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Abstract

The class of subexponential distributions S is characterized by F(0) = 0 , 1 - F^2\x) ~
2(1 - F(x)) as x —• oo. In this paper we consider a subclass of S for which the relation
1 - F{2)(x) - 2(1 - F(x)) + (1 - F(x))2 = o(a(x)) as x -> oo holds, where a is a positive
function satisfying a(X) = o(\ — F(x)) (x —* oo).

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 60 E 05.

1. Introduction

In this paper we assume that F is a distribution function on [0, oo) for
which F(0-) = 0, F(x) < 1 for all JC> 0 and .F(oo) = 1.

The distribution function F is said to belong to the subexponential class
(notation: F € 5") if

lim F{2)(x)/F(x) =

where F(x) := 1 - F(x) and F{2)(x) := 1 - F{2)(x) is the tail of the distri-
bution function of the convolution of F with itself.

In spite of the simple definition of S? there exists no characterization of
S? without a convolution. We list a few properties of S'.

(i) ^ c -2" where the class Sf consists of those distribution functions
F satisfying F(x - u)/F(x) —> 1 as x —• oo for u e K (uniformly
on compact sets).

© 1991 Australian Mathematical Society 0263-6115/91 $A2.00 + 0.00

73

https://doi.org/10.1017/S1446788700033310 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033310
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(ii) If F e 3" and e_>_0, then eexJ{x) -»oo (x -> oo).

(iii) If F € ^ , then_F(fc)(jc)/F(;c) - » * (* -» oo) for all k > 2.
(iv) If F e & and G(JC) ~ F(x) (x -» oo), then G e ^ .
(v) If F 6 J ? and F is 0-regularly varying, that is, if

lim T(ax)/T{x) < oo for a > 0,
JC—+OO

then F e y .

The first three results were proved by Chistyakov [3]; (iv) is proved in Teugels
[15] and other authors independently (see Pakes [13]). Sufficient conditions
for F e y are given in Chistyakov [3], Teugels [15], Pitman [14] and Cline
[4]. Pitman's necessary and sufficient condition is formulated in terms of the
function

V(x) :=-logF{x).

If y/ has a derivative y/' which is eventually non-increasing to 0, then a
necessary and sufficient condition for F € S* is

ex
lim / exp{yy/\x) - y/(y)} y/'(y) dy = 1

and a sufficient condition is exp{yy/'(y) - y/(y)}y/'(y) is integrable over
(0,oo).

A recent sufficient condition which includes (v) and Pitman's sufficient
condition is due to Murphree [11].

Suppose F e £? and there exists a constant c such that

y/(x) - y/(u) <(x- u)y/{x)/x + c for all u e [x/2, x]

and

r'exp{^(2x) " 2v(x))}dy(x) < oo.
Jo

Then F e 5*.
An analogue of property (v) for densities is well-known. See, for example,

Luxemburg [10]. For densities, extensions to second order results are given
by Geluk [7], Willekens [ 16] and Omey [12]. _

It is well-known, see Chistyakov [3], that if T(x) > 0 (JC > 0) then

(1) lim {F{2)(x) - 2F(x)}/F(x) > 0.
x—»oo

A second order analogue is denned in Lemma 1 below: if T(x) > 0 for
x > 0, then

(2) lim {Fi2){x) - 2F(x) + F{x)2}/F(x)2 > 0.
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The class of subexponential distributions S? is given by those d.f.'s F for
which the limit in (1) exists and equals 0. Here we study the case for which
the limit in (2) exists and equals 0. We will denote this class by S'1. More
generally we consider the class of d.f.'s F for which there exists a positive
function a = o(F) such that

(3) lim {F{2)(x) - 2F(x) + F(x)z}/a(x) = 0.
x—•oo

We will denote this class by ^ 2 ( a ) . Observe that S^2(a) c S? since the
assumption a = o(F) ensures that (3) is stronger than the usual limit relation
defining the class 3*. Note that the inequality (2) does not say anything
about the growth of the function a in (3). We will show by examples that
F(x)2 = o(a(x)), a(x) = o(F(x)2) and_ a(x) = T(x)2 are possible in (3).
Note that if F e ^2(a) with l i m ^ ^ T(x)2/a(x) > 0, then it follows that
f e ^ . For the class S? the defining relation is equivalent to

Joo- F(x)

The class ^2(a) is characterized by the rate of convergence in the above
relation. It is easy to see that the defining relation (3) is equivalent to

This explains why the assumption a = o(F) is natural in the definition of

The proofs of our results are extensions of existing proofs for the class S.
For the proof of Theorem 4, compare with Chistyakov [3]. Theorem 5 below
is an extension to the class <5*2 of Murphree's [11] result. For applications
of the class of subexponential distribution functions the reader is referred to
Athreya and Ney [1] and Embrechts [6].

2. Results

The first result provides us with a sufficient condition in order to obtain a
distributin function F which belongs to <5*2(a).

THEOREM 1. If there exists a positive function a = o(F) such that

IA\ i- ~F(x-u)-7(x) . . .(4) hm —i /-r—— = 0 foru>0
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and

(5) hm v ' ' v ' < oo,

fAe/i F 6 y2{a). In particular, if {A) and {5) are satisfied with a{x) = T(x)2,
then F e f2.

PROOF. Observe that

F®{x)-2T(x)+T{x)2 = 2 I* (F{x-u)-F(x))dF(u) + (F{x/2)-F(x))2.
Jo-

in view of our assumptions we may divide by a(x) and then apply Lebesgue's
dominated convergence theorem.

REMARK. If we drop the assumption a = o(F), then (3) follows and the
above theorem is a generalization of property (v) in the introduction (take
a(x) = F{x)).

The following corollary gives a link with the theory of slow variation with
remainder. See, for example, Goldie and Smith [9].

COROLLARY 1. (a) / / \-F(x)/T(x/2) = 0{a(x)) (x -> oo) with apositive
Junction a satisfying a = o(F), then F e ^ 2 ( a ) .

(b) / / 1 - F(x)/F(x/2) = o(F(x)) (x -» oo), then FeS"2.
(c) If there exists a positive function a such that

F(tx) - T(x)
a(x)

then F e ^ 2 ( a ) .

- log t (x -• oo) for t > 0,

PROOF. Under assumption (a), (5) follows directly and (4) follows since

Note that assumption (b) implies (4) and (5) with a(x) = F(x)2.
Convergence in the limit under (c) is uniform for t e [a, b] with 0 <

a < b < oo (due to monotonicity of F). This implies (4). Note that (5) is
satisfied by assumption and a = o(F) by Remark 1 on page 25 in [8]. (For
further properties of functions satisfying (c) see also [2, Chapter 3].)

REMARK. If for S > 0 F(x) = (log*)"* + o(log,x)~s~l (x -> oo), then
5F satisfies (c) above with a(x) = ^log*)"15"1. It follows that for 8 = 1,

a{x) ~ F(x)2, and hence F e S*2. If 0 < 8 < 1, then a(x) = o(F(x)2)
which together_with (3) implies F e S?2 . If 8 > 1, then T(x)2 = o(a(x)),
and hence F(2)(x) - 2F(x) = o(logx)~s~l.
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Question: is F e &1 when 6 > 1 ? This question is not answered;
however we prove that F e S^2 if 7(x) = {\ogx)~s + o(logx)~2S (x -* oo).
See Remark 1 after Theorem 6.

Next we will give analogues of the results (i) to (iv) mentioned in the
introduction. First we give an analogue of (i).

THEOREM 2. If F G 5^2(a) then

(6) 7(x - A ) - 7(x) = o(a(x)) {x -> oo) for any fixed A>0

and

(7) {7(x -A)- 7(x)}{7(A) - 7(x)} = o(a(x))

(x -> oo) for any A = A(x) G (0, x).

PROOF. Observe that since

~F®(x) - 2F(x) + 7{x)2 = / (7(x - M) - 7(x)} dF(u)
Jo-

it follows that 0 < (F(x-A)-7(x)}{7(A)-7(x)} < F~™(x)-27(x)+7{x)2

for A = A(x) e (0, x) and x > 0 . This implies (7). Moreover (6) follows
if we take A > 0 constant.

COROLLARY 2. If F e S"2(a) with a(x) = O(7(x)2) (x — oo), then 7
is O-regularly varying. If F G S^1 then 7 is slowly varying and satisfies

(8) 7(x -A)- 7(x) = o(F(x)2) (x -* oo) for A > 0,

or, equivalent^, 7(x)~l - 7{x - A)~x -»0 (x -* oo) for A > 0.

REMARK. It should be observed that d.f.'s with a RO varying tail and
even d.f.'s with a regularly varying tail generally do not belong to J7'2(a).
For example, if F is a one-sided stable distribution of index 1/2, then

7(x) ~ cxx~1'2 (x -» oo); however ~F®(x) - 2F(x) ~ c27(xf (x -* oo)
for some constants c,, c2, and hence F $ ^ 2 ( a ) .

Next we will prove a closure property related to the class <9*2(a) which
can be seen as an analogue of property (iv).

THEOREM 3. Suppose

(9) Fe^\a)

and

(10) 7(x)2/a(x)-+d (x — oo) with 0 < d < oo.
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/ /

(11) G(x) = K7(x) + (c + o(l))F(x)2 (x-»oo)

with K >0, ceK, then

(12) {&2\x) - 2G(x)}/a(x) -> -

G e <y2(a).

PROOF. Since G{2)(x) - 2G(x) = f£_{G(x-y) - G(x)} dG{y) - G(x)2, it
follows that we have to show

(13) fX{G(x-y)-G(x)}dG(y) = o(a(x)) (x-> oo).
Jo-

Given e > 0 there exists a > 0 such that

(14) G(x) = KF(x) + (c + r(x))F(x)2 (x > 0)

and |r(jc)| < e for x > a. Consequently the integral in (13) is

K f \F{X -y)- F(x)} dG{y) + c f °{F{x - y)2 - F(x)2} dG(y)
Jo- Jo-

+ {^ r(x - y)F(x - yf dG(y) + o(F(x)2)
Jo-

{G(x-y)-G(x)}dG(y)

Since F e ^2{p) , using (6) it follows that

I4 < G(x) - G(x -a) = G(x -a)- G(x)

= K(F(x -a)- F(x)} + c(F(x - a)2 - T{xf) + o(F(x)2)

= o(a(x)) + o(F(x)2) = o(a(x)) (x - oo).

Moreover

I3< r ar(x-y){F(x-y)2-F(x)2}dG(y)+F(x)2 fX " r(x-y)dG(y).
Jo- Jo-

From dominated convergence it follows that the last term is o(F(x)2). The
first term can be dominated by

2e f "(Fix -y)- F(x)} dG(y) < 2e f (F{x -y)- F{x)} dG(y)
(15) ^ J°-_

= 2e {G(x-y)-G(x)}dF(y).
Jo-

https://doi.org/10.1017/S1446788700033310 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033310


[7] Second order subexponential distributions 79

Note that /*_{F(x - y) - F(x)} dF{y) = F(2)(x) - 2F{x) + F(x)2 = o(a(x))_
by (9) from which it follows that if we substitute the expression (14) for G
in the right-hand side of (15) the result will be o{a(x)).

Note that I2 < 2c ̂ _{F{x - y) - T(x)}dG(y) which can be handled as
the integral in (15) and the same is true for I , .

In the sequel we need the following lemma, which improves [3, Lemma

LEMMA 1.

—
F{xf ~ x^°° F(x)2

x^°° F(x)2

We omit the proof of this lemma which is based on the same inequalities
as those used in the proof of [3, Lemma 1].

THEOREM 4. If F ef2, then

F(x)2 forn>2.

PROOF. The proof is by induction. For n = 2 the statement of the the-
orem is correct. Suppose the assertion is true for n. Then there exists a
constant Kn such that F(n\x) < nF(x) + KnT(x)2 for x > 0.

Since F e 5?2 it follows that

f \F(x - u) - F(x)} dF(u) = W\x) - 2F(x) + F(x)2 = o(F(x)2),
Jo-

hence

fX T(x - u) dF{u) = T(x) - F{x)2 + o(F(x)2)
Jo-

and

T(x - u)2 dF{u) = T(x)2 + o(F{x)2).
o-
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Hence, for Ae (0, x)

F{n+l)(x) = 7(x) + f ~F™(x - u) dF{u) + f ~F~W(x - u) dF(u)
Jo- JA

< T(x) + ~F~W(x - A)F(A) + f {nF{x -u) + KnT{x - u)2} dF{u)

= F(x) + {nF(x) - (£)F(x)2}F(A) + nF(x)F(x) + KnF(x)2

- fA {nF(x -u) + KnF(x - u)2} dF(u) + o(F(x)f
Jo-

by Theorem 2. From equation (6) it follows that the last integral equals
{nF(x) + KnT(x)2}F(A) + o(F(x)2). Collecting all terms we find

(x) (n + l)F(x) _ (*j\F(A)+KF(A)m

F(x)2 \ 2 / "
Now take the limit as A —* oo on the right-hand side. In view of the left-hand
inequality in Lemma 1 the proof is complete.

Our next result shows that assumption (5) in Theorem 1 may be weak-
ened at the cost of an additional integrability condition in order to obtain a
sufficient condition for S*2. The method of proof is as in Murphree [11].

THEOREM 5. Suppose F satisfies (8) and assume there exists a constant c
such that

(16) \ff{x) - y/(u) < exp (—y/(x) + c) forueUr,x\

and

(17) / exp{\(ip(2x)-2y/(x))}di//(x) < oo.
Jo

Then F<=5*2.

PROOF. From the assumption (16) it follows that y/(x) - y/(x/2) -»0 as
x -> oo. Hence F is slowly varying. Since

F{2)(x) - 2F(x) _
/o-
F(x/2) (F(x/2)
F() V F()

F(x/2) (F(x
F(x) V F(F(x)

it is sufficient to show that the integral on the right-hand side tends to zero as
x ->• oo. Note that (16) implies y/(x) - y/(u) -»0 (x —> oo) for u e [x/2, x]
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and hence there exists c0 such that i//(x) < y/{u) + c0 for u e [x/2, x],
x > 0, which implies

and, in general,
^ {ot0<u<x

+
X ~ U U

Since y/{x) - y/(u) -» 0 for M e [x/2, x], it follows that for 0 < y < x/2
and x sufficiently large

- y/{x -y)}e

< 2exp {Zy(x) - y,(y) + c}< 2exp |

Since F satisfies (8) we may apply Lebesgue's dominated convergence theo-
rem to the integral on the right-hand side of (18) to find that the limit of the
integral is 0 as x -> oo.

As in the case of the class of subexponential distribution functions, in order
to give necessary and sufficient conditions one needs an additional regularity
assumption. The following result is an analogue of Pitman's [14] necessary
and sufficient condition for the class S'1.

THEOREM 6. Suppose y/ has a derivative y/' which is eventually non-
increasing and yt\x) -• 0 (x -> oo). Then F e J7*2 if and only if xy/'{x) ->
0 (x-»oo).

PROOF. Let

J := * ( j ) = f
X

Jo

Suppose first that F e S?1, that is, J -»• 0 as x -> oo. Choose a so thatthat
\l/'{x) is non-increasing in [a, oo). Since y/ is non-decreasing we have, if
x >a,

J> (V{x)-v{x-y))y/'(y)dy
Jo

rx—a rx

> / y/\z)dzy/'(y)dy
JO Jx-y

> w\x) fX ayy'(y)dy > (y/'(x))2 f "ydy,
Jo Jo

whence (xy/1 (x))2-> 0.
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Now suppose that xi//'(x) —> 0. It follows that F(x) is slowly varying.
Split the range of integration of / at x/2 to give two integrals, J{ and J2.
If y < x/2 then x - y -> oo and using the mean value theorem and that
yy/'(x) -> 0 uniformly with respect to y < x/2 as x -> oo, we find

(ey¥>lx/2)-l)e-¥{y)yf'{y)dy

/•x/2
~y,\x/2)ev{x) ye-v{y)y,\y)dy.

Jo
The integral equals

- r ydF(y) = f F(y) dy - (x/2)F(x/2) = o(xF(x/2)),
Jo- Jo

because F is slowly varying. But F(x) = exp(-y/(x)) ~ F(x/2) and since
y/\x) = -T>{x)/T{x), Jx = o(^:F'(x/2)/F(x/2)) -> 0. To deal with J2

observe that for any e > 0 we have y/'(y) < e/y for all y large enough, and
hence

J2 < [e/F(x)] f [(F(x-y)/F(x)) - l]F(y)y-1 dy
Jx/2

< [2eF(x/2)/xF(xf] f F(z)dz
Jo

- [2eF(x/2)/xF(x)2][xF(x/2)/2] -»e

where we have used the slow variation of F. It follows that J -* 0, and the
theorem follows.

REMARKS. (1) If F satisfies the sufficient condition of Theorem 6 and G
is a d.f. on [0, oo) satisfying (11), then G G S*2.

(2) Although it is not immediately apparent, Theorem 6 is closely related
to Pitman's [14, Theorem II]. Under the same supplementary condition as in
Theorem 6 he gives a necessary and sufficient condition for membership of
&. Let

/(*)= f\eyv'{x)-\)e-v(y)y,\y)dy.
Jo

Suppose y/'{x) ultimately decreases to zero as x —> oo. Then Pitman's
result is equivalent to the following: F e S* if and only if I(x) - » 0 as
x —> oo. We can obtain a criterion for membership of S*2 by complementing
Pitman's condition with a convergence rate requirement:

F e S?2 if and only if I{x)/T{x) -»0 as x -> oo.

It is not very difficult to show that this criterion is equivalent to the apparently
simpler criterion of Theorem 6. The proof of this equivalence relies strongly
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on the fact that our criterion ensures that F is slowly varying. This additional
structure is not available in Pitman's situation and consequently it is not at
all obvious that his criterion for membership of 5? can be simplified in any
useful way.

3. Examples

Next we construct an example of a distribution function satisfying (8)
but not in 5?2. Define x0 = 0 and the piecewise linear function y/ as
follows: take xn := xn_l + nen~l (n > 1) and y(xn) = n (n > 0). Then

f V)x) = n~le-n+l on (*„_,, xn] for
n = 1,2,..., y/' is non-increasing, ic'(^) - t 0 (x —• oo). It follows that
xn_iv\xn) >{n- l)en~2 • n~le~n+l > {2e)~l for n > 2, and hence we have

{ey*'ixm) _ x)e-v(y)y,'{y)dy > y,'(xje^ T" y/(y)^^ dy
Jxn-l

from which it follows that F $ S?2 . On the other hand F satisfies (8) since
y/'{x)ev(x) -»0 (x -> oo). This follows because xn->oo (n -> oo) and for
x € (*„_!, xn) we have

0 < y (x)e < H e " =e/n.

Note that in the above example F is not slowly varying because if F is
slowly varying then, since F = -\i/'e~v is non-increasing, it follows that
xFl{x)/T(x) = xy'(x) -* 0 (x -» oo). On the other hand for JC 6
(*„_!. xn] and n > 2 we have xy/'{x) > xn_xy/'{xn) > {2e)~l.

We have seen that F € S?2 implies F is slowly varying. Our next example
shows that the converse implication is not true, that is, we give an example
of a d.f. which is slowly varying but not in S?2 . We have seen that F(x) =
(logx)"1, x > e, is in S"2. We claim that T(x) = [logx]~1, x > e, is not
in S?2, where [•] denotes the greatest integer function. Indeed

n

fc=2

_ 3 1 1
" n n-\ n

2'
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and hence F(2\en) - 2F(en) = o(F{e")2) {n -» oo). This example also
shows that S?2 is not closed under tail equivalence without supplementary
conditions such as those in Theorem 3. Moreover if we replace lim inf by
lim sup in (2) this example shows that this lim sup can be strictly greater
than zero even if the lim inf equals zero.

Next we give an application of the above theory. In order to prove the
result we need an inequality which is similar to the Kesten inequality for
subexponential distribution functions.

LEMMA 2. Suppose F e S?1 and define the sequences fin{xQ), 7n(x0)
(n > 1) by

F(x)}/F(x)2

and

Then for any e > 0 there exist ko> 0 not depending on n and x0 = jco(e)
such that

- V 1 + e)" < 7n(x0) < 0n(xo) <kQ(l+ e)n for n>2.

fin(x0) = sup{Fw(x) - nF(x)}/F(x)2

x>x0

yn(x0) = inf {F{n\x)-nF{x))IF{xf.
x>x

PROOF. Note that fin(x0) and yn(x0) are finite for all x0 > 0, n > 2,
by Theorem 4. As in the proof of Theorem 4 it follows that for each e > 0
there exists x0 such that

f F(x - ufdF{u) < (l + | ) 7(x)2 for x > x0,

and hence using (6), we have

r F~W(X - u) dF{u)=[ r x°+ r
Jo- \Jo- Jx-xJ

2}f °{nF(x -u) + fin(xQ)F(x - u)2} dF(u) + F(x - x0) - F(x)
o-

) - F(x)} + 0n(xo)(l + e/2)F(x)2 + c*T{xf

for x > x0, where c* is a constant. It follows that

F*+*(x) -(n+ l)T(x) = f F~W(x - u) dF(u) - nF(x)
Jo-

< n{F®(x) - 2F(x)} + {/*n(x0)(l + e/2) + c*}F{xf,

and hence
^ con
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where c0 = sapx>0{F[2\x) - 2F(x)}/F(x) < oo. Iteration then gives
Pn{

xo) < $(n + e /2)" , n > 2, for some constant 8, which implies fin(xQ) <
fco(l + ef . The proof of the inequality for yn(x0) follows similarly.

Now consider an age dependent branching process with lifetime distribu-
tion F e S?1. If M(t) is the expected population size at time t > 0 of the
process with one ancestor and a per capita mean number of offspring m < 1,
then it follows that

(19) M(t) = £ mk{F{k+l\t) - Flk\t)},
fc=0

and hence

M{t)-{\-mylF{t)
F(t)2

= £
F(ty

-kF(t)}
m

In view of Lemma 2 and Theorem 4 we may apply Lebesgue's dominated
convergence theorem to find

(20) M{t) = - ^ ^-^F{tf + o(F(tf) (t -> oo).
' w 1 -m (i -m)

Observe that 1 - M(t) is a d.f. and it follows from (20) and Theorem 3 that
this d.f. is in &1.

Although it is not obvious at first sight, results like (20) can have a rather
narrow scope of appliability in some situations. To illustrate this, consider
the limiting waiting time d.f. Q{t) of a stable M/G/l queue whose service
time d.f. is B(t). If F(t) is the idle time d.f. and m = (2(0) is the limiting
probability of not waiting for service then it is well-known that (19) holds
where M{t) = Q(t)/m. It follows that f e ^ 2 implies Q e f2 and a
version of (20) holds for Q(t).

Stability of the queueing system requires that b = /0°° tdB(t) < oo. Hence
8(t) = b~l /o'(l - B{u))du is a d.f. Moreover the idle time distribution tail
function F is proportional to fi{t) and hence it follows that F € S'1 if
und only if 0 e S?1. If so, 0(t) = exp(-^(f)) is slowly varying and the
monotone density theorem shows that

[21) ty/'(t) = iS{t)l r B(x) dx - 0.

Conversely, if 2? is regularly varying then (21) can be satisfied only if the
index is - 1 , that is, B(t) = L(t)/t where L is slowly varying, and we must
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have Jt°° L(x)dx/x < oo. For this form of 2?, equation (21) is satisfied
because Fatou's lemma yields ff°[L(tu)/L(t]) du -+ oo.

Note that ij/'(t) - L(t)/t ft°° L{x) dx/x, so that if this is eventually non-
increasing we conclude from Theorem 6 that F e JP*2. These conditions are
obviously satisfied by, for example, L(t) = K(log(e +1))'1'* , where K is a
normalising constant and 8 > 0.

Summarising, we see that among service time distributions having a reg-
ularly varying upper tail, an approximation for the stable waiting time dis-
tribution of the form of (20) is effectively restricted to those service time
distributions whose index of variation is - 1 .

Acknowledgement

The authors are indebted to the referee for making the connection with
functions of slow variation with remainder.

References

[1] K. B. Athreya and P. E. Ney, Branching processes, Springer-Verlag (1972).
[2] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular variation, Cambridge University

Press (1987).
[3] V. P. Chistyakov, 'A theorem on sums of independent, positive random variables and

its application to branching processes', Theory Prob. andAppl. 9 (1964), 640-648.
[4] D. B. H. Cline, 'Convolution tails, product tails and domains of attraction', Prob. Th.

Rel. Fields 72 (1986), 529-557.
[5] P. Embrechts and C. M. Goldie, 'On convolution tails', Stochastic Proc. Appl. 13 (1982),

263-278.
[6] P. Embrechts, 'Subexponential distribution functions and their applications: a review',

Proc. Seventh Brasov Conf. on Prob. Theory, M. Iosifescu, VNU Science Press, Utrecht,
(1985), 125-136.

[7] J. L. Geluk, 'On the convolution of functions which belong to a subclass of l) (0, oo)',
Applicable Analysis 20 (1985), 79-88.

[8] J. L. Geluk and L. de Haan, Regular variation, extensions and Tauberian theorems, CWI
tract 40, Centre for Mathematics and Computer Science, Amsterdam (1987).

[9] C. M. Goldie and R. L. Smith, 'Slow variation with remainder: theory and applications',
Quart. J. Math. Oxford (2), 38 (1987), 45-71.

[10] W. A. J. Luxemburg, 'On an asymptotic problem concerning the Laplace transform',
Applicable Analysis 8 (1978), 61-70.

[11] E. S. Murphree, 'Some new results on the subexponential class', /. Appl. Prob. 26 (1989),
892-897.

[12] E. Omey, 'Asymptotic properties of convolution products of functions', Publ. Inst. Math.
43 (1988), 41-57.

https://doi.org/10.1017/S1446788700033310 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033310


[15] Second order subexponential distributions 87

[13] A. G. Pakes, 'On the tails of waiting-time distributions', / . Appl. Prob. 12 (1975), 555-
564.

[14] E. J. G. Pitman, 'Subexponential distribution functions', / . Austral. Math. Soc. Ser. A
29(1980), 337-347.

[15] J. L. Teugels, 'The class of subexponential distributions', Ann. Prob. 3 (1975), 1000-
1011.

[16] E. Willekens, Hogere orde theorie voor subexponentiele verdelingen, Ph.D. thesis, Univ.
of Louvain (1986).

Erasmus University University of Western Australia
Econometric Institute Nedlands, WA 6009
P.O. Box 1738 Australia
3000 DR Rotterdam
The Netherlands

https://doi.org/10.1017/S1446788700033310 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033310

