→𝐺
𝑏,𝜇 : Dist(𝐺𝑏 (𝐹)ell,Λ)𝐺𝑏 (𝐹 ) → Dist(𝐺 (𝐹)ell,Λ)𝐺 (𝐹 )

be the Λ-linear dual of 𝑇𝐺→𝐺𝑏

𝑏,𝜇 .
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Proposition 6.3.5. Assume that Λ = Qℓ . Then the transfer of distributions T𝐺𝑏→𝐺
𝑏,𝜇 extends the transfer

of functions 𝑇𝐺𝑏→𝐺
𝑏,𝜇 from Definition 3.2.7.

Proof. Let 𝑓 ∈ 𝐶 (𝐺𝑏 (𝐹)ell,Λ)𝐺𝑏 (𝐹 ) be a conjugation-invariant function. Let 𝜙 ∈ 𝐶𝑐 (𝐺 (𝐹)ell,Λ), and
let 𝜙′ ∈ 𝐶𝑐 (𝐺𝑏 (𝐹)ell,Λ) be a lift of 𝑇𝐺→𝐺𝑏

𝑏,𝜇 𝜙. Using the Weyl integration formula (3.4.2), Lemma 3.4.1
and Proposition 6.3.3, we compute∫

𝑔∈𝐺 (𝐹 )ell

𝜙(𝑔)T 𝐺𝑏→𝐺
𝑏,𝜇 ( 𝑓 𝑑𝑔′) =

∫
𝑔′ ∈𝐺𝑏 (𝐹 )ell

𝑓 (𝑔′)𝜙′(𝑔′) 𝑑𝑔′

=
〈

𝑓 , 𝜙′𝐺𝑏

〉
𝐺𝑏

=
〈

𝑓 , 𝑇𝐺→𝐺𝑏

𝑏,𝜇 𝜙𝐺

〉
𝐺𝑏

=
〈
𝑇𝐺𝑏→𝐺
𝑏,𝜇 𝑓 , 𝜙𝐺

〉
𝐺

=
∫
𝑔∈𝐺 (𝐹 )ell

𝜙(𝑔) (𝑇𝐺𝑏→𝐺
𝑏,𝜇 𝑓 ) 𝑑𝑔

so that

T 𝐺𝑏→𝐺
𝑏,𝜇 ( 𝑓 𝑑𝑔′) = 𝑇𝐺𝑏→𝐺

𝑏,𝜇 ( 𝑓 ) 𝑑𝑔

as desired. �

6.4. Hecke operators on Bun𝑮 and the cohomology of shtuka spaces

We are finally ready to reap our rewards. For the remainder of this chapter, we fix a prime ℓ ≠ 𝑝 and
write Λ for a Zℓ-algebra. Let 𝐺 be the Langlands dual group over Zℓ .

We begin by quickly reviewing the results of [FS21] on the categories 𝐷lis(Bun𝐺 ,Λ) and
𝐷lis (Bun𝑏𝐺 ,Λ), and the action of Hecke operators on 𝐷lis (Bun𝐺 ,Λ).

The first key fact is that, for any 𝑏 ∈ 𝐵(𝐺), there is a natural equivalence of categories

𝐷 (𝐺𝑏 (𝐹),Λ) � 𝐷lis(Bun𝑏𝐺 ,Λ) (6.4.1)

[FS21, Theorem I.5.1]. For a complex 𝜌 of smooth representations of 𝐺𝑏 (𝐹), we will slightly abusively
also write 𝜌 for the corresponding object of 𝐷lis(Bun𝑏𝐺 ,Λ).

Next, recall that there is a notion of ULA objects in 𝐷lis(Bun𝐺 ,Λ). These admit the following
concrete characterization.

Theorem 6.4.1 ([FS21, Theorem I.5.1(v)]). The following are equivalent for an object 𝐴 ∈
𝐷lis (Bun𝐺 ,Λ).

1. A is ULA over Spd 𝑘 .
2. For all 𝑏 ∈ 𝐵(𝐺), the restriction 𝑖∗𝑏𝐴, considered as an object of 𝐷 (𝐺𝑏 (𝐹),Λ) via equation (6.4.1),

is admissible in the sense that (𝑖∗𝑏𝐴)𝐾 is a perfect complex for all pro-p open subgroups 𝐾 ⊂ 𝐺𝑏 (𝐹).

Moreover, ULA objects are preserved under Verdier duality D = DBun𝐺/Spd 𝑘 and satisfy Verdier
biduality.

Corollary 6.4.2. Let 𝑏 ∈ 𝐵(𝐺), and let 𝜌 be an admissible complex in 𝐷 (𝐺𝑏 (𝐹),Λ). The objects (𝑖𝑏)∗𝜌
and (𝑖𝑏)!𝜌 of 𝐷lis (Bun𝐺 ,Λ) are ULA over Spd 𝑘 .

Proof. The object (𝑖𝑏)!𝜌 is ULA by the criterion in Theorem 6.4.1. Using Verdier duality (P4.) we have
D((𝑖𝑏)!𝜌∨) � (𝑖𝑏)∗𝜌 so that (𝑖𝑏)∗𝜌 is also ULA. �
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Next, recall that any object V of Rep𝐺 (Λ) gives rise to a Hecke operator 𝑇𝑉 , which is an endofunctor
of 𝐷lis (Bun𝐺,𝐶 ,Λ). When Λ is a torsion ring, there is a natural equivalence 𝐷lis (Bun𝐺,𝐶 ,Λ) �
𝐷 ét (Bun𝐺,𝐶 ,Λ), and the operator 𝑇𝑉 is defined concretely as the operation

𝑇𝑉 : 𝐷 ét (Bun𝐺,𝐶 ,Λ) → 𝐷 ét (Bun𝐺,𝐶 ,Λ)
F ↦→ ℎ2! (ℎ∗1F ⊗ S𝑉 ).

Here, S𝑉 ∈ 𝐷 ét (Hecke𝐺,𝐶 ,Λ) is pulled back from the object S𝑉 ∈ 𝐷 ét (Heckeloc
𝐺,𝐶 ,Λ) corresponding

to V under the Satake equivalence (Theorem 5.1.1).

Theorem 6.4.3 ([FS21, Theorem IX.0.1]). The Hecke operators preserve the subcategories of ULA and
compact objects in 𝐷lis (Bun𝐺,𝐶 ,Λ). For any V, 𝑇𝑉 has left and right adjoint given by 𝑇𝑉 ∨ , where 𝑉∨ is
the dual representation of 𝐺. The actions of Hecke operators are compatible with extension of scalars
along any ring map Λ→ Λ′.

Next, we explain the relation between the Hecke operators 𝑇𝑉 and the cohomology of local shtuka
spaces. Let 𝜇 be a dominant cocharacter of G, and let 𝑉𝜇 ∈ Rep(𝐺) be the associated Weyl module.
For any Zℓ-algebra Λ, we write 𝑉𝜇,Λ ∈ Rep(𝐺Λ) for the base change of 𝑉𝜇. Let S𝜇 = S𝑉𝜇 be the
corresponding object in the Satake category with Zℓ-coefficients; similarly, if Λ is a torsion ring, we
write S𝜇,Λ = S𝑉𝜇 ,Λ for the corresponding object with Λ-coefficients. We will slightly abuse notation by
using the same notations for the pullbacks of S𝜇 and S𝜇,Λ to various other v-stacks, including Gr𝐺,≤𝜇,𝐶
and Sht𝐺,𝑏,𝜇,𝐶 (along the period morphism 𝜋1 from equation (6.1.4)).

Lemma 6.4.4. Let Λ be a Zℓ-algebra, let 𝐾 ⊂ 𝐺 (𝐹) be an open compact subgroup and let 𝐼𝐾,Λ =
cInd𝐺 (𝐹 )𝐾 Λ, where cInd is compactly supported induction. Then there is a natural isomorphism

𝑅Γ𝑐 (Sht𝐺,𝑏,𝜇,𝐾 ,𝐶 ,S𝜇,Λ) � 𝑖∗𝑏𝑇𝑉𝜇,Λ (𝑖1)!𝐼𝐾,Λ

in 𝐷 (𝐺𝑏 (𝐹),Λ).

Proof. When Λ is a torsion ring, we can give the following direct argument. The global sections of
𝑖∗𝑏𝑇𝑉𝜇,Λ (𝑖1)!𝐼𝐾,Λ over Spd 𝐶 → Bun𝑏𝐺 are

𝑅Γ(Spd 𝐶, 𝑖∗𝑏ℎ2! (ℎ∗1 (𝑖1)!𝐼𝐾,Λ ⊗Λ S𝜇,Λ)) � 𝑅Γ𝑐 (Gr𝑏,1, 𝐼𝐾,Λ |Gr𝑏,1 ⊗Λ S𝜇,Λ).

Now use 𝐼𝐾,Λ � ( 𝑗𝐾 )!Λ along with proper base change to get the result.
The general case follows from the proof of [FS21, Proposition IX.3.2]. �

Recall that, when 𝜌 is any smooth 𝐺𝑏 (𝐹)-representation with Qℓ-coefficients, we defined an object

𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌] � lim−−→
𝐾

𝑅 Hom𝐺𝑏 (𝐹 ) (𝑅Γ𝑐 (Sht(𝐺,𝑏,𝜇) ,𝐶/𝐾,S𝜇) ⊗ Qℓ , 𝜌),

in 𝐷 (𝐺 (𝐹), Qℓ), cf. Definition 2.4.3. The association 𝜌 ↦→ 𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌] clearly extends to a functor
𝐷 (𝐺𝑏 (𝐹), Qℓ) → 𝐷 (𝐺 (𝐹), Qℓ). Our next goal is to give an alternative approach to this construction,
which is valid for more general coefficient rings and which makes the finiteness properties of this
construction transparent.

Proposition 6.4.5. Let 𝜌 be any object of 𝐷 (𝐺𝑏 (𝐹), Qℓ). Then there is a natural isomorphism

𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌] � 𝑖∗1𝑇𝑉 ∨
𝜇,Qℓ
(𝑖𝑏)∗𝜌

in 𝐷 (𝐺 (𝐹), Qℓ).
If 𝜌 is admissible, then so is 𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌]. If 𝜌 is of finite length, then so is 𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌].
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Proof. Let 𝐾 ⊂ 𝐺 (𝐹) be a compact open subgroup. Using Lemma 6.4.4, various adjunctions and the
compatibility of Hecke operators with extension of scalars, we have

𝑅 Hom𝐺𝑏 (𝐹 ) (𝑅Γ𝑐 (Sht𝐺,𝑏,𝜇,𝐾 ,𝐶 ,S𝑉 ) ⊗ Qℓ , 𝜌) � 𝑅 Hom𝐺𝑏 (𝐹 ) (𝑖∗𝑏𝑇𝑉𝜇 (𝑖1)!cInd𝐺 (𝐹 )𝐾 Zℓ ⊗ Qℓ , 𝜌)

� 𝑅 Hom𝐺𝑏 (𝐹 ) (𝑖∗𝑏𝑇𝑉𝜇,Qℓ (𝑖1)!cInd𝐺 (𝐹 )𝐾 Qℓ , 𝜌)

� (𝑖∗1𝑇𝑉 ∨
𝜇,Qℓ
(𝑖𝑏)∗𝜌)𝐾 .

Taking the colimit over K gives the first claim. The claim about preservation of admissibility now follows
from Theorem 6.4.1 combined with Theorem 6.4.3. For the final claim, fix some 𝜌 of finite length. Note
that 𝑖∗1𝑇𝑉 ∨

𝜇,Qℓ
(𝑖𝑏)∗𝜌 is the smooth dual of 𝑖∗1𝑇𝑉 ∨

𝜇,Qℓ
(𝑖𝑏)!𝜌∨, so it’s enough to show that 𝑖∗1𝑇𝑉 ∨

𝜇,Qℓ
(𝑖𝑏)!𝜌∨ is

of finite length. But finite length is equivalent to being both compact and admissible, so we conclude
by observing that the operation 𝑖∗1𝑇𝑉 ∨

𝜇,Qℓ
(𝑖𝑏)!(−) preserves compact objects. �

Definition 6.4.6. For any Zℓ-algebra Λ, we write

𝑅Γ(𝐺, 𝑏, 𝜇) [−] : 𝐷 (𝐺𝑏 (𝐹),Λ) → 𝐷 (𝐺 (𝐹),Λ)

for the functor 𝑖∗1𝑇𝑉 ∨𝜇,Λ (𝑖𝑏)∗(−).

By the previous discussion, this functor is compatible with extension of scalars along any mapΛ→ Λ′

and preserves admissible objects. Moreover, if Λ is Artinian and 𝜌 ∈ 𝐷 (𝐺𝑏 (𝐹),Λ) is admissible of
finite length, then 𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌] is also of finite length by the same argument as in the proof of
Proposition 6.4.5.

We now come to the technical heart of this paper. Choose Zℓ-valued Haar measures on 𝐺 (𝐹) and
𝐺𝑏 (𝐹), compatibly as in §3.4. These induce Λ-valued Haar measures on the same groups compatibly
with varying Λ. Then for any Λ, any admissible representation 𝜋 of 𝐺 (𝐹) with coefficients in Λ has
a corresponding Λ-valued trace distribution tr. dist(𝜋), and similarly for 𝐺𝑏 (𝐹). Recall also that we
defined a transfer of Λ-valued distributions T 𝐺𝑏→𝐺

𝑏,𝜇 , Definition 6.3.4.

Proposition 6.4.7. Let Λ be any torsion Zℓ-algebra, and let 𝜌 be any admissible representation of
𝐺𝑏 (𝐹) with coefficients in Λ. Then have an equality

tr. dist 𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌]ell = T 𝐺𝑏→𝐺
𝑏,𝜇 tr. dist(𝜌)ell

in Dist(𝐺 (𝐹)ell,Λ)𝐺 (𝐹 ) .

Proof. In the following proof, we set 𝑆 = Spd 𝐶 and 𝑉 = 𝑉𝜇,Λ for brevity.
We have an isomorphism

𝐻0(In𝑆 (Bun1
𝐺,𝐶 ), 𝐾In𝑆 (Bun1

𝐺,𝐶 )/𝑆
) � Dist(𝐺 (𝐹),Λ)𝐺 (𝐹 )

and similarly for 𝐺𝑏 (𝐹). With respect those isomorphisms, the left side of the desired equality is the
characteristic class

ccBun1
𝐺,𝐶/𝑆

(
𝑖∗1𝑇𝑉 ∨ (𝑖𝑏)∗𝜌

)
restricted to Dist(𝐺 (𝐹)ell,Λ)𝐺 (𝐹 ) .
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For the remainder of the proof, we introduce the abbreviations 𝐵 = Bun𝐺,𝐶 and 𝐻 = Hecke𝐺,≤𝜇,𝐶
and In = In𝑆 . Let us also use a subscript ‘ell’ to mean restriction to the appropriate elliptic locus. Taking
inertia stacks in equation (6.1.2), we obtain a commutative diagram

In(𝐻∗,1)ell
In(ℎ∗,12 )ell��

𝑗′1
��

id

�����
���

���
���

���
���

���
���

��
In(𝐵1)ell

𝑗1
��

In(𝐻∗,1)
In(ℎ∗,12 )

��

In(𝑖′1)
��

In(𝐵1)

In(𝑖1)
��

In(𝐻𝑏,∗)ell
𝑗′𝑏

��

In(ℎ𝑏,∗1 )ell
��

In(𝐻𝑏,∗)
In(𝑖′𝑏)

��

In(ℎ𝑏,∗1 )
��

In(𝐻)
In(ℎ2)

��

In(ℎ1)
��

In(𝐵)

In(𝐵𝑏)ell 𝑗𝑏
�� In(𝐵𝑏)

In(𝑖𝑏)
�� In(𝐵)

(6.4.2)

in which all squares are Cartesian, and the morphism labeled id is the equality from Corollary 6.2.4.
The characteristic class in question is

𝑗∗1 cc𝐵1/𝑆 (𝑖∗1𝑇𝑉 ∨ (𝑖𝑏)∗𝜌)
Lem. 4.3.7

= 𝑗∗1 In(𝑖1)∗ cc𝐵/𝑆
(
(ℎ2)!(ℎ∗1 (𝑖𝑏)∗𝜌 ⊗ S𝑉 ∨

)
Cor.4.3.9

= 𝑗∗1 In(𝑖1)∗ In(ℎ2)∗ cc𝐻/𝑆 (ℎ∗1 (𝑖𝑏)∗𝜌 ⊗ S𝑉 ∨)
= (In(ℎ∗,12 )ell)∗( 𝑗 ′1)

∗ In(𝑖′1)
∗ cc𝐻/𝑆 (ℎ∗1 (𝑖𝑏)∗𝜌 ⊗ S𝑉 ∨)

= (In(ℎ∗,12 )ell)∗( 𝑗 ′𝑏)
∗ In(𝑖′𝑏)

∗ cc𝐻/𝑆 (ℎ∗1 (𝑖𝑏)∗𝜌 ⊗ S𝑉 ∨)
Lem. 4.3.7

= (In(ℎ∗,12 )ell)∗( 𝑗 ′𝑏)
∗ cc𝐻𝑏,∗/𝑆 ((𝑖′𝑏)

∗ℎ∗1 (𝑖𝑏)∗𝜌 ⊗ S𝑉 ∨)
= (In(ℎ∗,12 )ell)∗( 𝑗 ′𝑏)

∗ cc𝐻𝑏,∗/𝑆 ((ℎ𝑏,∗1 )
∗𝜌 ⊗ S𝑉 ∨).

Noting that 𝐻𝑏,∗ � [Gr𝑏𝐺,≤−𝜇,𝐶/𝐺𝑏 (𝐹)𝑆], we have a Cartesian diagram of decent S-v-stacks:

𝐻𝑏,∗ ��

��

𝐻loc
𝑚

��
𝐵𝑏 �� 𝐵loc

𝑚 .

(6.4.3)

Here, 𝐵𝑏 � [𝑆/𝐺𝑏 (𝐹)𝑆], 𝐻loc
𝑚 � [Gr𝐺,≤−𝜇,𝐶/𝐿+𝑚𝐺], and 𝐵loc

𝑚 � [𝑆/𝐿+𝑚𝐺]; the m here is chosen large
enough so that the action of 𝐿+𝐺 on Gr𝐺,≤−𝜇,𝐶 factors through the quotient 𝐿+𝑚𝐺. Through this, we
can identify (ℎ𝑏,∗1 )

∗𝜌 ⊗ S𝑉 ∨ with 𝜌 �𝐵loc
𝑚
S𝑉 ∨ . It is at this point we apply Theorem 4.5.3, valid because

the base 𝐵loc
𝑚 = [𝑆/𝐿+𝑚𝐺] satisfies the hypotheses of Lemma 4.5.2. We get

𝑗∗1 cc𝐵1/𝑆 (𝑖∗1𝑇𝑉 ∨ (𝑖𝑏)∗𝜌) = (In(ℎ
∗,1
2 )ell)∗( 𝑗 ′𝑏)

∗
(
cc𝐵𝑏/𝑆 𝜌 �In(𝐵loc

𝑚 ) cc𝐻 loc
𝑚 /𝑆 (S𝑉 ∨)

)
= (In(ℎ∗,12 )ell)∗

(
cc𝐵𝑏/𝑆 𝜌ell �In(𝐵loc

𝑚 )sr
cc𝐻 loc

𝑚 /𝑆 (S𝑉 ∨)sr

)
.
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Considering the diagram

𝐻0 (In(𝐵𝑏)ell, 𝐾In(𝐵𝑏)/𝑆)

−�In(𝐵loc
𝑚 )sr

cc
𝐻 loc
𝑚 /𝑆

(S𝑉∨ )sr

��

∼ �� Dist(𝐺𝑏 (𝐹)ell,Λ)𝐺𝑏 (𝐹 )

𝑞∗1 (−) ⊗(−1) 〈2𝜌𝐺,𝜇〉 rank𝑉 ∨ [−]
��

𝐻0(In(𝐻𝑏,∗)ell, 𝐾In(𝐻𝑏,∗)/𝑆)
∼ ��

=

��

Dist(Fix(𝛼𝑏)ell,Λ)𝐺𝑏 (𝐹 )

(𝑝1)−1
∗

��
𝐻0(In(𝐻𝑏,1)ell, 𝐾In(𝐻𝑏,1)/𝑆)

=

��

∼ �� Dist(Fix(𝛼Sht)ell,Λ)𝐺 (𝐹 )×𝐺𝑏 (𝐹 )

(𝑝2)∗
��

𝐻0(In(𝐻∗,1)ell, 𝐾In(𝐻 ∗,1)/𝑆)

In(ℎ∗,12 )∗
��

∼ �� Dist(Fix(𝛼1)ell,Λ)𝐺 (𝐹 )

(𝑞2)∗
��

𝐻0 (In(𝐵1)ell, 𝐾In(𝐵1)/𝑆) ∼
�� Dist(𝐺 (𝐹)ell,Λ)𝐺 (𝐹 )

our characteristic class is the image of cc𝐵𝑏/𝑆 (𝜌)ell under the composite vertical map on the left. The
diagram is commutative; the hardest thing to check is the commutativity of the top square, which follows
from Proposition 6.4.8 below. The composition along the right column is T𝐺𝑏→𝐺

𝑏,𝜇 , giving us the desired
equality of distributions. �

It remains to justify one step in this computation. Maintain the notation and assumptions of the
previous theorem. The v-stack 𝐻𝑏,∗ can be expressed as a fiber product as in equation (6.4.3); we have
the ULA object 𝜌 �𝐵loc

𝑚
S𝑉 ∨ , whose characteristic class can be calculated using Theorem 4.5.3.

Let

𝛼𝑏 : 𝐺𝑏 (𝐹)𝑆 × Gr𝐺,≤−𝜇 → Gr𝐺,≤−𝜇

be the action map so that we have an isomorphism

In𝑆 (𝐻𝑏,∗) � [Fix(𝛼𝑏)/𝐺𝑏 (𝐹)𝑆] .

Let Fix(𝛼𝑏)sr be the open subset lying over 𝐺𝑏 (𝐹)sr (and use the same convention for other objects);
then Fix(𝛼𝑏)sr is a locally profinite set, which is finite over 𝐺𝑏 (𝐹)sr with fibers 𝑋∗(𝑇)≤−𝜇.

Proposition 6.4.8. The characteristic class

cc𝐻/𝑆 (𝜌 � S𝑉 ∨)sr ∈ 𝐻0(In𝑆 (𝐻)sr, 𝐾In𝑆 (𝑇 )/𝑆) � Dist(Fix(𝛼𝑏)sr,Λ)𝐺𝑏 (𝐹 )

equals the image of tr. dist(𝜌) ⊗ (−1) 〈2𝜌𝐺 ,−〉 rank𝑉∨[−] under the evident map

Dist(𝐺𝑏 (𝐹)sr,Λ)𝐺𝑏 (𝐹 ) ⊗ 𝐶 (𝑋∗(𝑇)≤−𝜇,Λ)𝑊 → Dist(Fix(𝛼𝑏)sr,Λ)𝐺𝑏 (𝐹 ) . (6.4.4)

Proof. Take inertia stacks in equation (6.4.3), and restrict to the strongly regular locus in In𝑆 [𝑆/𝐿+𝑚𝐺]
to obtain a Cartesian diagram

[Fix(𝛼𝑏)sr/𝐺𝑏 (𝐹)𝑆] ��

��

[𝐺𝑏,sr (𝐹)𝑆�𝐺𝑏 (𝐹)𝑆]

��
𝑋∗(𝑇)≤𝜇 ×𝑊 [𝐿+𝑚𝑇sr�𝑇sr] �� [𝐿+𝑚𝑇sr/(𝑊 � 𝐿+𝑚𝑇)] .
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The Künneth map (4.5.2) in this situation reduces to equation (6.4.4) on the level of global sections.
The result now follows from Theorems 4.5.3 and 5.1.4. �

This formally implies the following theorem.

Theorem 6.4.9. Let 𝜌 be any finite length admissible 𝐺𝑏 (𝐹)-representation with Qℓ-coefficients. As-
sume that 𝜌 admits a Zℓ-lattice in the sense of Definition C.2.1. Then for all 𝜙 ∈ 𝐶𝑐 (𝐺 (𝐹)ell, Qℓ), the
equality

tr(𝜙|Mant𝑏,𝜇 (𝜌)) =
[
T 𝐺𝑏→𝐺
𝑏,𝜇 (tr. dist 𝜌)

]
(𝜙)

holds.

Recall that by definition, T 𝐺𝑏→𝐺
𝑏,𝜇 (tr. dist 𝜌) (𝜙) depends only on (tr. dist 𝜌)ell.

Proof. Fix 𝜌 and 𝜙 as in the theorem, and fix a Zℓ-lattice 𝜌◦ ⊂ 𝜌. After rescaling, we may also assume
𝜙 is valued in Zℓ . It is clear from the definitions that tr(𝜙|Mant𝑏,𝜇 (𝜌)) = tr(𝜙|𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌◦]) and[

T 𝐺𝑏→𝐺
𝑏,𝜇 (tr. dist 𝜌)

]
(𝜙) =

[
T 𝐺𝑏→𝐺
𝑏,𝜇 (tr. dist 𝜌◦)

]
(𝜙).

For all 𝑛 ≥ 1, set 𝜌◦𝑛 = 𝜌◦ ⊗ Z/ℓ𝑛, and write 𝜙𝑛 ∈ 𝐶𝑐 (𝐺 (𝐹)ell, Zℓ/ℓ𝑛) for the obvious reductions of
𝜙. Applying Proposition 6.4.7 with Λ = Zℓ/ℓ𝑛, we get equalities

tr(𝜙𝑛 |𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌◦𝑛]) =
[
T 𝐺𝑏→𝐺
𝑏,𝜇 (tr. dist 𝜌◦𝑛)

]
(𝜙𝑛)

for all 𝑛 ≥ 1. The result now follows by taking the inverse limit over n. �

6.5. Proof of Theorem 1.0.2

We are finally ready to prove the main theorem of the paper, which we restate for the convenience of the
reader.

Theorem 6.5.1. Assume the refined local Langlands correspondence [Kal16a, Conjecture G]. Let
𝜙 : 𝑊𝐹 × SL2 → 𝐿𝐺 be a discrete Langlands parameter with coefficients in Qℓ , and let 𝜌 ∈ Π𝜙 (𝐺𝑏)
be a member of its L-packet. After ignoring the action of 𝑊𝐸 , we have an equality

Mant𝑏,𝜇 (𝜌) =
∑

𝜋∈Π𝜙 (𝐺)

[
dim Hom𝑆𝜙 (𝛿𝜋,𝜌, 𝑟𝜇)

]
𝜋 + err

in Groth(𝐺 (𝐹)), where err ∈ Groth(𝐺 (𝐹)) is a virtual representation whose character vanishes on the
locus of elliptic elements of 𝐺 (𝐹).

If the packet Π𝜙 (𝐺) consists entirely of supercuspidal representations and the semisimple L-
parameter 𝜑𝜌 associated with 𝜌 as in [FS21, §I.9.6] is supercuspidal, then in fact err = 0.

The main ingredient in the proof is the following extension of Theorem 6.4.9 to its natural level of
generality.

Theorem 6.5.2. Let 𝜌 be any finite length admissible 𝐺𝑏 (𝐹)-representation with Qℓ-coefficients. Then
for all 𝜙 ∈ 𝐶𝑐 (𝐺 (𝐹)ell, Qℓ), the equality

tr(𝜙|Mant𝑏,𝜇 (𝜌)) =
[
T 𝐺𝑏→𝐺
𝑏,𝜇 (tr. dist 𝜌)

]
(𝜙)

holds.
In particular, the virtual character of Mant𝑏,𝜇 (𝜌) restricted to 𝐺 (𝐹)ell is equal to 𝑇𝐺𝑏→𝐺

𝑏,𝜇 (Θ𝜌).
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We will formally deduce this from Theorem 6.4.9 by a continuity argument.
For the proof of this theorem, it will be convenient to use the language of Grothendieck groups. In

particular, by the finiteness results mentioned above, Mant𝑏,𝜇 (−) can be regarded as a group homomor-
phism Mant𝑏,𝜇 (−) : Groth(𝐺𝑏 (𝐹)) → Groth(𝐺 (𝐹)). Recall that any element 𝜙 ∈ 𝐶𝑐 (𝐺 (𝐹), Qℓ) de-
fines a linear form tr(𝜙|−) : Groth(𝐺 (𝐹)) → Qℓ . By definition, a linear form 𝑓 : Groth(𝐺 (𝐹)) → Qℓ
is a trace form if it can be written as tr(𝜙|−) for some 𝜙 ∈ 𝐶𝑐 (𝐺 (𝐹), Qℓ). The key ingredient in the
proof of Theorem 6.5.2 is the following result, which roughly says that Mant𝑏,𝜇 (𝜌) is a continuous
function of 𝜌.

Theorem 6.5.3. For any 𝜙 ∈ 𝐶𝑐 (𝐺 (𝐹), Qℓ), the linear form

tr(𝜙|Mant𝑏,𝜇 (−)) : Groth(𝐺𝑏 (𝐹)) → Qℓ

is a trace form.

With future applications in mind, we’ll actually prove the following refined form of this theorem
which also accounts for the Weil group action.

Theorem 6.5.4. For any fixed 𝜙 ∈ 𝐶𝑐 (𝐺 (𝐹), Qℓ) and 𝑤 ∈ 𝑊𝐸 , the linear form Groth(𝐺𝑏 (𝐹)) → Qℓ
defined by

𝜌 ↦→ tr(𝜙 × 𝑤 |𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌])

is a trace form.

In the classical setting of Rapoport–Zink spaces, this was conjectured by Taylor, cf. [Shi12, Conjecture
8.3]. Taking 𝑤 = 1, we deduce Theorem 6.5.3.

Proof. For any reductive group 𝐻/𝐹, the trace Paley–Wiener theorem of Bernstein–Deligne–Kazhdan,
[BDK86], characterizes trace forms among all linear forms on Groth(𝐻 (𝐹)) by the following two
conditions:

1. There is some open compact subgroup 𝐾 ⊂ 𝐻 (𝐹) such that 𝑓 (𝜋) ≠ 0 only if 𝜋𝐾 ≠ 0.
2. For any parabolic 𝑃 = 𝑀𝑈 ⊂ 𝐻 and any irreducible smooth 𝑀 (𝐹)-representation 𝜎, 𝑓 (𝑖𝐻𝑀 (𝜎𝜓))

is an algebraic function of 𝜓, where 𝜓 varies over the unramified characters of 𝑀 (𝐹). Here, 𝑖𝐻𝑀 (−)
denotes normalizes parabolic induction.

We’ll prove the theorem by showing that the linear form tr(𝜙 × 𝑤 |𝑅Γ(𝐺, 𝑏, 𝜇) [−]) satisfies the
conditions of the trace Paley–Wiener theorem, applied to the group 𝐻 = 𝐺𝑏 .

Verification of Condition 1. Fix a pro-p open compact subgroup 𝐾 ⊂ 𝐺 (𝐹) such that 𝜙 is bi-K-
invariant. If tr(𝜙 × 𝑤 |𝑅Γ(𝐺, 𝑏, 𝜇) [𝜌]) ≠ 0, then (𝑖∗1𝑇𝑉 ∨

𝜇,Qℓ
𝑖𝑏∗𝜌)𝐾 ≠ 0. Therefore, it suffices to see that

there is some open compact 𝐾 ′ ⊂ 𝐺𝑏 (𝐹) such that (𝑖∗1𝑇𝑉 ∨
𝜇,Qℓ

𝑖𝑏∗𝜌)𝐾 ≠ 0 only if 𝜌𝐾
′
≠ 0. For this, write

(𝑖∗1𝑇𝑉 ∨
𝜇,Qℓ

𝑖𝑏∗𝜌)𝐾 � 𝑅Hom(𝑖1! cInd𝐺 (𝐹 )𝐾 Qℓ , 𝑇𝑉 ∨
𝜇,Qℓ

𝑖𝑏∗𝜌)

� 𝑅Hom(𝑇𝑉𝜇,Qℓ 𝑖1! cInd𝐺 (𝐹 )𝐾 Qℓ , 𝑖𝑏∗𝜌)

� 𝑅Hom(𝑖∗𝑏𝑇𝑉𝜇,Qℓ 𝑖1! cInd𝐺 (𝐹 )𝐾 Qℓ , 𝜌).

But now 𝑖∗𝑏𝑇𝑉𝜇,Qℓ
𝑖1! cInd𝐺 (𝐹 )𝐾 Qℓ is compact and hence supported on only finitely many Bernstein

components for 𝐺𝑏 (𝐹). This shows that the irreducible 𝜌’s with (𝑖∗1𝑇𝑉 ∨
𝜇,Qℓ

𝑖𝑏∗𝜌)𝐾 ≠ 0 are supported on
finitely many Bernstein components for 𝐺𝑏 (𝐹). Quite generally, if Θ is any finite union of Bernstein
components for 𝐺𝑏 (𝐹), we can choose an open compact subgroup 𝐾 ′ ⊂ 𝐺𝑏 (𝐹) such that 𝜌𝐾

′
≠ 0 if 𝜌

is supported on Θ. This gives the result.
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Verification of Condition 2. Fix 𝑃 = 𝑀𝑈 ⊂ 𝐺𝑏 and 𝜎 as in Condition 2. Let 𝑋 = Spec𝑅
be the smooth affine algebraic variety over Qℓ parametrizing unramified characters of 𝑀 (𝐹). Let
𝝍 : 𝑀 (𝐹) → 𝑅× be the universal character and form Π = 𝑖𝐺𝑏

𝑀 (𝜎𝝍). This is an admissible smooth
𝑅[𝐺𝑏 (𝐹)]-module interpolating the parabolic inductions 𝑖𝐺𝑏

𝑀 (𝜎𝜓) over varying unramified characters 𝜓
in the evident sense.6 SinceΠ is admissible, the pushforward 𝑖𝑏∗Π ∈ 𝐷lis(Bun𝐺 , 𝑅) is ULA. Since Hecke
operators preserve ULA complexes, we deduce that 𝑖∗1𝑇𝑉 ∨𝜇,𝑅 𝑖𝑏∗Π ∈ 𝐷 (𝐺 (𝐹), 𝑅)𝐵𝑊𝐸 is an admissible
complex of smooth 𝑅[𝐺 (𝐹)]-modules with 𝑊𝐸 -action, which interpolates the individual complexes

𝑅Γ(𝐺, 𝑏, 𝜇) [𝑖𝐺𝑏

𝑀 (𝜎𝜓)] = 𝑖∗1𝑇𝑉 ∨
𝜇,Qℓ

𝑖𝑏∗𝑖
𝐺𝑏

𝑀 (𝜎𝜓)

in the evident sense.
Now fix a pro-p open compact subgroup 𝐾 ⊂ 𝐺 (𝐹) such that 𝜙 is bi-K-invariant, so 𝜙 × 𝑤 defines

an endomorphism of the perfect complex

(𝑖∗1𝑇𝑉 ∨𝜇,𝑅 𝑖𝑏∗Π)𝐾 ∈ Perf (𝑅).

Let 𝑓 ∈ 𝑅 be the trace of this endomorphism. Unwinding definitions, we see that, for any unramified
character 𝜓 : 𝑀 (𝐹) → Qℓ

×
with associated point 𝑥𝜓 ∈ 𝑋 (Qℓ ), there is an equality

𝑓 (𝑥𝜓) = tr
(
𝜙 × 𝑤 |𝑅Γ(𝐺, 𝑏, 𝜇) [𝑖𝐺𝑏

𝑀 (𝜎𝜓)]
)

.

This shows that tr(𝜙 × 𝑤 |𝑅Γ(𝐺, 𝑏, 𝜇) [𝑖𝐺𝑏

𝑀 (𝜎𝜓)]) is an algebraic function of 𝜓, as desired. �

Let us say a subset 𝑆 ⊂ IrrQℓ
(𝐺 (𝐹)) is dense if any trace form on Groth(𝐺 (𝐹)) which vanishes on

S vanishes identically. For instance, the Langlands classification implies that (for any fixed choice of
isomorphism C � Qℓ) tempered representations are dense, cf. [Kaz86, Theorem 0].

Lemma 6.5.5. The subset of irreducible representations 𝜋 ∈ IrrQℓ
(𝐺 (𝐹)) admitting Zℓ -lattices is dense.

It seems reasonable to think of this lemma as an ℓ-adic analogue of the density of tempered repre-
sentations.

Proof. Let f be a trace form, and assume that 𝑓 (𝜏) = 0 for every 𝜏 ∈ IrrQℓ
(𝐺 (𝐹)) admitting a Zℓ-lattice.

By Proposition C.2.2, it’s enough to show that 𝑓 (𝑖𝐺𝑀 (𝜎𝜓)) = 0 for any parabolic 𝑃 = 𝑀𝑈 ⊂ 𝐺,
any unramified character 𝜓 of 𝑀 (𝐹) and any 𝜎 ∈ IrrQℓ

(𝑀 (𝐹)) admitting a Zℓ-lattice. Fix P and
𝜎, and consider the function g on unramified characters of 𝑀 (𝐹) sending 𝜓 to 𝑓

(
𝑖𝐺𝑀 (𝜎𝜓)

)
. By the

easy direction of the trace Paley–Wiener theorem, g is a regular function on the variety of unramified
characters of 𝑀 (𝐹).

Let us say an unramified character 𝜓 is integral if it takes values in Zℓ
×. If 𝜓 is integral, then

𝜎𝜓 admits a Zℓ-lattice, and hence also 𝑖𝐺𝑀 (𝜎𝜓) admits a Zℓ-lattice. In particular, if 𝜓 is integral and
𝑖𝐺𝑀 (𝜎𝜓) is irreducible, then 𝑔(𝜓) = 0 by combining these observations with our assumption on f. Now
integral characters are Zariski-dense in the variety of unramified characters of 𝑀 (𝐹), and the subset T
of integral characters such that 𝑖𝐺𝑀 (𝜎𝜓) is irreducible is also Zariski-dense (use [Dat05, Theorem 5.1]).
Since 𝑔(𝜓) = 0 for all 𝜓 ∈ 𝑇 , we deduce that 𝑔 ≡ 0, so in particular

0 = 𝑔(𝜓) = 𝑓
(
𝑖𝐺𝑀 (𝜎𝜓)

)
for all 𝜓. This gives the result. �

6To see that Π is admissible in our slightly nonstandard sense, observe first that Π𝐾 is finitely generated as an R-module for
all pro-p open compact subgroups 𝐾 ⊂ 𝐺𝑏 (𝐹 ) since 𝑃 (𝐹 )\𝐺𝑏 (𝐹 )/𝐾 is finite. But R is a smooth Qℓ -algebra, so any finitely
generated R-module is automatically a perfect complex, giving the desired result.
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Proof of Theorem 6.5.2. Fix 𝜙 as in the statement of the theorem, and consider the linear form

𝑓 (−) = tr(𝜙|Mant𝑏,𝜇 (−)) −
[
T 𝐺𝑏→𝐺
𝑏,𝜇 (tr. dist−)

]
(𝜙)

on Groth(𝐺𝑏 (𝐹)). By Theorem 6.4.9, we know that 𝑓 (𝜌) = 0 if 𝜌 admits a lattice. We need to show
that f vanishes identically.

The key observation is that f is a trace form. Indeed, tr(𝜙|Mant𝑏,𝜇 (−)) is a trace form by Theorem
6.5.3. Moreover,

[
T 𝐺𝑏→𝐺
𝑏,𝜇 (tr. dist−)

]
(𝜙) is a trace form since we can rewrite

[
T 𝐺𝑏→𝐺
𝑏,𝜇 (tr. dist 𝜌)

]
(𝜙)

as the trace of 𝑇𝐺→𝐺𝑏

𝑏,𝜇 (𝜙) ∈ 𝐶𝑐 (𝐺𝑏 (𝐹)ell, Qℓ)𝐺𝑏 (𝐹 ) acting on 𝜌. Thus, f is a difference of trace forms
and hence a trace form. Since 𝑓 (𝜌) = 0 for any 𝜌 admitting a lattice, Lemma 6.5.5 now implies the
desired result.

For the final claim about virtual characters, choose compatible Qℓ-valued Haar measures 𝑑𝑔 and
𝑑𝑔′ on 𝐺 (𝐹) and 𝐺𝑏 (𝐹). Fix some 𝜌, and let Ξ ∈ 𝐶 (𝐺 (𝐹)sr �𝐺 (𝐹), Qℓ) be the virtual character of
Mant𝑏,𝜇 (𝜌). Pick any 𝜙 ∈ 𝐶𝑐 (𝐺 (𝐹)ell, Qℓ). Then

tr(𝜙|Mant𝑏,𝜇 (𝜌)) =
∫
𝐺 (𝐹 )

Ξ(𝑔)𝜙(𝑔)𝑑𝑔

by definition. On the other hand,
[
T 𝐺𝑏→𝐺
𝑏,𝜇 (tr. dist 𝜌)

]
(𝜙) =

∫
𝐺 (𝐹 )

𝑇𝐺𝑏→𝐺
𝑏,𝜇 (Θ𝜌) (𝑔)𝜙(𝑔)𝑑𝑔

by compatibility of the Haar measures and Proposition 6.3.5. Combining these observations, we get an
equality ∫

𝐺 (𝐹 )
𝑇𝐺𝑏→𝐺
𝑏,𝜇 (Θ𝜌) (𝑔)𝜙(𝑔)𝑑𝑔 =

∫
𝐺 (𝐹 )

Ξ(𝑔)𝜙(𝑔)𝑑𝑔

for any 𝜙 ∈ 𝐶𝑐 (𝐺 (𝐹)ell, Qℓ). The result now follows by varying 𝜙. �

Proof of Theorem 6.5.1. The claimed equality in Groth(𝐺 (𝐹)) is an immediate consequence of Theo-
rem 6.5.2 and Theorem 3.2.9.

For the claim regarding the error term, consider the virtual representation

err = Mant𝑏,𝜇 (𝜌) −
∑

𝜋∈Π𝜙 (𝐺)
dim Hom𝑆𝜙 (𝛿𝜋,𝜌, 𝑟𝜇)𝜋.

By the first half of the theorem, we know that err is nonelliptic. By Theorem C.1.1, it thus suffices to
show that err is a virtual sum of supercuspidal representations. Since the packet Π𝜙 (𝐺) is supercuspidal
by assumption, we’re reduced to showing that Mant𝑏,𝜇 (𝜌) is a virtual supercuspidal representation. By
definition, this is the Grothendieck class of the complex 𝐴 = 𝑖∗1𝑇𝑉 ∨

𝜇,Qℓ
𝑖𝑏∗𝜌 ∈ 𝐷 (𝐺 (𝐹), Qℓ), so we need

to see that any irreducible 𝜏 occurring in the Jordan-Hölder series of 𝐻∗(𝐴) is supercuspidal. Since
𝜑𝜏 = 𝜑𝜌 by the commutation of Hecke operators with excursion operators, the claim now follows from
the assumption on 𝜑𝜌 and [FS21, Theorem I.9.6.viii]. �

6.6. Application to inner forms of GL𝒏

We give an application to the local Langlands correspondence. Recall that, for any 𝐺/𝐹, any 𝑏 ∈ 𝐵(𝐺)
and any 𝜏 ∈ Irr(𝐺𝑏 (𝐹)), the construction in [FS21, Proposition I.9.1] (applied to 𝐴 = 𝑖𝑏!𝜏) gives rise
to a semisimple L-parameter 𝜑𝜏 : 𝑊𝐹 → 𝐿𝐺 (Qℓ) associated with 𝜏. This construction is canonical
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and satisfies a long list of desirable properties [FS21, Theorem I.9.6]. However, it is a highly nontrivial
problem to compare this construction with ‘previously known’ realizations of the local Langlands
correspondence.

Theorem 6.6.1. Let G be any inner form of GL𝑛/𝐹, and let 𝜋 be an irreducible smooth representation of
𝐺 (𝐹). Then the L-parameter 𝜑𝜋 associated with 𝜋 as in [FS21, §I.9] agrees with the usual semisimplified
L-parameter attached to 𝜋.

Proof. By [FS21, Theorem I.9.6.viii], we can assume 𝜋 is supercuspidal. Pick some basic b with
𝐺𝑏 = GL𝑛/𝐹, and let 𝜌 ∈ Irr(𝐺𝑏 (𝐹)) be the Jacquet–Langlands transfer of 𝜋 [DKV84], so the (usual)
semisimple L-parameters of 𝜌 and 𝜋 agree. By [FS21, Theorem 1.9.6.viii-ix], we know that 𝜑𝜌 agrees
with the usual semisimple L-parameter of 𝜌. To prove the theorem, it thus suffices to show that 𝜑𝜋 = 𝜑𝜌.

Pick any 𝜇 such that 𝑏 ∈ 𝐵(𝐺, 𝜇). By Theorem 6.5.2 and the usual character relation characterizing the
Jacquet–Langlands correspondence, we have an equality Mant𝑏,𝜇 (𝜌) = dim𝑉𝜇 · 𝜋 + 𝑒 in Groth(𝐺 (𝐹)),
where e is a nonelliptic virtual representation. Since 𝜋 is supercuspidal, this implies that 𝜋 occurs as a
subquotient of some cohomology group of the complex 𝐴 = 𝑖∗1𝑇𝑉 ∨

𝜇,Qℓ
𝑖𝑏∗𝜌 ∈ 𝐷 (𝐺 (𝐹), Qℓ). But Hecke

operators commute with excursion operators, so 𝜑𝜏 = 𝜑𝜌 for any irreducible 𝜏 occurring in the Jordan–
Holder series of 𝐻∗(𝐴). �

A. Endoscopy

A.1. Endoscopic character relations

We recall here the endoscopic character identities, which are part of the refined local Langlands
correspondence, following the formulation of [Kal16b, §5.4], also recalled in [Kal16a, §4.2]. They play
a key role in the proof of Theorem 3.2.9. We recall the notation established before the statement of that
theorem.

• 𝐹/Q𝑝 is a finite extension, 𝐹nr/𝐹 a maximal unramified extension.
• G is a connected reductive group defined over F.
• 𝐺∗ is a quasi-split connected reductive group defined over F.
• Ψ is a 𝐺∗-conjugacy class of inner twists 𝜓 : 𝐺∗ → 𝐺.
• 𝑧𝜎 = 𝜓−1𝜎(𝜓) ∈ 𝐺∗ad so that 𝑧 ∈ 𝑍1 (𝐹, 𝐺∗ad).
• 𝑧 ∈ 𝑍1 (𝑢 → 𝑊, 𝑍 (𝐺∗) → 𝐺∗) is a lift of 𝑧.
• 𝑏 ∈ 𝐺 (𝐹nr) is a decent basic element.
• 𝐺𝑏 is the corresponding inner form of G.
• 𝜉 : 𝐺𝐹nr → 𝐺𝑏,𝐹nr is the identity map.
• 𝑧𝑏 ∈ 𝑍1 (𝑢 → 𝑊, 𝑍 (𝐺) → 𝐺) and 𝑔 ∈ 𝐺 (�̆�) satisfy equation (2.3.1).
• 𝔴 is a Whittaker datum for 𝐺∗.
• 𝜙 : 𝑊𝐹 × SL2 → 𝐿𝐺 is a discrete L-parameter.
• 𝑆𝜙 = Cent(𝜙, 𝐺).
• 𝑆+𝜙 is the group defined in Definition 2.3.1.
• 𝜆𝑧 , resp., 𝜆𝑧𝑏 the image of the class of z, resp., 𝑧𝑏 under the isomorphism

𝐻1 (𝑢 → 𝑊, 𝑍 (𝐺∗) → 𝐺∗) → 𝜋0 (𝑍 ( ̂̄𝐺)+)∗.
Recall that Ad(𝑔) : 𝐺𝑧𝑏 → 𝐺𝑏 is an F-isomorphism. We will use it to identify the two groups and

drop g from the notation. We will use the letter g for a different purpose below.
Associated to 𝜙 are the L-packets Π𝜙 (𝐺) and Π𝜙 (𝐺𝑧𝑏 ) and the bijections

Π𝜙 (𝐺) → Irr(𝜋0 (𝑆+𝜙), 𝜆𝑧), Π𝜙 (𝐺𝑧𝑏 ) → Irr(𝜋0 (𝑆+𝜙), 𝜆𝑧 + 𝜆𝑧𝑏 )

denoted by 𝜋 ↦→ 𝜏𝑧,𝔴, 𝜋 and 𝜌 ↦→ 𝜏𝑧,𝔴,𝜌.
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We now choose a semisimple element 𝑠 ∈ 𝑆𝜙 and an element �𝑠 ∈ 𝑆+𝜙 which lifts s. Let 𝑒(𝐺) and
𝑒(𝐺𝑧𝑏 ) be the Kottwitz signs of the groups G and 𝐺𝑧𝑏 , as defined in [Kot83]. Of course, 𝑒(𝐺𝑧𝑏 ) = 𝑒(𝐺𝑏).
Consider the virtual characters

𝑒(𝐺)
∑

𝜋∈Π𝜙 (𝐺)
tr 𝜏𝑧,𝔴, 𝜋 ( �𝑠) · Θ𝜋 and 𝑒(𝐺𝑧𝑏 )

∑
𝜌∈Π𝜙 (𝐺𝑧𝑏

)
tr 𝜏𝑧,𝔴,𝜌 ( �𝑠) · Θ𝜌 .

The endoscopic character identities are equations which relate these two virtual characters to virtual
characters on an endoscopic group 𝐻1. From the pair (𝜙, �𝑠), one obtains a refined elliptic endoscopic
datum

�𝔢 = (𝐻,H, �𝑠, 𝜂) (A.1.1)

in the sense of [Kal16b, §5.3] as follows. Let 𝐻 = Cent(𝑠, 𝐺)◦. The image of 𝜙 is contained in Cent(𝑠, 𝐺),
which in turns acts by conjugation on its connected component 𝐻. This gives a homomorphism 𝑊𝐹 →
Aut(𝐻). Letting Ψ0(𝐻) be the based root datum of 𝐻 [Kot84b, §1.1] and Ψ∨0 (𝐻) its dual, we obtain the
homomorphism

𝑊𝐹 → Aut(𝐻) → Out(𝐻) = Aut(Ψ0(𝐻)) = Aut(Ψ0(𝐻)∨).

Since the target is finite, this homomorphism extends to Γ𝐹 , and we obtain a based root datum with
Galois action, hence a quasi-split connected reductive group H defined over F. Its dual group is by
construction equal to 𝐻. We let H = 𝐻 · 𝜙(𝑊𝐹 ), noting that the right factor normalizes the left, so their
product H is a subgroup of 𝐿𝐺. Finally, we let 𝜂 : H → 𝐿𝐺 be the natural inclusion. Note that by
construction 𝜙 takes image in H, i.e., it factors through 𝜂.

We can realize the L-group of H as 𝐿𝐻 = 𝐻 �𝑊𝐹 , but we caution the reader that 𝑊𝐹 does not act on
𝐻 via the map 𝑊𝐹 → Aut(𝐻) given by 𝜙 as above. Rather, we have to modify this action to ensure that
it preserves a pinning of 𝐻. More precisely, after fixing an arbitrary pinning of 𝐻, we obtain a splitting
Out(𝐻) → Aut(𝐻) of the projection Aut(𝐻) → Out(𝐻), and the action of 𝑊𝐹 on 𝐻 we use to form
𝐿𝐻 is given by composing the above map 𝑊𝐹 → Out(𝐻) with this splitting.

Both 𝐿𝐻 and H are thus extensions of 𝑊𝐹 by 𝐻, but they need not be isomorphic. If they are, we fix
arbitrarily an isomorphism 𝜂1 : H→ 𝐿𝐻 of extensions. Then 𝜙𝑠 = 𝜂1 ◦ 𝜙 is a discrete parameter for H.

In the general case, we need to introduce a z-pair 𝔷 = (𝐻1, 𝜂1) as in [KS99, §2]. It consists of a z-
extension 𝐻1 → 𝐻 (recall this means that 𝐻1 has a simply connected derived subgroup and the kernel of
𝐻1 → 𝐻 is an induced torus) and 𝜂1 : H→ 𝐿𝐻1 is an L-embedding that extends the natural embedding
𝐻 → 𝐻1. As is shown in [KS99, §2.2], such a z-pair always exists. Again, we set 𝜙𝑠 = 𝜂1 ◦ 𝜙 and obtain
a discrete parameter for 𝐻1. In the situation where an isomorphism 𝜂1 : H → 𝐿𝐻 does exist, we will
allows ourselves to take 𝐻 = 𝐻1 and so regard 𝔷 = (𝐻, 𝜂1) as a z-pair, even though in general H will not
have a simply connected derived subgroup.

The virtual character on 𝐻1 that the above virtual characters on G and 𝐺𝑧𝑏 are to be related to is

𝑆Θ𝜙𝑠 :=
∑

𝜋𝑠 ∈Π𝜙𝑠 (𝐻1)
dim(𝜏𝜋𝑠 )Θ𝜋𝑠 .

Here, 𝜋𝑠 ↦→ 𝜏𝜋𝑠 is a bijection Π𝜙𝑠 (𝐻1) → Irr(𝜋0 (Cent(𝜙𝑠 , 𝐻1)/𝑍 (𝐻1)Γ)) determined by an arbitrary
choice of Whittaker datum for 𝐻1. The argument in the proof of Lemma 2.3.3 shows the independence
of dim(𝜏𝜋𝑠 ) of the choice of a Whittaker datum for 𝐻1.

The relationship between the virtual characters on G, 𝐺𝑧𝑏 and 𝐻1 is expressed in terms of the
Langlands–Shelstad transfer factor Δ ′abs [�𝔢, 𝔷,𝔴, (𝜓, 𝑧)] for the pair of groups (𝐻1, 𝐺) and the corre-
sponding Langlands–Shelstad transfer factor Δ ′abs [�𝔢, 𝔷,𝔴, (𝜉 ◦ 𝜓, 𝜓−1(𝑧𝑏) · 𝑧)] for the pair of groups
(𝐻1, 𝐺𝑧𝑏 ), both of which are defined by [Kal16b, (5.10)]. We will abbreviate both of them to just Δ . It
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is a simple consequence of the Weyl integration formula that the character relation [Kal16b, (5.11)] can
be restated in terms of character functions (rather than character distributions) as

𝑒(𝐺)
∑

𝜋∈Π𝜙 (𝐺)
tr 𝜏𝑧,𝔴, 𝜋 ( �𝑠)Θ𝜋 (𝑔) =

∑
ℎ1∈𝐻1 (𝐹 )/st.

Δ (ℎ1, 𝑔)𝑆Θ𝜙𝑠 (ℎ1) (A.1.2)

for any strongly regular semisimple element 𝑔 ∈ 𝐺 (𝐹). The sum on the right runs over stable conjugacy
classes of strongly regular semisimple elements of 𝐻1 (𝐹). We also have the analogous identity for 𝐺𝑧𝑏 :

𝑒(𝐺𝑧𝑏 )
∑

𝜌∈Π𝜙 (𝐺𝑧𝑏
)
tr 𝜏𝑧,𝔴,𝜌 ( �𝑠)Θ𝜌 (𝑔′) =

∑
ℎ1∈𝐻1 (𝐹 )/st.

Δ (ℎ1, 𝑔′)𝑆Θ𝜙𝑠 (ℎ1). (A.1.3)

For the purposes of this paper, we are only interested in the right-hand sides of these two equations as
a bridge between their left-hand sides. Essential for this bridge is a certain compatibility between the
transfer factors appearing on both right-hand sides:

Lemma A.1.1.

Δ (ℎ1, 𝑔′) = Δ (ℎ1, 𝑔) · 〈inv[𝑏] (𝑔, 𝑔′), 𝑠
♮
ℎ,𝑔〉. (A.1.4)

We need to explain the second factor. Given maximal tori 𝑇𝐻 ⊂ 𝐻 and 𝑇 ⊂ 𝐺, there is a notion
of an admissible isomorphism 𝑇𝐻 → 𝑇 , for which we refer the reader to [Kal16a, §1.3]. Two strongly
regular semisimple elements ℎ ∈ 𝐻 (Q𝑝) and 𝑔 ∈ 𝐺 (Q𝑝) are called related if there exists an admissible
isomorphism 𝑇ℎ → 𝑇𝑔 between their centralizers mapping h to g. If such an isomorphism exists, it is
unique, and in particular defined over F, and shall be called 𝜑ℎ,𝑔. An element ℎ1 ∈ 𝐻1 (𝐹) is called
related to 𝑔 ∈ 𝐺 (𝐹) if and only if its image ℎ ∈ 𝐻 (𝐹) is so. Since g and 𝑔′ are stably conjugate, an
element ℎ1 ∈ 𝐻1 (𝐹) is related to g if and only if it is related to 𝑔′. If that is not the case, both Δ (ℎ1, 𝑔′)
and Δ (ℎ1, 𝑔) are zero, and equation (A.1.4) is trivially true. Thus, assume that ℎ1 is related to both g
and 𝑔′. Let 𝑠♮ ∈ 𝑆𝜙 be the image of �𝑠 under equation (2.3.2). Note that 𝑠♮ ∈ 𝑠 · 𝑍 (𝐺)◦,Γ, and hence, the
preimage of 𝑠♮ under 𝜂 belongs to 𝑍 (𝐻)Γ, which in turns embeds naturally into 𝑇Γ

ℎ . Using the admissible
isomorphism 𝜑ℎ,𝑔, we transport 𝑠♮ into 𝑇Γ

𝑔 and denote it by 𝑠
♮
ℎ,𝑔. It is then paired with inv[𝑏] (𝑔, 𝑔′) via

the isomorphism 𝐵(𝑇𝑔) � 𝑋∗(𝑇Γ
𝑔 ) of [Kot85, §2.4].

Proof. For every finite subgroup 𝑍 ⊂ 𝑍 (𝐺) ⊂ 𝑇𝑔 one obtains from 𝜑ℎ,𝑔 an isomorphism 𝑇ℎ/𝜑−1
ℎ,𝑔 (𝑍) →

𝑇𝑔/𝑍 . Using the subgroups 𝑍𝑛 from §2.3, we form the quotients 𝑇ℎ,𝑛 = 𝑇ℎ/𝜑−1
ℎ,𝑔 (𝑍𝑛) and 𝑇𝑔,𝑛 = 𝑇𝑔/𝑍𝑛.

From 𝜑ℎ,𝑔 we obtain an isomorphism

̂̄𝑇ℎ → ̂̄𝑇𝑔
between the limits over n of the tori dual to 𝑇ℎ,𝑛 and 𝑇𝑔,𝑛. Let �𝑠ℎ,𝑔 ∈ [ ̂̄𝑇𝑔]+ be the image of �𝑠 under
this isomorphism. Let inv[𝑧𝑏] (𝑔, 𝑔′) ∈ 𝐻1(𝑢 → 𝑊, 𝑍 (𝐺) → 𝑇𝑔) be the invariant defined in [Kal16b,
§5.1]. If we replace 〈inv[𝑏] (𝑔, 𝑔′), 𝑠

♮
ℎ,𝑔〉 by 〈inv[𝑧𝑏] (𝑔, 𝑔′), �𝑠ℎ,𝑔〉 then the lemma follows immediately

from the defining formula [Kal16b, (5.10)] of the transfer factors. The lemma follows from the equality
〈inv[𝑏] (𝑔, 𝑔′), 𝑠

♮
ℎ,𝑔〉 = 〈inv[𝑧𝑏] (𝑔, 𝑔′), �𝑠ℎ,𝑔〉 proved in [Kal18, §4.2]. �

A.2. The Kottwitz sign

We will give a formula for the Kottwitz sign 𝑒(𝐺) in terms of the dual group 𝐺. Fix a quasi-split inner
form 𝐺∗ and an inner twisting 𝜓 : 𝐺∗ → 𝐺. Let ℎ ∈ 𝐻1 (Γ, 𝐺∗ad) be the class of 𝜎 ↦→ 𝜓−1𝜎(𝜓). Via the
Kottwitz homomorphism [Kot86, Theorem 1.2] the class h corresponds to a character 𝜈 ∈ 𝑋∗(𝑍 (𝐺sc)Γ).
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Choose an arbitrary Borel pair (𝑇sc, 𝐵sc) of 𝐺sc and let 2𝜌 ∈ 𝑋∗(𝑇sc) be the sum of the 𝐵sc-positive
coroots. The restriction map 𝑋∗(𝑇sc) → 𝑋∗(𝑍 (𝐺sc)) is surjective and we can lift 𝜈 to �𝜈 ∈ 𝑋∗(𝑇sc) and
form 〈2𝜌, �𝜈〉 ∈ Z. A different lift �𝜈 would differ by an element of 𝑋∗(𝑇ad), and since 𝜌 ∈ 𝑋∗(𝑇ad) we see
that the image of 〈2𝜌, �𝜈〉 in Z/2Z is independent of the choice of lift �𝜈. We thus write 〈2𝜌, 𝜈〉 ∈ Z/2Z.
Since any two Borel pairs in 𝐺sc are conjugate, 〈2𝜌, 𝜈〉 does not depend on the choice of (𝑇sc, 𝐵sc).

Lemma A.2.1.

𝑒(𝐺) = (−1) 〈2𝜌,𝜈〉 .

Proof. We fix Γ-invariant Borel pairs (𝑇ad, 𝐵ad) in 𝐺∗ad and (𝑇sc, 𝐵sc) in 𝐺sc. Then we have the identifi-
cation 𝑋∗(𝑇ad) = 𝑋∗(𝑇sc). Let (𝑇sc, 𝐵sc) be the preimage in 𝐺∗sc of (𝑇ad, 𝐵ad).

By definition, the Kottwitz sign is the image of h under

𝐻1(Γ, 𝐺∗ad)
𝛿 �� 𝐻2(Γ, 𝑍 (𝐺∗sc))

𝜌 �� 𝐻2 (Γ, {±1}) �� {±1},

where 𝜌 ∈ 𝑋∗(𝑇sc) is half the sum of the 𝐵sc-positive roots and its restriction to 𝑍 (𝐺∗sc) is independent
of the choice of (𝑇ad, 𝐵ad). By functoriality of the Tate–Nakayama pairing, this is the same as pairing
𝛿ℎ ∈ 𝐻2(Γ, 𝑍 (𝐺∗sc)) with 𝜌 ∈ 𝐻0(Γ, 𝑋∗(𝑍 (𝐺∗sc))). The canonical pairing 𝑋∗(𝑇ad) ⊗ 𝑋∗(𝑇sc) → Z
induces the perfect pairing 𝑋∗(𝑇sc)/𝑋∗(𝑇ad) ⊗ 𝑋∗(𝑇sc)/𝑋∗(𝑇ad) → Q/Z and hence the isomorphism
𝑋∗(𝑍 (𝐺∗sc)) → HomZ(𝑋∗(𝑍 (𝐺sc)), Q/Z) = 𝑍 (𝐺sc), where the last equality uses the exponential map.
Under this isomorphism, 𝜌 ∈ 𝑋∗(𝑍 (𝐺∗sc))Γ maps to the element (−1)2𝜌 ∈ 𝑍 (𝐺sc)Γ obtained by mapping
(−1) ∈ C× under 2𝜌 ∈ 𝑋∗(𝑇ad) = 𝑋∗(𝑇sc). The lemma now follows from [Kot86, Lemma 1.8]. �

B. Elementary Lemmas

B.1. Homological algebra

Lemma B.1.1. Let R be a discrete valuation ring with maximal ideal𝔪. Let 𝜅 = 𝑅/𝔪 be the residue field,
and let Λ = 𝑅/𝔪𝑘 for some 𝑘 > 0. For a Λ-module M, we have the dual module 𝑀∗ = HomΛ(𝑀,Λ)
and the natural morphisms 𝑀 → 𝑀∗∗ and (𝑀∗ ⊗ 𝑀) → (𝑀 ⊗ 𝑀∗)∗.

The morphism 𝑀 → 𝑀∗∗ is an isomorphism if and only if M is finitely generated.

Proof. For the ‘if’ direction of the first point, we note that the structure theorem for R-modules implies
that a finitely generated Λ-module is a direct sum of finitely many cyclic Λ-modules, and each cyclic
Λ-module is isomorphic to its own double dual.

Conversely, assume that 𝑀 → 𝑀∗∗ is an isomorphism. We induct on k. If 𝑘 = 1, then Λ is a field,
and this is well-known. For general k, we consider 𝑁 = 𝑀/𝔪𝑀 . The ring Λ is an Artinian serial ring,
and hence, it is injective as a module over itself. Thus, the dualization functor is exact, and we get a
commutative diagram

0 �� 𝔪𝑀 ��

��

𝑀 ��

�
��

𝑁 ��

��

0

0 �� (𝔪𝑀)∗∗ �� 𝑀∗∗ �� 𝑁∗∗ �� 0,

(B.1.1)

which shows that the right-most vertical map is surjective and the left-most vertical map is injective.
We have an isomorphism of Λ-modules 𝔪𝑚−1Λ→ 𝜅, from which we obtain

𝑁∗ = HomΛ(𝑁,Λ) = HomΛ (𝑁,𝔪𝑚−1Λ) � Hom𝜅 (𝑁, 𝜅).
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Thus, 𝑁∗∗ is also the double dual of N in the category of 𝜅-vector spaces, and it is easy to check that the
right-most vertical map in equation (B.1.1) is the canonical map in that category. Thus, this map is an
isomorphism, and N is fintely generated as a 𝜅-vector space.

By the Snake lemma, the left-most vertical arrow in equation (B.1.1) is an isomorphism. We can
apply the inductive hypothesis to the (Λ/𝔪𝑚−1)-module 𝔪𝑀 and conclude that it is finitely generated.
Thus, so is M. �

Lemma B.1.2. Let Λ be an arbitrary ring, and let 𝐷 (Λ) be the derived category of Λ-modules. For an
object M of 𝐷 (Λ), let D𝑀 = RHom(𝑀,Λ[0]).

1. Assume that Λ = 𝑅/𝔪𝑘 for a discrete valuation ring R with maximal ideal 𝔪. Then the natural
morphism 𝑀 → DD𝑀 is an isomorphism if and only if each 𝐻𝑖 (𝑀) is finitely generated.

2. For general Λ, the following are equivalent:
(a) The natural maps 𝑀 → DD𝑀 and D𝑀 ⊗ 𝑀 → D(𝑀 ⊗ D𝑀) are isomorphisms.
(b) The natural map 𝑀 ⊗ D𝑀 → RHom(𝑀, 𝑀) is an isomorphism.
(c) M is strongly dualizable; that is, for any object N, 𝑁 ⊗D𝑀 → RHom(𝑀, 𝑁) is an isomorphism.
(d) M is a compact object; that is, the functor 𝑁 ↦→ RHom(𝑀, 𝑁) commutes with colimits.
(e) M is a perfect complex; that is, M is isomorphic to a bounded complex of finitely generated

projective Λ-modules.

(Throughout, the ⊗ means derived tensor product.)

Proof. For the first statement, the self-injectivity of Λ implies that 𝐻𝑖 (D𝑀) � 𝐻−𝑖 (𝑀)∗ so that
𝐻𝑖 (DD𝑀) � 𝐻𝑖 (𝑀)∗∗. Therefore, 𝑀 → DD𝑀 is an isomorphism if and only if each 𝐻𝑖 (𝑀) →
𝐻𝑖 (𝑀)∗∗ is an isomorphism. By Lemma B.1.1, this is equivalent to each 𝐻𝑖 (𝑀) being finitely generated.

We now turn to the second statement. For (a) =⇒ (b), assume that 𝑀 → DD𝑀 and D𝑀 ⊗ 𝑀 →
D(𝑀 ⊗ D𝑀) are isomorphisms. Then RHom(𝑀, 𝑀) � RHom(𝑀, DD𝑀) � RHom(𝑀 ⊗ D𝑀,Λ) �
D(𝑀 ⊗ D𝑀) � D𝑀 ⊗ 𝑀 .

For (b) =⇒ (c), the identity map on M induces a morphism 𝜀 : Λ[0] → RHom(𝑀, 𝑀) �−→ 𝑀 ⊗D𝑀
(the coevaluation map). The required inverse to 𝑁 ⊗ D𝑀 → RHom(𝑀, 𝑁) is

RHom(𝑀, 𝑁) id⊗𝜀→ RHom(𝑀, 𝑁) ⊗ 𝑀 ⊗ D𝑀 → 𝑁 ⊗ D𝑀.

For (c) =⇒ (d), we use the fact that ⊗ commutes with colimits.
For (d) =⇒ (e), we use the fact that compact objects of 𝐷 (Λ) are perfect [Sta21, Tag 07LT].
Finally, for (e) implies (a), we can write M as a bounded complex of finitely generated projective

Λ-modules. Then duals and derived tensor products can be computed on the level of chain complexes.
We are reduced to showing, for finitely generated projective Λ-modules A and B, that 𝐴 → 𝐴∗∗ and
𝐴∗ ⊗ 𝐵→ (𝐴 ⊗ 𝐵∗)∗ are isomorphisms. After localizing on Λ, we may assume that A and B are free of
finite rank (since duals commute over direct sums), where these statements are easy to check. �

We thank Bhargav Bhatt for helping us with the above proof.

B.2. Sheaves on locally profinite sets

Let S be a locally profinite set and Λ a discrete ring. We have the ring 𝐶 (𝑆,Λ) of locally constant
functions on S, and the nonunital ring 𝐶𝑐 (𝑆,Λ) of locally constant compactly supported functions on
S. For each compact open subset 𝑈 ⊂ 𝑆, let 1𝑈 denote the characteristic function. Then 𝐶 (𝑈,Λ) is a
principal ideal of both 𝐶𝑐 (𝑆,Λ) and 𝐶 (𝑆,Λ) generated by 1𝑈 . Multiplication by 1𝑈 is a homomorphism
𝐶 (𝑆,Λ) → 𝐶 (𝑈,Λ) of rings with unity. In this way, every 𝐶 (𝑈,Λ)-module becomes a 𝐶 (𝑆,Λ)-module.
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Definition B.2.1. We call a 𝐶 (𝑆,Λ)-module M

1. smooth if it satisfies the following equivalent conditions
(a) The multiplication map 𝑀 ⊗𝐶 (𝑆,Λ) 𝐶𝑐 (𝑆,Λ) → 𝑀 is an isomorphism.
(b) The natural map lim−−→(1𝑈 · 𝑀) → 𝑀 is an isomorphism, where the colimit runs over the open

compact subsets 𝑈 ⊂ 𝑆 and the transition map 1𝑈 · 𝑀 → 1𝑉 · 𝑀 for 𝑈 ⊂ 𝑉 is given by the
natural inclusion.

2. complete if the natural map 𝑀 → lim←−−𝑈 (1𝑈 ·𝑀) is an isomorphism, where again U runs over the open
compact subsets of S and the transition map 1𝑈 · 𝑀 → 1𝑉 · 𝑀 for 𝑉 ⊂ 𝑈 is multiplication by 1𝑉 .

Lemma B.2.2. Let 𝑉 ⊂ 𝑆 be compact open, and let M be any 𝐶 (𝑆,Λ)-module. Then

1. 1𝑉 · 𝑀 is a submodule of lim−−→𝑈 (1𝑈 · 𝑀) and equals 1𝑉 · lim−−→(1𝑈 · 𝑀).
2. 1𝑉 · 𝑀 is a submodule of lim←−−𝑈 (1𝑈 · 𝑀) and equals 1𝑉 · lim←−−(1𝑈 · 𝑀).

Lemma B.2.3. 1. The functor 𝑀 ↦→ 𝑀𝑠 := lim−−→(1𝑈 · 𝑀) is a projector onto the category of smooth
modules.

2. The functor 𝑀 ↦→ 𝑀𝑐 := lim←−−(1𝑈 · 𝑀) is a projector onto the category of complete modules.
3. The two functors give mutually inverse equivalences of categories between the categories of smooth

and complete modules.

Let B the set of open compact subsets of S. Then B is a basis for the topology of S and is closed under
taking finite intersections and finite unions. Restriction gives an equivalence between the category of
sheaves on S and the category of sheaves on B. Define 𝑅(𝑈) = 𝐶 (𝑈,Λ). This is a sheaf of rings on S.

Let F be an R-module sheaf on S. For 𝑈 ∈ B we extend the 𝑅(𝑈)-module structure on F(𝑈) to
a 𝐶 (𝑆,Λ)-module structure as remarked above. Then the restriction map F(𝑆) → F(𝑈) becomes a
morphism of 𝐶 (𝑆,Λ)-modules.

Lemma B.2.4. 1. For any 𝑈 ∈ B the restriction map F(𝑆) → F(𝑈) is surjective and its restriction to
1𝑈 · F(𝑆) is an isomorphism 1𝑈 · F(𝑆) → F(𝑈).

2. We have F(𝑆) = lim←−−𝑈 F(𝑈), where the transition maps are the restriction maps.

Let M be an 𝐶 (𝑆,Λ)-module. Let F𝑀 (𝑈) = 𝑅(𝑈)𝑀 = 1𝑈𝑀 . This is a 𝐶 (𝑆,Λ)-submodule of M.
Given 𝑉, 𝑈 ∈ B with 𝑉 ⊂ 𝑈 we have the map F𝑀 (𝑈) → F𝑀 (𝑉) defined by multiplication by 1𝑉 . In
this way, F𝑀 becomes an R-module sheaf.

Let 𝑓 : 𝑀 → 𝑁 be a morphism of 𝐶 (𝑆,Λ)-modules. We define for each U the morphism 𝑓𝑈 :
F𝑀 (𝑈) → F𝑁 (𝑈) simply by restricting f toF𝑀 (𝑈). One checks immediately that ( 𝑓𝑈 )𝑈 is a morphism
of sheaves of R-modules. Therefore, we obtain a functor from the category of 𝐶 (𝑆,Λ)-modules to the
category of sheaves of R-modules.

Given a sheaf F on S, we can define the smooth module 𝑀𝑠
F and the complete module 𝑀𝑐

F by

𝑀𝑠
F = lim−−→

𝑈

F(𝑈) 𝑀𝑐
F = lim←−−

𝑈

F(𝑈),

where the limit is taken over the restriction maps, and the colimit is taken over their sections given by
Lemma B.2.4, and in both cases U runs over B. Conversely, given any 𝐶 (𝑆,Λ)-module M, we have the
sheaf F𝑀 .

Lemma B.2.5. These functors give mutually inverse equivalences of categories from the category of
smooth (resp., complete) 𝐶 (𝑆,Λ)-modules to the category of R-module sheaves. These equivalences
commute with the equivalence between the categories of smooth and complete modules. Furthermore,
F𝑀 (𝑆) = 𝑀𝑐 .
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C. Some representation theory

Let G be a reductive group over a finite extension 𝐹/Q𝑝 . For a parabolic subgroup P of G, we write 𝑖𝐺𝑃
for the functor of normalized parabolic induction and 𝑟𝑃𝐺 for the normalized Jacquet module functor.

Fix a minimal parabolic 𝑃0 = 𝑀0𝑈0. A parabolic subgroup P is called standard if it contains 𝑃0.
There is a unique Levi factor M of P that contains 𝑀0, and conversely M determines P. In that situation,
we may write 𝑖𝐺𝑀 and 𝑟𝑀𝐺 in place of 𝑖𝐺𝑃 and 𝑟𝑃𝐺 .

C.1. Nonelliptic representations

Recall that a finite-length (virtual) 𝐺 (𝐹)-representation is nonelliptic if its Harish–Chandra character
vanishes on all elliptic elements. Our goal in this section is the following result.

Theorem C.1.1. Let 𝜋 ∈ Groth(𝐺 (𝐹)) be any finite-length virtual 𝐺 (𝐹)-representation with C-
coefficients, or with Qℓ-coefficients. Then 𝜋 is nonelliptic if and only if it can be expressed as a Q-linear
virtual combination of representations induced from proper parabolic subgroups of G.

When 𝐺 (𝐹) has compact center, this is (a weaker version of) a classical result of Kazhdan [Kaz86].
The general statement seems to be well-known to experts, but we were unable to find an explicit
formulation in the literature.

Proof. It suffices to treat the case of complex coefficients. Parabolic inductions are nonelliptic by van
Dijk’s formula [vD72], so the ‘if’ direction is clear. We will deduce the ‘only if’ direction from [Dat00];
in what follows, we freely use various notations from loc. cit., in particular writing ℛ(𝐺) for the
Grothendieck group of finite length smooth C-representations of 𝐺 (𝐹).

Suppose that 𝜋 ∈ ℛ(𝐺) is nonelliptic. Following the notation of [Dat00], pick any 𝑓 ∈ℋ𝑑 (𝐺) (𝐺).
Then all regular semisimple nonelliptic orbital integrals of f vanish by [Dat00, Theorem 3.2.iii], so
tr( 𝑓 |𝜋) = 0 by our assumption on 𝜋 and the Weyl integration formula. Therefore, 𝜋 ∈ ℋ

𝑑 (𝐺) (𝐺)⊥,
so 𝜋 ∈ ℛC𝑑 (𝐺) (𝐺) by [Dat00, Theorem 3.2.ii]. Now applying [Dat00, Proposition 2.5.i] to the Hopf
system 𝒜(−) = ℛ(−) ⊗ Q with 𝑑 = 𝑑 (𝐺), we see that 𝜋 ∈ ℛ(𝐺) ⊗ Q is annihilated by the operator
1 −

∑
𝑑 (𝑀 )>𝑑 (𝐺) 𝑐𝑑 (𝑀)𝑖𝐺𝑀 𝑟𝑀𝐺 for some rational numbers 𝑐𝑑 (𝑀). Therefore,

𝜋 =
∑

𝑑 (𝑀 )>𝑑 (𝐺)
𝑐𝑑 (𝑀)𝑖𝐺𝑀 𝑟𝑀𝐺 (𝜋),

and the right-hand side is a Q-linear virtual combination of proper parabolic inductions, giving the
result. �

C.2. Integral representations and parabolic inductions

Fix a prime ℓ ≠ 𝑝. As usual, let Groth(𝐺 (𝐹)) be the Grothendieck group of finite-length smooth Qℓ-
representations of 𝐺 (𝐹).

Definition C.2.1. Let 𝜋 be an admissible smooth Qℓ-representation of 𝐺 (𝐹). We say 𝜋 admits a
Zℓ-lattice if there exists an admissible smooth ℓ-torsion-free Zℓ [𝐺 (𝐹)]-module L together with an
isomorphism 𝐿 [1/ℓ] � 𝜋.

Recall that our convention on the meaning of admissible is slightly nonstandard, so in particular
any such L has the property that 𝐿𝐾 is a finite free Zℓ-module for all open compact pro-p subgroups
𝐾 ⊂ 𝐺 (𝐹), and whence L is a free Zℓ-module. The existence of a Zℓ-lattice in our sense implies, but is
strictly stronger than, the existence of a ‘Zℓ𝐺 (𝐹)-réseau’ in the sense of [Vig96]. Note also that if 𝜋 is a
finite-length admissible representation admitting a Zℓ-lattice, then any such lattice is finitely generated
as a Zℓ [𝐺 (𝐹)]-module by [Vig04].

The goal of this section is to prove the following result.

https://doi.org/10.1017/fmp.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.7


76 David Hansen et al.

Proposition C.2.2. The group Groth(𝐺 (𝐹)) is generated by representations of the form 𝑖𝐺𝑀 (𝜎 ⊗ 𝜓),
where 𝑖𝐺𝑀 (−) is the normalized parabolic induction functor associated with a standard Levi subgroup
M, 𝜓 is an unramified character of 𝑀 (𝐹), and 𝜎 is an irreducible admissible Qℓ-representation of
𝑀 (𝐹) admitting a Zℓ-lattice.

We will deduce this from Dat’s theory of 𝜈-tempered representations [Dat05]. In particular, we will
apply the theory from [Dat05] with K = Qℓ or with K = 𝐸 ⊂ Qℓ a finite extension of Qℓ , equipped
with the usual norms, so 𝜈 is a positive multiple of the usual ℓ-adic valuation.

Lemma C.2.3. Let 𝜋 be any irreducible smooth Qℓ-representation of 𝐺 (𝐹). If 𝜋 is 𝜈-tempered, then 𝜋
admits a Zℓ-lattice.

Proof. Suppose given 𝜋 as in the lemma. By [Vig96, II.4.7], we may choose some E and some admissible
E-representation 𝜋𝐸 together with an isomorphism 𝜋𝐸 ⊗𝐸 Qℓ = 𝜋. By definition, 𝜋 is 𝜈-tempered if
and only if 𝜋𝐸 is 𝜈-tempered, [Dat05, Lemma 3.3]. Since 𝜋𝐸 is 𝜈-tempered, it admits an O𝐸 -lattice L
by [Dat05, Proposition 6.3]. Then 𝐿 ⊗O𝐸 Zℓ is the desired Zℓ-lattice in 𝜋. �

We will now freely use all the notation and results of [Dat05, §2-3], with K = Qℓ . A triple (𝑀, 𝜎, 𝜓)
consisting of a standard Levi subgroup 𝑀 ⊂ 𝐺, a 𝜈-tempered irreducible representation 𝜎 of 𝑀 (𝐹)
and an unramified character 𝜓 of 𝑀 (𝐹) with −𝜈(𝜓) ∈ (𝔞𝑃)∗,+ is called a Langlands triple. The
corresponding representation 𝑖𝐺𝑃 (𝜎 ⊗ 𝜓) has a unique irreducible quotient, which we will denote by
𝑗𝐺𝑃 (𝜎 ⊗ 𝜓). Every irreducible smooth representation 𝜋 of 𝐺 (𝐹) is isomorphic to 𝑗𝐺𝑃 (𝜎 ⊗ 𝜓) for a
(essentially) unique Langlands triple, cf. [Dat05, Theorem 3.11]. The uniqueness of the triple (𝑀, 𝜎, 𝜓)
with a given irreducible quotient 𝜋 allows us to index the representation 𝑖𝐺𝑃 (𝜎 ⊗ 𝜓) by 𝜋. We shall write
𝐼 (𝜋) for this representation and refer to it as the standard representation associated with 𝜋. Note that
there is a natural surjection 𝐼 (𝜋) → 𝜋.

On the other hand, by [Dat05, Theorem 3.11.ii], 𝜆𝜋 := −𝜈(𝜓) ∈ 𝔞∗𝑀0
is also a well-defined invariant

of 𝜋. Note that 𝜋 is 𝜈-tempered if and only if 𝜆𝜋 = 0 and that M can be read off from 𝜆𝜋 . The following
key lemma is the analogue of [BW00, Lemma XI.2.13] in our setting.

Lemma C.2.4. Let 𝜋 be any irreducible representation. Write 𝜋 = 𝑗𝐺𝑃 (𝜎⊗𝜓), and let 𝜋′ be any nonzero
irreducible subquotient of 𝐼 (𝜋) = 𝑖𝐺𝑀 (𝜎 ⊗ 𝜓). Then 𝜆𝜋′ ≤ 𝜆𝜋 in the usual partial ordering on 𝔞∗𝑀0

, and
𝜆𝜋′ < 𝜆𝜋 if 𝜋′ is a subquotient of ker(𝐼 (𝜋) → 𝜋).

Proof. After twisting, we may assume 𝜋 and 𝜋′ have integral central characters. Write 𝜋′ = 𝑗𝐺𝑄 (𝜎
′ ⊗

𝜓 ′) for some Langlands triple (𝐿, 𝜎′, 𝜓 ′). By the proof of [Dat05, Theorem 3.11.i], 𝜆𝜋′ occurs in
−𝜈(E(𝐴𝐿 , 𝑟𝑄𝐺 (𝜋

′))), so the result now follows from the subsequent proposition. �

Proposition C.2.5. Let 𝑀𝑈 = 𝑃 and 𝐿𝑁 = 𝑄 be standard parabolic subgroups of G. Let 𝜎 be a 𝜈-
tempered irreducible representation of 𝑀 (𝐹), and 𝜓 : 𝑀 (𝐹) → Qℓ

×
an unramified character with

𝜇 = −𝜈(𝜓) ∈ (𝔞𝐺𝑃 )
∗,+. Let 𝜋′ be a subquotient of 𝑖𝐺𝑃 (𝜎 ⊗ 𝜓), and let 𝜇′ ∈ −𝜈(E(𝐴𝐿 , 𝑟𝑄𝐺 (𝜋

′))). Then

1. 𝜇′ ≤ 𝜇.
2. If 𝜋′ is a subquotient of ker(𝑖𝐺𝑃 (𝜎 ⊗ 𝜓) → 𝑗𝐺𝑃 (𝜎 ⊗ 𝜓)), then 𝜇′ < 𝜇.

Proof. The exponents of 𝜋′ are a subset of the exponents of 𝑟𝑄𝐺 (𝑖
𝐺
𝑃 (𝜎 ⊗ 𝜓)). These were analyzed in

the proof of [Dat05, Lemma 3.7], where it was shown that if 𝜓 ′ is such an exponent and 𝜇′ = −𝜈(𝜓 ′) is
such an exponent, then

𝜇 − 𝜇′ = 𝜇 − [𝜇]𝐺𝐿 + [𝜇 − 𝑤−1𝜇]𝐺𝐿 − +(𝔞𝐺𝑄 )
∗

for some 𝑤 ∈ 𝑊𝑀 \𝑊/𝑊𝐿 . It was moreover shown that 𝜇 − [𝜇]𝐺𝐿 and [𝜇 − 𝑤−1𝜇]𝐺𝐿 belong to +(𝔞𝐺𝑀 )∗,
which shows 𝜇 − 𝜇′ ≥ 0, hence (1).

https://doi.org/10.1017/fmp.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.7


Forum of Mathematics, Pi 77

For (2), we may replace 𝜋′ with ker(𝑖𝐺𝑃 (𝜎 ⊗ 𝜓) → 𝑗𝐺𝑃 (𝜎 ⊗ 𝜓)) since the exponents of the former
are again a subset of the exponents of the latter. We assume by way of contradiction that 𝜇 = 𝜇′. We
have 𝜇 ∈ (𝔞𝐺𝑃 )

∗,+ and 𝜇′ ∈ (𝔞𝐺𝐿 )
∗, so 𝜇′ = 𝜇 implies that the intersection (𝔞𝐺𝑃 )

∗ ∩ (𝔞𝐺𝐿 )
∗ is nonempty.

Since (𝔞𝐺𝑃 )
∗,+ is an open subset of (𝔞𝐺𝑀 )

∗, we see that (𝔞𝐺𝑀 )
∗ ⊂ (𝔞𝐺𝐿 )

∗, hence 𝑄 ⊂ 𝑃. According to the
formula 𝑟𝑄𝐺 (𝜋

′) = 𝑟𝑄∩𝑀𝑀 (𝑟𝑃𝐺 (𝜋
′)), 𝜇′ ∈ −𝜈(E(𝐴𝑀 , 𝑟𝑃𝐺 (𝜋

′)).
By construction of the Langlands quotient 𝑗𝐺𝑃 (𝜎 ⊗ 𝜓), we have the exact sequence

0→ 𝜋′ → 𝑖𝐺𝑃 (𝜎 ⊗ 𝜓) → 𝑖𝐺
𝑃
(𝜎 ⊗ 𝜓),

where the map between the two parabolic inductions is the intertwining operator 𝐽𝑃,𝑃 of [Dat05, Lemma
3.7]. We recall that this intertwining operator was obtained via Frobenius reciprocity from the unique
(up to scalar) element of Hom𝑀 (𝑟𝑃𝐺 (𝑖

𝐺
𝑃 (𝜎 ⊗ 𝜓)), 𝜎 ⊗ 𝜓). This element is the unique retraction of the

natural embedding of 𝜎 ⊗ 𝜓 into 𝑟𝑃𝐺 (𝑖
𝐺
𝑃 (𝜎 ⊗ 𝜓)).

We can describe this element in a slightly different way that is more suitable for our purposes. The
representation 𝑟𝑃𝐺 (𝑖

𝐺
𝑃 (𝜎 ⊗ 𝜓)) has a filtration indexed by elements of 𝑊𝑀 \𝑊𝐺/𝑊𝑀 (strictly speaking,

one has to choose a total order that refines the Bruhat order), and the natural embedding of 𝜎 ⊗ 𝜓

into 𝑟𝑃𝐺 (𝑖
𝐺
𝑃 (𝜎 ⊗ 𝜓)) identifies 𝜎 ⊗ 𝜓 with the beginning part of this filtration, indexed by 𝑤 = 1. It is

shown in equation (3.9) of the proof of [Dat05, Lemma 3.7] that, for any exponent 𝜓 ′′ of a subqoutient
corresponding to 𝑤 ≠ 1, 𝜇′′ = −𝜈(𝜓 ′′) satisfies 𝜇′′ < 𝜇. On the other hand, all exponents of 𝜎 ⊗𝜓 have
image 𝜇 under −𝜈. Therefore, the retraction 𝑟𝑃𝐺 (𝑖

𝐺
𝑃 (𝜎 ⊗ 𝜓)) → 𝜎 ⊗ 𝜓 is simply the projection onto the

𝜇-direct summand of the the exponent decomposition of 𝑟𝑃𝐺 (𝑖
𝐺
𝑃 (𝜎 ⊗ 𝜓)).

Applying 𝑟𝑃𝐺 to the above displayed exact sequence, we obtain the exact sequence

0→ 𝑟𝑃𝐺 (𝜋
′) → 𝑟𝑃𝐺 (𝑖

𝐺
𝑃 (𝜎 ⊗ 𝜓)) → 𝑟𝑃𝐺 (𝑖

𝐺

𝑃
(𝜎 ⊗ 𝜓)).

Therefore, 𝑟𝑃𝐺 (𝜋
′), being the kernel of 𝑟𝑃𝐺 (𝑖

𝐺
𝑃 (𝜎 ⊗ 𝜓)) → 𝑟𝑃𝐺 (𝑖

𝐺

𝑃
(𝜎 ⊗ 𝜓)), is contained in the kernel

of the composition of this map with the evaluation-at-1 map 𝑟𝑃𝐺 (𝑖
𝐺

𝑃
(𝜎 ⊗ 𝜓)) → 𝜎 ⊗ 𝜓. But that

composition is, by construction of 𝐽𝑃,𝑃 via Frobenius reciprocity, equal to the projection 𝑟𝑃𝐺 (𝑖
𝐺
𝑃 (𝜎 ⊗

𝜓)) → (𝑟𝑃𝐺 (𝑖
𝐺
𝑃 (𝜎 ⊗ 𝜓)))𝜇. Thus, the exponents of the kernel of that projection are those exponents of

𝑟𝑃𝐺 (𝑖
𝐺
𝑃 (𝜎⊗𝜓)) whose image 𝜇′′ under −𝜈 is not equal to 𝜇. By what was said in the previous paragraph,

these satisfy 𝜇′′ < 𝜇. �

Proof of Proposition C.2.2. Fix a point 𝜃 in the Bernstein variety for 𝐺 (𝐹), and let Irr(𝐺 (𝐹))𝜃 ⊂
Irr(𝐺 (𝐹)) be the finite set of irreducible representations with cuspidal support 𝜃. Let

Groth(𝐺 (𝐹))𝜃 ⊂ Groth(𝐺 (𝐹))

be the subgroup generated by Irr(𝐺 (𝐹))𝜃 , so

Groth(𝐺 (𝐹)) = ⊕𝜃 Groth(𝐺 (𝐹))𝜃 .

By Lemma C.2.3, it suffices to prove that Groth(𝐺 (𝐹))𝜃 is generated by representations 𝑖𝐺𝑀 (𝜎 ⊗ 𝜓)
for Langlands triples (𝑀, 𝜎, 𝜓), i.e., by standard representations. Note that 𝜋 ∈ Irr(𝐺 (𝐹))𝜃 implies
𝐼 (𝜋) ∈ Groth(𝐺 (𝐹))𝜃 , cf. [BDK86, Proposition 2.4]. We will prove the finer result that the standard
representations 𝐼 (𝜋), 𝜋 ∈ Irr(𝐺 (𝐹))𝜃 give a basis for Groth(𝐺 (𝐹))𝜃 .

Set

𝑆 = {𝜆𝜋 , 𝜋 ∈ Irr(𝐺 (𝐹))𝜃 } ⊂ 𝔞∗𝑀0
.
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Note that S is a finite set and inherits a natural partial order from the partial order on 𝔞∗𝑀0
. Pick any

𝜋 ∈ Irr(𝐺 (𝐹))𝜃 . If 𝜆𝜋 is minimal in S, then the natural map 𝐼 (𝜋) → 𝜋 is an isomorphism by Lemma
C.2.4. In general, if 𝜆𝜋 is not minimal in S, then by Lemma C.2.4 and induction on S, we may assume
that ker(𝐼 (𝜋) → 𝜋) is a Z-linear combination of standard representations 𝐼 (𝜋′), 𝜋′ ∈ Irr(𝐺 (𝐹))𝜃 . Then
also 𝜋 = 𝐼 (𝜋) −ker(𝐼 (𝜋) → 𝜋) is a Z-linear combination of standard representations, giving the desired
result. �
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