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ABSTRACT. The treatment of the coordinate systems is briefly reviewed in 
the Newtonian mechanics, in the special theory of relativity, and in the 
general relativistic theory, respectively. Some reference frames and 
coordinate systems proposed within the general relativistic framework 
are introduced. With use of the ideas on which these coordinate systems 
are based, the proper reference frame comoving with a system of mass-
points is defined as a general relativistic extension of the relative 
coordinate system in the Newtonian mechanics. The coordinate transforma­
tion connecting this and the background coordinate systems is presented 
explicitly in the post-Newtonian formalism. The conversion formulas of 
some physical quantities caused by this coordirate transformation are 
discussed. The concept of the rotating coordinate system is reexamined 
within the relativistic framework. A modification of the introduced 
proper reference frame is proposed as the basic coordinate system in the 
astrometry. The relation between the solar system barycentric coordinate 
system and the terrestrial coordinate system is given explicitly. 

1. INTRODUCTION 

The recent advances in the astrometry using the modern techniques such 
as the VLBI, the SLR, the LLR and so on, now require the method of 
analysis for suchgPrecise observations to be strict and correct up to 
the order of 10" at least. One of the factors to be considered in 
reply to this requirement is the introduction of the general relativis­
tic treatments into the whole procedure of analysis. Among them the con­
struction of the reference frames and the coordinate systems within the 
relativistic framework is important since all the position and the 
velocity of heavenly bodies and observers, which are the objects of the 
astrometry, are dependent on the reference frame and the coordinate 
system which are chosen. 

Attention must be paid to the difference between the reference 
frame and the coordinate system. Mathematically the reference frame 
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means a field of the set of base vectors while the coordinate system 
does the way to assign a set of numbers named the coordinates to each 
point in the space. In a flat space the set of base vectors is taken to 
be independent on the coordinates. In this case, to choose the reference 
frame is to choose the set of base vectors at the coordinate origin. 
This is no other than to give the coordinate system if the differences 
in the unit system are ignored. Therefore the reference frame has been 
regarded to be the same as the coordinate system by many authors. How­
ever the reference frame and the coordinate system should be discrimi­
nated in a distorted space. The former can be derived from the latter if 
the base vectors at a point are defined to be the tangent vectors of the 
coordinate grids of the chosen coordinate system at the same point. Such 
reference frame is called the reference frame accompanied with the 
coordinate system. In this paper we discuss only the coordinate systems 
and the reference frames accompanied with them. 

As is shown in Table 1, the following six coordinate systems are 
frequently used in the astrometry: 

1) the extragalactic coordinate system in which quasars may be 
located, 

2) the galactic coordinate system to which the most star catalogs are 
referred, 

3) the solar system barycentric coordinate system where the planetary 
and lunar ephemerides are obtained, 

4) the terrestrial coordinate system where the motion of artificial 
satellites are discussed, 

5) the terrestrial rotating coordinate system in which the station 
coordinates are written, and 

6) the observer's coordinate system where the observables are measured 
by means of the non-gravitational physics. 

One of the distinctive features of the group of coordinate systems is 
the hierarchy of the systems defining these coordinate systems. For 
example, the Earth is a member of the solar system and the solar system 
is a subsystem of the galaxy. In terms of the Newtonian mechanics, the 
coordinate system comoving with the smaller system is thought as a 
relative coordinate system when that comoving with the larger system is 
regarded as the absolute one. We must seek a general relativistic exten­
sion of the concept of relative coordinate system in order to define 
these coordinate systems correctly in the general relativistic sense. 

Another distinctive feature is that there are two types of coordi­
nate system; the one is the non-rotating coordinate system and the other 
is the rotating coordinate system. Although what the term 'rotation' 
means is well understood in the language of the Newtonian mechanics, its 
meaning seems not clear when the general relativity is introduced. 

In the present paper, we try to solve these questions. Namely, we 
present a candidate for the basic coordinate system in the astrometry 
within the framework of post-Newtonian approximation of the general 
relativistic theory. We also give a general relativistic definition of 
the rotating coordinate system. To obtain a suitable unit system is 
essential in constructing the practical coordinate system. In this 
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paper, however, we restrict ourselves to the discussion on the features 
of the coordinate systems being independent on the choice of the unit 
system. The system of units is discussed from the general relativistic 
point of view in another paper of the authors (Fukushima et al., 1986). 

In Sections 2, 3, and 4, an overview on the coordinate systems is 
given in the Newtonian mechanics, in the special theory of relativity, 
and in the general relativistic theory, respectively. Also in Section 4, 
some reference frames and coordinate systems proposed in the general 
relativistic theory are reviewed. In Section 5, the proper reference 
frame (PRF) of a system of masspoints is introduced as a general rela­
tivistic extension of the relative coordinate system stated above. In 
Section 6, the coordinate transformation defining the PRF is explicitly 
given. In Section 7, the conversion formulas of some physical quantities 
due to this coordinate transformation are obtained in the post-Newtonian 
framework. In Section 8, the concept of rigidly rotating coordinate 
system is reexamined in the relativistic framework. In Section 9, a 
modification of the PRF defined in Section 5 is proposed as the basic 
coordinate system in the astrometry. The difference between this modi­
fied coordinate system and the PRF is investigated extensively. In 
Section 10, the coordinate transformation and other transformation 
formulas are given to describe the relation between the solar system 
barycentric coordinate system and the terrestrial coordinate system. 

As for the relativistic quantities, we use the same notations as 
those in the textbook of Misner et al. (1970, hereafter cited as MTW). 

2. COORDINATE SYSTEMS IN THE NEWTONIAN MECHANICS 

In the Newtonian mechanics, the time is absolute. In other words, it is 
assumed that the character of the time does not depend upon the chosen 
coordinate system. Then the time interval of any pair of events is 
constant in whichever coordinate system it is measured. On the other 
hand, the space is relative. Namely the positional relation of the pair 
of events depends on the chosen coordinate system. From these it is 
clear that no coordinate transformation is allowed to make the new time 
coordinate depend on the old space coordinates. Consequently the term 
•coordinate system* is used only in the sense it determines the way to 
assign a set of three numbers (named the 3-dimensional spatial coordi­
nates) to each point in the space. 

It is known that there exist a group of special coordinate systems 
where the space is homogeneous and isotropic globally in the Newtonian 
mechanics. Such coordinate systems are called the inertial coordinate 
systems. Many people roughly call them the inertial frames. The inertial 
coordinate systems are important because the laws of the Newtonian 
mechanics are never changed in whichever inertial coordinate system they 
are expressed. This is the Galilei's principle of relativity. 

The space in the Newtonian mechanics is measured by the Euclidean 
distance. The coordinate transformation relating one inertial coordinate 
system to another is limited to be a uniform parallel translation (the 
Galilean transformation) plus a time-independent spatial rotation. Such 
a transformation is called the static affine transformation. 
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As any spatial coordinate transformation which conserves the 
Euclidean distance is composed to be a combination of the translation 
and the rotation, all coordinate systems are classified to the three 
categories; 1) the inertial coordinate system, 2) the non-rotating 
accelerated coordinate system which is obtained from the inertial coor­
dinate system via a time-dependent parallel translation only, 3) the 
rigidly rotating accelerated coordinate system which is obtained from 
the non-rotating one by applying a time-dependent rigid rotation. 

Practically the inertial coordinate system cannot be realized in 
the laboratory. Therefore we must know the relation between the inertial 
and the non-inertial coordinate systems. In the Newtonian mechanics, a 
sufficiently general coordinate transformation is given as 

x j = x J
Q(t) + xVjjft) (2-1) 

where x^ and xffi are the space coordinates of the inertial and the non-
inertial coordinate systems, respectively. The term x J

Q(t) represents 
the time-dependent trans1ational motion of the space origin of the non-
inertial coordinate system expressed in the inertial coordinate system. 
The matrix R is the matrix of the rigid rotation, which is obtained from 

dRj
ffi/dt = -nVt)Rlf» (2~2) 

where Ci is the angular velocity tensor of the rigid rotation, which is 
anti-symmetric and is dependent on the time coordinate only. Usually the 
rotational matrix R is expressed in terms of th^ Euler's angles 
(Goldstein, 1980). The conversion formulas of various physical quanti­
ties caused by this coordinate transformation are seen in any textbook 
on the classical mechanics (Landau and Lifshitz, 1973, for example). 

3. COORDINATE SYSTEMS IN THE SPECIAL THEORY OF RELATIVITY 

In the special theory of relativity, the time is no longer absolute. The 
coordinate system as well as the coordinate transformation becomes to be 
four dimensional inevitably. Any type of coordinate transformation 
between the coordinate systems is allowed in the special theory of 
relativity. It should be noted, however, that the absoluteness of the 
inertial coordinate systems still remains. Namely, there exist a number 
of inertial coordinate systems also in the special theory of relativity. 
They are transformed from one to another by only a limited type of 
coordinate transformation, as the principle of special relativity tells. 
Such a coordinate transformation is called the Poincar£ transformation. 
The Poincare transformation is a combination of a uniform parallel 
translation, a constant boost, and a time-independent, rigid space 
rotation (MTW, Box 2.4). Here the word 'boost' denotes the pure Lorentz 
transformation. The Poincare transformation is expressed as 

xf* = x p
n + x* L ^ (3-1) 

where x̂ 1 and x" are the 4-dimensional coordinates of the same event in 
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the old and the new inertial coordinate systems, respectively, and L is 
the general Lorentz matrix. The coordinates of the origin of the old 
coordinate system x^ Q are constant in the new coordinate system. The 
general Lorentz matrix in the above expression is the function of six 
parameters (three Euler's angles and three components of the boost 
velocity) only and is never dependent on the coordinates. 

If the spatial rotation is ignored, the Lorentz matrix is given as 

L° 0 = {l-(v/c) 2r 1 / 2, (3-2) 
L m

e = L°ffi = (vm/c){l-(v/c)2}"1/2, (3-3) 

L* = [ 1 + v ® v {l-(v/c) 2}~ 1 / 2 

m /x/ 

/ [ 1 + (l-(v/c) 2} 1 / 2 ]/c2 ]* (3-4) 
m 

where c is the speed of light, v is the coordinate velocity of the 
origin of the old inertial coordinate system evaluated in the new 
inertial coordinate system, a ® b is the dyadic of vectors a and b, and 
is the 3-dimensional unit tensor. 

~ The effects of Poincar6 transformation on the physical quantities 
such as the velocity and so on are seen in any text book on the special 
relativity (Miller, 1952, for example). Among them, the conversion 
formulas of the time interval and the space distance are important in 
the astrometry and the geodesy. For example, the time-space component 
(3-3) produces the aberration in terms of the astronomy (MTW, Box 2.4). 
The time-time component (3-2) shows that the moving clock ticks slower 
than the clock at rest. This is the well-known Lorentzian time dilata­
tion (Landau and Lifshitz, 1962, Section 3). Also the space-space compo­
nent (3-4) shows that the coordinate grids of a moving coordinate system 
suffer a deformation consisting of the shear and the anisotropic 
expansion. The isotropic part of the deformation is the well-known 
Lorentzian contraction (Landau and Lifshitz, 1962, Section 4). 

4. COORDINATE SYSTEMS IN THE GENERAL RELATIVISTIC THEORY 

In the general relativistic theory, there exists no inertial coordinate 
system. This is because 1) the geometric character of the spacetime 
(i.e. the metric tensor) is not proper to the spacetime itself but 
dependent on the physical phenomena in the spacetime; 2) the metric 
tensor has ten freedoms so that it is never transformed into the 
Minkowskian metric tensor all over the spacetime by any choice of a 
coordinate transformation which has only four freedoms. The metric 
tensor is transformed to be a Minkowskian metric tensor only at one 
event by a suitable choice of the coordinate system. Thus any inertial 
coordinate system is local in the general relativity. Here the term 
'local* means being valid only at one event in the spacetime. That is, 
the inertial coordinate system is no more than a reference frame in the 
general relativity. Such a reference frame is called a locally 
Lorentzian frame. Some people call it a locally Minkowskian frame. 
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In place of the inertial coordinate systems, any coordinate system 
can be chosen as the basic coordinate system to construct a dynamical 
theory in the general relativistic theory. This is because whatever 
choice of the coordinate system does not change the expression of the 
Physical laws. This is the well-known principle of general relativity. 
In Table 2, we summarize the basic items relating with the coordinate 
systems in the Newtonian Mechanics, in the special theory of relativity, 
and in the general relativistic theory. 

Then a general coordinate transformation which can connect any 
pair of coordinate systems should be investigated. However a ridiculous 
coordinate transformation or an extraordinary coordinate system is not 
only rarely proposed but of little use. Rather the generalization 
of the coordinate transformations and the coordinate systems stated 
in the preceding two sections is useful for the practical purpose, and 
has been done in fact. To see this, we illustrate in the followings some 
reference frames and coordinate systems which has been proposed in the 
general relativistic framework. We remark that this is never a compre­
hensive survey and we apologize the authors of the books we referred if 
we make any mistake in understanding their works. 

4.1. Natural Frame and Proper Frame 

In his textbook of the astrometry, Murray gives a locally Lorentzian 
frame attached to the observer in the spacetime with a spherically 
symmetric metric in order to express the observed direction of the 
incident light (Murray, 1983). The frame is named the natural frame when 
the observer is at rest, and is named the proper frame when the 
observer is moving relative to the frame. The relation between the 
natural and the proper frames is the boost of the observer's velocity. 
The resulting transformation formula of the base vectors is just the 
same as that of the Lorentz transformation given in the previous sec­
tion. The relation between the natural frame and the background coordi­
nate system of a spherically symmetric spacetime is obtained by the 
coordinate transformation which transforms the spherically symmetric 
metric to the Minkowskian metric. The tetrad (a set of four base vec­
tors) of the natural frame is expressed as 

o _ . .-1/2 o _ m i , .-1/2 r i ( A t> e n = ("9^) , e ~ = e - = o, e ~ = (g ) £ m (4-1) o oo m o m mm w m 
where e**& is the K-th component of the<X-th base vector expressed in the 
background coordinate system. The coordinate transformation producing 
the tetrad contains neither a boost nor a spatial rotation. 

We note that both natural and proper frames are reference frames 
and are never coordinate systems. Namely they can not be used in 
describing the phenomena which cover a finite region. 

4.2. Local Quasi-Cartesian Coordinate System 

In his text book on the general relativity, Will provides an asymp­
totically Minkowskian coordinate system of the solar system to give a 
basic coordinate system where his post-Newtonian formalism is developed 
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(Will, 1981). He starts a discussion from the background coordinate 
system named 'the universe rest frame1, which is defined as the coordi­
nate system where the universe appears almost isotropic He assumes that 
the metric tensor consists of the Robertson-Walker part and the pertur­
bation part. Then he eliminates the former by a coordinate transforma­
tion like (4-1). The resulting coordinate system is called a local 
quasi-Cartesian coordinate system by Will. 

This procedure assures the existence of the coordinate system where 
the metric approaches to the Minkowskian metric sufficiently far from 
the origin. Such a coordinate system is frequently called the para­
metrized post-Newtonian (PPN) coordinate system. In other words, the PPN 
coordinate system is the coordinate system where the metric tensor is 
expressed as the PPN metric tensor (Will, Section 4.2). 

4*3. Fermi Coordinate System and Optical Coordinate System 

Synge explains a different approach to construct a coordinate system in 
the general relativity (Synge, 1960), First he thinks that a reference 
frame is equivalent with a tetrad. Then he shows that a tetrad trans­
ported by the Fermi-Walker transportation law along the world line of 
an observer leads to the correct relativistic generalization of the 
Newtonian concept of the non-rotating reference frame comoving with the 
observer. It is noted that the tetrad of Murray's natural frame is not a 
non-rotating tetrad defined by Synge. The Fermi coordinate system he 
gives there is not a reference frame. It consists of the Fermi-Walker 
transported tetrad and three space coordinate axes which are the space­
like geodesies starting from the space coordinate origin with the 
initial direction being same as the corresponding base vector. 

Also he proposes the optical coordinate system as a candidate for 
the practical coordinate system. It is different from the Fermi coordi­
nate system only in the point that the space coordinates are defined by 
means of the null geodesies in place of the space-like geodesies. How­
ever this coordinate system is not so practical as he thought because 
the expression of the equation of motion for the slowly moving bodies is 
too complicated in this coordinate system. 

4.4. Proper Reference Fraae 

Misner et al. define the Fermi coordinate system in a clear way (MTW, 
Section 13.6). They extend the concept of the Fermi coordinate system to 
the case the tetrad suffers a spatial rotation also. The resulting 
coordinate system is named the proper reference frame (PRF) although it 
is a coordinate system. The non-rotating PRF is just the same as the 
Fermi coordinate system. It is remarked that the PRF is not an extension 
of the proper frame of Murray. Misner et al. also give a precise way to 
construct the coordinate grids of the PRF. Furthermore they give the 
approximate form of the metric tensor in the PRF. 

The PRF is the most appropriate coordinate system for the observer 
resting at its space origin, because 1) the time coordinate is the 
proper time of the clock he carries, 2) the spatial distance from him is 
the proper length, say, measured indirectly by the laser ranging system, 
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and 3) the spatial direction of incident light he observes is referred 
to the 3-dimensional gyroscope comoving with him. Note that the PRF 
defined by Misner et al. is to be comoving with a massless observer. 

5. PROPER REFERENCE FRAME OF A SYSTEM OF MASSPOINTS 

As is stated in Subsection 4.4, the proper reference frame (PRF) seems a 
suitable coordinate system on which the astrometry is constructed. 
However there is a problem that the PRF is defined only when it comoves 
with a massless observer. The coordinate systems comoving with a massive 
body such as the Earth or comoving with a system of masspoints such as 
the solar system are required in the astrometry. 

The Will's approach seen in Subsection 4.2 becomes a great help to 
extend the concept of the PRF into the case it comoves with a massive 
body. Namely we divide the metric tensor of the background spacetime as 

g = g* + g + (5-1) 

where g is the full metric tensor, g + is the direct contribution of the 
body with which the desired coordinate system is comoving, and g is the 
rest part. TJjen we construct a PRF in the same manner as Misner et al. 
did, while g is used in place of g. In other words, we define the PRF 
of a massive body as that of a massless observer locating at the bary-
center of^ the body in a fictitious spacetime whose metric tensor is 
given by g . The introduction of such an imaginary spacetime is permit­
ted because we use this spacetime only to obtain a coordinate system, 
and because any coordinate system can be chosen as the basic coordinate 
system whether it is realistic or fictitious. Clearly the coordinate 
system ^defined above is an extension of the PRF of a massless observer 
since g coincides with g when the mass of the body reduces to zero. 

Furthermore this approach matches well to the assumption that the 
Planets and the sun move on geodesies (MTW, Section 40.9). This assump­
tion is restated as 'The worldline of a massive body in the background 
spacetime is obtaingd as a geodesic in a fictitious spacetime whose 
metric is given as g '. Note that this assumption is the base of the 
post-Newtonian many-body equations of motion widely used to create the 
latest planetary and lunar ephemerides (MTW, Exercise 39.15; Standish 
and Williams, 1982; JHD, 1984). This correspondence of our definition of 
the PRF to £he geodesic motion assumption shows how g should be sepa­
rated into g and g in constructing the PRF of a massive body. 

In the following two sections, we present the coordinate transfor­
mation which defines the PRF mathematically and give the resulting 
conversion formulas of some physical quantities. 

6. MATHEMATICAL FORMULATION OF THE PROPER REFERENCE FRAME 

The coordinate transformation from the background coordinate system to 
the PRF of a massive body (abridged as the central body) is given as 
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= x ' 4

0 ( x 0 ) • x f f i e ^ C x 0 ) • Sx>*(x") ( 6 - 1 ) 

w h e r e x ^ and x * a r e t h e c o o r d i n a t e s o f t h e s a m e e v e n t i n t h e b a c k g r o u n d 
c o o r d i n a t e s y s t e m a n d i n t h e PRF o f t h e c e n t r a l b o d y , r e s p e c t i v e l y , e ^ 
i s t h e t e t r a d o f t h e PRF, and £x>* i s t h e d e v i a t i o n o f a s p a c e - l i k e 
g e o d e s i c f rom a s t r a i g h t l i n e . The e x p l i c i t e x p r e s s i o n o f ( 6 - 1 ) i s g i v e n 
i n t h e f o l l o w i n g f i v e s t a g e s . 

6.1. Metric Tensor 

F i r s t o f a l l , t h e e x p r e s s i o n s o f t h e m e t r i c t e n s o r w h i c h w i l l b e u s e d i n 
t h e f o l l o w i n g s u b s e c t i o n s a r e g i v e n . The p o s t - N e w t o n i a n e x p a n s i o n o f t h e 
m e t r i c t e n s o r w h i c h d o e s n o t r o t a t e i n t h e N e w t o n i a n l i m i t i s w r i t t e n i n 
t h e b a c k g r o u n d c o o r d i n a t e s y s t e m a s 

g = - 1 + 2(/>/c2 + 2 0 / c 4 , 
o o ( 6 - 2 ) 

g
0 j = ( g / c 3 V g i j = ( i + 2 2 / c 2 >ij 

w h e r e <f> i s c a l l e d t h e N e w t o n i a n f o r c e f u n c t i o n , ^ i s c a l l e d t h e n o n ­
l i n e a r p a r t o f t h e s c a l a r f o r c e f u n c t i o n , g i s c a l l e d t h e v e c t o r f o r c e 
f u n c t i o n , and £ i s c a l l e d t h e t e n s o r f o r c e f u n c t i o n . H e r e t h e t e r m 
' f o r c e f u n c t i o n ' means t h e n e g a t i v e g r a v i t a t i o n a l p o t e n t i a l . The f o r c e 
f u n c t i o n s a r e s o m e t i m e s c a l l e d t h e ( g r a v i t a t i o n a l ) p o t e n t i a l s l o o s e l y . 
I t i s w e l l known t h a t t h e e x p r e s s i o n o f t h e t e n s o r f o r c e f u n c t i o n 
b e c o m e s s i m p l e i n t h e PPN c o o r d i n a t e s y s t e m a s 

% = y 6 1 ( 6 - 3 ) 

w h e r e Y i s o n e o f t h e u n i v e r s a l c o n s t a n t s najjed t h e + P P N p a r a m e t e r s . 
The e x p r e s s i o n ( 6 - 2 ) i s s e p a r a t e d i n t o g and g i n t h e c a s e o f t h e 

E i n s t e i n - I n f e l d - H o f f m a n n ( E I H ) m e t r i c t e n s o r a s 

g * = - 1 + 2 < £ * / c 2 + 2 ^ * / c 4 , 
o o 

,V2*Vc*.2f/c4. 
( 6 - 4 ) 

( 6 - 5 ) 

w h e r e 

9 o j 

<f>* = E GMf/r T , ( 6 - 6 ) 
J*0 

<L* = - ( £ G M T / r T ) 2 + 2 1 G M T v 2 / r T 

Z . Z T G M T G » L / ( r T r T J - H 
J*o k& J K J JK JJBO - T. 21 O I J a V ( p J r J K > - J.QIJCpJ.vJ)2/(2pJ) 

- T. T. G M T G M „ ( r T T w ) / ( 2 r T r T J ) , ( 6 - 7 ) 

g* = - 4 Z. Q* Tv T / r T , ( 6 - 8 ) 
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<f>* = GMQ/TQ, ( 6 - 9 ) 

<£+ = (GM0/rQ)[ - GM Q/r 0 + 2v 2 

" ( r 0 ' V r O ) 2 / 2 " £>< 2 G M J / r J + mSTOJ 

' G MJ ( rOJ* rO ) / ( 2 rOJ ) } ]' ( 6 " 1 0 ) 

g + = - 4 GN\)V0/r0 ( 6 - 1 1 ) 

Here 
rJ = X " XJ' rJK = XJ " XK' VJ = ^ J / d U 

r J = l r j ' ' r J K = l r J K ' 
and G is the constant of gravitation, the suffix 0 denotes the central 
body, M, is the mass of the body J, and x and x, are the position of the 
considered point and the body J, respectively. 

6.2. Time Coordinate 

From the definition of the PRF (MTW, Section 1 3 . 6 ) , 

X = x°/c ( 6 - 1 2 ) 

is the proper time of the central body, namely the proper time of the 
clock comoving with the barycenter of the central body in the fictitious 
spacetime discussed in the previous section. The relation between t and 
the coordinate time at the barycenter of the central body 

t = X Q / c ( 6 - 1 3 ) 

in the fictitious spacetime is obtained by solving the following equa­
tion of proper time 

dt/dt = 1 - ( 0 Q + v 2/2 )/c 2 - [ ( 0Q) 2/2 + 0 Q V 2 / 2 

+ v o / 8 + + V v o + v 2 o v o ] / ° 4 ( 6 " 1 4 ) 

Here the gravitational potentials with the suffix 0 are those evaluated 
at the central body. In the EIH metric, they are written as 

**o - £> a iJ / r0J' ( 6 " 1 5 ) 

*0 - - ^ W o / + 2 5o G MJ*J / 10J 
- & & Q V V C r < W r J K ) " E « J < p O J - V 2 ' C 2 r O J } 

-^J^MTofTm}'{*o?&> (6"16) 
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lo-K L (6"18) 

Recall that the direct contribution of the self gravitational field of 
the central body g is ignored in the equation (6-14). 

The resulting function t(t) or its inverse t(t) is explicitly 
obtained in the case the central body is the Earth and the background 
coordinate system is the PPN coordinate system of the solar system 
mentioned in Section 4 (Moyer, 1981; Hirayama et al., 1984). In this 
case, t is called the solar system Barycentric Dynamical Time (TDB) and 
t is the same as the Terrestrial Dynamical Time (TDT) after it is 
multiplied by a constant factor (Fukushima et al., 1986). 

6.3. Space Origin 

The expression of space coordinates X Q is obtained by solving the 
equation of trans1ational motion of the central body such as the 
Einstein-Infeld-Hoffmann equation in the background spacetime (MTW, 
Section 39.6). The resulting x Q isre usually expressed as the function 
of not t but t such as the solar system barycentric coordinates of the 
Earth in the astronomical ephemerides. Therefore the practical expres­
sion of X Q becomes Xg(t(t)). 

6.4. Tetrad 

The post-Newtonian expression of the tetrad of the PRF of a massive 
body is given as 

e° 0 = 1 + ( 0* + v2/2 )/c2 + [ 3($*)2/2 + 3 0jv2/2 
+ 3v4/8 + +1 + vQ.gJ + V 2 S v 0 ]/c4 (6-19) 

e* 0 = [ vQ/c + { ( 0 j + v2/2 )vQ }/c3 I 1 (6-20) 

e \ = [ vQ/c • < ( 20J . v2/2 )vQ . %*QvQ + gj 

+ Q v n }/c3 ] m (6-21) 

Here 

where 

e* = [ 1 + { - X n + v n ® v n / 2 - Q }/c2 ]* (6-22) m ^ ^cu 0 0 ~ m 

Q = jq dt 

= | [ V Q A {*</)* - aQ)/2 - v A (Xjv Q + gj/2)]dt (6-23) 

(a A b ) l j = a V - b*aj (6-24) 
and v is the 3-gradient operator in the background coordinate system, 
i.e., the partial derivative operator with respect to x. a Q is the non-
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gravitational coordinate acceleration of the central body. 
The matrix £ shows the effect of the so-called dragging of inertial 

coordinate systems (MTW, Section 40.7). The above expressions of the 
teterad coincide with those of the Lorentz matrix (3-2) through (3-4) in 
the post-Newtonian approximation if the gravitational potentials are all 
ignored. This indicates that the coordinate transformation (6-1) is a 
sort of extension of the Poincare transformation. 

6*5 . D E V I A T I O N O F C O O R D I N A T E G R I D F R O M S T R A I G H T L I N E 

The expression (6-1) is obtained as the solution of the equation of 
space-like geodesies starting from the space coordinate origin of the 
PRF of the central body. If the space-like geodesic is likened to the 
orbit of a free tachyon, the first and the second terms in (6-1) show 
that the free tachyon runs along a straight line with a constant speed. 
The third term corresponds to the deviation of the tachyon's motion from 
a uniform, straight line motion. In the post-Newtonian framework, the 
deviation in coordinates S x P is obtained by solving the equations 

d25t/(ds)2 = Cw*(w.v)g* - w-%*w + 2(v Q*w)(w-v) 0*]/c4, (6-25) 
d2Jx/(ds)2 = [ *(w-%*w) - 2 ( w - v ) % * w 3/c2 (6-26) 

where St = £x°/c, (<$x)J = <5xJ, and s and w are the proper length and the 
spatial tangential vector of the space-like geodesic approximated as 

s * I K I * r Q, w * X / s, I w I * 1 (6-27) 

Equations (6-25) and (6-26) are not explicitly solved in the general 
case. In the EIH metric, however, it is solved as (Fukushima, 1984) 

St = Z [ v T - { w(4v T - 2vn) >w ><5xT/c2, (6-28) 
J*0 d d U d 

Sx = H [ Sx1 - 2(w*<5xT)w 1 (6-29) 

where 2 

S*j = (GM/c )[ { lnKw-rj • rj)/(wr 0 J + r Q J)l - s/r Q J } w 

+ { r J • r 0 J * s ( w - r 0 J ) / r 0 J } w x ( w x r O J ) / ( w x r o j ) 2 ] ( 6- 3 0 ) 

Thus the full expressions of the coordinate transformation (6-1) are 
explicitly obtained in the case the background metric is the EIH metric. 

6*6 . E F F E C T I V E R E G I O N 

The PRF is not a global coordinate system. It is not well-defined far 
from the central body. This is because the transformation (6-1) ceases 
to be one-to-one where the distance from the coordinate origin is suffi­
ciently large. The sub-spacetime where the inverse transformation of 
(6-1) is uniquely determined is named the effective region of the PRF. 
Roughly speaking, the effective region is a world tube with a spherical 
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(3-dimensional) cross section whose center is the central body. 
Consider the case that the central body makes a uniform circular 

motion around one of the external bodies in the background coordinate 
system as the Earth approximately does in the solar system. Then the 
spatial size of the effective region is evaluated approximately as 

R e f f « c 2 /( 00 v Q ) (6-31) 

where is the angular velocity of the orbital motion of the central 
body. In the Earth, R f f amounts to about 0.5 kpc This estimation is 
independent on the amount of the post-Newtonian corrections in (6-1). 

7. KINEMATICS IN THE NON-ROTATING PROPER REFERENCE FRAME 

The preceding section explicitly shows the coordinate transformation 
between the non-rotating PRF of the central body and the background 
coordinate system. Next the conversion formulas of various physical 
quantities such as the light direction, the metric tensor, etc., caused 
by this transformation must be investigated to obtain the equation of 
motion or the observational equation in the non-rotating PRF. 

7 . 1 . Transformation Law 

The principle of the general relativity makes it very easy to obtain the 
conversion formulas of physical quantities caused by a coordinate trans­
formation. The principle is rewritten as "The expressions of physical 
quantities and physical laws are covariant with any general but smooth 
coordinate transformation". Thus the following rules are established in 
the relativistic theory to obtain the conversion formulas: 

1) Give the explicit formula of coordinate transformation 

x^ = x^ (x*) (7-1) 
where x^ is the new coordinate and x* is the old one. ~ 

2) Obtain the transformation matrix E ~ (and its inverse E%) as 
e*\, = ax>7ax s ( e % = ax s/ax^ ) (7-2) 

3) The new expression of the physical quantity is obtained from its 
old one by multiplying E ^ ( E*^ ) as many times as the number of 
superfices (suffices) of tfte quantity. 

For example, 

k^= E^.kS, u^ = E^u", a* = E^-a*. g_ = E^E v~g M i, (7-3) 
where is the 4-wave vector, u** is the 4-velocity, and a^ is the 4-
acceleration. 
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7 . 2 . Transformation Matrix 

The transformation matrix represents the reference frame accompanied 
with the coordinate transformation as is mentioned in Section 1. The 
expression of the coordinate transformation from the non-rotating PRF of 
the central body to the background coordinate system is already given as 
(6-1). Then the transformation matrix is obtained as 

E° e = 1 + { (f>Q + v2/2 + J M v # 2 + V } / ° 2 * [ 3(0J) 2/2 
* 3<t>y0/2 • 3 v j / 8 . + v 0. g; + v0. %*0v0 

• *.[( 3 ^ + v 2 - X * + Q , ) ( V ^ + a 0 ) 

+ v ( ^ 0 + V 9 0 + V £ o V + ( W v o 

+ 1 lv<t>*o + V + 5, vo ] ] / c 4 + B ° o ( 7" 4 ) 

E i o • [ V c + c ( <f>*o + v o / 2 ) v o - + ( V v ) * o } * 
+ < X«(v^J + a0)}vQ/2 + (vQ-X)(v^J + aQ)/2 

- q X ]/c3 I 1 + B*. (7-5) 
rsS O 

E V [ V c + { ( 2(I>1* V 0 / 2 % + * 0 V 0 + 9 S 
+ Q v Q }/c3 ] m + B°ffi, (7-6) 

E* = [ 1 + { - X * + v n ® v n / 2 - Q }/c2 ]* + B* (7-7) 
(If ^ £r 0 0 0 , c m UP 

= ^<$V/ax5 (7-8) 
where 

and ' is the partial derivative with respect to t, the time coordinate 
in the background coordinate system. 

The partial derivatives of the gravitational potentials needed to 
evaluate E are obtained in the EIH metric as 

v *l m - S o l Q t f 0 3 ^ . ( 7 " 9 ) 

V ^ 0 • So1 ( G M J / r 0 J ) C { 2 ( 5 c G M K / r 0 K ) " » J 

+ ^mK/rJK] + 3 ( r 0 J - V r 0 J ) 2 / 2 

+ r 0 J * ^ I / ^ R J K / R J K } / 2 } r0J " ( r 0 J - V J } V J ] 

' ( ^ j V ^ ^ R J K / R J K > ] ( 7 " 1 0 ) 

* c v # = 1 2 So[ ^ (Vj*Vo) r°j/r°'] (7_11) 
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* (V*SV = %' v ) £ovo = vo v ( 7" 1 2 ) 

U-Ki = £ o i g m j
 ( roj-v / roj u ( 7 - 1 3 ) 

7.3. Transformation of Light Direction 

The transformation formula of the light direction is obtained from that 
of the 4-wave vector as 

n = fi + [ v Q - (fl^v0) fi 3/c + C (fl«vQ)2fi - (fi*v0)v0/2 - v 2 fi/2 

- % * fi + (B-%nfl) fi - Q fi ]/c2 + B fl - (fi-Bfi) fi (7-14) 

where n and fi are the unit vector of the light direction in the back­
ground coordinate system and in the PRF, respectively. 

7.4. Transformation of Velocity 

The transformation formula of the coordinate velocity is obtained from 
that of the 4-velocity as 

v = v Q + - [ { + v2/2 + vQ.<7 + X-(*0j + a Q) } V 

+ XqV + <V«)v 0/2 - < v Q x (v 0 J + ajj) >. x X/2 
+ < Xn + (Vn-V) %* >X + q X + Q V ]/c2 + + B 9 (7-15) 

where v and V are the coordinate velocity in the background coordinate 
system and in the PRF, respectively. 

7.5. Transformation of Non-gravitational Acceleration 

The transformation formula of the non-gravitational coordinate accelera­
tion is obtained from that of the 4-acceleration as 

a = 9 - [ { 2<f>* + v 2 + 2vQ-tf + 2X-(v0j + } a 

+ % * 3 + (vn*8) V + (9-8) vn/2 + Q 8 ]/c2 + B 8 (7-16) 

where a and a are the non-gravitational coordinate acceleration in the 
background coordinate system and in the PRF, respectively. 

7.6. Transformation of Metric Tensor 

The transformation formulas of the force functions are obtained from 
that of the metric tensor as 

# = 0 - - X.( v <f> * + aQ ), (7-17) 
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+ vQ»{ g - g* - (X«v) g* } 

+ ( 2 <t>*Q * v 2 ){ ̂  - - + ALJ) > 

+ X-(v # J + a Q) { 2( 0 - <j>q) + X.(v 0 * + 8^/2 > 
- (X.vQ) { v0.(v̂ 5 + aQ)/2 • j>l } 

. X.< ( + Q )(v0j + a Q) } • v Q.B 0 - B° Q (7-18) 

»"»-»S + 2<J-ifc!!)vo + 2(*;*o)vo 
+ { v Q x (v 0 J + a Q) > x X/2 - { % J + (vQ.v) £ * } X 
- q X + *B v n + B« - B° (7-19) ~ ~ u o 

X = X " Xn + ( *B + B )/2 (7-20) 

( B° ) = B° ( B« ) l = B* , ( B )* = B 1^ (7-21) m m o o ~ m m 
and the symbol ~ denotes the quantity in the non-rotating PRF. 

If there is no non-gravitational accelerations, then 

# = 0+ + [ - 0* - (X-v) <f> * ] (7-22) 

In this case, the Newtonian potential in the non-rotating PRF of the 
central body is that of the central body itself plus the tidal potential 
of the external bodies. And if the relation 

X s X 1 ^7-23) 
holds such as in the PPN coordinate system, then it is shown that 

% = X' X* = X+ (7-24) 
Namely the spatial curvature of the non-rotating PRF includes no tidal 
effects if the background spacetime has an isotropic spatial curvature. 
This is because to take the new space coordinate axes as the space-like 
geodesies makes the new space Euclidean as long as the spatial metric of 
the background spacetime is isotropic and diagonal. 

where 

8. RIGIDLY ROTATING COORDINATE SYSTEM 

Besides the non-rotating coordinate systems, the rotating coordinate 
systems are of much use to construct the dynamical theories such as the 
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meteorological dynamics on the Earth. Above all, the rigidly rotating 
coordinate system is important since the Earth as well as other solid 
Planets is rotating almost rigidly. Here we discuss the rigidly rotating 
coordinate systems in the post-Newtonian framework. 

Just as same as in the Newtonian mechanics, a rotating coordinate 
system is obtained from a non-rotating one by the following coordinate 
transformation in the general relativistic theory 

x ° = x ° , xffi = x f >R f f i
p (8-1) 

where x and x* are the coordinates in the non-rotating and the rotating 
coordinate systems, respectively, and R is the matrix of rigid rotation. 
The accompanied 4-dimensionl transformation matrix is evaluated as 

(8-2) 

where 0 . is the rotational velocity of the coordinate system. Clearly 
the conversion formulas of physical quantities except that the metric 
tensor are just the same as those in the Newtonian framework. The 
conversion formulas of the gravitational potentials are as follows 

0 = i + % t 2 / 2 ' ( 8 " 3 ) 

0 = 0 + ^ r o t . ( g + £ 0 r o t ) , (8-4) 

h = R 0 r o t , (8-5) 

g = R (9 + 2 X 0 r o t ) , (8-6) 

X = R % R"1 (8-7) 
**** ^ 

ler of 
Lial h 

where the quantities with A and ~ are those in the rigidly rotating and 
the non-rotating PRFs, respectively. 

Here the term ft is the gravitational vector potential of order 
v, which is named the Coriolis potential. The Coriolis potenti 
corresponds to the electromagnetic vector potential if the Newtonian 
gravitational potential is likened to the electromagnetic scalar poten­
tial. Namely the rotation produces the Coriolis force field in the 
gravitational theory almost in the same way as the boost does the magne­
tic field in the electromagnetic theory. Similarly the choice of the 
rotating coordinate system in the gravitational theory corresponds to 
the choice of the gauge field in the electromagnetic theory. 

9. PRACTICAL CHOICE OF COORDINATE SYSTEMS FOR THE ASTROMETRY 

Although the non-rotating PRF has a number of merits from the viewpoint 
to construct the post-Newtonian dynamics, it has some defects in the 
kinematical sense. Above all, it is a clear demerit that the coordinate 
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transformation formula (6-1) has the term Q, which is not given 
explicitly until the history of the central bo3y are known. Also this 
term breaks the symmetry of spatial part of the transformation matrix E. 
It is also a demerit of the PRF that the existence of fx?, the deviation 
of space-like geodesies from straight lines and its partial derivative 
matrix B makes the formulas of transformation in Section 7 too compli­
cated. Furthermore the fully explicit expression of the coordinate 
transformation of the PRF is obtained only if the background metric is 
approximated to be the EIH metric. 

Recalling that in the relativistic theory we can choose any coordi­
nate system whether it is realistic or fictitious, we should choose the 
coordinate system so that it requires us the least effort. There are two 
types of effort we must do when we analyze the observations in the 
astrometry. The one is the effort to give a dynamical theory, i.e. to 
establish the appropriate equation of motion and solve it. The other is 
the effort to give an observational theory, namely to obtain the obser­
vational equation and reduce the observed quantities with use of it. We 
think that the latter effort must be reduced as largely as possible 
because the post-Newtonian dynamical theory is complicated very much 
even if there is no additional complexity caused by the choice of 
coordinate system. In fact, the amount of effort saved by adopting the 
PRF as the basic coordinate system is relatively small in constructing a 
dynamical theory practically. 

Then we propose another coordinate system as the basic coordinate 
system which is defined by the coordinate transformation 

t = tQ(t) + X - V Q / C 2 

+ x.[ ( 2 0 * • v2/2 ) v Q + % J v Q + g* ]/c4 (9-1) 

x = X Q U ) + x + [ (x.vQ) V q/2 - X Q x ]/c2 (9-2) 

where the quantities with " are those in the proposed coordinate system. 
This coordinate transformation is obtained from the formula (6-1) by 
dropping £ and Sx^\ The transformation matrix and other transformation 
formulas ?rom the proposed to the background coordinate systems are 
obtained by dropping £, £, and B from those in Section 7. 

The new coordinate system has the following features : 

1) The coordinate transformation is explicitly defined as long as the 
background metric has no Coriolis potential. 

2) The spatial part of the transformation matrix is symmetric. 
3) The transformation formulas of the physical quantities are not 

complicated too much. 

Among them, the second feature is important since the direction of the 
incident light from the distant stars or the quasars does not change in 
a secular way. This character of the new coordinate system seems very 
suitable in constructing the practical coordinate system by the VLBI 
observations or the precise optical observations by the orbital tele­
scopes. In this sense the new coordinate system is an extension of the 
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natural frame of Murray. Then we name the new coordinate system the non-
rotating natural coordinate system (NCS) comoving with a massive body. 

It is noted that the meaning of 'non-rotating* is different between 
in the PRF and in the NCS. In the PRF, it means that the tetrad of the 
PRF suffers the Fermi-Walker transportation. In the NCS, it means that 
the space-space component of the tetrad is symmetric. In other words, 
the spatial direction in the non-rotating PRF is referred to a gyroscope 
at the space origin, while the spatial direction in the non-rotating NCS 
coincides with that in the background coordinate system. 

As is stated in the preceding section, a rigidly rotating coordinate 
system can be constructed from any non-rotating coordinate system. Then 
we define the rigidly rotating NCS of a massive body in the same manner 
we did for the rigidly rotating PRF of the body in the previous section. 

Now we are ready to define the six basic coordinate systems stated 
in Section 1 within the general relativistic framework. We propose to 
define these coordinate systems as follows: 

1) the extragalactic coordinate system as the local quasi-Cartesian 
coordinate system defined by Will, 

2) the galactic coordinate system as the non-rotating NCS of the 
galaxy where its background coordinate system is the extragalactic 
coordinate system defined above, 

3) the solar system barycentric coordinate system as the non-rotating 
NCS of the solar system where its background coordinate system is 
the galactic coordinate system defined above, 

4) the terrestrial coordinate system as the non-rotating NCS of the 
Earth where its background coordinate system is the solar system 
coordinate system defined above, 

5) the terrestrial rotating coordinate system as the rigidly rotating 
NCS of the Earth obtained from the non-rotating natural coordinate 
system of the Earth defined above via a rigid spatial rotation, and 

6) the coordinate system of the observer on the Earth as the non-
rotating NCS of the observer where the background coordinate system 
is the terrestrial coordinate system defined above. 

We note that these definitions of the terrestrial coordinate system and 
the terrestrial rotating coordinate system agrees with the present 
convention that the geodesic precession is included into the general 
precession obtained from the observation. 

10. BARYCENTRIC COORDINATE SYSTEM AND TERRESTRIAL COORDINATE SYSTEM 

Let the solar system Barycentric Coordinate System (BCS) and the 
Terrestrial Coordinate System (TCS) be defined as proposed in the pre­
vious section. The deviation of the metric tensor expressed in the BCS 
from the EIH metric tensor is5negligiblly small in the neighbourhood of 
the Earth as of order of 10" in the case^of the tidal gravitational 
potential of the galaxy or of order of 10 in the case of the cosmo-
logical curvature (See Table 3). Also the non-gravitational acceleration 
of the Earth in the BCS is too small to be taken into account. Then the 
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coordinate transformation between the BCS and the TCS is given as 

t g = t T + x^Vg/c 2 + A t E ( t j ) + [ (vE
2)(xT*vE)/2 

+ V { S G M J ( 3 v E - 4 v J ) / r E J > ] / c 4 

and the inverse coordinate transformation is given as 

(10-1) 

(10-2) 

where 

4tE 

x T 

*B 
x„ 

*EJ 

GM, 

T " *"B 
- 4 (x, 

{T = XB 

(xB - x E)»Vg/c - 4tg(tT) 

B V' 1
 ( VE V / rEJ ] / c 

[ { (X, B x E).v E } Vg/2 

(10-3) 

(10-4) - I J E Q I J / L E J M X G ~ Xg) ] A T 

the TDT of the desired event 

the TDB of the desired event 

the correction to tp so that t £ = tp + dt E gives the TDB of 
the geocenter at the same TDT (See Moyer or Hirayama et al.) 
the position of the desired event in the TCS 

the position of the desired event in the BCS 

the position of the geocenter in the BCS when the TDB is t E 

the velocity of the geocenter in the BCS when the TDB is t £ 

the velocity of the body J in the BCS when the TDB is t E 

the distance between the geocenter and the body J in the BCS 
when the TDB is t E 

the gravitational constant of the body J 
The transformation formula of the light direction is given as 

n n = Hp + [ v E - dip'Vg) Oj, 3/c 

+ [ ( n T « v E ) 4 Hp - (n-p'Vg) v E/2 Vg Op/2 ]/c 2 (10-5) 

and its inverse formula is given as 

[ v r (n B.v E) *B ]/c 

+ [ (iig'Vg) n B - (ng'Vg) vE/2 vl n n/2 ]/c 2 

E B (10-6) 
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where 
HJ, : the unit vector of the light direction in the TCS 
rig : the unit vector of the light direction in the BCS 

Note that the formulas (10-5) and (10-6) have the same form as those in 
the special theory of relativity though the boost velocity is not 
constant but a function of the time coordinate in the TCS. It is one of 
the merits of adopting the NCS as the basic coordinate system that the 
transformation formula of the light direction is independent on the 
spatial coordinates in the NCS. 
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