
A REFINEMENT OF THEOREMS OF

KIRCHBERGER AND CARATHEODORY

DONALD WATSON

(Received 19 May 1971; revised 8 July 1971)

Communicated by G. Szekeres

1. Introduction

I can indicate the type of refinement mentioned in the title by referring to
Kirchberger's theorem [4]. Its picturesque form in the plane is: if sheep and goats
are grazing in a field and for every four animals there exists a line separating the
sheep from the goats then there exists such a line for all the animals. The refinement
is that the words 'every four animals' may be replaced by 'every four animals
including an arbitrarily chosen animal'; this reduces the 'Kirchberger number'
from four to, effectively, three.

The starting point will be Helly's theorem [3] in d-dimensional Euclidean
space Ed. Then follow refinements of the following chain of theorems: Helly's
theorem in the surface Sd of a sphere in Ed+1, Kirchberger's theorem in Sd and in
Ed, Caratheodory's theorem in Ed. For convenience of exposition the original
name is retained, in coded form, for the refined version of a theorem. In each
case the original form may be restored by deleting the reference to an arbitrarily
chosen point.

In what follows convexity in Sd will mean strong convexity; that is, a set
in Sd is called convex if it contains no pair of diametrically opposite points, and
together with any two of its points contains the whole of the minor arc of the
great circle containing them.

2. Helly's Theorems in Sd

First let us state Helly's theorem [3] in Ed:-

THEOREM HEd. / / every d + 1 members of a finite family of convex sets in
Ed have a common point then all menbers of the family have a common point.

We can readily deduce from this a refinement of Helly's theorem in Sd:

THEOREM HS^. Let F be a finite family of convex sets in Sd ; if every d + 2
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of the sets, including an arbritarily chosen set, have a common point then all
sets of F have a common point.

To prove this let C be the arbitrarily chosen set and consider the family H
of intersections of members of F with C. H will have the property that every d
+1 of its members have a common point. Now project C, from the centre of
Sd, onto a hyperplane in Ed+l. We see, by theorem HE,, that all members of the
projections of H have a common point; hence all members of H have a common
point. It follows that all members of F have a common point.

An immediate corollary to theorem HSd is obtained by specifying F to be
a finite family of open hemi-spheres. It is a simple step then to the dual of theorem
HS,,; in replacing an open hemisphere by its antipodal pole, and vice versa,
properties of incidence are preserved and theorem HS,, becomes

THEOREM DHS,,: Let F be a finite family of points in Sd, if every d + 2
points, including an arbitrarily chosen one, lie in some open hemisphere, then
all points of F lie in an open hemisphere.

3. Kirchberger's Theorem

A simple proof of Kirchberger's theorem was given by Baker [1]; the same
method can be used to derive the refinement :-

THEOREM KSd. Let S and G be disjoint finite sets of points in Sd; and let
p be an arbitrarily chosen point in the union A of S and G. If for each set K
satisfying

\K\ = d + 2, peK, K <= A

there exists a hyperplane through the centre stricly separating K(~\S from
KC\ G, then there exists a hyperplane through the centre stricly separating S
from G.

To prove this we reflect each point of G through the centre into its antipodal
point. Call the set of such points G'. Then S u C satisfy the conditions placed
on F in theorem DHSd, hence the members of S u G' lie in some open hemisphere.
A reflection of G' back onto G yields the theorem.

An immediate consequence of the preceding theorem is :-

THEOREM KEd. Let S and G be disjoint finite sets of points in Ed; and let
p be any point in the union A of S and G. If for each set K satisfying

\K\ = d + 2, peK, K <= A

there exists a hyperplane strictly separating K n S from KC\G, then there
exists a hyperplane strictly separating S from G.
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The proof is effected by embedding Ed in Ed+l and projecting Ed onto an
open hemisphere of Sd by projecting through the centre of Sd. Theorem KEd

then follows from theorem KSd.

4. Caratheodory's Theorem

To obtain the refinement of Caratheodory's theorem [2] we express theorem
KEd in contrapositive form and specialise it by taking \s\ = l ,peG. In Ed the
statement that a point can not be strictly separated by a hyperplane from a set
of points is equivalent to the statement that the point is in the convex hull of the
set. Hence we have:-

THEOREM CEd. If in Ed a point is in the convex hull of a finite set of points
G, where \G\ > d + 1, then it is in the convex hull of some d + 1 points of
G including an arbitrarily chosen point of G.
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