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A Special Case of Completion Invariance
for the c2 Invariant of a Graph

Karen Yeats

Abstract. _e c2 invariant is an arithmetic graph invariant deûned by Schnetz. It is useful for un-
derstanding Feynman periods. Brown and Schnetz conjectured that the c2 invariant has a particular
symmetry known as completion invariance. _is paper will prove completion invariance of the c2
invariant in the case where we are over the ûeld with 2 elements and the completed graph has an
odd number of vertices. _emethods involve enumerating certain edge bipartitions of graphs; two
diòerent constructions are needed.

1 Introduction

_e c2 invariant is an arithmetic graph invariant deûned by Schnetz [24] (see Deû-
nition 1.1) that is useful for understanding Feynman periods. Feynman periods are
a class of integrals deûned from graphs that are simpler than but closely related to
Feynman integrals. Based on this connection and on computational evidence, there
are certain symmetries that the c2 invariant is believed to have. A key such symmetry,
known as completion invariance and deûned below, was ûrst conjectured by Brown
and Schnetz in 2010 [8] and has turned out to be quite diõcult to prove. _e main
result of this paper, _eorem 1.2, is the completion invariance of the c2 invariant in
the case where p = 2 and the completed graph has an odd number of vertices.

_roughout,K will be a connected 4-regular simple graph. (For unexplained graph
theory language or notation, see [16].) _e result of removing any vertex of K is called
a decompletion of K. Diòerent decompletions will typically be non-isomorphic, and
K can be uniquely reconstructed from any of its decompletions. We will say that K is
the completion of any of its decompletions. See Figure 1 for an example.

Suppose G is a decompletion of K. _en we can view G as a Feynman diagram in
ϕ4 theory. For those not familiar with Feynman diagrams and quantum ûeld theory,
brie�y: _e edges of the graphs represent particles; the vertices particle interactions.
_is particular quantum ûeld theory has only a quartic interaction (that is the 4 in
ϕ4), and so all vertices must have degree 4. _e vertices of G that are no longer 4-
regular due to decompletion are taken to have additional external edges attached that
represent particles entering or exiting the system. Completing G then means attach-
ing all the external edges to a new vertex that one can think of as being “at inûnity”,
hence corresponding to completion in the geometric sense. _is connection to geo-
metric completion is easilymade precise at the level of the Feynman period; see [23].
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K

Figure 1: A graph K with two non-isomorphic decompletions

_e Feynman integral of a Feynman diagram is what is actually needed for physics,
because it computes the contribution of that Feynman diagram to whatever physical
process one is interested in. For more on perturbative quantum ûeld theory, see [19].

Given any graphG (butmost interestingly for the present purposesG may be some
decompletion of K), assign a variable ae to each edge e ∈ E(G) and deûne the (dual)
Kirchhoò polynomial or ûrst Symanzik polynomial to be

ΨG = ∑
T
∏
e/∈T
ae ,

where the sum runs over all spanning trees of G. For example, the Kirchhoò polyno-
mial of a 3-cycle with edge variables a1, a2, a3 is a1 + a2 + a3, since removing any one
edge of a cycle gives a spanning tree of the cycle.

Next deûne the Feynman period to be

∫
ae≥0

∏ dae
Ψ2

G
∣
a1=1

.

_is is an aõne form of the integral; there is also a projective form; see [23]. _is
integral converges provided G is at least internally 6-edge connected.1 _is corre-
sponds to the Feynman diagram having no subdivergences, because edge cuts with
four or fewer edges, other than ones giving isolated vertices, represent sub-processes
that yield divergent integrals. _ere has been a lot of interest in the Feynman period,
because it is a sensible algebro-geometric, or evenmotivic, object [3,4,6,7,21,23], but
it is also a key piece of the Feynman integral. It is a sort of coeõcient of divergence
for the Feynman integral and has the beneût of not depending on themany parame-
ters and choices which the full Feynman integral depends on, so it is mathematically
much tidier. Nonetheless, it still captures some of the richness of Feynman integrals.
_is is best illustrated by the number-theoretic richness of the numbers that Feynman
periods give; see [3–5,22,23].

Given these connections to many deep and diõcult things, it should not be sur-
prising that Feynman periods are still diõcult to understand and compute, and so in
[24] Schnetz introduced the c2 invariant in order to better understand the Feynman
period.

Deûnition 1.1 Let p be a prime, let Fp be the ûnite ûeld with p elements, let G be a
connected graph with at least 3 vertices, and let [ΨG]p be the number of Fp-rational

1_at is, any way of removing fewer than 6 edges either leaves the graph connected or breaks the
graph into two components one of which is a single vertex.
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points in the aõne variety {ΨG = 0} ⊆ F∣E(G)∣p . _en the c2-invariant of G at p is

c(p)2 (G) =
[ΨG]p

p2 mod p.

_at this is well deûned is proved in [24]. _e same deûnition can be made for
prime powers, butwewill stick to primes p. _e c2 invariant has interesting properties
[8,10,17,18], yields interesting sequences in p such as coeõcient sequences ofmodular
forms [9, 20], and predicts properties of the Feynman period. A simple and striking
example of the last of these is that c(p)2 (G) = 0 for all p corresponds to when the
Feynman period apparently has a drop in transcendentalweight relative to the size of
the graph.2 For example, the two decompleted graphs in Figure 1 both have c(p)2 = 0
for all p and both have period 36ζ(3)2, which has weight 3 + 3 = 6, while some other
graphs with the same number of edges have weight 7; see [23].

_e c2 invariant should have something to do with the Feynman period, because
both counting points and taking period integrals are controlled by the geometry of the
variety of ΨG . If the Feynman periods are nice, then the point counts as a function
of p should be nice and vice versa. More speciûcally, inspired by known Feynman
periods at the time being multiple zeta values,3 Kontsevich informally conjectured
that [ΨG]p should be a polynomial in p. _is turned out to be very false [2]. _e c2
invariant is one measure of whether or how badly Kontsevich’s conjecture fails for a
given graph; if it holds for that graph, then the c2 invariant is the quadratic coeõcient
of the polynomial, thus explaining the 2 in c2.

_e c2 invariant has or is believed to have all of the symmetries of the Feynman
period. In particular, it is known that the Feynman periods of two graphs with the
same completion are the same; see [23]. _e c2 invariant was also conjectured by
Brown and Schnetz in 2010 [8, Conjecture 4] to have this completion symmetry. _is
is arguably themost interesting open problemon the arithmetic of Feynman periods.
Very little progress has been made. We do know that if G has two triangles sharing
an edge, then the question of completion invariance for c(p)2 (G) can be reduced to
completion invariance of a particular smaller graph. _is is known as double-triangle
reduction; see [8, Corollary 34].

_emain result of this paper puts the ûrst crack into the conjecture itself, proving
it in the special case when p = 2 and the completed graph has an odd number of
vertices.

_eorem 1.2 Let K be a connected 4-regular graph with an odd number of vertices.
Let v and w be vertices of K. _en c(2)2 (K − v) = c(2)2 (K −w).

_e basic approach takes a graph-theoretic perspective on the c2 invariant. _e
same approach also underlies the c2 results for families of graphs from [13, 26], and

2Given that proving transcendentality for single zeta values,much less multiple zeta values or other
more exotic numbers appearing in Feynman periods, is completely out of reach, one must recast this
more formally in order tomake a precise statement or prove a precise result along these lines; see [8,24].

3_is is no longer the case unless there are some outrageous identities in play; as with transcen-
dentality questions for the multiple zeta values themselves, proving an absence of relations is almost
impossibly hard even when we have solid theoretical reasons to think there should be none.
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the reader may like to look there for further examples. _e strength of the approach
is that it is suõciently diòerent from amore algebraic or geometric approach to pos-
sibly make progress where other methods stalled. _e weakness of the approach is
that extending beyond p = 2 will be tricky, perhaps impossible. See Section 6 for fur-
ther comments. _e vertex parity restriction is both more mysterious and perhaps
more tractable; again, see Section 6. A diòerent graph-theoretic perspective on the c2
invariant is given by Crump in [14].

_e structure of the paper is as follows. Section 2 deûnes the diòerent graph poly-
nomials thatwill be needed and collects together some important lemmas from other
sources. Section 3 then uses these lemmas to reduce the problem of proving themain
theorem to a problemof determining the parity of the number of certain edge biparti-
tions. _e realwork of proving_eorem 1.2 then comes in Sections 4 and 5. _e set of
these edge bipartitions is divided into ûve pieces. Two of the pieces are proved to have
even size in Section 4 by ûnding ûxed-point free involutions. _e other three pieces
are proved to have even size in Section 5 by giving a cycle swapping rule to transform
edge bipartitions. Finally, Section 6 concludes with some comments about the result,
the proof, and the way forward.

2 Background

_e ûrst step is to deûne some additional graph polynomials that will be needed in
order to prove themain result.

Let G be a graph. Choose an arbitrary order for the edges and the vertices of G
and choose an arbitrary orientation for the edges of G. Let E be the signed incidence
matrix of G (with the vertices corresponding to rows and the edges corresponding to
columns) with one arbitrary row removed and let Λ be the diagonal matrix with the
edge variables of G on the diagonal. Let M = [ Λ E t

−E 0 ]. _en detM = ΨG . _is can be
proved by expanding the determinant (see [7, Proposition 21]), or by using the Schur
complement and the Cauchy–Binet formula, see [25]. In both cases, it comes down
to the fact that the square full rank minors of E are ±1 for columns corresponding to
the edges of a spanning tree of G, which is the essence of thematrix tree theorem. In
this and other ways, thematrix M behaves much like the Laplacian matrix of a graph
(with variables and onematching row and column removed), but the pieces thatmake
it up are separated out, so call M the expanded Laplacian of G.
Assume that we havemade a ûxed choice of orders and orientation so as to deûne

a ûxed M in all that follows. _us, it will not matter whether we talk of edges or
edge indices. In particular, we will use G/e and G/e for the contraction and deletion
respectively in the graph G with the same meaning whether e is an edge or an edge
index.

If I and J are sets of edge indices, then let M(I, J) be thematrix M with the rows
indexed by elements of I removed and the columns indexed by elements of J removed.
Brown [7] deûned the following Dodgson polynomials.

Deûnition 2.1 Let I, J, and K be sets of edge indices with ∣I∣ = ∣J∣. Deûne

ΨI , J
G ,K = detM(I, J)∣ae=0 for e∈K .
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Figure 2: A graph for a spanning forest example.

We can leave out theG subscriptwhen the graph is clear and leave out the K when
K = ∅.
Dodgson polynomials have nice contraction-deletion properties and many inter-

esting relations; see [7]. Makingdiòerent choices in the construction ofM may change
the overall sign of a Dodgson polynomial, but sincewewill be concernedwith count-
ing zeros of these polynomials, the overall sign is of no concern.
Dodgson polynomials can also be expressed in terms of spanning forests; this is a

consequence of the all minorsmatrix tree theorem [12]. _e following spanning forest
polynomials are convenient for this purpose.

Deûnition 2.2 Let P be a set partition of a subset of the vertices of G. Deûne

ΦP
G = ∑

F
∏
e/∈F
ae ,

where the sum runs over spanning forests F of G with a bijection between the trees
of F and the parts of P where each vertex in a part lies in its corresponding tree.

Note that trees consisting of isolated vertices are permitted. In most of the argu-
ment, we will be working with spanning forest polynomials where P has exactly two
parts. _e corresponding spanning forests thus have exactly two parts and will be
known as 2-forests. For example, if G is as in Figure 2, then

Φ{v1 ,v2},{v3}
G = (e + d)(ca + cb + ab + f b + gb).

_e precise relationship betweenDodgson polynomials and spanning forest poly-
nomials is given in the following proposition.

Proposition 2.3 ([11, Proposition 12]) Let I,J, and K be sets of edge indices of G with
∣I∣ = ∣J∣. _en

ΨI , J
G ,K = ∑±ΦP

G/(I∪J∪K) ,

where the sum runs over all set partitions P of the end points of edges of (I∪J∪K)/(I∩J)
such that all the forests corresponding to P become spanning trees in both G/I/(J ∪ K)

and G/J/(I ∪ K).

_e signs appearing in the proposition can be determined (see [11]); however, they
are of no concern for the present, since we will be working modulo 2. Note that if an
edge index is in both I and J, then it is deleted in both G/I and in G/J and so cannot
then be contracted; in the contraction, simply ignore edge indiceswhose edges are no
longer there.
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Figure 3: An example graph for some Dodgson polynomial to spanning forest polynomial com-
putations and two of its minors.

_e instances of this proposition that will be needed below also serve as a good
example of these objects and how to manipulate them.

Example 2.4 Suppose we have a graph G with a 3-valent vertex u and let the edges
incident to u be 1, 2, and 3, as in the ûrst graph in Figure 3.
Consider the Dodgson polynomial Ψ12,13

G . To ûnd its expression in terms of span-
ning forest polynomials,weneed to look for sets of edges ofG/123 that give a spanning
tree inG/12/3 and inG/13/2. _ese smaller graphs are each isomorphic toG−u, and
so we obtain

Ψ12,13
G = ΨG−u = Φ{u},{v1 ,v2 ,v3}

G/123 = Φ{v1 ,v2 ,v3}
G−u .

Consider the Dodgson polynomial Ψ2,3
G ,1. To ûnd its expression in terms of span-

ning forest polynomials, we need to look for sets of edges of G/123 that give a span-
ning tree in G/2/13 and in G/3/12. _ese two smaller graphs are the second and third
graphs in Figure 3. If a set of edges is a forest for both of these graphs, then on G/123
wemust have v1 and v2 in diòerent trees as well as v1 and v3 in diòerent trees; u must
also be in a diòerent tree from all the other vertices. Furthermore, to get a tree in the
two minors of Figure 3, the spanning forest of G/123 must have exactly three trees,
including the tree consisting of the isolated vertex u alone. _ere is one partition of
{u, v1 , v2 , v3} that satisûes these properties, namely {u}, {v1}, {v2 , v3}, and all forests
compatible with this partition give trees in the two minors of Figure 3. _erefore,

Ψ2,3
G ,1 = Φ{u},{v1},{v2 ,v3}

G/123 .

Since the vertex u is isolated in G/123, we can rewrite this without u as

Ψ2,3
G ,1 = Φ{v1},{v2 ,v3}

G−u .

We can use the particularDodgson polynomials from the example to compute the
c2 invariantmore easily. Continue for the next two lemmaswith the notation [F]p for
the number of Fp-rational points on the aõne variety deûned by the polynomial F
reducedmodulo p. _e polynomials we will deal with will always come from graphs,
and so the dimension of the aõne space in question will be the number of edges of
the graph.
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Lemma 2.5 ([8, Lemma 24] along with inclusion-exclusion) Suppose G is a graph
with 2+ ∣E(G)∣ ≤ 2∣V(G)∣. Let i , j, k be distinct edge indices of G and let p be a prime.
_en

c(p)2 (G) = −[Ψ ik , jk
G Ψ i , j

G ,k]p mod p.

Note that decompletions of 4-regular graphs satisfy the hypotheses of this lemma.
_is lemma is useful, becausewe no longer have to divide by p2, but rather can obtain
the c2 invariant directly as a point count modulo p.

_e last lemma we need is a corollary of one of the standard proofs of the Cheval-
ley–Warning theorem; see [1, Section 2].

Lemma 2.6 Let F be a polynomial of degreeN in N variables, x1 , . . . , xN ,with integer
coeõcients. _e coeõcient of x p−1

1 ⋅ ⋅ ⋅ x p−1
N in F p−1 is [F]p modulo p.

_is last lemma is particularly useful when used in conjunction with the previ-
ous lemma. Suppose G is a decompletion of a 4-regular graph and i , j, k are distinct
edge indices. _en Ψ ik , jk

G Ψ i , j
G ,k has both degree and number of variables equal to the

number of edges of G/i jk. _us, c(p)2 (G) is equal to the coeõcient of x p−1
1 ⋅ ⋅ ⋅ x p−1

N in
(Ψ ik , jk

G Ψ i , j
G ,k)

p−1 modulo p. In view of this, we will no longer need to consider point
counts and so that frees up square brackets for the usual algebraic combinatorics no-
tation for the coeõcient-of operator. Namely, the coeõcient of a monomial m in a
polynomial F is denoted [m]F. Rewriting the previous observation in this notation,
we get

c(p)2 (G) = [x p−1
1 ⋅ ⋅ ⋅ x p−1

N ](Ψ ik , jk
G Ψ i , j

G ,k)
p−1 mod p,

where N is the number of edges of G/i jk. If we further suppose that i, j, and k meet
at a 3-valent vertex u and their other ends are v1, v2, and v3 (this casewill be suõcient
for our purposes), then we can incorporate the computations of Example 2.4 to get

(2.1) c(p)2 (G) = [x p−1
1 ⋅ ⋅ ⋅ x p−1

N ](Φ{v1},{v2 ,v3}
G−u ΨG−u)

p−1 mod p.

_e polynomials do in general depend on the choice of v1, though the coeõcient in
question modulo p clearly does not. We will use the freedom of choice of v1 later.

When p = 2, (2.1) has a particularly nice graphical interpretation that can be de-
rived as follows. We are interested in the parity of [x1 ⋅ ⋅ ⋅ xN]Φ{v1},{v2 ,v3}

G−u ΨG−u , but
the coeõcient of x1 ⋅ ⋅ ⋅ xN in Φ{v1},{v2 ,v3}

G−u ΨG−u is the number of ways to partition the
variables into two monomials, one from Φ{v1},{v2 ,v3}

G−u and one from ΨG−u , since both
of these polynomials4 have all monomials appearing with coeõcient 1. _e variables
correspond to edges, so this is equivalent to counting the number ofways to partition
the edges of G − u into two parts, one part when removed gives a spanning tree and
the other partwhen removed gives a spanning 2-forest compatiblewith {v1}, {v2 , v3}.
Swapping the roles of the two parts, this is equivalent to counting the number ofways
to partition the edges of G − u into two parts, one of which is a spanning tree and the

4_e same idea works for more general products of Dodgson polynomials, but some care must be
taken as Dodgson polynomials are in general signed sums of spanning forest polynomials. For some
examples computing in this way, see [13,26].
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other of which is a spanning 2-forest compatible with {v1}, {v2 , v3}. _e c2 invari-
ant at p = 2 is simply the parity of this count, so we are determining c2 by counting
assignments of the edges of G − u to particular spanning trees and forests.
For p > 2, the same ideaworks, butwemust assign p−1 copies of each edge among

p−1 copies of each polynomial. We can view this as partitioning the edges of the graph
we obtain by taking G − u and replacing each edge with p − 1 edges in parallel. _ere
are many more possibilities when partitioning all these multiple edges into 2p − 2
polynomials; the practicalities of working with this approach for p > 2 are daunting.

3 Reduction to a Combinatorial Counting Problem

Take K to be a (ûxed) connected 4-regular graph with an odd number of vertices and
take v, w to be vertices of K. Since K is connected, there is a path between any two
vertices of K, and thus it suõces to prove_eorem 1.2 in the case where v and w are
joined by an edge. _us, add as an assumption that v and w are joined by an edge.

If v andw have three common neighbours then K−v and K−w are isomorphic so
the result is trivial. _erefore, we can assume that v and w have at most two common
neighbours.

_e case when v and w have two common neighbours is special for two reasons.
First,when v andw have two common neighbours, there is a double triangle (two tri-
angles sharing an edge) involving v,w, and their commonneighbours. _e arguments
of [8] on double triangle invariance of c2 have not been extended to the case where
one of the vertices of the double triangle is the completion vertex, and so these argu-
ments cannot be used here. However, the double triangle arguments should be readily
generalizable to this situation and would work for all p, but the required techniques
and setup are somewhat diòerent and so thiswill not be pursued here. Rather,wewill
simply leave it as a comment that the case where v and w have exactly two common
neighbours should be a consequence of the other cases because of the double triangle,
and instead will prove this case directly with the present methods.

Second, 5 the case where v and w have two common neighbours is special enough
that we can remove the requirement that K have an odd number of vertices. _is
argument is suggestive of how the parity restriction should hopefully be removable in
general and is discussed in Section 6.

In the end we must consider 0, 1, or 2 common neighbours for v and w. _ese
three cases are illustrated in Figure 4; label the vertices of K as in the ûgure.

If v and w have no common neighbours, let R = K − {v ,w}; that is R is the grey
blob on the right-hand side of Figure 4. If v and w have one common neighbour, let
S = K − {v ,w}; that is, S is the grey blob in the middle of Figure 4. Finally, if v and
w have two common neighbours, let T = K − {v ,w}; that is, T is the grey blob on the
le�-hand side of Figure 4.
By the fact that K is 4-regular and has an odd number of vertices, the number of

edges of K − {v ,w} is always −1 mod 4, and so for each of R, S, and T , we will use
x1 , x2 , . . . , x4k−1 for the edge variables.

5_anks to a referee for this observation.
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Figure 5: A graph and an edge bipartition of it compatible with {a, b}, {c}.

_e next step is to use the results of Section 2 to rewrite the c(2)2 in the R, S, and T
cases.
Call a set partition with two parts a bipartition and use the following notation.

Deûnition 3.1 Suppose that P is a bipartition of a subset of the vertices of R. _en
letRP be the set of bipartitions of the edges of R such that one part is a spanning tree
of R and the other part is a spanning 2-forest where one tree of the 2-forest contains
all vertices of the ûrst part of P and the other contains all vertices of the second part
of P. Furthermore, let rP = ∣RP ∣.
DeûneSP and sP similarly for a bipartition of a subset of the vertices of S and deûne

TP and tP similarly for T .

For example, if R = K3,3 as shown in the ûrst part of Figure 5, then one of the
elements ofR{a ,b},{c} ismarked by the thick and dotted lines in the second part of the
ûgure. Permuting a and b and permuting d, e, and f ,we get 12 elements ofR{a ,b},{c}.
In this case one other form can occur namely where the isolated vertex c is the tree
containing c in the spanning 2-forest. _ere are 6 such elements, and so r{a ,b},{c} = 18
in this case.

Proposition 3.2 With notation as above,when v andw have no common neighbours,

c(2)2 (K − {v}) = r{a ,b}{c} + r{a ,c},{b} + r{b ,c},{a} mod 2,(3.1)

c(2)2 (K − {w}) = r{d ,e},{ f } + r{d , f },{e} + r{e , f },{d} mod 2,(3.2)
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while when v and w have only neighbour c,

c(2)2 (K − {v}) = s{a ,b},{c} mod 2,(3.3)

c(2)2 (K − {w}) = s{d ,e},{c} mod 2,(3.4)

and when v and w have neighbours b and c,

c(2)2 (K − {v}) = t{a},{b ,c} mod 2,(3.5)

c(2)2 (K − {w}) = t{d},{b ,c} mod 2.(3.6)

Proof By Lemmas 2.5 and 2.6 and Example 2.4, as encapsulated in (2.1),when v and
w have no common neighbours,

c(2)2 (K − {v}) = [x1x2 ⋅ ⋅ ⋅ x4k−1]Φ
{a ,b},{c}
R ΨR mod 2

= [x1x2 ⋅ ⋅ ⋅ x4k−1]Φ
{a ,c},{b}
R ΨR mod 2

= [x1x2 ⋅ ⋅ ⋅ x4k−1]Φ
{b ,c},{a}
R ΨR mod 2,

and so by the joys of working modulo 2,

c(2)2 (K − {v}) = [x1x2 ⋅ ⋅ ⋅ x4k−1]Φ
{a ,b},{c}
R ΨR

+ [x1x2 ⋅ ⋅ ⋅ x4k−1]Φ
{a ,c},{b}
R ΨR

+ [x1x2 ⋅ ⋅ ⋅ x4k−1]Φ
{b ,c},{a}
R ΨR mod 2.

Similarly,

c(2)2 (K − {w}) = [x1x2 ⋅ ⋅ ⋅ x4k−1]Φ
{d ,e},{ f }
R ΨR

+ [x1x2 ⋅ ⋅ ⋅ x4k−1]Φ
{d , f },{e}
R ΨR

+ [x1x2 ⋅ ⋅ ⋅ x4k−1]Φ
{e , f },{d}
R ΨR mod 2.

_us, by the edge assignment interpretation discussed at the end of Section 2,
c(2)2 (K−{v}) is equal modulo 2 to the number ofways to partition the edges of R into
two parts where one part is a spanning tree and the other part is a spanning 2-forest
where one tree of the 2-forest includes two vertices among {a, b, c} and the other tree
of the 2-forest includes the remaining vertex of {a, b, c}. Similarly, c(2)2 (K − {w}) is
equal modulo 2 to the number ofways to partition the edges of R into two partswhere
one part is a spanning tree and the other part is a spanning 2-forest where one tree
of the 2-forest includes two vertices among {d , e , f } and the other tree of the 2-forest
includes the remaining vertex of {d , e , f }. Restated using our notation, this is the
statement of the proposition when v and w have no common neighbours.

When v and w have only common neighbour c, we can calculate similarly. We
could again sum over the three possible bipartitions of {a, b, c} and similarly for
{c, d , e}. However, the common neighbour c breaks the symmetry, and thus it will
bemore convenient for the remainder of the argument simply to work with the par-
titions {a, b}, {c} and {c}, {d , e} giving the simpler result of the statement of the
proposition in the case where v and w have common neighbour c.
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Likewise, when v andw have common neighbours b and c, because the symmetry
is broken it is most convenient only to take the partitions {a}, {b, c} and {d}, {b, c}
and otherwise argue as above to obtain the result.

In view of the above proposition, to prove _eorem 1.2, it suõces to show that
the parity of the number of edge partitions that contribute to the right-hand side of
(3.1) is the same as the parity of the number of edges partitions that contribute to the
right-hand side of (3.2), and similarly for (3.3) and (3.4) and for (3.5) and (3.6).

Proposition 3.3 With notation as above,when v andw have no common neighbours,

c(2)2 (K − {v}) − c(2)2 (K − {w}) = r{a ,b ,d ,e , f },{c} + r{a ,c ,d ,e , f },{b}
+ r{a},{b ,c ,d ,e , f } + r{a ,b},{c ,d ,e , f }
+ r{a ,c},{b ,d ,e , f } + r{a ,d ,e , f },{b ,c}
+ r{a ,b ,c ,d ,e},{ f } + r{a ,b ,c ,d , f },{e}
+ r{a ,b ,c ,e , f },{d} + r{a ,b ,c , f },{d ,e}
+ r{a ,b ,c ,e},{d , f } + r{a ,b ,c ,d},{e , f } mod 2

while when v and w have only neighbour c,

c(2)2 (K − {v}) − c(2)2 (K − {w}) =s{a ,b ,d},{c ,e} + s{a ,b ,e},{c ,d}
+ s{a ,b},{c ,d ,e} + s{a ,d ,e},{b ,c}
+ s{a ,c},{b ,d ,e} + s{a ,b ,c},{d ,e} mod 2,

and when v and w have neighbour b and c,

c(2)2 (K − {v}) − c(2)2 (K − {w}) = t{a},{b ,c ,d} + t{a ,b ,c},{d} mod 2.

Proof Consider the right-hand sides of (3.1) and (3.2). Enumerating all possibilities,

r{a ,b},{c} = r{a ,b ,d ,e , f },{c} + r{a ,b ,d ,e},{c , f } + r{a ,b ,d , f },{c ,e} + r{a ,b ,e , f },{c ,d}
+ r{a ,b ,d},{c ,e , f } + r{a ,b ,e},{c ,d , f } + r{a ,b , f },{c ,d ,e} + r{a ,b},{c ,d ,e , f }

and similarly for the other terms. Collecting these calculations together, simplifying
modulo 2, and performing analogous calculationswith regard to the right-hand sides
of (3.3), (3.4), (3.5), and (3.6), we get the proposition.

It is best, in my view, to keep a graphical viewpoint with the above formulas. For
example, one can represent a given term by drawing the graph andmarking the par-
tition by using diòerent vertex shapes. _en the second equation of the statement of
Proposition 3.3 looks like

c(2)2 (K − {v}) − c(2)2 (K − {w}) =

+ + + + + mod 2.

_e reader is encouraged to translate all the equations fromhere on out into this nota-
tion in order to better see the intuition behind the argument. Note that this graphical
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notation is not the same as in [11,13,26],where a graphwith amarked partition in this
way represented the spanning forest polynomial for that graph and partition.

One’s ûrst thought for proceeding from here would likely be to ûnd a ûxed-point-
free involution of the union of the R, S, or T sets appearing (via their counts) in
Proposition 3.3. It is not clear how to do this for all the R, S, and T sets, and so
the method will be more complicated. First we will deal with some of the R and S

sets via involutions. For the sets that remain we will build auxiliary graphs that use
the properties of certain cycles along with the parity hypotheses on K to show these
remaining sets all have an even contribution.

4 Some Involutions from Swapping around Particular Vertices

_e involution is simplest in the case where v and w have only common neighbour
c and the partition breaks a, b, c, d , e into {a, b, c}, {d , e} or {a, b}, {c, d , e}, so we
will begin by discussing that case.

Lemma 4.1 Let σ be a bipartition of the edges of S so that each part is a spanning
forest (either or both of which may potentially be a spanning forest with one tree, that
is a spanning tree), where in each forest every tree contains at least one of a, b, d, or e.
_en of the two edges incident to c, exactly one is in each part of σ and swapping which
part these two edges are in yields a new partition σ ′ with the above listed properties, but
not necessarily partitioning the vertices among the trees in the same way.

Proof Note that c is 2-valent in S. Let y and z be the two neighbours of c.
By hypothesis, in each part of σ , the vertex c is connected to some other vertices of

S since every tree contains at least one of a, b, d, or e, and so at least one edge incident
to c is assigned to this part. Since c is 2-valent, this means that exactly one incident
edge to c is in each part of σ . Consider the spanning forest F corresponding to one
part of σ . In F, c is a leaf and so removing the edge incident to c isolates c and does
not otherwise change the connectivity of the trees in F. Without loss of generality say
that y was the other end of this edge. Vertex z is in some tree of F and adding the
edge between z and c reconnects c to one of the trees of F whilemaintaining a forest
structure. _e same holds for the other part of σ .

Lemma 4.2 _ere is a ûxed-point free involution on S{a ,b ,c},{d ,e}∪S{a ,b},{c ,d ,e} and
thus s{a ,b ,c},{d ,e} + s{a ,b},{c ,d ,e} = 0 mod 2.

Proof All edge bipartitions in S{a ,b ,c},{d ,e} ∪ S{a ,b},{c ,d ,e} satisfy the hypotheses of
Lemma 4.1. To each such an edge partition swap the parts towhich the edges incident
to c belong. Consider an edge partition coming from S{a ,b ,c},{d ,e}. Removing the
edges incident to c disconnects c in both the 2-forest and the tree. Putting the edges
back in, but in opposite parts of the bipartition, reconnects c to one of the trees of
the 2-forest as well as to the single tree. If c is reconnected to the tree of the 2-forest
including {a, b}, then we now have another edge partition in S{a ,b ,c},{d ,e}. If c is
now connected to the tree of the 2-forest involving {d , e}, then we now have an edge
partition inS{a ,b},{c ,d ,e}. _e edge partitionmust be distinct from the initial partition
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since which edge incident to c corresponds to the tree has changed. _is operation
is clearly an involution. _us we get a ûxed-point free involution on S{a ,b ,c},{d ,e} ∪

S{a ,b},{c ,d ,e}. Consequently, the size of this set is even.

We can also apply the swapping map described in the previous proof to the other
S sets. However, an edge partition in S{a ,b ,d},{c ,e} can either be mapped to another
partition from the same set or it can be mapped to S{a ,b ,c ,d},{e}, which is not an S

set appearing in Proposition 3.3. An analogous situation occurs for the other S sets
not dealt with in the previous lemma. For these remaining S sets, use themethods of
Section 5 instead.

Next we look at some of the R sets that can be tackled with a generalized version
of the above argument.

Lemma 4.3 Let p1 ∪ p2 be a partition of {a, b, c, d , e , f }, where p1 consists of either
all of {a, b, c} and exactly one of {d , e , f } or all of {d , e , f } and exactly one of {a, b, c}.
Let x be the element of p1 that is alone from its trio. Consider any edge partition τ in
Rp1 ,p2 . Let t be the tree of the 2-forest of τ associated with p1.

_ere is a unique vertex y with the following properties:
(i) Either y ∈ p1 and is 2-valent in t or y /∈ p1 and y is 3-valent in t.
(ii) Removing y from t gives a component containing exactly two vertices of p1 and

a component containing exactly one vertex of p1 (hence the third component, if it
exists also contains exactly one vertex of p1).

(iii) Either x = y or x is in one of the components that, a�er removing y, contains
exactly one vertex of p1.

Wewill call the vertex y deûned in the above lemma the control vertex of τ, andwe
call the vertex x the outsider vertex.

Proof Since the spanning tree of τ spans, every vertex of t is at most 3-valent and
the vertices of p1 are at most 2-valent in t. _e union of the paths in t between the
vertices of p1 gives a subtree of t where every leaf is in p1. _ere are only ûnitely
many conûgurations for this subtree; these are illustrated in Figure 6 where the edges
in the ûgure represent paths in t. For each conûguration, the three properties and
uniqueness can be checked directly, remembering that the degree of y remains the
same in t as in the subtree.

Note that all the diòerent conûgurations in Figure 6 can be viewed as special cases
of the top le� conûguration where some of the paths have been contracted.

Lemma 4.4 _ere is a ûxed-point free involution on

R{a ,b},{c ,d ,e , f } ∪R{a ,c},{b ,d ,e , f } ∪R{a ,d ,e , f },{b ,c} ∪R{a ,b ,c ,d},{e , f }

∪R{a ,b ,c ,e},{d , f } ∪R{a ,b ,c , f },{d ,e} ,

and thus

r{a ,b},{c ,d ,e , f } + r{a ,c},{b ,d ,e , f } + r{a ,d ,e , f },{b ,c}
+ r{a ,b ,c ,d},{e , f } + r{a ,b ,c ,e},{d , f } + r{a ,b ,c , f },{d ,e} = 0 mod 2.
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Figure 6: Schematic determining the control vertex y. _e lower three vertices in each
schematic are p1 − {x} in any order.

Proof Let τ be an edge bipartition in the union of R sets in the statement of the
lemma. We need to set up some notation to build the involution.
● All of these R sets satisfy the hypotheses of Lemma 4.3, and so let y be the control
vertex of τ.

● _ere is exactly one edge incident to y in the spanning tree of τ. Let є be that edge.
● Let z be the end of є that is not y.
● Let t1 be the tree of the 2-forest of τ that contains y and let t2 be the other tree of

the 2-forest.
Now build τ′ from τ as follows.
● If z ∈ t2, then let η be the edge incident to y that leads to the component of t1 − {y}
with two vertices from {a, b, c, d , e , f }. Swap which part of the bipartition τ con-
tains є and which contains η to obtain τ′.

● If z ∈ t1, then let η be the edge incident to ywhich leads to the component of t1 − {y}
that contains z. Swap which part of the bipartition τ contains є and which contains
η to obtain τ′.
First let us check that τ′ is in the union of R sets in the statement. Similarly to the

proof of Lemma 4.1, y is a leaf in the spanning tree of τ so removing є disconnects
y from the spanning tree and adding η reconnects y maintaining a spanning tree
structure. Removing η further disconnects the 2-forest of τ into three components.
If we constructed τ′ by the second case, then adding є to the 2-forest reconnects the
same components thatwere disconnected by the removal of η. Ifwe constructed τ′ by
the ûrst case, then removing η cuts oò the component of t1 − {y} containing exactly
two vertices from {a, b, c, d , e , f } from the rest of t1; adding є reconnected t2 instead.
Furthermore, the outsider vertex is in the part of t1 that gets connected with t2. _e
result is an edge partition that corresponds to a partition of {a, b, c, d , e , f } satisfying
the hypotheses of Lemma 4.3, and so is in one of the R sets in the statement.

Next note that themap τ ↦ τ′ is ûxed-point free, since which edge of the control
vertex is in the spanning tree changes.
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Finally, the control vertex of τ and τ′ are the same and so applying themap twice
is the identity. _us, we get a ûxed-point free involution on the union ofR sets in the
statement, and so the size of this set is even.

Note that in the casewhere v andw had a common neighbour c, c always plays the
role of the control vertex, but compared to the conûgurations in Figure 6,more of the
paths have been contracted away. In this way, the case with no common neighbours
generalized the simpler argument in the common neighbour case.

5 Compatible Cycles

_is section deûnes certain special cycles and investigates their properties. _ese cy-
cles will let us determine the parity of the remaining rP and sP in Proposition 3.3 as
well as the tP .

Deûnition 5.1
(i) Call a bipartition of the edges of any graph (for our purposes, either R, S, or T)

such that one part gives a spanning tree and the other part gives a spanning 2-forest
a valid edge partition.

(ii) Suppose we have a valid edge partition. _is gives a bipartition of all of the
vertices of the graph according to which tree of the 2-forest they are in. Call a cycle C
compatiblewith the edge partition if all vertices of C are in the same part of the vertex
partition and exactly one edge of C is in the part of the edge partition corresponding
to the spanning tree.

Lemma 5.2 Supposewe have a valid edge partition. _e number of compatible cycles
is the same as the number of edges of the graph that are in the part of the edge partition
corresponding to the spanning tree but where both ends of the edge are in the same tree
of the 2-forest.

Proof Adding an edge joining two vertices of a tree gives a graphwith aunique cycle.
When this fact is applied to one of the trees of the 2-forest, this cycle is compatible
and every compatible cycle has this form.

Lemma 5.3 Suppose we have a valid edge partition and let V1 ,V2 be the associated
vertex partition. Suppose that ∑v∈Vi deg v is odd for i = 1, 2, and the total number of
vertices of the graph is odd. _en the number of compatible cycles is odd.

Proof Let ℓ be the number of edges crossing the vertex partition and let e i be the
number of edges not in the 2-forest but with both ends in the tree of Vi for i = 1, 2.
_e number of edges leaving the tree of the 2-forest associated with Vi is

∑
v∈Vi

deg v − 2(∣Vi ∣ − 1) − 2e i = ℓ

for i = 1, 2. _erefore, by the degree hypothesis, ℓ is odd. _e number of edges of the
spanning tree of the valid edge partition is

∣V1∣ + ∣V2∣ − 1 = e1 + e2 + ℓ.
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However, ∣V1∣+ ∣V2∣ is the total number of vertices of the graph, and so by hypothesis
is odd. _erefore, e1 + e2 is also odd. By Lemma 5.2, the number of compatible cycles
is e1 + e2, and hence is odd, as desired.

Now we want to apply this lemma to the R and S of Proposition 3.3 sets that were
not dealt with in the previous section, as well as the T sets of Proposition 3.3.

Lemma 5.4 Every edge partition of

R{a ,b ,d ,e , f },{c} ∪R{a ,c ,d ,e , f },{b} ∪R{a},{b ,c ,d ,e , f } ∪R{a ,b ,c ,d ,e},{ f }

∪R{a ,b ,c ,d , f },{e} ∪R{a ,b ,c ,e , f },{d}

∪ S{a ,b ,d},{c ,e} ∪ S{a ,b ,e},{c ,d} ∪ S{a ,c},{b ,d ,e} ∪ S{b ,c},{a ,d ,e}

∪ T{a},{b ,c ,d} ∪ T{a ,b ,c},{d}

has an odd number of compatible cycles.

Proof It suõces to check the hypotheses of Lemma 5.3.
_e number of vertices of each of R, S, and T is odd by our running assumptions

on K.
Take any edge partition in the union above. All the vertices other than

{a, b, c, d , e , f } are degree 4, so it suõces to check that the sums of the degrees of
the vertices in each part of the deûning partition of {a, b, c, d}, or {a, b, c, d , e}, or
{a, b, c, d , e , f } are odd. For the R sets, one part has degree sum 5 ⋅ 3, and the other
has degree sum 3; for the S sets, one part has degree sum 3 ⋅3, and the other has degree
sum 3+2, and for the T sets, one part has degree sum 3, and the other has degree sum
3 + 2 + 2. All of these are odd.

Lemma 5.5 Supposewe have a valid edge partition and a compatible cycle C. Let f be
the one edge of C not in the 2-forest. Ifwewere to remove f , the spanning treewould split
into exactly two trees, call them t1 and t2. _ere are a non-zero even number of edges
of C with one end in t1 and the other end in t2 (including f as one of the possibilities).
If we take any such edge other than f and swap it with f in the edge partition, then we
obtain a valid edge partition corresponding to the same vertex partition.

Proof By construction, f has one end in t1 and one end in t2. _e vertices of C
can be bipartitioned based on whether they are in t1 or in t2. Running around C, we
must changewhich part of the bipartitionwe are in an even number of times in order
to return to where we started, giving a non-zero even number of edges of the type
described in the statement.

Let f ′ /= f be another edge of C where we change from t1 to t2. Removing f from
the spanning tree disconnects it into t1 and t2 while adding f ′ reconnects t1 and t2 to
obtain a spanning tree again. Adding f to the 2-forest creates one cycle, speciûcally
C. Removing any edge of C, in particular f ′, returns us to a 2-forest with the same
vertex partition.
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Lemma 5.6

(i)
r{a ,b ,d ,e , f },{c} + r{a ,c ,d ,e , f },{b} + r{a},{b ,c ,d ,e , f } + r{a ,b ,c ,d ,e},{ f }

+ r{a ,b ,c ,d , f },{e} + r{a ,b ,c ,e , f },{d} = 0 mod 2.
(ii) s{a ,b ,d},{c ,e} + s{a ,b ,e},{c ,d} + s{a ,c},{b ,d ,e} + s{b ,c},{a ,d ,e} = 0 mod 2.
(iii) t{a},{b ,c ,d} + t{a ,b ,c},{d} = 0 mod 2.

Proof _e construction is the same for all three cases. It will be described explic-
itly in the R case. Construct a graph XR as follows. _e vertices of XR are the edge
partitions in

R{a ,b ,d ,e , f },{c} ∪R{a ,c ,d ,e , f },{b} ∪R{a},{b ,c ,d ,e , f } ∪R{a ,b ,c ,d ,e},{ f } ∪R{a ,b ,c ,d , f },{e}

∪R{a ,b ,c ,e , f },{d} .

Two vertices of XR are adjacent if they are related by a swap as given in Lemma 5.5.
Note that if a given edge assignment goes to another via such a swap, then the second
also goes to the ûrst by such a swap, since the cycle is compatible for either edge par-
tition and the t1, t2 partition (in the notation of the proof of Lemma 5.5) is also the
same for both edge partitions.
By Lemma 5.4, for any vertex x in XR , there are an odd number of cycles that can

yield swaps corresponding to edges incident to x. Distinct cycles must give distinct
swaps, hence distinct edges. By Lemma 5.5, each one of these cycles gives an odd
number of edges incident to x (one for each edge of the type described in the statement
of Lemma 5.5 other than f itself). All edges incident to x are obtained in this way, so
x has odd degree. _is is true for all vertices of XR , but by basic counting, any graph
has an even number of vertices of odd degree, so XR has an even number of vertices.

_erefore, theunion ofR sets deûning XR has even size,which is the ûrst statement
of the lemma.

_e argument for XS and XT is analogous, using the edge partitions in

S{a ,b ,d},{c ,e} ∪ S{a ,b ,e},{c ,d} ∪ S{a ,c},{b ,d ,e} ∪ S{b ,c},{a ,d ,e}

and

T{a},{b ,c ,d} ∪ T{a ,b ,c},{d} ,

respectively.

Note that the construction of XR , XS , and XT is closely related to the spanning tree
graph (o�en just called the tree graph, see [15]) construction. _e vertices of the tree
graph of a graph G are the spanning trees of G, and two vertices of the tree graph are
joined by an edge if the two spanning trees diòer by removing one edge and replacing
it with another.

_is is all we need to prove themain theorem.

Proof of_eorem 1.2 As discussed at the beginning of Section 3 it suõces to con-
sider v and w joined by an edge and with zero, one, or two common neighbours.
By Proposition 3.3, we need only check that the parity of a certain sum of rp1 ,p2

is even in the case where v and w have no common neighbours, or a certain sum of
sp1 ,p2 is even in the casewhere v andw have one common neighbour, or a certain sum
of tp1 ,p2 is even in the case where v and w have two common neighbours.
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In the case where v and w have two common neighbours, the third part of Lem-
ma 5.6 gives that the required sum is even.

In the casewhere v andw have one commonneighbour, Lemma 4.2 and the second
part of Lemma 5.6 give that the required sum is even.

In the case where v and w have no common neighbours, Lemma 4.4 and the ûrst
part of Lemma 5.6 give that the required sum is even.

6 Discussion

It should be the case that _eorem 1.2 is true for all p and without the restriction that
K has an odd number of vertices; see [8, conjecture 4]. _is would be an excellent
conjecture to prove, because it would support the deep connection between the c2
invariant and the Feynman period. It is a surprisingly diõcult and very interesting
conjecture.

_e restriction to p = 2 came about because Lemma 2.6 is much simpliûed in the
p = 2 case. For higher values of p, there is a still an edge assignment interpretation as
discussed at the end of Section 2, but each edgemust be assigned p − 1 times to build
p−1 spanning trees and p−1 spanning 2-forests. _is greatly increases the complexity.
However, in principle these ideasmay be extendable to p > 2. _e practicalitieswould
certainly be very diõcult. _e question is whether or not the practicalities would be
so diõcult as to render the approach unworkable.

_e vertex parity condition is moremysterious. Note that it is only needed for the
arguments of Section 5 and not for the arguments of Section 4. If the number of ver-
tices of K were even, then the required degree sum parity in Lemma 5.3 would also
need to change to preserve the total number of compatible cycles being odd. _is
translates into themethods of Section 5 applying to the otherR, S, and T sets, namely
the ones we already know how to tackle by Section 4. So if K had an even number of
vertices then the terms that in the odd casematched by swapping around the control
vertex would become the terms that are even by compatible cycles, while the terms,
which used be even by compatible cycles would need a new argument. _e ûrst place
to look for this new argument would be as a generalized control vertex argument;
however, it is not clear how to do it. _ere is no obvious obstruction; rather the re-
quired construction is simply not apparent, and so some further cleverness is required
to progress.

In the T case, that is the double triangle case where v and w have two common
neighbours, things are suõciently special thatwe can extend the argument to remove
the parity condition. _is was graciously pointed out by a referee. _is argument
manages to succeed by running through additional T sets that do not appear directly
in the expression for c2 but occur while swapping. I had tried similar things in other
caseswithout ûnding a path to the result, but the approach remains promising, as this
argument shows. Consider τ ∈ T{a},{b ,c ,d} ∪T{a ,b},{c ,d}. _e vertex b is 2-valent and
one of its incident edges is in each of the tree and the 2-forest of τ since in both cases
b must connect to other vertices. _us, by the same argument as Lemma 4.1, we can
swap the edges around b and obtain a ûxed-point free involution on T{a},{b ,c ,d} ∪

T{a ,b},{c ,d}. _erefore,

t{a},{b ,c ,d} + t{a ,b},{c ,d} = 0 mod 2.
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Symmetrically, by swapping around vertex c in T{a ,b ,c},{d} ∪ T{a ,b},{c ,d}, we get

t{a ,b ,c},{d} + t{a ,b},{c ,d} = 0 mod 2.

Adding these two equations and applying Proposition 3.3 we get

c(2)2 (K − {v}) − c(2)2 (K − {w}) = t{a},{b ,c ,d} + t{a ,b ,c},{d} mod 2
= 0 mod 2.

_e statement and proof of_eorem 1.2 arose out of discussions withDmitryDo-
ryn about looking for special caseswherewe could hope to progress on understanding
the c2 invariant. _e ûrst version of the result hadmany additional hypotheses includ-
ing planarity and being restricted to the S-case. With some work, most of the extra
hypotheses dropped away, and the current _eorem 1.2 remained. It is not an entirely
satisfactory theorem as it stands, but it introduces some new ideas to the game and
makes nontrivial progress on the completion conjecture for the c2 invariant for almost
the ûrst time. Hopefully, as the ûrst crack in that conjecture, itwill lead, with the help
of others, to a proof of the full conjecture.
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