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HARDY-TYPE INEQUALITIES FOR MEANS

ZSOLT PALES AND LARS-ERIK PERSSON

In this paper we consider inequalities of the form

n=l n=l

where M is a mean. The main results of the paper offer sufficient conditions on M so
that the above inequality holds with a finite constant C. The results obtained extend
Hardy's and Carleman's classical inequalities together with their various generalisa-
tions in a new direction.

1. INTRODUCTION

Hardy's celebrated inequality states that, for p > 1,

n=l y n=l

for all nonnegative sequences ( i n ) . In integral form it was stated and proved in [9] but
it was also pointed out that this discrete form follows from the integral version. Hardy's
original motivation was to get a simple proof of Hilbert's inequality, see the special cases
proved in [7, 8]. It is almost impossible to summarise the enormous literature concerning
the generalisations and extensions of this inequality. We recommend the books [12, 14],
and [16] and the historical survey paper [13] on this subject for the interested readers.

In this paper, we follow a new approach in generalising Hardy's inequality. The main
idea is to rewrite (1) in terms of power means and then to replace them by more general
means.

Replacing xn by xljp and p by 1/p in (1), we get that

n=l r n—l
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522 Z. Pales, L.-E. Persson [2]

for 0 < p < 1. As it was proved by Knopp [11], this inequality is also valid for p < 0.
Taking the limit p —• 0, Carleman's inequality can also be derived:

(3)
7 1 = 1 7 1 = 1

For some further developments and historical remarks concerning (3), we refer to [20].

Define for p e R the p th power (or Holder) mean of the positive numbers Xi,...,xn

by

(4) Vp(xu...,xn):=

The power mean V\ is the arithmetic mean which will also be denoted by A in the sequel.

Now observe that (2) and (3) are particular cases of the inequality

(5)
n=l n=\

if M is the pth power mean Vv with parameter p < 1 and C is the constant Cp :— (1— p)~l/p

if p ^ 0 and CQ := e if p = 0. The aim of this paper is to study (5) for means M that are
more general than power means. A function M is said to be a mean on R+ if it is a real

oo

valued function defined on the set (J R" such that, for all n 6 N, xi,..., xn > 0,
n=l

min(x1, . . . ,xn) < M(xx,... ,xn) ^ max(i i , . . . , i n )

holds. In the sequel, a mean M will be called a Hardy mean if there exists a positive real
constant C such that (5) holds for all positive sequences x = (xn). Due to the Hardy,
Carleman, and Knopp inequalities, the pth power mean is a Hardy mean if p < 1. One
can easily see that the arithmetic mean is not a Hardy mean, therefore the the following
result holds.

THEOREM A . Let p € R. Then, the power mean Vp is a Hardy mean if and only if

p<\.

The notion of power means is generalised by the notion of quasi-arithmetic means

(see [10]): If / : R+ -> R is continuous strictly monotonic function then the quasi-
arithmetic mean Mj is defined by

(6)

By taking / as a power function or a logarithmic function, the resulting quasi-arithmetic
mean will be a power mean. More surprisingly, the power means can be characterised
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as the only homogeneous quasi-arithmetic means (see [10, 19]). The characterisation of

Hardy means among quasi-arithmetic means is due to Mulholland [15].

THEOREM B. Let f : R+ —• R be a continuous strictly monotonic function. Then,

the quasiarithmetic mean A4f is a Hardy mean if and only if there exists p < 1 and a

constant C such that

Mf(xi,...,xn) ^ CVp(xi,..., xn)

for all n 6 N and xi,...,xn > 0.

A further generalisation of quasi-arithmetic means can be obtained in terms of two

arbitrary functions. These means — called quasi-arithmetic means with weight-function

— were introduced by Bajraktarevic [2, 3]. Let / : R+ —¥ R be continuous strictly

monotonic function and let w : R+ —> R be a positive function. Now define the function

Mf<w by

(7)

It is easy to check tha t M./jW is a mean on R + . In the particular case w = 1, the mean

M/iW reduces to Mf, tha t is, the class of means Mf,w is more general than tha t of the

quasi-arithmetic means.

It is a remarkable result of Aczel and Daroczy [1] t ha t the homogenous means among

the Mf,w means are exactly the Gini means [6] tha t form a two-parameter class of means

including most of the classical homogeneous means. For p, q s R, the Gini mean Qp<q

mean of the variables x\,...,xn > 0 is denned as follows:

Clearly, in the particular case q = 0, the mean Qp<q reduces to the p th power mean Vv. It

is also obvious that QPiQ = QqiP, therefore, we may restrict our a t tent ion only to the case

p ^ q in our investigations.

Finally, we recall the concept of the most general means considered in this paper, the

concept of deviation mean introduced by Daroczy [4]. For, a function E : R + x R + —¥ R

will be called a deviation function on R + if E(x, x) = 0 for all x > 0 and the function

y h-> E(x,y) is continuous and strictly decreasing on R + for each fixed x > 0. The

E-deviation mean of the values x\,... ,xn > 0 is now defined as the unique solution y of

the equation

(9)

and is denoted by ME(^I> •
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In the particular case E(x,y) := f(x) - f(y) the solution of (9) is the value
V = Mj(xi,... ,xn) defined in (6). Similarly, by taking E(x,y) := w(x)(f{x) - /(j/)),
the resulting deviation mean will be M/tW. Thus, all the means defined previously (power
means, quasi-arithmetic means, quasi-arithmetic means with weight-function, and Gini
means) are particular deviation means.

The main results of this paper offer necessary as well as sufficient conditions for (5)
if M is a deviation mean. This result is then translated to the case of Gini means as well.

2. MAIN RESULTS

Our first main result offers necessary as well as sufficient conditions in order that a
deviation mean be a Hardy mean.

THEOREM 1. Let E : R+ x R+ -»• R be a deviation on R+. IfM = ME is a Hardy
mean, then

(10) ME(XU . . . , X B K CVP(XU . . . , !„)

holds with p = 1 for all n € N and X\,...,xn > 0 and there is no positive constant
constant C* such that

(11) C'V^Xu ..., xn) ^ ME{xi, ...,xn)

is valid on the same domain. Conversely, if (10) is satisfied with a parameter p < 1, then
ME is a Hardy mean.

PROOF: Assume first that ME is a Hardy mean, that is,

n=l n=l

for all positive sequences (xn). The left hand side of this inequality contains positive
terms, therefore, omitting those for n ^ k, we get that, for each k £ N,

n=l n=l

Now, for all fixed n ^ k, letting xn —> 0 on the right hand side, we get that

k k

(12) ^2MB{xi,...,xn)^C^2xn
n=l n=l

for all k € N and xu ..., xk > 0.

As a consequence of the characterisation theorem of (quasi)deviation means by Pales

[17], the mean ME is internal, that is, if ui,..., un, t>i,..., vm > 0 and ME{u\,..., un)

^ ME{vi,..-,vm), then

ME(uu ... ,un) ^ ME(ui,...,un,vi,...,vm) ^ ME{v\,...,vm).
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Thus, if x\ ^ x2 ^ • • • ^ Xk > 0 then, for i = 1 , . . . , k — 1,

. M E O E ! , . . . , ^ ) ^ m i n ( i l l . . . , i j ) = z* ^ xi+1 - ME{xi+i)

implies that

Therefore, we get

ME(xi) > ME{XUX2)

Applying these inequalities, it follows from (12), that

(13)

for Xi ^ X2 z? • • • JJ Xk > 0. The left and right hand sides being symmetric with respect
to xi,... ,Xk, we get that (13) is valid for all x\,... ,xk > 0. Dividing both sides by k,

we infer that the inequality (10) (with p = 1) holds on the domain indicated.

If (11) were satisfied with some positive constant D, then the arithmetic mean would
be a Hardy mean. Since this is not true according to Theorem A, we conclude that (11)
cannot hold.

Now assume that (10) holds with p < 1 and with a finite constant C. Then (10)
combined with Theorem A yields

oo

E{xu...,Xn) ^C ^Vpixu . . . , Xn)
n=l n=l n=l

Thus the proof is complete. D

REMARK 1. There is a gap between the necessary and the sufficient conditions of The-
orem 1. In view of Theorem B, we conjecture that the necessary and sufficient condition
is analogous to that of for quasi-arithmetic means. Thus, we formulate the following:

OPEN PROBLEM 1. Prove or disprove that in order that a deviation mean AiE is a
Hardy mean it is necessary (and also sufficient) that there exist a power p < 1 and a real
constant C such that (10) be valid on the domain indicated.

Now we turn our attention to Gini means. The result contained in the theorem
below offers a sharper condition than what follows directly from Theorem 1.

THEOREM 2 . Letp,q& R. IfQp,q is a Hardy mean, then

(14) min(p,g)^0 and max(p, q) ^ 1.

Conversely, if

(15) min(p,g)^0 and max(p, q) < 1,
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then GPjq is a Hardy mean.

P R O O F : AS we pointed out in the introduction, Gini means are deviation means.
Therefore, if QPA is a Hardy mean, then, by Theorem 1, QPA cannot be larger than the
arithmetic mean and there exists a constant C such that

(16) G p A { x i t . . . , i » ) ^ C V i ( x u . . . , ! „ ) = C G i j a i x u . . . , x n )

for all n € N and x\,...,xn > 0. We are going to show that the constant C here can
be replaced by 1, that is, QPA ^ <?ii0. By the Comparison Theorem of Gini means due
to Daroczy and Losonczi [5], this inequality holds if and only if (14) is satisfied. Now,
assume the contrary of (14), that is, assume that at least one of the inequalities in (14)
is not valid. Since QPA is not larger than A = Q\$, we conclude that only one inequality
in (14) can be violated. Thus, either

(17) min(p, q) > 0 and max(p, q) < 1,

or

(18) min(p,q) < 0 and max(p,q) > 1.

Suppose first that p < q. Then (16) can be rewritten in terms of power means as follows:

or, equivalently,

Define the moment space of the three power means Vp, Vq, V\ as follows

:= R.3+nd {(Vp(xu ... ,xn),Vq(xit...tX^^iix!,... ,xn)) \ n <= N, xu .. .,xn >

Then, clearly, (19) implies that, for all (u,v,w) <= aK+{Tp,Vq,Vi),

(20) v" ^ Cq~pupwq~p.

On the other hand, the moment space 0R+(Pp,'Pq,Vi) is completely described by the
results of Pales [18, Theorems 2, 3]. Using this description, we show that (20) cannot
hold if (14) is not satisfied.

We consider the two possibilities described by (17) and (18). If (17) holds, then
0 < p < q < 1. In this case, by [18, Theorem 3], we have

ffR+^p.TV^i) = {(u,v,w) | 0 < u < v, vq{

https://doi.org/10.1017/S0004972700034778 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034778


[7] Hardy-type inequalities 527

Putting the minimal value w = i^-pVfa-rtuPfa-U/fa-p) into (20), after simplifications,
we get that

v™ < Cq-"upq

for all 0 < u ^ v. Taking the limit u —> 0, we get an obvious contradiction.

If (18) is valid, then p < 0 < 1 < q. In this case, by [18, Theorem 2], we have

0k + (Pp,P«,Pi) = {(u,v,w) | 0 < u ^ w ^ v}.

Putting w = u into (20), we get that

v" ^ £»-"««,

thus, by taking the limit u —• 0, we again get a contradiction.

Thus, we have proved that Qp<q ^ C/1)0. From this, by using the Daroczy-Losonczi
comparison theorem, it follows that (14) holds (in the case p < q). The same must hold
for the case p > q because of the symmetry property QP:Q = QQtP. If p = q, that is, Qp<p

is a Hardy mean then £p-(i/n),P ^ GP,P is also a Hardy mean for all n 6 N. Thus, from
what we have proved, it follows that p — (1/n) ^ 0 and p ^ 1 for all n. Taking the limit
n —>• oo, we get that p < 0. Therefore, (14) holds in this case as well.

To prove the sufficiency of (15), define r := max(p, q, 0). Then, again by the com-
parison theorem of Gini means [5], we have that Qp>q ̂  Qr,o = "Pr. Therefore, by the
Hardy-Carleman-Knopp inequality,

n=l n=l n=l

Thus the proof is complete. D

REMARK 2. There is a gap in the condition of Theorem 2, namely in the case min(p, q)
^ 0 and max(p, q) = 1 the Gini mean QPA is not characterised from the point if it is
a Hardy mean or not. Nevertheless, we conjecture that the condition (15) is not only
sufficient but it is also necessary. Thus, we can formulate the following two problems.

O P E N PROBLEM 2. Prove or disprove that in order that a Gini mean QPtq be a Hardy
mean it is necessary (and also sufficient) that (15) be valid.

O P E N PROBLEM 3. If the Gini mean M = QPiq is a Hardy mean, then determine the
smallest possible value C — Cptq such that (5) is satisfied.
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