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On Maximal k-Sections and Related

Common Transversals of Convex Bodies

Endre Makai, Jr. and Horst Martini

Abstract. Generalizing results from [MM1] referring to the intersection body IK and the cross-section

body CK of a convex body K ⊂ R
d, d ≥ 2, we prove theorems about maximal k-sections of convex

bodies, k ∈ {1, . . . , d − 1}, and, simultaneously, statements about common maximal (d − 1)- and

1-transversals of families of convex bodies.

1 Introduction

Continuing [Ha1, Ha2, PC, MM1, MM2, MM3, among others], the present pa-
per collects some theorems on maximal k-sections of d-dimensional convex bodies,

where k is an integer between 1 and d − 1 and d is the dimension of the space. A
convex body K ⊂ R

d, d ≥ 2, is a compact, convex set with interior points in R
d,

and we write int (rel int) and bd (rel bd) for interior (relative interior) and boundary
(relative boundary) of K, respectively (relative means with respect to the affine hull

of K). A flat is an affine plane in R
d, and subspaces in R

d are always considered as
linear. A maximal k-section of K is the intersection of K and a k-dimensional flat Lk

such that Vk(K ∩ Lk) is maximal among the k-volumes of all intersections of K with

translates Lk + x, x ∈ R
d, where Vk denotes k-dimensional Lebesgue measure. The

investigations of maximal (d − 1)- and 1-sections of convex bodies as well as basic
relations between certain star bodies (defined in the following and associated with
a given convex body K ⊂ R

d) give a natural motivation for the results presented

here. For 0 ∈ int K, the intersection body IK of K is the star body with (necessarily
continuous) radial function Vd−1(K ∩ u⊥) for u ∈ Sd−1, where u⊥ is the orthocom-
plement of the unit vector u. This notion is due to Lutwak [Lu], see also [Ga, Defini-
tion 8.1.1], and intersection bodies have various applications in the field of convexity

(dual mixed volumes, Busemann-Petty problem, etc., cf. again [Ga, Chapter 8]).
The cross-section body CK of K is the star body with (necessarily continuous) radial
function maxλ∈R Vd−1(K ∩ (u⊥ + λu)), u ∈ Sd−1. This notion was introduced in
[Ma2], cf. also [Ga, Definition 8.3.1 and Section 8.3] for various properties and ap-

plications. On the other hand, for 0 ∈ int K the chordal symmetral 4̃K of K is the
star body whose radial function is given by V1(K ∩ (uR))/2, u ∈ Sd−1, with uR the
linear 1-subspace of R

d spanned by u, see [Ga, Definition 5.1.3]. It is obvious that

24̃K is the analogue of the intersection body for 1-dimensional sections. Finally,
the difference body DK = K + (−K) (see e.g., [Ga, Section 3.2]) is the analogue of
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the cross-section body for 1-dimensional sections. Evidently we have the relations

IK ⊂ CK and 24̃K ⊂ DK for 0 ∈ int K.
It was shown in [MM1] that each x ∈ R

d belongs to a hyperplane generating a
maximal (d − 1)-section of a convex body K ⊂ R

d. Thus for 0 ∈ int K we have

[bd(IK)] ∩ bd(CK) 6= ∅ (actually this last relation was a joint observation of R. J.
Gardner and the second author). On the base of [MMÓ] this was used in [MM1]
to characterize convex bodies centred at the origin or even centred balls. It was P. C.
Hammer (cf. [Ha1, Theorem 1, Ha2, Theorem 3.1, PC, proof of Theorem 4]) who

proved that each x ∈ R
d belongs to a line generating a maximal 1-section of a convex

body K ⊂ R
d. Thus for 0 ∈ int K, in our terms also [bd(24̃K)]∩bd(DK) 6= ∅ holds.

Analogously, one can use this to characterize convex bodies centred at the origin and
centred balls, see [MM1, Proposition 1]. In the present paper we are going to extend
these results to maximal k-sections of convex bodies K ⊂ R

d, 1 < k < d − 1, d ≥ 4.
Moreover, we obtain statements on common hyperplane transversals and common

line transversals of convex bodies that generate maximal (d − 1)-sections and max-
imal 1-sections of each body, respectively. Our results are obtained by elementary
methods from algebraic topology (not surpassing tools from the nice expository pa-
per [Wh]). However, extensions of our Theorems 4 and 5 (and statements close to

our Theorem 3) are contained in the very recent paper [MVŽ], but they are derived
by advanced methods from algebraic topology. In addition, the theorems given here
were obtained in essence earlier, see also our final remark in [MM1], where a slightly
weaker form of our Theorem 3 was already announced as a proved statement.

The following notations and definitions will also be useful. We write K|Lk for the
orthogonal projection of a convex body K ⊂ R

d to a k-flat Lk. For a metric space X

and m ≥ 0, the m-dimensional Hausdorff measure Hm is an outer measure defined on
all subsets of X as follows: for A ⊂ X

Hm(A) = sup
δ>0

(
inf

{ ∞∑

i=1

diam(Ai)
m · πm/2/(2m

Γ(1 +
m

2
))

∣∣∣

A ⊂
∞⋃

i=1

Ai ⊂ X, ∀i diam(Ai) ≤ δ
})

,

where diam means diameter, cf. [Fe, 2.10.1.–2], or also [MM1, p. 449]. All closed
subsets of X are Hm-measurable (see [Fe, pp. 54, 170]). If m is a positive integer, one
calls A ⊂ X, with Hm(A) <∞, (Hm,m)-rectifiable if

∀ε > 0 ∃Aε ⊂ X, Hm(A\Aε) < ε

and Aε is the image of a bounded subset of R
m by a Lipschitz map defined on this

subset, see [Fe, pp. 251–252]. If X is a Euclidean space and A is a compact C 1 m-
submanifold, then A is (Hm,m)-rectifiable, and Hm(A) coincides with the differential
geometric m-volume ([Fe, Theorems 3.2.26 and 3.2.39]).
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2 Results

As direct generalizations of Theorem 1 from [Ha1] (see also [Ha2, Theorem 3.1, PC,
proof of Theorem 4]) and [MM1, Theorem 1], which concern the cases k = 1 and
k = d − 1, we ask the following. Does each x ∈ R

d belong to a k-flat generating a

maximal k-section of a convex body K ⊂ R
d? Observe that the proof of Theorem 1

from [MM1] has shown actually that each (d − 2)-flat is a subset of a (d − 1)-flat
generating a maximal (d − 1)-section of K. This hints of the possibility that also for
1 < k < d − 1 each (k − 1)-flat is a subset of a k-flat generating a maximal k-section

of K. This will be confirmed in Theorems 1, 2 and 3 below (for d ≥ 4 rather than
d ≥ 2). Theorem 3 also contains the statement that the k-flats generating maximal
k-sections form a “large” set. This is a generalization of the corresponding statement

of Theorem 1 from [MM1] (except that in Theorem 3 the constant cd,k is not sharp,
while the constant was sharp in Theorem 1 of [MM1]). Moreover, Corollary 1 below
is a generalization of Theorems 2 and 3 from [MM1], which are based on [MMÓ]
and Proposition 1 from [MM1], which concern the cases k = d − 1 and k = 1.

Theorem 1 Let Lk−1 ⊂ R
d, d ≥ 4, be a fixed (k − 1)-subspace, 1 < k < d − 1, such

that for a given convex body K ⊂ R
d the relation (int K) ∩ Lk−1 6= ∅ holds. Then there

exists a k-subspace Lk ⊃ Lk−1 such that

Vk(K ∩ Lk) = max{Vk(K ∩ (Lk + x)) : x ∈ R
d}.

This statement implies analogues of Theorems 2 and 3 and Proposition 1 from

[MM1] with the same proofs, i.e., we have

Corollary 1 Let d ≥ 4, 1 < k < d − 1, and K ⊂ R
d be a convex body. If, for each

k-subspace Lk, we have Vk(K ∩ Lk) = c · max{Vk(K ∩ (Lk + x)) : x ∈ R
d}, where c is

a constant independent of Lk, then K is centred (i.e., K = −K). If both Vk(K ∩ Lk) and

max{Vk(K ∩ (Lk + x)) : x ∈ R
d} are constant, then K is a centred ball.

An analogue of Theorem 1 above can be formulated, namely

Theorem 2 Let Lk−1 ⊂ R
d, d ≥ 4, be a fixed (k − 1)-subspace, 1 < k < d − 1,

supporting or disjoint to a given convex body K ⊂ R
d. Then there exists a k-subspace

Lk ⊃ Lk−1 satisfying

Vk(K ∩ Lk) = max{Vk(K ∩ (Lk + x)) : x ∈ R
d}.

It should be noticed that the separated formulation of these two theorems is also
motivated by the ways of proving them, see below.

Remark The statements of Theorems 1 and 2 are sharp in the sense that in general
there are no two such Lks. For example, let K be a ball with centre not in Lk−1.

The Grassmannian Grd,k is the set of all k-subspaces Lk of R
d. An O(d)-invariant

Riemannian metric on Grd,k is given by

ds2
= Tr(dT∗ · dT),
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where the linear operator dT : Lk → L⊥
k is identified with its graph, that is a k-

subspace of R
d close to Lk. (Tr, ∗, and ⊥ denote trace, transposition and ortho-

complement, respectively.) About the existence and uniqueness of this Riemannian
metric see e.g., [MVŽ].

Nevertheless, one can summarize Theorems 1 and 2 by

Theorem 3 Let Lk−1 ⊂ R
d, d ≥ 4, be an arbitrary, fixed (k − 1)-subspace, 1 < k <

d − 1, and let K ⊂ R
d be a convex body. Then there exists a k-subspace Lk ⊃ Lk−1 such

that

Vk(K ∩ Lk) = max{Vk(K ∩ (Lk + x)) : x ∈ R
d}.

Moreover, the set of all k-subspaces Lk satisfying the last equality (but not the inclu-

sion Lk ⊃ Lk−1) cannot be included, in the sense of the above Riemannian metric ds2, in

a H(k−1)(d−k)-measurable,
(
H(k−1)(d−k), (k − 1)(d − k)

)
-rectifiable subset of the Grass-

mannian Grd,k, of (k−1)(d−k)-dimensional Hausdorff measure less than some positive

constant cd,k. This is sharp in the following sense: there exists some convex body K such

that the above set of k-subspaces Lk is a smooth, compact (k−1)(d−k)-dimensional sub-

manifold of Grd,k, of finite (k− 1)(d− k)-volume, in the sense of the above Riemannian

metric.

It was proved by P. C. Hammer (cf. [Ha1, Theorem 1, Ha2, Theorem 3.1, PC,

proof of Theorem 4]) that each x ∈ R
d belongs to an affine diameter (i.e., to a max-

imal 1-section) of a given convex body K ⊂ R
d. The following theorem is a natural

generalization of Hammer’s theorem since, if K1 is a ball, in fact it is Hammer’s state-
ment. As we have been recently informed, this theorem was obtained about 1980 by

V. L. Dol’nikov (unpublished).

Theorem 4 Let K1,K2 ⊂ R
d, d ≥ 2 be convex bodies. Then there exists a line l such

that K1 ∩ l is an affine diameter of K1 and K2 ∩ l is an affine diameter of K2.

Remark The statement of Theorem 4 is sharp in the sense that in general there are

no two such lines (each carrying a pair of affine diameters with respect to the pair
K1,K2), e.g., one can see this for K1,K2 being non-concentric balls.

On the other hand, replacing k by d − 1 in Theorem 3 (cf. also [MM1, Theorem

1]) one gets the following: Let K1 ⊂ R
d be a convex body, and K2, . . . ,Kd be balls

with centres in general position (i.e., these centres span an arbitrarily given, non-
degenerate (d − 2)-flat Ld−2). Then there exists a hyperplane Ld−1 ⊃ Ld−2 cutting
K1,K2, . . . ,Kd in maximal (d − 1)-sections. This observation gives a motivation for

(and is generalized by)

Theorem 5 Let K1, . . . ,Kd ⊂ R
d be convex bodies. Then there exists a hyperplane

Ld−1 such that for each i ∈ {1, . . . , d} the intersection Ki ∩ Ld−1 is a maximal (d − 1)-

section of Ki .
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Remark The statement of Theorem 5 is sharp in the sense that in general there are
no two such hyperplanes (e.g., let the convex bodies K1, . . . ,Kd be balls whose centres

are in general position).

3 Proofs of the Theorems

Proof of Theorem 1 It is enough to prove Theorem 1 for smooth and strictly con-
vex bodies K ⊂ R

d. (Namely, by the evident continuity property of k-dimensional

sections through fixed interior points of bodies, in the Hausdorff metric, one can
use a limit process for the general case.) When considering Lk + x, we will suppose
x ∈ L⊥

k , the orthocomplement of Lk, and we seek Lk in the form Lk = Lk−1 + uR,
where u ∈ L⊥

k−1, ||u|| = 1.

For x ∈ rel bd (K|L⊥
k ) we have Vk(K ∩ (Lk + x)) = 0 by strict convexity, so

maxx Vk(K∩(Lk+x)) is attained at some x ∈ rel int(K|L⊥
k ). By the Brunn-Minkowski

inequality (see, e.g., [BF]), for x ∈ rel int(K|L⊥
k ) the function fu(x) = Vk(K ∩ (Lk +

x))1/k is concave and, by smoothness of K, differentiable. So it suffices to find u ∈
L⊥

k−1 ∩Sd−1 such that the derivative at x = 0 equals 0, i.e., f ′
u (0) = 0. However, f ′

u (0)
depends continuously on the radial function of K and its first derivatives relative to
a point in (int K) ∩ Lk−1 (see, e.g., [MMÓ, Lemma 3.5], or (1) below). Therefore
f ′
u (0) is a continuous function of u, and f ′

u (0) ∈ L⊥
k implies 〈u, f ′

u (0)〉 = 0, and

f ′
u (0) = f ′

−u(0). That is, f ′
u (0) can be considered as an even, continuous tangent

vector-field on the unit sphere of L⊥
k−1. By Grünbaum’s theorem (see [Grü, p. 40, Sz,

Theorem 1]) this implies that there exists a u such that f ′
u (0) = 0.

Proof of Theorem 2 For Lk supporting K, say, at p, we can apply an approximation
argument. Choose Kn → K, p ∈ int Kn, with k-subspaces (Lk)n ⊃ Lk−1 having the

maximum property. We may assume that (Lk)n tends to some linear k-subspace Lk ⊃
Lk−1. By concavity of fu(x) it suffices to show the (local) maximum property only
among linear arrays of translates Lk + x, say {Lk +λx0} with x0 ∈ L⊥

k and λ ≥ 0, thus
for k-dimensional sections of a (k + 1)-dimensional convex body. The derivative of

the k-volume of these sections with respect to λ is a continuous function of the radial
function of this section and the first derivative of the radial function in the direction
of x0, the radial function taken with respect to a centre c in the relative interior of
the respective section (cf. e.g., [MMÓ, Lemma 3.5], or (1) below). It will suffice to

consider the case c ∈ int K only. In fact, if Lk satisfies Vk(K ∩ Lk) ≥ Vk(K ∩ (Lk + x))
for each x such that (int K) ∩(Lk + x) 6= ∅, then it satisfies the same inequality for
all x. In particular it suffices to consider linear arrays {Lk + λx0} such that for λ > 0
small (int K) ∩(Lk + λx0) 6= ∅. For almost all λ these derivatives exist a.e., (cf. [Sch,

2.2.4, Fe, 2.10.27 and 3.2.35]). It is enough to prove that, for λ > 0 small, if the
derivative of the section volume with respect to λ exists (that happens a.e.), it is non-
positive a.e. However, for c ∈ int K convergence of Kn to K implies convergence of

the derivatives as well, where these exist for K and each Kn. So the required inequality
for the derivative of the section volume follows from a limit procedure. Thus Lk has
the required maximum property for K.

For the case K ∩ Lk−1 = ∅ we may assume by the above approximation argu-
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ment and by [We, p. 335], that bd K is analytic, with everywhere positive principal
curvatures. Let D = {u ∈ L⊥

k−1 : ||u|| = 1, K ∩ (Lk−1 + uR
+) 6= ∅}, that is

a smooth, strictly convex domain on an open half (d − k)-sphere of the (d − k)-
sphere L⊥

k−1 ∩ Sd−1 (where R
+

= [0,∞) and uR
+

= {λu|λ ∈ R
+}). Then for

u ∈ D we have (int K) ∩ (Lk−1 + uR
+) 6= ∅ if and only if u ∈ rel int D, and hence

Lk−1 + uR
+ supports K if and only if u ∈ rel bd D (rel int and rel bd meant with

respect to L⊥
k−1 ∩ Sd−1). Thus, for u ∈ rel int D the derivative f ′

u (0), and hence also

( f 2
u ) ′(0) =

d
dx

( fu(x)2)|x=0 (x ∈ L⊥
k ), exists and is a continuous function of u, by

smoothness of K. (Recall that pointwise convergence of differentiable convex func-
tions to a differentiable convex function implies pointwise convergence of the deriva-
tives.) Again it suffices to prove that there exists a u ∈ rel int D such that f ′

u (0) = 0,

or, equivalently, ( f 2
u ) ′(0) = 0.

We assert that ( f 2
u ) ′(0) has an extension to a continuous function D −→ R

d. That
is (by regularity of the involved topology, and using [Bo, Ch. I, § 8.5]), if some (Lk)n

converge to an Lk, where (int K) ∩ (Lk)n 6= ∅, and Lk supports K, then we have

convergence of the respective expressions ( f 2
u ) ′(0) =

d
dx

(Vk(K ∩ ((Lk)n + x))2/k)|x=0.
(In this proof we will not use (Lk)n ⊃ Lk−1.) It suffices to prove convergence of d − k

directional derivatives for d−k orthogonal directions in (Lk)⊥n , these d−k directions
converging to some d − k directions as n → ∞. Below we will choose n sufficiently

large.
We have

Vk(K ∩ (Lk)n) =
1

k

∫

Sd−1∩(Lk)n

%k
ndσ,

where dσ is the surface area element on Sd−1 ∩ (Lk)n, and %n is the radial function of

K with respect to some relative interior point of K ∩ (Lk)n. Moreover, for (int K) ∩
(Lk)n 6= ∅, we have

(1)
d

dx
Vk (K ∩ ((Lk)n + x)) |x=0 =

∫

Sd−1∩(Lk)n

%k−2
n

∂%n

∂ψ
dσ,

where ψ is the geographic latitude in Sd−1 ∩ ((Lk)n + xR), with north pole x
‖x‖ ,

cf. [MMÓ, Lemma 3.5]. We consider x varying in a one-dimensional subspace or-
thogonal to (Lk)n, and differentiation is meant in this sense. Then

(2)

( f 2
u ) ′(0) =

2

k

∫

Sd−1∩(Lk)n

%k−2
n

∂%n

∂ψ
dσ

/( 1

k

∫

Sd−1∩(Lk)n

%k
ndσ

) 1−2/k

=
2

k

∫

Sd−1∩(Lk)n

( %n√
ε

) k−2 ∂%n

∂ψ
dσ

/( 1

k

∫

Sd−1∩(Lk)n

( %n√
ε

) k

dσ
) 1−2/k

(ε > 0 will be chosen later). If (Lk)n is close to Lk, which is contained in a supporting
hyperplane of K, then by a small translation (Lk)n can be moved to a position disjoint
to K. Thus a nearest translate (Lk)0

n of (Lk)n, supporting K, is close to (Lk)n, and so
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to Lk, too. In a suitable new coordinate system K has a tangent hyperplane at the
point K ∩ (Lk)0

n = {(0, . . . , 0)}, which is orthogonal to the d-th basic unit vector

ed. Moreover, near K ∩ (Lk)0
n the boundary of K has a local representation xd =

F(x1, . . . , xd−1) =
∑d−1

i=1
x2

i

a2
i

+ higher order terms, where ai > 0. By the choice of

(Lk)0
n we have (Lk)n = (Lk)0

n + y, y ∈ ((Lk)0
n)⊥, where y is orthogonal to the tangent

hyperplane of K at K ∩ (Lk)0
n. Thus y = εed, where ε > 0 is small, and (Lk)0

n lies in
the x1 . . . xd−1-hyperplane. Then (Lk)0

n 3 (0, . . . , 0, 0) implies (Lk)n 3 (0, . . . , 0, ε),

and so (Lk)n lies in the hyperplane xd = ε. Choose as centre of polar coordinates the
point (0, . . . , 0, ε) ∈ rel int(K ∩ (Lk)n). Then we have that %n is asymptotically the

same as for the surface xd =
∑d−1

i=1
x2

i

a2
i

(their quotient tends uniformly to 1, for each

direction and any choice of Lk, (Lk)n, (Lk)0
n). In particular, (0, . . . , 0, ε) ∈ K.

We recall that x varies in a one-dimensional subspace orthogonal to (Lk)n, and it

suffices to consider only d− k such mutually orthogonal one-dimensional subspaces.

One choice is when x is a multiple of ed (the direction in which we differentiate will

be that of the positive ed-axis). Then ∂%n

∂ψ = %n · ∂%n

%n∂ψ
= %n/

∂F
∂r

, where ∂F
∂r

is the partial
derivative in radial direction, in a coordinate system in the x1 · · · xd−1-hyperplane,
with origin (0, . . . , 0). We will consider r as the signed distance to (0, . . . , 0), along
a line in the x1 · · · xd−1-hyperplane, passing through (0, . . . , 0). On such a line, F

is nearly a quadratic function, and for r > 0 the expression ∂F
∂r

is asymptotically
∂2F
∂r2 ·r =

∂2F
∂r2 ·%n (their quotient tends uniformly to 1, for each such line, and any choice

of Lk, (Lk)n, (Lk)0
n). Thus %n√

ε
is close to the radial function of the set

∑d−1
i=1

x2
i

a2
i

≤ 1,

and ∂%n

∂ψ is close to 1/ ∂
2F
∂r2 . These depend on the second derivatives of the function

representing bd K at the point K∩(Lk)0
n, which in turn are close to the corresponding

second derivatives at the point K ∩ Lk. Hence we have by (2) convergence of ( f 2
u ) ′(0)

to a positive value, for x a multiple of ed.

We have still to consider d − 1 − k further choices for xR, orthogonal to (Lk)n,
to each other and to ed, and thus being parallel to the x1 · · · xd−1-hyperplane. Let us

consider one of these. For %n we use the same asymptotics as above. Furthermore,
we have ∂%n

∂ψ = %n/
∂G
∂r

, where x ′
d = G(x ′

1, . . . , x
′
d−1) is a local representation of the

boundary of K in a new coordinate system, with the x ′
d-axis being parallel to xR

(and oriented some way). More exactly, in general G has two branches with different

values on its domain of definition, and in the formula for ∂%n

∂ψ we consider that branch
which passes through the respective point of rel bd (K ∩ (Lk)n). The other possibility
is that the values of the two branches coincide at the respective point, and both have∣∣ ∂G
∂r

∣∣ = ∞; then ∂%n

∂ψ = 0.

By the above results on approximation of %n by the radial function of an ellipsoid
we have %n < const ·√ε, the constant only depending on K. Hence, letting Hε

=

{(x1, . . . , xd) ∈ R
d : xd = ε}, K ∩ Hε is contained in the ball about (0, . . . , 0, ε), of

radius const ·√ε. Recall that (0, . . . , 0, ε) ∈ (Lk)n ⊂ Hε, as noted after the introduc-
tion of (Lk)0

n. So

(A): Also K ∩ (Lk)n contains (0, . . . , 0, ε) and is contained in the ball about
(0, . . . , 0, ε), of radius const ·√ε.

By the same reason as above, K ∩ Hε contains a (d − 1)-ball in Hε about
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(0, . . . , 0, ε) of radius const ·√ε, the constant being positive and only depending
on K. Hence

(B): K ∩ Hε 3 (0, . . . , 0, ε)± const ·√ε · x
/
‖ x ‖.

From (A) and (B), by convexity, for the considered finite value ∂G
∂r

we have | ∂G
∂r
| ≥

const > 0 for ∂G
∂r

taken in directions lying in Lk, the constant only depending on K.

Hence | ∂%n

∂ψ | ≤ const ·√ε. Then (2) implies |( f 2
u ) ′(0)| ≤ const ·√ε.

Recapitulating, we have investigated the d− k orthogonal components of ( f 2
u ) ′(0)

∈ (Lk)⊥n . The component in the direction of ed converges to a non-zero vector having
the direction of the interior normal of K at the point K ∩ Lk. The other d − k − 1
components converge to 0. Hence ( f 2

u ) ′(0) converges to a non-zero vector having the

direction of the interior normal of K at the point K ∩ Lk. This proves our claim that
the function ( f 2

u ) ′(0), defined and continuous for u ∈ rel int D (i.e., for u ∈ L⊥
k−1,

‖ u ‖= 1, (int K) ∩ (Lk−1 + uR
+) 6= ∅), has a continuous extension to

D = {u ∈ L⊥
k−1 : ‖ u ‖= 1, K ∩ (Lk−1 + uR

+) 6= ∅}.

We denote this continuous extension by g : D → R
d, which also satisfies g(u) ∈

L⊥
k = (Lk−1 + uR)⊥ = L⊥

k−1 ∩ (uR)⊥. Thus g can be considered in a natural way as

a tangent vector-field on the strictly convex and smooth domain D ⊂ L⊥
k−1 ∩ Sd−1,

which is actually contained in an open half (d − k)-sphere of this (d − k)-sphere. As
shown above, for u ∈ rel bd D, g(u) is non-zero and has the direction of the interior

normal of K at the point K ∩ Lk. Hence g(u) has also the direction of the interior
normal of K|L⊥

k−1 at the point (K ∩ Lk)|L⊥
k−1, and so that of the interior normal of D

at u.

If, for u ∈ rel int D, g(u) = ( f 2
u ) ′(0) vanished nowhere, then we could define a

retraction h : D → rel bd D (i.e., a continuous map, identical on rel bd D) in the

usual way, see, e.g., [HW, Ch. IV, § 1, C]. Namely, to u ∈ D we associate the point
h(u) ∈ rel bd D which is the first intersection point of rel bd D with the geodesic,
on the above (d − k)-sphere, starting from u, in the direction opposite to that of
g(u). Since a retraction D → rel bd D does not exist (cf., e.g., [HW, Ch. IV, § 1, B]),

therefore there exists a u ∈ rel int D such that ( f 2
u ) ′(0) = 0. As stated above, this

suffices to prove our statement for the case K ∩ Lk−1 = ∅.

Proof of Theorem 3 The first part of Theorem 3 simply summarizes Theorems 1
and 2.

The second part of this theorem follows from results of [MVŽ]. We will use on

Grd,k the O(d)-invariant Riemannian metric given before Theorem 3. Let

C = {Lk : Lk ⊂ R
d is a k-subspace and Vk(K∩Lk) = max{Vk(K∩(Lk+x)) : x ∈ R

d}}.

Further, let C ⊂ M, where M is an H(k−1)(d−k)-measurable, (H(k−1)(d−k),
(k − 1)(d − k))-rectifiable subset of the Grassmannian Grd,k. Further, for Lk−1 ∈
Grd,k−1, let Sk(Lk−1) = {Lk ∈ Grd,k : Lk ⊃ Lk−1}. Then for each Lk−1 ∈ Grd,k−1 we
have C ∩ Sk(Lk−1) 6= ∅ by the first part of Theorem 3. This implies, by the proof
of Theorem 7 from [MVŽ], that the (k − 1)(d − k)-dimensional Hausdorff measure
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of M is at least some positive constant depending on d and k (in the notations of
[MVŽ], this constant is cd−1,k−1,0).

It remains to show that there exists a convex body K such that the above set C

of k-subspaces Lk is a smooth compact (k − 1)(d − k)-dimensional submanifold of
Grd,k; then it necessarily has a finite (k − 1)(d − k)-volume. Such a K is e.g. a ball
with centre different from 0, since then C is diffeomorphic to Grd−1,k−1.

Proof of Theorem 4 As in the proof of Theorem 2, suitable approximation methods
allow the restriction to smooth and strictly convex bodies K1,K2. We have to show
that there exists a u ∈ Sd−1 such that the affine diameter of K1 in direction u belongs

to the affine hull of the affine diameter of K2 in direction u. (For each u ∈ Sd−1, the
uniqueness of affine diameters of smooth, strictly convex bodies parallel to u is easily
verified, see also [Ha1, Ha2].) Denoting by fi(u) the orthogonal projection on u⊥ of
the affine diameter of Ki in direction u ∈ Sd−1, we therefore have to show that there

exists a u ∈ Sd−1 such that

uR + f1(u) = uR + f2(u) ,

where for each u ∈ Sd−1 we have f1(u), f2(u) ∈ u⊥. It is obvious that f1, f2 are well-
defined even functions which are also continuous. Thus we can consider f1(u)− f2(u)
as an even, continuous tangent vector-field on Sd−1. Then, by Grünbaum’s theorem
(cf. [Grü, p. 40; Sz, Theorem 1]), there exists a u0 ∈ Sd−1 such that f1(u0)− f2(u0) =

0. So we have f1(u0) = f2(u0), which implies u0R + f1(u0) = u0R + f2(u0).

Proof of Theorem 5 Again, as in the proof of Theorem 2, by analogous approxi-
mation arguments we may assume that the considered convex bodies K1, . . . ,Kd are

smooth and strictly convex. A hyperplane section of Ki , having maximal (d − 1)-
volume among all hyperplane sections of normal u ∈ Sd−1, is of the form Ki ∩
{x ∈ R

d : 〈x, u〉 = fi(u)}. Here the function fi is well-defined. In fact, suppose
there were two distinct parallel hyperplanes H1,H2 of normal u, with the maximum

volume section property. Then, by the equality case in the Brunn-Minkowski in-
equality, the sections of Ki with H1 and H2 would be translates of each other. Hence,
by Ki ∩ [(H1 + H2)/2] ⊃ [(Ki ∩ H1) + (Ki ∩ H2)]/2, also Ki ∩ [(H1 + H2)/2] would
be a translate of Ki ∩ H j , j = 1, 2. So bd Ki would contain segments. Moreover, fi is

continuous and odd. Namely, 〈x, u〉 = fi(u) if and only if 〈x,−u〉 = − fi(u), yielding
fi(−u) = − fi(u). We have to show that there exists a direction u ∈ Sd−1 such that
f1(u) = · · · = fd(u), i.e., such that the above d hyperplanes {x ∈ R

d : 〈x, u〉 = fi(u)}
coincide.

We suppose the contrary and let f = ( f1, . . . , fd) : Sd−1 → R
d\(1, . . . , 1)R, which

is odd. Here R
d\(1, . . . , 1)R is isomorphic to R

d\(edR), where the usual basis of R
d

is denoted by {e1, . . . , ed}. Moreover, we have R
d\(edR) = (R

d−1\{0}) × R. Denot-
ing the composition of f and the isomorphism above by g, we see that g : Sd−1 →
(R

d−1\{0})×R is obviously odd and continuous. We can write g(u) = (g1(u), g2(u)),
with g1(u) ∈ R

d−1\{0}, g2(u) ∈ R (thus in complementary subspaces). So g1, g2 are
components of an odd, continuous function; they are themselves odd and continu-
ous. First we only consider g1 as a map from Sd−1 to R

d−1 (by R
d−1\{0} ⊂ R

d−1). By
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continuity and the Borsuk-Ulam theorem (see, e.g., [Wh, Corollary 12]) one knows
that there exists a u ∈ Sd−1 such that g1(u) = g1(−u). Moreover, by oddness we have

g1(u) = −g1(−u). These together imply that g1(u) = 0, a contradiction.

4 Final Remark

Unfortunately, the proof of the very last announced statement from [MM1] (on k-
dimensional sections and projections, where correctly Vk(K|L ′

k)−1 stands) could not

be reproduced by us; thus it remains a conjecture. Anyway, it is equivalent to the
statement that, for 1 < k < d− 1, most convex bodies, in the sense of Baire category,
have no generalized plane shadow-boundaries with respect to illumination from any
projective (d − k − 1)-subspace of the hyperplane at infinity, as can be shown by

considerations analogous to those in [Ma1]. (The shadow boundary of a convex body

K with respect to illumination from a projective (d − k − 1)-subspace Pd−k−1 of the

hyperplane at infinity is
⋃{K ∩ Ld−k : Ld−k is a supporting (d − k)-flat of K, the pro-

jective extension of which contains Pd−k−1}. The shadow boundary is a generalized

plane shadow boundary if the following holds: letting L0
d−k be the (d − k)-subspace

whose projective extension contains Pd−k−1, there exists a k-flat Lk intersecting L0
d−k

transversally, such that Lk ∩ bd(K + L0
d−k) is a subset of the shadow boundary.) We

yet remark that, for the case of 0-symmetric convex bodies, an analogous statement

was announced, without proof, in [Gr, Theorem 31].
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[MVŽ] E. Makai, S. Vrećica and R. Živaljević, Plane sections of convex bodies of maximal volume.
Discrete Comput. Geom. 25(2001), 33–49.

[Ma1] H. Martini, On inner quermasses of convex bodies. Arch. Math. 52(1989), 402–406.
[Ma2] , Extremal equalities for cross-sectional measures of convex bodies. Proc. 3rd Geometry

Congress, Aristoteles University Press, Thessaloniki, 1992, pp. 285–296.
[PC] C. M. Petty and J. M. Crotty, Characterizations of spherical neighbourhoods. Canad. J. Math.

22(1970), 431–435.
[Sch] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press,

Cambridge, 1993.
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