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Background: Exaggerated cardiovascular reactivity
to stressful stimuli may be a risk factor for the
development of hypertension. The genetic influence
on blood pressure (BP) reactivity to stress and its
control mechanisms has been receiving considerable
support. This study aims at examining the heritability
of BP and its intermediate hemodynamic phenotypes
to acute stress in a homogeneous Arab population.
Methods: Parameters were computed from continu-
ous BP, electrocardiography and impedance
cardiography measurements, during rest, word con-
flict (WCT) and cold pressor (CPT) tests. Heritability
estimates (h?) were obtained using the variance com-
ponents-based approach implemented in the SOLAR
software package. Results: Reactivity scores for WCT
and CPT increased significantly (P < .05) for systolic
(SBP), diastolic (DBP), heart rate (HR), cardiac output
(CO), and total peripheral resistance (TPR). They
decreased significantly (P < .05) for stroke volume
(SV), left ventricular ejection time (LVET), end diastolic
(EDI) and cardiac contractility (IC) indices. Univariate
analysis detected heritability estimates that ranged
from 0.19-0.35 for rest, 0.002-0.40 for WCT and
0.08-0.35 for CPT. Conclusion: In this unique cohort,
resting as well as challenged cardiovascular pheno-
types are significantly influenced by additive genetic
effects. Heritability estimates for resting phenotypes
are in a relatively narrow range, while h? for their reac-
tivity is somewhat broader with lower estimates.
Further analyses of this study may offer important
opportunities for gene finding in hypertension. What is
Known About the Topic: (1) cardiovascular reactivity to
stress predicts cardiovascular disease; (2) genetic sus-
ceptibility plays an important role in stress reactivity.
Family studies using the cold pressure test reported
significant heritability for blood pressure. What this
Study Adds: (1) this cohort is from five highly consan-
guineous isolated Arab pedigrees with genetically
verified genealogical records and environmental
homogeneity; (2) This is the first study to estimate
heritability of detailed intermediate hemodynamic phe-
notypes that make up normal blood pressure.
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Stress reactivity, defined as an exaggerated cardiovascu-
lar response (A) to a behavioral or psychological
challenge, may play a role as a marker or mechanism in
the prediction and pathogenesis of essential hyperten-
sion and cardiovascular disease (Bacon et al., 2006;
Manuck et al., 1996). The concept of stress reactivity
has a long history (Folkow, 1987; Obrist et al., 1974);
however, the realization that genetic susceptibility plays
an important role in stress reactivity is more recent
(Light, 2001; Snieder et al., 2002; Treiber et al., 2003).
Characterizing genetic influences of blood pressure
reactivity to a specific short-term environmental stres-
sor came largely from twin cohorts and from a few
family studies, results of which varied across studies
and across tasks within the same study. These differ-
ences were attributed to study design, cohort size and
analytical methods (Turner et al., 1992). Family studies
using the cold pressor test (CPT), reported significant
heritability (h?) for systolic BP reactivity (ACPT SBP;
Choh et al., 2005) and for A CPT SBP and DBP
(Mitchell et al., 2008). Twin studies using mental stress
tests reported significant h? for ASBP but not for A DBP
(Busjahn et al., 1996; de Geus et al., 2007). Studies
using stress to expose genetic variance focused mainly
on the reactivity of BP in normal and /or probands of
hypertensive subjects (Gottesman & Gould, 2003;
Hassan et al., 2001; Rice et al., 1999). As BP itself is a
complex phenotype controlled by several regulatory
mechanisms, it was proposed that the study of interme-
diate traits, as compared to the final disease state, may
have several advantages for the genetic dissection of
complex diseases such as hypertension (Sing et al.,
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2003). In the Georgia Cardiovascular Twin Study
(GCTS) of European (EA) and African—American (AA)
youths, h? of hemodynamic intermediate phenotypes
was estimated twice after an interval of 4 years (Kupper
et al., 2006). However, using acute mental stress in the
same cohort of the GCTS, Snieder et al. (2005) showed
an inconsistent pattern of reactivity h? of the same
hemodynamic parameters to different stressors within
the same ethnic group and across ethnic groups.

The main aim of the first phase of Oman Family
Study (Hassan et al., 2005) was to determine genetic
influences on the response of BP and its intermediate
phenotypes to acute mental and physical stress in large
homogeneous isolated pedigrees. Detailed h? of ambu-
latory BP, anthropometric and metabolic phenotypes
were reported earlier (Bayoumi et al., 2007). Here we
report h? for resting and for cold pressor and mental
stress reactivity of beat-to-beat hemodynamic pheno-

types.

Study Area and Pedigrees

Five large, extended and highly consanguineous fami-
lies, each living in a separate village, were selected
within a perimeter of 20 km around Nizwa (Table 1).
The number of subjects interviewed and found eligible
for the study in the five pedigrees was 327, 160, 230,
279 and 281, totaling 1277 which represented roughly
10-15% of the total number of individuals in these 5
pedigrees. They were 16-80 years old and all volun-
tarily took part in the study, appeared healthy and had
no clinical complaints as administered in the question-
naire. First cousin marriages represent > 50% of all
marriages (Hassan et al., 2005; Sulaiman et al., 2001).
Polygamy is widely practiced with some men marrying
up to 4 wives. The consequent rapid population
growth produced these fairly young isolates of 7-12
generations each. A more detailed description of the
stratification of the cohort and the Oman Family
study design can be found in earlier report (Bayoumi
et al., 2007; Hassan et al., 2005). Prevalence of hyper-
tension was 22% (Males 22%, Females 18%) with
2% of both genders on medication. Exclusion criteria
were pregnancy, malignancy, renal failure, heart
failure and myocardial infarction/stroke within 6
months. A written and signed or thumb print rubber-
stamped consent was obtained from each subject. The
Study was approved by the Medical Research and
Ethics Committee of Sultan Qaboos University.

Phenotype Definitions

Anthropometric Measurements

After explanation, a 20-minute questionnaire was then
administered by trained male and female volunteers
from each village. Body mass index and waist circum-
ference were measured using standard methods. Body
fat percentage (Fat%) was estimated using electrical
impedance (Tanita, Japan).

Hemodynamic Measurements

Hemodynamic measurements were compiled using
direct and derived signals computed within the Task
Force Monitor (TFM, CNSystems, Austria). Non-
derived direct signals of the TFM were HR obtained
from lead II of a 6-lead electrocardiogram (ECG),
beat-to-beat BP and the impedance signal. Beat-to-
beat BP was acquired by the vascular unloading
technique. Finger cuff readings were automatically
counterchecked and corrected every minute by the
oscillometric BP measurements recorded from the
contra lateral upper arm (Gratze et al., 2005; Skrabal
et al., 2004). The TFM displayed beat-by-beat hemo-
dynamic parameters and their average values in
graphical and digital format.

Impedance Cardiography

Derived hemodynamic parameters were computed from
continuous BP, HR and the impedance signal (Fortin et
al., 2001; Gratze et al., 2005; Skrabal et al., 2004).

The impedance signal was acquired from a small
constant sinusoidal alternating current passing
through the thorax between an electrode placed
around the neck and another placed at the lower end
of the sternum. The voltage between the electrodes is
proportional to the thorax impedance. Left ventricular
ejection time (LVET msec), the time between points ‘B’
and ‘X’ (opening and closure of aortic valve, respec-
tively) of the impedance signal, was considered in
further calculations of hemodynamic parameters using
the standard Kubisek’s formula (Kubicek et al., 1974).
Hemodynamic parameters calculated and indexed for
body surface area were stroke volume and index (SV,
SI), cardiac output and index ( CO,CI), total periph-
eral resistance and index (TPR, TPRI), end-diastolic
index (EDI) and index of cardiac contractility( IC).

Laboratory Stress Tests

Word Conflict Test (WCT)

The word conflict test involves sensory rejection of
names of a spectrum of colors but written in colors
different from that of the color itself (Stroop, 1935).
The right cerebral hemisphere recognizes the colors
and the left names the word. The verbal narration of
the conflict of words and colors forms the basis of the
WCT. This creates cerebral confusion and invokes car-
diovascular responses through central cerebral
stimulation (Fauvel et al., 1996).

The original English names of colors were trans-
lated into Arabic using the same incongruent colors
and were displayed on a monitor. The observer
selected the words at a constant speed of one word/sec
for a period of 3 minutes. The subject was asked to
vocalize the color of the word and not read the word.

Cold Pressor Test (CPT)

The CPT is based on stimulation of pain receptors
which induces cardiovascular reactions (Wolff, 1951).
The left foot was immersed in cold water with crushed
ice (4°C) up to the ankle joint for 3 minutes. Foot
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rather than hand immersion in this study was because
both hands were used for BP measurements (Houben
et al., 1982). All but 5 subjects completed the CPT
protocol of 3 minutes, due to intolerable pain.

Experimental Protocol

After an overnight fast subjects reported to the field
research centre at 07:00 hours. After explaining the
procedure, the TFM electrodes were attached and sub-
jects were made to rest supine for 10 minutes on a
comfortable bed in a quiet room with a temperature
of 24-26°C, Recordings were then acquired in the
supine position as follows: 10 minutes of rest, 3
minutes of WCT, 3 minutes of recovery or until
recording returned to baseline, and 3 minutes of CPT.
Tests were administered by the same male and female
research assistants for the respective gender through-
out the study.

Statistics

Beat-to-beat measurements were averaged for rest and
stress periods. Reactivity (A) was the difference
between average resting and average stress values.

Descriptive and comparative analyses were per-
formed using SPSS package (version 13.0). Parametric
data were expressed as means + SD. Probability value
of < .05 was considered statistically significant.

The Student’s paired ¢ test was used to calculate
differences between hemodynamic parameters at rest
and during stress conditions and their gender differ-
ences. Pearson’s correlation test was used to correlate

age, AWCT and ACPT.

Heritability Analysis
Table 1 shows the total number of relative pairs used
in analysis. The large number of relative pairs of
25104 is due to the very high degree of inbreeding and
complexity of the pedigrees. Heritability for all hemo-
dynamic parameters during rest and reactivity was
computed using the maximum likelihood variance
decomposition method implemented in SOLAR 2.1.4
(Almasy & Blangero, 1998). The covariance matrix
for each continuously distributed quantitative trait in
a pedigree is given by:

Q=200 + 10,
Where @ is the n x n matrix of kinship coefficients
that structures 62, the variance due to additive genetic
effects; and I is the identity matrix of order n that
serves as the structuring matrix for 6%, which is the
variance due to unmeasured, non-genetic factors.
Heritability, defined as the proportion of the pheno-
typic variance attributable to additive genetic effects,
is estimated as:

h*=0o%./o%,
where 62 is the additive genetic variance and 62, is the
phenotypic variance.

The trait mean, and mean effects of age, sex, age?,
age*sex and age?*sex were also simultaneously esti-

. _________________________________________________________________________________|
Table 1

Relative Pairs in the Five Pedigrees

Relationships Size
Pedigree members 1851
Parent-offspring 2482
Siblings 1278
Grandparent-grandchild 3774
Avuncular 2815
Half-siblings 322
Grand avuncular 2928
Half avuncular 918
1st cousins 2610
1st cousins, 1 removed 932
Half 1st cousins, 1 removed 441
2nd cousins 4363
Other relationship 390
Total 25104

mated. Significance of »? was determined using likeli-
hood ratio test. Because of intermarriages between the
5 pedigrees SOLAR considered all subjects in the
cohort as one family. The trait mean, and mean effects
of age, sex, age?, age®sex and age?*sex were also
simultaneously estimated for heritability of resting and
reactivity values. Significance of > was determined
using likelihood ratio test.

Results

Table 2 shows anthropometric and average beat-to-
beat values of cardiac and hemodynamic parameters
during rest, WCT and CPT interventions. It is impor-
tant to note the younger age and the smaller number
of participants during WCT which is due to illiteracy,
especially of older females. Reactivity during WCT
and CPT is shown as a change score AWCT and
ACPT, respectively. Significant increases in SBP, DBP
and MBP during WCT and CPT mirror the increases
of the BP components; HR, CO and TPR. Conversely,
cardiac parameters; SV, SI, LVET, EDI and IC were
significantly reduced during both tests.

Table 3 shows gender differences of the WCT and
CPT groups. There were significant gender difference
between AWCT and ACPT groups for fat%, HR, SBP,
CO (P <0.05) and no differences for TPR and IC.

Correlations between AWCT and ACPT for HR,
SBP, DBP, MBP, CO, CI, TPR, TPRI and LVET were
weak (7 = 0.30-0.40; P = .0001) while correlations for
SV, SI, EDI and IC were moderate (r = 0.47-0.49; P =
.0001). Except for BP which was not significant, all
AWCT and ACPT hemodynamic phenotypes were
weakly correlated with age (r = 0.06-0.17, P < .05).

Table 4 shows the univariate results of the heri-
tability estimates, significance levels and covariate
effects of the hemodynamic phenotypes during rest,
AWCT and ACPT. With the exception of a few, signifi-
cant (P < .05) h?during rest, AWCT and ACPT were
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Table 2

Anthropometric and Hemodynamic Parameters at Rest, WCT, CPT and Their Respective Reactivity Scores (WCT, CPT)

Variable Rest N =683 WCT A Rest CPT A
N =683 WCT N=1277 N=1277 CPT
Age (years) 23.2(6.7)*$ 33.5(15.8)
Waist (cm) 74.9(12.5) — 80.9 (14.4) —
BMI (kg/m?) 235(5.1) — 25.0(5.3) —
Body fat (%) 19.6 (9.8) — 23.4(10.5) —
HR (beats/min) 72.0(11.1) 79.0 (12.5)** 1.6 71.0(10.7) 77.0(12.1)* 6.2
SBP (mmHg) 112.0(14.7) 120.0 (15.3)** 8.7 112.(15.2) 127.0 (17.30)*** 14.8
DBP (mmHg) 70.0 (11.8) 77.0 (12.7)** 7.0 71.0(12.1) 84.0 (13.9)*** 13.2
MBP (mmHg) 82.0(13.1) 90.0 (13.9)** 8.1 83.0(13.2) 98.0 (15.2)*** 14.7
SV (ml) 82.6 (16.8) 80.9 (16.3)** -1.6 75.1(18.4) 72.2(16.9)*** -29
S| (ml/beat/m?) 51.4(10.2) 50.3 (9.4)** -1.1 46.5(11.4) 44.6 (10.1)*** -1.9
CO (L/min) 5.9(1.4) 6.4 (1.6)** 0.5 5.3(1.4) 5.5 (1.4)*** 0.2
Cl (L/min/m?) 3.7(0.9) 4.0 (1.0)** 0.3 3.3(0.9) 3.4(0.9)*** 0.1
TPR, (dyne*s*/cm?) 1130.5 (302.8) 1150.0 (303.8)** 18.3 1297.7 (407.5) 1463.1(432.4)*** 167.3
TPRI (dyne*s*m?/cm?) 1841.0 (574.0) 1868.6 (564.5)** 25.8 2122.1 (735.8) 2392.3 (783.1)*** 275.9
LVET (ms) 311.1(16.8) 300.4 (17.9)*** -10.7 311.9(17.7) 306.1 (17.7)*** -5.6
EDI (ml/m?) 80.0 (15.0) 78.4 (13.8)*** -1.6 72.5(16.6) 70.1 (15.1)*** -2.4
IC (1000/sec) 67.8 (21.3) 67.7 (20.8) 0.1 57.9(22.9) 55.1 (20.6)*** -2.8

Note: Values are means (+ SD); $; Age difference of WCT and CPT subjects. *P=.01; ** P=.001; ***P=.0001

Abbreviations: WCT, word conflict test; CPT, cold pressor test; HR, Heart rate; SBP: Systolic BP; DBP: Diastolic BP; MBP: Mean BP; SV: Stroke volume; SI: Stroke index;
CO: Cardiac output; Cl: Cardiac index; TPR: Total peripheral resistance; TPRI: Total peripheral resistance index; LVET: Left ventricular ejection time; EDI: End diastolic index;
IC: Index of cardiac contractility; WCT: Difference at WCT from rest; CPT: Difference at CPT from rest

Table 3
Gender Difference in Age, Anthropometric Parameters and in Reactivity to WCT and CPT

Variable WCT group (N =683) P CPT group (N =1277) P
Male (N=330) Female (N=2353) Male (N =562) Female (N=715)
Age (years) 23.3(8.0) 23.0(5.2) NS 32.3(16.1) 34.3(15.0) 0.03
Waist (cm) 76.2(12.8) 73.6 (12.1) 0.014 80.9 (14.4) 80.7 (14.5) NS
BMI (kg/m?) 23.6 (4.9) 23.4(5.3) NS 24.8 (5.0) 25.2(5.7) NS
Body fat (%) 15.1(7.8) 23.7(9.5) 0.0001 17.9(8.5) 21.7(9.9) 0.0001
AWCT ACPT
HR (beats/min) 9.0(7.9) 6.0 (6.5) 0.0001 5.0(8.0) 7.0(8.5) 0.0001
SBP (mmHg) 10.0(10.7) 8.0(9.5) 0.006 14.0(14.4) 16.0 (13.4) 0.01
DBP (mmHg) 8.0(8.2) 6.0(7.8) 0.02 13.0(11.8) 14.0 (11.1) NS
MBP (mmHg) 9.0(9.2) 7.0(8.6) 0.004 14.0(13.1) 15.0(12.1) NS
SV (ml) -2.4(9.6) -0.9(7.5) 0.03 -3.2(9.4) -2.7(1.9) NS
Sl (ml/beat/m?) -1.5(5.6) —0.7(4.8) 0.04 -1.9(5.3) -1.8(5.1) NS
CO (L/min) 0.6 (0.9) 0.4(0.7) 0.004 0.1(0.7) 0.3(0.6) 0.001
Cl (L/min/m?) 0.4 (0.5) 0.3(0.4) NS 0.08 (0.4) 0.1(0.4) 0.0001
TPR, (dyne*s*/cm?) 9.8(188.7) 28.6 (155.6) NS 168.2 (253.1) 163.1(232.7) NS
TPRI (dyne*s*m?cm?) 13.9(321.1) 40.2 (236.8) NS 293.3 (431.5) 251.5(361.6) NS
LVET (ms) -11.4(11.7) -9.9(10.6) NS -3.5(12.9) -17.6(15.6) 0.0001
EDI (ml/m?) -2.8(7.6) -0.6(7.3) 0.0001 -2.1(1.5) -21(7.2) NS
IC (1000/sec) -0.9(9.6) 0.6 (9.6) NS -3.3(8.7) -2.3(9.0) NS

Note: Abbreviations: WCT, word conflict test; CPT, cold pressor test; HR, Heart rate; SBP: Systolic BP; DBP: Diastolic BP; MBP: Mean BP; SV: Stroke volume; Sl: Stroke index; CO:
Cardiac output; Cl: Cardiac index; TPR: Total peripheral resistance; TPRI: Total peripheral resistance index; LVET: Left ventricular ejection time; EDI: End diastolic index; IC:
Index of cardiac contractility; AWCT: Difference at WCT from rest; ACPT: Difference at CPT from rest.
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Table 4

Heritability Estimates (h?) of Anthropometric, Resting and Hemodynamic Reactivity Phenotypes

Heritability of Hemodynamic Phenotypes in a Homogenous Arab Population

Rest AWCT ACPT

h? SEM P Cov h? SEM P Cov h? SEM P Cov
Anthropometric parameters
Waist 0.31 0.056 1.0x10° 0.24
Weight 0.68 0.052 4.3x10%* 0.22
BMI 0.68 0.051 2.1x10"2 0.2
Fat % 0.56 0.056 1.0x10® 0.05
Hemodynamic parameters
HR 0.31 0.056 6.6x10"7 37.2 0.40 0.088 3.3x10° 85 0.35 0.065 1.3x10® 6.5
SBP 0.19 0.054 3.8x10° 18 0.22 0.083 9.0x10* 0.6 0.13 0.048  0.001 1.6
DBP 0.19 0.051 1.2x10° 21.1 0.09 0.068 0.07 13 0.10 0.047 7.4x10° 22
MBP 0.19 0.051 1.0x10° 21.2 0.12 0.072 0.03 0.9 0.13 0.049 8.0x10™* 1.7
SV 0.30 0.055 3.2x107" 38.6 0.15 0.079 1.5x102 50 0.15 0.051 2.0x10* 1.1
Sl 0.32 0.054 1.1x10™" 339 0.15 0.079 1.4x102 52 0.15 0.051 2.0x10* 1.6
co 0.26 0.054 6.1x10™"  31.6 0.30 0.094 59x10° 0 0.11 0.047 2.0x10°® 5.3
Cl 0.26 0.051 1.9x10" 33.6 0.30 0.094 59x10° 0 0.12 0.048 2.0x10° 5.2
TPR 0.19 0.041 6x107 298 0.01 0.076 0.4 0.6 0.10 0.051 0.011 3.1
TPRI 0.21 0.044 2x107 352 0.002  0.075 0.5 1.0 0.08 0.049  0.036 3.0
LVET 0.35 0.055 2.4x10"7 29 0.17 0.075 3.1x10° 2.7 0.22 0.057 8.0x107 37
EDI 0.32 0.054 2.9x10" 37.2 0.21 0.082 9.0x10* 6.5 0.18 0.054 4.7x10° 8.1
IC 0.32 0.053 3.4x10™ 375 0.20 0.088 4.5x10° 34 0.11 0.078 3.4x10° 8.4

Note: AWCT: world conflict test reactivity, ACPT: cold pressor test reactivity, Cov: covariates

detected for most of the phenotypes listed. It is impor-
tant to note that h2? AWCT and ACPT for the
phenotypes associated with cardiac contractility and
systolic blood pressure; HR, SV, SI, CO, CI, LVET and
EDI were significant (P < .05) and ranged from 0.11-
0.40 as compared to those related to diastolic blood
pressure; MBP, TPR and TPRI which ranged from
0.002-0.13. Heritability estimates for AWCT DBP,
TPR and TPRI were, however not significant.
Covariates of all the phenotypes accounted for 18.0-
38.6% of the variation during rest, for 0.00-8.5%
during AWCT and for 1.6-8.4% during ACPT.

Discussion

This study was conducted in isolated, highly consan-
guineous and multigenerational Arab pedigrees of
1277 individuals with a mean age of (33.5 years),
60% of whom were below 30 years of age. The
advantage that isolated populations offer over the
general population is a more uniform environment of
their living conditions and access to their genealogical
records (Almasy & Blangero, 1998; Hassan et al.,
2005; Samani, 2003).

We have applied stringent criteria for extensive
phenotyping of cardiovascular traits contributing to
the regulation of blood pressure. Using continuous
non-invasive BP recordings and impedance-derived
hemodynamics, our study differs from most other
studies by dissecting blood pressure into its primary
and intermediate phenotypes in a supposedly normal

population. In addition, the entire battery of pheno-
types was studied during rest and during two
laboratory stress tests. The weak correlations between
most of the AWCT and ACPT phenotypes indicate
that the responses to the two stress tests were not
affected by each other.

Several other studies have used CPT, WCT and
other stress tasks to elicit BP reactivity, mostly in twins,
sib-pairs, extended families and offspring of hyperten-
sive and hypertensive subjects (Carmelli et al., 1991;
Choh et al., 2005; de Geus et al., 2006; Halliwill et al.,
1997; Wolff, 1951; Yamamoto et al., 1992). Studies
using laboratory stress tests share the common finding
of the steady increase in TPR and HR during pressor
tests. The increase in TPR was associated with a con-
comitant increase in muscle sympathetic nerve activity
and increased levels of catecholamines (Halliwill et al.,
1997; Yamamoto et al., 1992). The link between sym-
pathetic activation and the genesis of hypertension, as
assessed by shortening of the pre-ejection period (PEP;
de Geus et al., 2007) or increased epinephrine levels
during mental stress, received considerable support
(Dimsdale & Moss, 1980; Floras, 1992).

Heritability Estimates

Resting Hemodynamics

Few studies reported h? for impedance-derived resting
hemodynamic phenotypes. Using a multivariate model
in twin cohorts, the GCTS (Kupper et al., 2006) esti-
mated total, time and ethnic-specific resting h? of
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around 0.25-0.64 for SBP, DBP, HR, SV, CI and TPRI
compared with 0.19-0.32 of the same resting parame-
ters in this study. Using univariate analysis in
European American families, Choh et al. (2005) esti-
mated significant h? for resting SBP and DBP of 0.35
and 0.20, respectively, compared with 0.19 of same
parameters in our study. Busjahn et al. (1996)
reported significant h? for SBP and DBP of 0.53 but
not for resting HR. However, McCaffery et al. (2002)
reported significant h? for resting SBP, DBP and HR
ranging from 0.39 to 0.52.

Mental Stress

We report significant h> for AWCT HR, SBP, SV and CI
ranging from 0.15-0.40 while h? for AWCT DBP and
TPRI of 0.09 and 0.002 respectively, were nonsignifi-
cant. Few studies, using different physiological stressors
and designs, estimated h? of impedance-derived hemo-
dynamics. In the GCTS (Kupper et al., 2006) after an
intervening period of 4 years, significant ethnic specific
h? for A HR, SBP, DBP, SV ranged from 0.17-0.34.In
the same cohort of EA and AA of the GCTS, Snieder et
al. (2005) studied the same parameters under acute
mental stress of 5 minutes of virtual reality car driving
tests and 10 minutes of social stressor interviewing. In
EA the car driving tests produced significant h? ranging
from 0.28-0.60 for ASBP and HR, but not for ADBP,
SV, CO and TPR. However, social stress produced
similar h? in EA and AA for all the above parameters
but not for ADBP. In contrast, in AA, car driving tests
produced significant h? for ASBP, HR, SV, CO and TPR,
while social stress produced significant h? only for ASBP
and ADBP. The GCTS studies showed that h? for reac-
tivity estimates varied across studies, across task within
the same study and across ethnic groups. Compared to
the later study, h* AWCT for most of the phenotypes in
our study, though lower, shared the same h? trends for
social stressors in EA and the same trends in car driving
in AA. It is important to note that in our study h?
AWCT was significant for SBP but not for DBP.
Similarly, McCaffery et al. (2002) reported significant
h2for ASBP WCT but not for ADBP; they attributed this
difference to the increased influence of covariates on
DBP responses to WCT which are similar to those
found in our study. In addition these differences may be
ascribed to the different control mechanisms for SBP
and DBP for CPT (Choh et al., 2003).

Cold Pressor Test

In Table 4 we present significant h? ranging from 0.08-
0.40. It is important to note that h? of ASBP, HR, SV and
LVET ranged from 0.13-0.35 while those of ADBP and
TPR and TPRI ranged from 0.08-0.10. To our knowl-
edge only two studies on extended pedigrees reported h?
for ACPT SBP and DBP. Choh et al. (2005) reported h? of
0.37 and 0.08 for ACPT SBP and DBP respectively, while
the respective values by Mitchell et al. (2008) were 0.16
and 0.24. The differences in h* between ASBP and ADBP
related phenotypes described above were attributed to

contractility, a feature of SBP regulation that does not
influence DBP regulation (Choh et al., 2005). Other h? of
ACPT SBP and DBP came solely from twin studies and
they ranged from 0.30-0.70 for ACPT SBP and 0.38-
0.62 for ACPT DBP (Busjahn et al., 1996; Matthews et
al., 2004). In our study the modest h? respective values
of 0.13 and 0.10 for ACPT SBP and DBP, fell below the
lower end of those studies.

In our study, although not comparable to studies
using bivariate, multivariate and model fitting, the
laboratory stressors used detected significant genetic
variance using univariate analysis. The most impor-
tant current and expected outcomes of this study are:
(1) the information inherent to these inbred pedigrees
with ascertained genealogical records may help accu-
rate estimations of the degree to which traits are
determined by genetic factors and the appropriate
model of linkage analysis, such as hypothesized in the
HAPI Heart Study (Mitchell et al. 2008) and other
homogeneous populations (Charlesworth & Hughes,
2000; Matthews et al., 2004); (2) a novel addition in
our study is the dissection of blood pressure into its
intermediate physiological components. Apart from
two twin studies on the heritability of impedance-
derived hemodynamic phenotypes (Kupper et al.,
2006; Snieder et al., 2005), most other studies used
normal blood pressure or hypertension as phenotypes.
Normal and high blood pressure are controlled at dif-
ferent levels by the same short- and long-term
neurohormonal and renal regulatory mechanisms
which are in turn modulated by genetic and environ-
mental factors. Characterizing genetic influences of
the intermediate phenotypes that make up and control
blood pressure require the use of specific short-term
environmental stressors to illicit reactivity (Sing et al.,
2003). When analyzed as a change score, the heritabil-
ity of reactivity will reflect an inseparable mix of an
amplification or de-amplification of genetic (or envi-
ronmental) influences already present at rest and
newly emerging genetic (or environmental) influences
during stress. Amplified genes are genes that have an
effect on individual differences in a cardiovascular
trait at rest and these effects become stronger under
stress. Emerging genes are genes that are only
expressed during stress and only contribute to the her-
itability of a cardiovascular trait when it is measured
under stress conditions (de Geus et al., 2007).

We conclude that since shared environment in this
cohort is common to all and therefore minimal, envi-
ronmental influence occurs primarily via variation in
non-shared environment unique to the individual. We
have therefore demonstrated that heritability estimates
of reactivity of the intermediate hemodynamic pheno-
types tested capture the main genetic influences on
resting levels. The current ongoing bivariate and mul-
tivariate analyses may help uncover genetic and
environmental influences that may emerge from
amplification or de-amplification of genes. The
increased power achieved by the exploitation of
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shared genetic effects will ultimately lead to a higher
likelihood of mapping genes related to BP regulation.
Linkage studies using these results may home more
accurately in on loci that may help in gene finding
studies. Finding novel genes of relevance to (for) BP
and hypertension may have considerable clinical
impact.

Future studies in the offspring of these isolated
pedigrees, coupled with the rapidly changing environ-
ment may help understand gene-gene and
gene-environment interactions.
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