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Abstract. It is proved that a product of four or more terms of positive integers in arithmetic
progression with common difference a prime power is never a square. More general results are
given which completely solve (1.1) with gcdðn; d Þ ¼ 1; k5 3 and 1 < d4 104.
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1. Introduction

We shall always denote by n; d; k; b; y positive integers such that b is square free,

k5 2 and PðbÞ4 k; where PðbÞ denotes the greatest prime factor of b with the

understanding that Pð1Þ ¼ 1. We consider the equation

nðnþ d Þ � � � ðnþ ðk� 1Þd Þ ¼ by2 in n; d; k; b; y with PðbÞ4 k: ð1:1Þ

For a survey of results on (1.1), we refer to [14, 15, 18]. We observe that (1.1) with

k ¼ 2 has infinitely many solutions. The first result on (1.1) is due to Fermat (see [6,

pp. 21–22] or [1, p. 440]) that there are no four squares in an arithmetic progression.

Further, Euler (see [1, p. 635]) proved that (1.1) with gcdðn; d Þ ¼ 1; k ¼ 4; b ¼ 1 is

not possible. This is also the case if k ¼ 5; b ¼ 1 by a result of Obláth [7].

Let d ¼ 1 and k5 3. It is a consequence of some old diophantine results that (1.1)

with k ¼ 3 is possible only when n ¼ 1; 2; 48. If PðbÞ < k and k5 4, Erdo
0 0

s and Self-

ridge [3], developing on the work of Erdo
0 0

s [2] and Rigge [8], showed that (1.1) with

n > k2 does not hold. The assumption PðbÞ < k has been relaxed to PðbÞ4 k and

PðbÞ4 pk in [10] and [13], respectively, where pk denotes the least prime exceeding

k. Furthermore, it is shown in [13] that for n > k2; k5 4 and ðn; kÞ 6¼ ð24; 4Þ;

ð47; 4Þ; ð48; 4Þ there exist distinct primes p1 and p2 such that the maximal power of

each of p1 and p2 dividing the left-hand side of (1.1) is odd. This finds application

in the proof of Theorem 1 stated below. We observe that the assumption n > k2

in the above results is necessary otherwise we see from (1.1) that PðyÞ4 k and

(1.1) has infinitely many solutions. Finally, we see that n > k2 follows if (1.1) holds

such that the left-hand side is divisible by a prime exceeding k.

Compositio Mathematica 138: 73–111, 2003. 73
# 2003 Kluwer Academic Publishers. Printed in the Netherlands.

https://doi.org/10.1023/A:1025408727362 Published online by Cambridge University Press

https://doi.org/10.1023/A:1025408727362


Let d > 1 and k5 3. Then the assumption n > k2 is no longer necessary since the

left-hand side of (1.1) with gcdðn; d Þ ¼ 1 is divisible by a prime exceeding k unless

ðn; d; kÞ ¼ ð2; 7; 3Þ. This was proved by Shorey and Tijdeman [17]. Marszalek [5]

showed that (1.1) with gcdðn; d Þ ¼ 1; b ¼ 1 implies that k is bounded by an effec-

tively computable number depending only on d. Further, Shorey and Tijdeman

[16] showed that (1.1) with gcdðn; d Þ ¼ 1 is not possible if k exceeds an effectively

computable number depending only on oðd Þ where oð1Þ ¼ 0 and oðd Þ denotes the
number of distinct prime divisors of d.

Let

D¼fwta j w;a integers with 14w412;w 6¼ 11;a> 0;t prime, gcdðw;tÞ¼ 1g:

ð1:2Þ

We shall always write t ¼ p if t > 2. We observe that every d with 1 < d4 104 is an

element of D and oðd Þ4 2 for d 2 D unless w ¼ 6; 10; 12 in which case oðd Þ ¼ 3. We

restrict (1.1) to d 2 D in this paper. We observe that (1.1) with gcdðn; d Þ ¼ 1; d 2 D
and k ¼ 2 has infinitely many solutions if d is odd or 8 j d otherwise there is no solu-

tion. Thus we assume that k5 3 from now on. The first result is on (1.1) with d ¼

pa and PðbÞ < k.

THEOREM 1. Let d ¼ pa. Assume ð1:1Þ with PðbÞ < k. We have

ðiÞ If b ¼ 1, then k ¼ 3.

ðiiÞ If d j= n, then k4 9.

Assume (1.1)with gcdðn; d Þ ¼ 1; b ¼ 1; d ¼ p andk ¼ 3.Thenweobserve that either

n ¼ y20; nþ d ¼ y21; nþ 2d ¼ y22 or n ¼ 2y20; nþ d ¼ y21;

nþ 2d ¼ 2y22

for some positive integers y0; y1; y2 which are pairwise coprime. Assume the first pos-

sibility. Then y21 � y20 ¼ d and y22 � y21 ¼ d. This implies that y1 � y0 ¼ 1; y1 þ y0 ¼ d

and y2 � y1 ¼ 1; y2 þ y1 ¼ d since d ¼ p. Thus y0 ¼ y2 which is not possible. Now we

turn to the second possibility. Then y22 � y20 ¼ d implying that y2 � y0 ¼ 1 and

y2 þ y0 ¼ d. Thus y0 ¼ ðd� 1Þ=2 which gives n ¼ ðd� 1Þ2=2 and since nþ d ¼ y21,

we get d 2 � 2y21 ¼ �1. We do not know whether the preceding equation has infinitely

many solutions in d; y1 with d prime. Thus it is an open problem that (1.1) with

b ¼ 1; d ¼ p and k ¼ 3 has infinitely many solutions.

Let k be even. We write k! ¼ bz2 where b is square free and we observe that

PðbÞ < k. Now we see that the left hand side of (1.1) with n ¼ d is by2 where

y ¼ zd
k
2. Thus the assumption d j= n is necessary in Theorem 1(ii). This is also the case

when k is odd by considering (1.1) with n ¼ d ¼ k.

Next we give a result on (1.1) with d 6¼ pa and PðbÞ < k.
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THEOREM 2. Let d 2 D; d 6¼ pa and PðbÞ < k. Assume ð1:1Þ such that d j= n if d ¼ 2a

and w j= n otherwise. Then k ¼ 3 or k ¼ 5; w ¼ 10; 5 j n; 2 j= n or ðn; d; kÞ ¼ ð4 � 11a;

7 � 11a; 5Þ with a odd.

We consider an analogue of Theorem 2 with w j n. Then we should assume that d j= n

as mentioned above. Thus we suppose that ta j= n. Now we divide both sides of (1.1) by

wk to suppose that d ¼ ta andwe conclude byTheorem2 for t ¼ 2 and byTheorem1(ii)

for t > 2 that k4 9. If the assumption w j= n is replaced by gcdðn; d Þ ¼ 1 in Theorem 2,

then either k ¼ 3; d ¼ 7pa or ðn; d; kÞ ¼ ð1; 24; 3Þ, see Corollary 4(iii). Like (1.1) with

k ¼ 3 and d ¼ p, the case k ¼ 3; d ¼ 7p also remains open. If k ¼ 3 in Theorem 2, we

observe that (1.1) has infinitely many solutions ðn; d Þ ¼ ð2a�3; 3 � 2aÞ; ð2aþ1; 7 � 2aÞ;

ð9 � 2aþ1; 7 � 2aÞ. This is also the case with the second possibility in the assertion of

Theorem 2. For this, we observe ðn; d; kÞ ¼ ð5 � 7a; 10 � 7a; 5Þ with a odd are solutions

of (1.1). The second possibility is ruled out if gcdðn; wÞ ¼ 1 and the third possibility is

excluded if gcdðn; d Þ ¼ 1. Now we give a result on (1.1) with PðbÞ ¼ k.

THEOREM 3. Let d 2 D and k be prime. Then ð1:1Þ with gcdðn; d Þ ¼ 1 and PðbÞ ¼ k

implies that k4 29; d ¼ pa or k ¼ 3; d ¼ 7pa.

The main purpose of this paper is to consider (1.1) when d runs through an expli-

citly given infinite set including all prime powers and Theorems 1; 2; 3 are results in

this direction. Further we find large d0 such that (1.1) with gcdðn; d Þ ¼ 1 can be

solved completely for 1 < d 4 d0. For elaborating this application, we show in

the next result that d0 can be taken as 104. This is not the optimal value of d0
obtainable by the method of this paper.

COROLLARY 1. All the solutions of ð1:1Þ with gcdðn; d Þ ¼ 1 and 1 < d4 104

are given by ðn; d Þ 2 fð2; 7Þ; ð18; 7Þ; ð64; 17Þ; ð2; 23Þ; ð4; 23Þ; ð75; 23Þ; ð98; 23Þ; ð338;

23Þ;ð3675; 23Þ; ð1; 24Þ; ð800; 41Þ; ð2; 47Þ; ð27; 71Þ; ð50; 71Þ; ð96; 73Þ; ð864; 97Þg if k ¼ 3;

ðn; d Þ 2 fð75; 23Þg if k ¼ 4.

Saradha [11] proved Corollary 1 when d4 22 and Filakovszky and Hajdu [4]

covered 234 d4 30.

We derive Theorem 3 from the following result.

THEOREM 4. Let d 2 D, gcdðn; d Þ ¼ 1;PðbÞ < k; k5 4 and i be any integer with

0 < i < k� 1. Then

nðnþ d Þ � � � ðnþ ði� 1Þd Þðnþ ðiþ 1Þd Þ � � � ðnþ ðk� 1Þd Þ ¼ by2 ð1:3Þ

implies that either ðn; d; k; iÞ 2 fð1; 8; 4; 2Þ; ð1; 40; 4; 1Þ; ð25; 48; 4; 1Þg or d 2 f pa; 5pa;

7pag such that k4 29 if d ¼ pa and k4 5 if d ¼ 5pa; 7pa.

We observe that (1.3) with b ¼ 1; k ¼ 3 has infinitely many solutions unless 2 k d in

which case it has no solution. The case d ¼ 1 of Theorem 4 is given in [13] where we

proved that (1.3) with d ¼ 1; n > k2;PðbÞ4 k; k5 4 and 0 < i < k� 1 implies that

ALMOST SQUARES IN ARITHMETIC PROGRESSION 75

https://doi.org/10.1023/A:1025408727362 Published online by Cambridge University Press

https://doi.org/10.1023/A:1025408727362


ðn; k; iÞ ¼ ð24; 4; 2Þ. This result has been applied in [13] to settle a question of Erdo
0 0

s

and Selfridge [3, p. 300] that there is no square other than 122 ¼ 6!
5 and 7202 ¼ 10!

7

such that it can be written as a product of k� 1 integers out of k consecutive positive

integers. For 1 < d4 67, we solve (1.3) completely in the next result.

COROLLARY 2. Let 1 < d4 67 and i be an integer with 0 < i < k� 1. Then ð1:3Þ

with gcdðn; d Þ ¼ 1;PðbÞ < k and k5 4 implies that

k¼4 and ðn;dÞ2fð1;5Þ;ð3;5Þ;ð49;5Þ;ð4;7Þ;ð1;8Þ;ð3;11Þ;ð36;13Þ;ð108;13Þ;

ð27;23Þ;ð75;23Þ; ð288;25Þ;ð363;29Þ;ð2116;31Þ;ð289;37Þ;ð1;40Þ;ð400;43Þ;

ð3;47Þ;ð6;47Þ;ð75;47Þ;ð484;47Þ;ð1587;47Þ;ð25;48Þ;ð7744;59Þ;ð900;61Þg;

k¼5 and ðn;dÞ2fð4;7Þ;ð4;23Þg;

k¼6 and ðn;dÞ2fð5;11Þg:

Corollaries 1 and 2 with d ¼ w have been used in relaxing the assumption

gcdðn; d Þ ¼ 1 in Corollary 4(iii) to w j= n in Theorem 2. Another application of Cor-

ollaries 1 and 2 is given as follows. Let 1 < d4 67; k5 4 and gcdðn; d Þ ¼ 1. Suppose

that there exists exactly one prime p5 k dividing the left-hand side of (1.1) to an odd

power. This means we have

nðnþ d Þ � � � ðnþ ðk� 1Þd Þ ¼ bpy2 ð1:4Þ

for some positive integers b and y such that b is square free and PðbÞ < k. We delete

the one term divisible by p. If p j n or p j ðnþ ðk� 1Þd Þ, we get an equation of the

form (1.1). Then we apply Corollary 1 to find out all the exceptions. If p j ðnþ iÞ

where i 6¼ 0; k� 1, then we get an equation of the form (1.3). Now we apply Corol-

lary 2 to find out all the exceptions. Thus Corollaries 1 and 2 can be combined to list

all the solutions of (1.4) when 1 < d4 67. If there exists no prime 5 k dividing the

left hand side of (1.1) to an odd power, then ðn; d; kÞ ¼ ð75; 23; 4Þ by Corollary 1.

Thus we obtain all the finitely many triples ðn; d; kÞ with 1 < d4 67; k5 4 and

gcdðn; d Þ ¼ 1 such that there exists at most one prime p5 k dividing the left hand

side of (1.1) to an odd power. The case k ¼ 3 of the preceding assertion remains open.

As in Shorey and Tijdeman [16], the proofs depend on comparing an upper bound

and lower bound for nþ ðk� 1Þd. For example, in proving Theorem 1(ii) we show

that (1.1) with k� 1 prime which we may assume by Lemma 16 implies

nþ ðk� 1Þd5 1
2 k

3 þ 3:25k2 for k5 104; ð1:5Þ

nþ ðk� 1Þd < minð14 k
2dþ ðk� 1Þd; k3 þ 4:25k2Þ; d < 4k for k5 12 ð1:6Þ

and a sharper inequality

nþ ðk� 1Þd < minð14 k
2dþ ðk� 1Þd; 12 k

3 þ 3:25k2Þ; d < 3k for k5 68 ð1:7Þ

when d is a power of an odd prime with d j= n. We combine (1.5) and (1.7) to conclude

that k < 104. Then we apply an algorithm given in Section 9 to solve (1.1) for the
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finite but large number of possibilities ðn; d; kÞ given by (1.6) for 124 k < 68 and

(1.7) for 684 k < 104. See Lemma 12 for proofs of (1.6) and (1.7). An algorithm

for (1.5) is given in Lemma 6 and it yields very sharp lower bounds as shown in

Corollary 3. It is quite efficient and this is also the case with the algorithm of Section

9 mentioned above. These algorithms are new contributions in the proofs of our the-

orems. The inequality (1.6) is an explicit version of one essentially contained in [16]

but the improvement (1.7) is new and useful for the proofs.

The approach of this paper works also for other values of w but this may increase

computational load considerably. This is why we have avoided taking w ¼ 11 in our

results. Further, if d is divisible by more than one prime which are not fixed, then the

method in Sections 7 and 8 would give n < C1k
3 and d < C2k

2 where C1;C2 are

some effectively computable absolute constants. Also the bound for k obtainable

would be very large. In that case covering the remaining values of k may become

computationally impossible. Apart from the techniques of [3] and [16], the proofs

involve developing a fundamental argument of Erdo
0 0

s given in Lemma 3 and its repe-

ated applications leading to Corollary 3, an extensive use of Legendre Symbol and

congruences, the method of Runge for the case k ¼ 8; b ¼ 1; d ¼ pa and several other

arguments. The algorithms referred above are carried out by MATHEMATICA on

a computer. We also use SIMATH for solving several elliptic equations. This pack-

age has already been used in [4] in a similar context but we use some combinatorial

arguments to ensure that we get only those elliptic equations that can be solved by

SIMATH. In the next section we continue listing the notation required in the paper

and we also give a plan of the paper at the end of the section.

2. Notation

Unless otherwise specified, we shall always assume that d 2 D where D is given by

(1.2). We see that every d 6¼ 30; 60; 70; 84; 90; 132 can be uniquely written as wta with
w; t; a satisfying (1.2) such that

w < ta ð2:1Þ

and we shall always represent d 6¼ 30; 60; 70; 84; 90; 132 in this way throughout the

paper. Thus w ¼ 2 if d ¼ 10 and w ¼ 5 if d ¼ 45. By (2.1), we see that a5 2 if

d ¼ 3 � 2a; a5 3 if d ¼ 5 � 2a; 7 � 2a and a5 4 if d ¼ 9 � 2a. Further, we write

90 ¼ 10p2 with p ¼ 3; 30 ¼ 6p and 60 ¼ 12p with p ¼ 5; 70 ¼ 10p and 84 ¼ 12p with

p ¼ 7; 132 ¼ 12p with p ¼ 11. Thus w ¼ 6 if d ¼ 30 and w ¼ 10 if d ¼ 70; 90 and

w ¼ 12 if d ¼ 60; 84; 132. One may also take 30 ¼ 10p with p ¼ 3 and w ¼ 10 but

we use the earlier representation to avoid confusion. We denote by t0 a prime divisor

of d. Thus t0 is either t or a prime divisor of w. Further we put

w1 ¼
w if d ¼ wpa;
2w if d ¼ w2a.

�
ð2:2Þ
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Let q1 < q2 < � � � be the sequence of all primes coprime to d and p1 < p2 < � � � be the

sequence of all primes. We write pdðxÞ for the number of primes 4 x and coprime to

d; pðxÞ for the number of primes 4 x. We shall use the estimates (see [9, p. 69])

qi 5 pi 5 i log i for i5 1; ð2:3Þ

pdðxÞ4pðxÞ4
x

log x
þ

1:5 x

log2 x
for x > 1 ð2:4Þ

and

pðxÞ >
x

log x
for x > 17: ð2:5Þ

For an integer x > 0, we write

qiðxÞ ¼ qpdðxÞþi with i5 1 ð2:6Þ

and

d ¼
nþ ðk� 1Þd

k3
: ð2:7Þ

Further we put

b ¼ bðd; kÞ ¼
Y
t0jd

t0�ordt0 ðk�1Þ!; b1 ¼ b1ðd; kÞ ¼ ðk� 1Þ!b

and for s > 0

b2ðsÞ ¼ b2ðd; k; sÞ ¼ k� 1�
ðk� 1Þ logðk� 1Þ þ log b
2 logðk� 1Þ þ log s� log 2

� pdðk� 1Þ � 1; ð2:8Þ

b3ðs;hÞ ¼ b3ðd;k; s;hÞ ¼
k� 1� ðk�1Þ logðk�1Þþlogb

3 logkþlogðs� d

k2
Þ

�pdðk� 1Þ� h; if s> d
k2
þ 2

k3
;

0; otherwise;

(

and

b4ðs;hÞ ¼ b4ðd;k; s;hÞ ¼ k� 1�
ðk� 1Þ logðk� 1Þ þ logb
3 logðk� 1Þ þ log s� log2

� pdðk� 1Þ � 1� h:

Now we set

Fðs; hÞ ¼
b3ðs; hÞ; if d ¼ pa; 4pa;
b4ðs; hÞ; otherwise,

�

and F �ðs; hÞ ¼ maxð1; ½Fðs; hÞ� þ 1Þ. For any r > 0 and s > 0, we put N1ðr; sÞ ¼

½ðrþ s� 1Þ=s� and for any prime t0 dividing d, we write
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N2ðr; t0; d Þ ¼

N1ðr; 2Þ; if t0 ¼ 2; 2 k d;
N1ðr; 4Þ; if t0 ¼ 2; 4 k d;
N1ðr; 8Þ; if t0 ¼ 2; 8 j d;
minðN1ðr; t0Þðt

0�1
2 Þ; ½r�Þ; if d is odd:

8>><
>>:

For any integer m > 0, we denote by d1ðmÞ the number of ways m can be written as

m1m2 such that gcdðm1; m2Þ ¼ 2. For example if m ¼ 16, then ðm1; m2Þ 2 fð2; 8Þ; ð8; 2Þg

and d1ð16Þ ¼ 2. For r > 0, we define

G1ðrÞ ¼
X
m<r
8jm

d1ðmÞ; ð2:9Þ

G2ðrÞ ¼

0; if 1 < d4 4;

1; if 54 d4 8;

N2ð
k
r ; 2; d Þ; if d is even > 8;

N2ð
k
r ; t

0; d Þ; if d is odd > 8; t0 j w; t0 2 f3; 5; 7g;

½kr� þ G1ðrÞ; if d ¼ pa

8>>>>>><
>>>>>>:

and

G3 ¼

0; if d 2 f2a; pa; 2pa; 3pa; 4pag

3; if d 2 f5pa; 7pag

6; if d 2 f6pa; 8pa; 9pa; 10pa; 3 � 2ag

9; if d ¼ 12pa

12; if d ¼ 5 � 2a

18; if d ¼ 7 � 2a; 9 � 2a:

8>>>>>>><
>>>>>>>:

We put

G4ðrÞ ¼ G2ðrÞ þ G3: ð2:10Þ

Let d1 < � � � < dt be integers with di 2 ½0; kÞ for 14 i4 t. Thus t4 k. We shall

always take t ¼ k or t ¼ k� 1 with t5 3. We consider the equation

ðnþ d1d Þ � � � ðnþ dtd Þ ¼ by2 ð2:11Þ

in positive integers n; d; k; b; y and d1; . . . ; dt. We recall that PðbÞ4 k. We shall

always assume that gcdðn; d Þ ¼ 1 whenever we refer to (2.11). This is not the case

regarding (1.1) which will be referred only in Section 11. Thus gcdðn; d Þ ¼ 1 through-

out Sections 3–10. If t ¼ k, we see that di ¼ i for 04 i < k. If t ¼ k� 1, then the left-

hand side of (2.11) is obtained by omitting a term nþ id for some i with 04 i < k

from fn; nþ d; . . . ; nþ ðk� 1Þdg. Further (2.11) with t ¼ k� 1 includes (1.3). We

shall assume that

ðn;d;kÞ 62 fð2;7;3Þ; ð1;5;4Þ; ð2;7;4Þ; ð3;5;4Þ; ð1;2;5Þ; ð2;7;5Þ; ð4;7;5Þ; ð4;23;5Þg:

ð2:12Þ
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Then we see from [17] and [12, Theorem 4] that the left-hand side of (2.11) is divisible

by a prime exceeding k. Furthermore, by [12, Theorem 40], the left-hand side of (2.11)

is divisible by at least two distinct primes exceeding k whenever t ¼ k5 4. Thus we

see from (2.11), (2.6) and (2.7) that

nþ ðk� 1Þd5 q21ðkÞ5 ðkþ 1Þ2 ð2:13Þ

and

d5
q21ðkÞ

k3
>

1

k
: ð2:14Þ

Further, by (2.11), we write

nþ did ¼ aix
2
i ;PðaiÞ4 maxðPðbÞ; k� 1Þ; ai square free for 14 i4 t ð2:15Þ

and

nþ did ¼ AiX
2
i ;PðAiÞ4 maxðPðbÞ; k� 1Þ; gcd

Y
p;Xi

	 

¼ 1; for 14 i4 t;

ð2:16Þ

where the product
Q

p is taken over all primes p with p4maxðPðbÞ; k� 1Þ. Let

S ¼ fA1; . . . ;Atg;S1 ¼ fm j Xm 6¼ 1; 14m4 tg and S2 be the set of all Am 2 S with

m 2 S1. We divide the set S1 into subsets with the property that two integers m; n with
14m; n4 t belong to the same subset if and only if Am ¼ An. Now we arrange the

integers in each subset in the increasing order. If m0 is the maximum of the integers

in a particular subset, we call the subset as Vm0 . Thus S1 ¼ [Vm0 . Let S
0 be the set of

such m0’s. We put S
ðiÞ
1 ¼ fm0 j m0 2 S0; jVm0 j ¼ ig. Then we see that

jS1j ¼
X
i5 1

ijS
ðiÞ
1 j ð2:17Þ

and

jS2j ¼ jS0j ¼
X
i5 1

jS
ðiÞ
1 j: ð2:18Þ

Analogously, we partition the set of ai’s in the following way. Let R ¼ fa1; . . . ; atg

and R1 ¼ fi j 14 i4 tg. We divide R1 into subsets with the property that two inte-

gers m; n with 14m; n4 t belong to the same subset if and only if am ¼ an. We

arrange the integers in each subset in the increasing order. If m0 is the maximum

of the integers in a particular subset, we call the subset as Wm0 . Thus R1 ¼ [Wm0 .

Let R0 be the set of such m0’s. We put R
ðiÞ
1 ¼ fm0 j m0 2 R0; jWm0 j ¼ ig. Then

jRj ¼ jR0j ¼
P

i5 1 jR
ðiÞ
1 j.

Let B1 < B2 < � � � < BjSj and e1 < e2 < � � � < ejRj be the distinct elements of S and

R, respectively. Suppose t0 is a prime and a0 > 0 is an integer such that t00 ¼ t0a
0

divides d. Then by (2.16), we see that n � AiX
2
i ðmod t00Þ. If X2 can take value in Z

residue classes mod t00, then we find that all the Bi’s fall in Z residue classes mod

t00. We write any integer i5 1 as i ¼ i0Zþ i1 where i0; i1 are integers with
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0 < i1 4Z. Then we observe that Bi 5 i0t00 þ i1. Thus Bi 5 ðit00=ZÞ � ðt00 � ZÞ. For
instance, if t00 ¼ 3, then Z ¼ 1 and Bi 5 3i� 2. We can extend this argument to more

than one prime power dividing d by Chinese Remainder Theorem. Further, by

(2.15), the above argument can be applied to ei’s as well. We put

t1 ¼ t1ðd Þ ¼

d; if d ¼ 2; 4; 12;
w; if d ¼ wpa with w 6¼ 9;
8w; if d ¼ w2a with a > 2; w 6¼ 9;
3; if d ¼ 9pa;
24; if d ¼ 9 � 2a

8>>><
>>>:

and

udðiÞ ¼

t1i� t1 þ 1; if d ¼ wta;with w 6¼ 5; 7; 10;
maxðt12 i� t1 þ 2; 1Þ; if d ¼ 5ta; 10ta;
maxðt13 i� t1 þ 3; 1Þ; if d ¼ 7ta:

8<
: ð2:19Þ

By the argument given above, we see that

Bi 5 udðiÞ for 14 i4 jSj; ei 5 udðiÞ; for 14 i4 jRj: ð2:20Þ

Let d ¼ h1h2 with gcdðh1; h2Þ ¼ 1 or 2. We call such pairs ðh1; h2Þ as partitions of d.

When ai ¼ aj with i 6¼ j we observe from (2.15) that ði� jÞd ¼ ajðx
2
i � x2

j Þ. Since

gcdðn; d Þ ¼ 1, we have gcdðd; ajÞ ¼ 1 and gcdðd; xi � xj; xi þ xjÞ ¼ 1 or 2 according

as d is odd or even, respectively. Thus d j ðx2
i � x2

j Þ. We say that a partition

ðh1; h2Þ of d corresponds to ai ¼ aj with i 6¼ j if h1 j ðxi � xjÞ and h2 j ðxi þ xjÞ. It is

clear that such a partition ðh1; h2Þ of d corresponding to ai ¼ aj with i 6¼ j always

exists. If d is odd, we observe that it is unique. This need not be the case when d

is even. We define

M ¼

0; if d ¼ 2; 4;

1; if d ¼ pa;

2; if d ¼ 2a;with a > 2; 2pa; 3pa; 5pa; 7pa; 9pa;

3; if d ¼ 4pa;

4; if d ¼ 6pa; 8pa; 10pa; 3 � 2a; 5 � 2a; 7 � 2a; 9 � 2a;

6; if d ¼ 12pa;

8>>>>>><
>>>>>>:

ð2:21Þ

r0 ¼

4; if 2 k d;
2; if 4 k d;
1; if 8 j d;
8; if d is odd and d 6¼ pa;
16; if d ¼ pa;

8>>><
>>>:

ð2:22Þ

E0 ¼
2; if d is even and d=w1 odd;
1; otherwise;

�
ð2:23Þ

E1 ¼
2; if d ¼ w2a;
1; otherwise

�
ð2:24Þ
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and

E2 ¼
2; if 4 j d;
1; otherwise.

�
ð2:25Þ

For any integer m5 1, we denote by fðmÞ the number of ei’s composed of

q1; . . . ; qm. Then

fðmÞ5 jRj �
X

m5mþ1

k

qm

� �
þ em


 �
¼: f0ðmÞ; ð2:26Þ

where em ¼ 0 if qm > k or qm j k and em ¼ 1 otherwise. Since ei’s are square free, we

observe that

fðmÞ4 2m: ð2:27Þ

We shall follow the notation introduced in Sections 1 and 2 throughout the paper.

We end this section with a plan of the paper. Every section, other than 6; 10; 11;

begins with the precise assumptions to be followed in that section. These assump-

tions will not be mentioned in the statements of lemmas of that section. Further,

in each section, we give a brief introduction to the results proved in that section. Sec-

tions 3 to 10 are devoted to solving (2.11) which we assume in this paragraph. In Sec-

tion 3 we solve (2.11) completely for k4 11 and d 6¼ pa. In the subsequent sections

we solve (2.11) for other values of d and k. In Section 4, we give a lower bound for

the number of distinct Ai’s with Xi 6¼ 1 which leads to a lower bound for nþ ðk� 1Þd

in Section 5. The next step is to find an upper bound for nþ ðk� 1Þd in Sections 7

and 8. To achieve this, we show in Section 6 that there are several ai’s which are repe-

ated. A comparison of the lower and upper bounds for nþ ðk� 1Þd imply that n; d; k

are bounded as proved in Section 8. We give an algorithm in Section 9 to solve (2.11)

when n; d; k are bounded. In fact, we solve (2.11) in Section 9 with the assumption

k� 1 prime if k5 12 which we justify in the Section 10. The final Section 11 is

devoted to the proofs of the theorems and corollaries.

3. Equation (2.11) with x>>>>>>> 1 and k Small

We suppose ð2:11Þ with either PðbÞ4 k if t ¼ k or PðbÞ < k if t ¼ k� 1. In this sec-

tion, we solve (2.11) with d 6¼ pa and k4 11 by using Legendre symbol. We begin

with

LEMMA 1. Let i be a nonnegative integer.

ðiÞ Suppose i < k� 1 and nþ id ¼ x2
i ; nþ ðiþ 1Þd ¼ x2

iþ1. Then

ðxi; xiþ1Þ ¼

	 h2 � h1
2

;
h2 þ h1

2
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for some partition d ¼ h1h2 with h1 < h2 of d satisfying gcd ðh1; h2Þ ¼ 1 if d is odd

and gcdðh1; h2Þ ¼ 2; 8 j d if d is even.

ðiiÞ Suppose i < k� 2 and nþ id ¼ x2
i ; nþ ðiþ 2Þd ¼ x2

iþ2. Then d is even and

ðxi; xiþ2Þ ¼
h2 � h1

2
;
h2 þ h1

2


 �

where 2d ¼ h1h2 with h1 < h2 and gcdðh1; h2Þ ¼ 2.

ðiiiÞ Suppose i < k� 2 and

nþ id ¼ x2
i ; nþ ðiþ 1Þd ¼ x2

iþ1; nþ ðiþ 2Þd ¼ x2
iþ2:

Then ðxi; xiþ1; xiþ2Þ ¼ ð1; 5; 7Þ.

ðivÞ Suppose i < k� 3 and

nþ id ¼ x2
i ; nþ ðiþ 2Þd ¼ x2

iþ2; nþ ðiþ 3Þd ¼ x2
iþ3:

Then ðxi; xiþ2; xiþ3Þ 2 fð5; 11; 13Þ; ð1; 9; 11Þg.

ðvÞ Suppose i < k� 3 and

nþ id ¼ x2
i ; nþ ðiþ 1Þd ¼ x2

iþ1; nþ ðiþ 3Þd ¼ x2
iþ3:

Then ðxi; xiþ1; xiþ3Þ ¼ ð1; 3; 5Þ.

Proof. (i) Since d ¼ x2
iþ1 � x2

i , the assertion is immediate.

(ii) We have 2d ¼ x2
iþ2 � x2

i which implies that both xi; xiþ2 are odd or even.

Hence, d is even. Now the assertion follows immediately.

(iii) We observe that 8 j d by (ii) and (i). Let d ¼ 8pa. Then ðxi; xiþ1Þ and ðxiþ1; xiþ2Þ

belong to fð2pa � 1; 2pa þ 1Þ; ð pa � 2; pa þ 2Þg implying d ¼ 24 which is not possible

by (2.1). The proof for the other cases d ¼ w2a with w 2 f1; 3; 5; 7; 9g; a5 3 is similar.

The triple ð1; 5; 7Þ corresponds to w ¼ a ¼ 3.

(iv) By (ii) and (i), we have 8 j d. Let d ¼ 8pa. Then ðxi; xiþ2Þ 2 fð4pa � 1;

4pa þ 1Þ; ð pa � 4; pa þ 4Þg and ðxiþ2; xiþ3Þ 2 fð2pa � 1; 2pa þ 1Þ; ð pa � 2; pa þ 2Þg.

This implies d ¼ 40 contradicting (2.1). Let d ¼ w2a with w 2 f1; 3; 5; 7; 9g; a5 3.

Then ðxi; xiþ2Þ equals ðw2a�1 � 1; w2a�1 þ 1Þ or ðj2a�1 � wj ; 2a�1 þ wÞ. Further, ðxiþ2;

xiþ3Þ equals ðw2a�2 � 1; w2a�2 þ 1Þ or ðj2a�2 � wj; 2a�2 þ wÞ. Thus ðxi; xiþ2; xiþ3Þ 2

fð5; 11; 13Þ; ð1; 9; 11Þg.

(v) We proceed as in (iv) to get the assertion. &

LEMMA 2. Let d 6¼ pa and k4 11. Assume that k5 6 if t ¼ k� 1 and d ¼ 5pa; 7pa.

If t ¼ k, then either k ¼ 3; d ¼ 7pa or ðn; d; kÞ ¼ ð1; 24; 3Þ. If t ¼ k� 1, then k ¼ 4 and

ðn; d Þ 2 fð1; 8Þ; ð1; 24Þ; ð1; 40Þ; ð25; 48Þg.

Proof. Let k ¼ 3. Then t ¼ k since t5 3. Let d be odd. If 3 j d, we see from (2.15)

and gcdðn; d Þ ¼ 1 that ai’s belong to f1; 2g. Since a0x
2
0 � a1x

2
1 � a2x

2
2 ðmod d Þ, we

have ða0=3 Þ ¼ ða1=3Þ ¼ ða2=3Þ. It follows that either a0 ¼ a1 ¼ a2 ¼ 1 or

a0 ¼ a1 ¼ a2 ¼ 2. However, at most two of the numbers n; nþ d; nþ 2d can be even.

This implies that a0 ¼ a1 ¼ a2 ¼ 1. Now the assertion follows from Lemma 1(iii).
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Let d ¼ 5pa and 3 j= d. Then ai’s belong to f1; 6g or f2; 3g. By Lemma 1(iii), we get

ða0; a1; a2Þ 2 fð1; 1; 6Þ; ð1; 6; 1Þ; ð6; 1; 1Þ; ð2; 3; 2Þg. Let ða0; a1; a2Þ ¼ ð1; 1; 6Þ. Then

nþ 2d � 0 ðmod 3Þ. Hence, 1 ¼ ðx2
0=3Þ ¼ ðn=3Þ ¼ ð�2d=3Þ ¼ ðd=3Þ. But we also have

1 ¼ ðx2
1=3Þ ¼ ððnþ d Þ=3Þ ¼ ð�d=3Þ ¼ �ðd=3Þ, a contradiction. All other cases are

excluded similarly by using Legendre Symbol mod 3. If d is even, then ai’s belong to

f1; 3g and we conclude as above that ðn; d Þ ¼ ð1; 24Þ.

Let k ¼ 4 and t ¼ k. By the result of Euler stated in Section 1 and Lemma 1, we see

that there are exactly 3 distinct ai’s. On the other hand, we find that ai’s belong to

f1; 3g if d is even, f1; 2g if 3 j d; f1; 6g or f2; 3g if 5 j d and f1; 2g or f3; 6g if 7 j d. This

is not possible. Now let t ¼ k� 1. Suppose that d is even. We see that ai’s take values

from f1g if 4 j d and from f1; 3g if 2 k d. Let 4 j d. We apply Lemma 1 to see that

ðn; d Þ 2 fð1; 8Þ; ð1; 24Þ; ð1; 40Þ; ð25; 48Þg. Let 2 k d. There are two ai’s equal to 1 or

3. Thus for some 04 j < i < 4, we have

ði� jÞd ¼ aðx2
i � x2

j Þ ð3:1Þ

with ai ¼ aj ¼ a ¼ 1 or 3 and xi; xj odd. The right-hand side of (3.1) is divisible by 8.

This is a contradiction since 2 k d. Suppose d is odd. Then 3 j d by the assumption

and ai’s belong to f1; 2g. Further, by Lemma 1, we find that one of the ai’s must

be equal to 2. Since 2 can divide at most two ai’s, there is an ai equal to 1. Thus

�1 ¼ ð23Þ ¼ ð13Þ ¼ 1, a contradiction.

Let k ¼ 5. Since 5 can divide at most one ai, we omit from the left-hand side of

(2.11) the term divisibile by 5 if t ¼ k and PðbÞ ¼ k to observe that there is no loss

of generality in assuming that PðbÞ < k whenever d 6¼ 7pa. Let d be even. Now we

argue as in the case k ¼ 4 to assume that 2 k d and ai’s belong to f1; 3g. Since t5 4,

there are two ai’s equal to 1. Thus (3.1) is satisfied with a ¼ 1 and 04 j < i4 4.

Hence, a0 ¼ a4 ¼ 1. Further at least one of the remaining ai’s equals 1 since no

two of them can take the value 3. Now we apply again (3.1) to arrive at a contra-

diction. Let d be odd. Suppose 3 j d. Then ai ¼ 1 for all i or ai ¼ 2 for all i. Since

at most three ai’s can take the value 2, the latter possibility is excluded and the

former is excluded by Lemma 1. Let 5 j d and 3 j= d. Then t ¼ k by the assumption.

Further ai’s belong to f1; 6g or f2; 3g. The first possibility is excluded by Lemma 1

while the second possibility does not hold since 3 can divide at most two ai ’s and

the three other ai’s cannot be equal to 2. Let 7 j d with 3 and 5 not dividing d.

Then t ¼ k and ai’s belong to f1; 2; 15; 30g or f3; 5; 6; 10g. Since 5 divides at most

one ai and 3 divides at most two ai’s we see that the latter possibility does not

hold. In the first possibility if there are three odd terms, then ða0; a2; a4Þ 2

fð1; 1; 1Þ; ð15; 1; 1Þ; ð1; 15; 1Þ; ð1; 1; 15Þg which is excluded by (3.1). Thus we may

assume that there are exactly two odd terms and by (3.1), one of them has its

ai ¼ 15 implying that ðd=5Þ ¼ �1. Further, we see from (3.1) that the ai’s corre-

sponding to the three even terms are ða0; a2; a4Þ ¼ ð2; 2; 1Þ; ð1; 2; 2Þ; ð1; 2; 1Þ. Let

ða0; a2; a4Þ ¼ ð2; 2; 1Þ. If a1 ¼ 15, we see from a0 ¼ a2 ¼ 2 that 3 j d, a contradic-

tion. If a3 ¼ 15, then a4 ¼ 1 implies that ðd=5Þ ¼ 1, a contradiction. The other

possibilities are excluded similarly.
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Let k ¼ 6. First let d be even. If 8 j d, we observe that ai 2 f1g contradicting Lemma

1. If 4 k d, we see that ai 2 f1; 5g and there is an i with ai ¼ aiþ1 ¼ 1 which is not pos-

sible by (3.1). Let 2 k d. From (3.1) we see that no other value of ai except 1 is repeated

and exactly one of the relations a0 ¼ a4 ¼ 1 and a1 ¼ a5 ¼ 1 holds. Then at least three

ai’s must assume the values 3; 5; 15 which is not possible by (3.1). Let d be odd. The

argument for the cases 3 j d; 5 j d is similar to the case k ¼ 5. Let 7 j d. Then ai’s

belong to f1; 2; 15; 30g or f3; 5; 6; 10g. Arguing as earlier, we need to consider only

t ¼ k� 1; ai’s belong to f1; 2; 15g, 15 equals an ai corresponding to an odd term

and an odd term is omitted. Then we see from (3.1) that the ai’s corresponding to

the three even terms fa0; a2; a4g or fa1; a3; a5g belongs to fð2; 2; 1Þ; ð1; 2; 2Þ; ð1; 2; 1Þg.

Let us take the even terms to be n; nþ 2d; nþ 4d. Then we observe that

nþ 2d � 2 (mod 8Þ. Let ða0; a2; a4Þ ¼ ð2; 2; 1Þ. Suppose 15 j ðnþ d Þ. If nþ 5d is not

an omitted term, then ðn=5Þ ¼ ððnþ 5d Þ=5Þ ¼ ðx2
5=5Þ ¼ 1. On the other hand,

ðn=5Þ ¼ ð2x2
0=5Þ ¼ �1. This is a contradiction implying that nþ 5d is the omitted

term. Thus nþ 3d � 1 (mod 8Þ which, together with nþ 2d � 2 (mod 8Þ, implies that

d � 7 (mod 8Þ. Also nþ d � 7 (mod 8) which, together with nþ 2d � 2 (mod 8Þ, gives

d � 3 (mod 8), a contradiction. Thus 15 j= ðnþ d Þ. The proof for the assertion

15 j= ðnþ 5d Þ is similar. Let 15 j ðnþ 3d Þ. Then �1 ¼ ð2x2
2=5Þ ¼ ððnþ 2d Þ=5Þ ¼

ð4d=5Þ implying ðd=5Þ ¼ �1. On the other hand, �1 ¼ ð2x2
0=5Þ ¼ ðn=5Þ ¼ ð�3d=5Þ ¼

ð2d=5Þ implying ðd=5Þ ¼ 1, a contradiction. The other cases are excluded similarly.

The possibility that nþ d; nþ 3d; nþ 5d are even is also excluded likewise.

Let k ¼ 7. If PðbÞ < 7, the assertion follows from the case k ¼ 6. If PðbÞ ¼ 7, then

t ¼ k by assumption and we omit the term divisible by 7 on the left hand side of

(2.11) to observe that the assertion follows from k ¼ 6.

Let k ¼ 8. Then t5 7. Let d be even. Suppose 8 j d. Then ai 2 f1; 105g. Hence,

there are at least six ai’s equal to 1 and we use Lemma 1 to exclude this case. Let

4 k d. Then ai 2 f1; 5; 21; 105g and there are at least four ai’s equal to 1. Hence by

(3.1), we see that either a0 ¼ a2 ¼ a4 ¼ a6 ¼ 1 or a1 ¼ a3 ¼ a5 ¼ a7 ¼ 1. Then

5; 105 is assumed by at most one ai. Thus there are at least five ai’s equal to 1 which

is impossible by (3.1). Let 2 k d. Then ai 2 f1; 3; 5; 7; 15; 21; 35; 105g. If 7 divides two

ai’s, then the assertion follows from the case k ¼ 6. Therefore there are at most three

ai’s divisible by 5 and 7. Further, by (3.1), we observe that ai ¼ 3 at most once only.

Hence there are at least three ai’s 2 f1g which is again not possible by (3.1). Let now d

be odd. There are at least 3 odd terms. If 3 j d, then ai 2 f1; 7; 10; 70g or

ai 2 f2; 5; 14; 35g. Thus there are at least two odd terms with the same ai in f1; 7g

or f5; 35g contradicting (3.1). The cases 5 j d and 7 j d follow similarly by considering

Legendre Symbol mod 5 and mod 7, respectively.

The cases k ¼ 9; 10; 11 follow from the case k ¼ 8. &

4. Lower Estimate for the Number of Ai’s With Xi 6¼ 1

We assume (2.11) with PðbÞ < k. We determine explicitly a lower estimate for the

number of Ai’s with Xi 6¼ 1. In other words, we estimate jS2j from below. This is
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done in Lemma 5. This estimate has been derived from Lemmas 3, 4 and (4.7). Fur-

ther, we remark that the proofs of Lemmas 3,4 and (4.7) can be adapted for any d to

get a lower bound for jS2j. But the lower bound would be trivial when oðd Þ is large.

LEMMA 3. Let k5 4. Then

jS1j > t�
ðk� 1Þ logðk� 1Þ þ log b

log dþ logðk� 1Þ
� pdðk� 1Þ � 1 ð4:1Þ

and

jS1j > t�
ðk� 1Þ logðk� 1Þ þ log b

log n0
� pdðk� 1Þ � y; ð4:2Þ

where n0 ¼ maxðn; 3Þ; y ¼ 1 if n ¼ 1; 2 and y ¼ 0 if n > 2.

Proof. Let S3 ¼ fm j Xm ¼ 1; 14m4 tg so that jS1j ¼ t� jS3j. We may assume

that jS3j > pdðk� 1Þ for a proof of (4.1). We follow an argument of Erdo
0 0

s. Let q be a

prime <k with q j= d. Let mq be chosen such that

ordqðAmq
Þ ¼ max

i2S3

ðordqAiÞ:

Let S4 be the subset of S3 obtained by deleting mq for every such prime q. Thus

jS4j5 jS3j � pdðk� 1Þ. Let m 2 S4. Then nþ dmd ¼ Am and

ordqðnþ dmd Þ4 ordqðjdm � dmq
jÞ;

since gcdðn; d Þ ¼ 1. Therefore

ordq

Y
m2S4

ðnþ dmd Þ

 !
4 ordqðdmq

!ðk� 1� dmq
Þ!Þ4 ordqðk� 1Þ!:

Thus Y
m2S4

ðnþ dmd Þ ¼
Y
q j= d

q<k

q
ordqð P

m2S4
ðnþdmd ÞÞ

4
ðk� 1Þ!Q

t0 jd t0
ordt0 ðk�1Þ!

¼ b1:

This implies that djS3j�pdðk�1Þ�1ðjS3j � pdðk� 1Þ � 1Þ!4b1 and

njS3j�pdðk�1Þ 4b1: ð4:3Þ

We get

ðjS3j � pdðk� 1Þ � 1Þ log d4 logððk� 1Þ � � � ðjS3j � pdðk� 1ÞÞÞ þ log b

< ðk� jS3j þ pdðk� 1ÞÞ logðk� 1Þ þ log b;

the latter relation holds with strict inequality since jS3j4 k� 2 for k5 4 as pointed

out after (2.12). This shows that

jS3j <
ðk� 1Þ logðk� 1Þ þ log b

log dþ logðk� 1Þ
þ pdðk� 1Þ þ

log dþ logðk� 1Þ

log dþ logðk� 1Þ
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which implies (4.1). By (4.3), we have

jS3j <
ðk� 1Þ logðk� 1Þ þ log b

log n
þ pdðk� 1Þ

which yields (4.2) whenever n5 3. Let n ¼ 1; 2. We see that nþ dmd5 3 for m 2 S4

except for at most one m for which dm ¼ 0. Hence

n
jS3j�pdðk�1Þ�1
0 4b1

implying (4.2) as above. &

Let r0 be given by (2.22) in the next three lemmas.

LEMMA 4. For k5maxðr0; 4Þ we have jS
ð2Þ
1 j4G2ðr0Þ.

Proof. Let m0 2 S
ð2Þ
1 . Then there exists m1 2 S1 with m0 > m1 such that Am0 ¼ Am1

and hence by (2.16), we have

ðm0 � m1Þd ¼ Am0 ðXm0 � Xm1 ÞðXm0 þ Xm1Þ: ð4:4Þ

The left-hand side of (4.4) is less than kd whereas the right-hand side is at least 4k

since Xm0 > k and Xm1 > k are odd integers. Thus we see that d > 4. If 54 d4 8,

then Am0 ¼ 1 implying jS
ð2Þ
1 j ¼ 1. Now we assume that d > 8. Let d be odd and t0

be a prime dividing d. Then by (2.16), we have

Aj

t0


 �
¼

n

t0

	 

; for 14 j4 t:

Further we observe that there are ðt0 � 1Þ=2 quadratic residues and ðt0 � 1Þ=2 quad-

ratic nonresidues mod t0. Therefore the number of distinct Aj 4 k=r0 does not

exceed N2ðk=r0; t0; d Þ4 ½k=r0�. Let d be even. Then the number of distinct

Aj 4 k=r0 does not exceed N2ðk=r0; 2; d Þ since Aj’s are odd, Aj � n (mod 4) if 4 j d

and Aj � n (mod 8) if 8 j d. Therefore the number of distinct Am0 4 k=r0 does not

exceed N2ðk=r0; t0; d Þ. Let now S
ð2Þ
1 ðk=r0Þ ¼ fm0 j m0 2 S

ð2Þ
1 and Am0 > k=r0g. Then it

is enough to show that

S
ð2Þ
1

k

r0


 �����
����4G1ðr0Þ if d ¼ pa ð4:5Þ

and S
ð2Þ
1 ðk=r0Þ ¼ f otherwise. To show this we proceed as follows. Let d be written as

h1h2 with h1 j ðXm0 � Xm1Þ and h2 j ðXm0 þ Xm1Þ and gcdðh1; h2Þ ¼ 1 or 2. Thus (4.4)

gives

k > m0 � m1 ¼ Am0

Xm0 � Xm1

h1


 �
Xm0 þ Xm1

h2


 �
:

Thus
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Xm0 � Xm1

h1


 �
Xm0 þ Xm1

h2


 �
< r0; ð4:6Þ

since Am0 > k=r0. We write

Xm0 � Xm1

h1
¼ r1;

Xm0 þ Xm1

h2
¼ r2 with r1 r2 ¼ r0 < r0:

Then we observe that 4 j r0 if 2 k d; 2 j r0 if 4 k d. Also if d is odd, then gcdðr1; r2Þ ¼ 2

and 8 j r0. Hence by the choice of r0, we may assume that d ¼ pa. This implies, by

(4.4), that h1 ¼ 1; h2 ¼ d and we see that the number of ðXm0 ;Xm1Þ satisfying (4.6)

is at most G1ðr0Þ by (2.9). This proves (4.5). &

LEMMA 5. For k5maxðr0; 4Þ we have jS2j5 jS1j � G4ðr0Þ.

Proof. By subtracting (2.18) from (2.17), we see from Lemma 4 and (2.10) that it

suffices to showX
i5 3

ði� 1ÞjS
ðiÞ
1 j4G3: ð4:7Þ

We denote by m�0 an element of [i5 3S
ðiÞ
1 for which Am�

0
¼ 1. It may or may not exist.

Suppose m0 2 [i5 3S
ðiÞ
1 . Then, m0 2 S

ðiÞ
1 for some i5 3. Thus there exist m1; . . . ; mi�1

with m0 > m1 > � � � > mi�1 such that Am0 ¼ Am1 ¼ � � � ¼ Ami�1
. Hence,

ðm� nÞd ¼ AmðXm � XnÞðXm þ XnÞ for m; n 2 fm0; . . . ; mi�1g; m > n: ð4:8Þ

Thus, d > 4. We write d ¼ h1h2 with gcdðh1; h2Þ ¼ 1 or 2 such that h1 j ðXm � XnÞ;

h2 j ðXm þ XnÞ. Since i5 3, we see that (4.8) holds with

ðm; nÞ 2 fðm0; m1Þ; ðm0; m2Þ; ðm1; m2Þg: ð4:9Þ

Let U be the set of possible values of h1. We consider (4.8) with m ¼ m0. If

i5 jUj þ 2, then there is a value of h1 which divides Xm0 � Xn for two distinct values

of n 2 fm1; . . . ; mi�1g. For simplicity, we assume that n ¼ m1 andm2. Thus h1 divides

Xm0 � Xm1 and Xm0 � Xm2 giving h1 j ðXm1 � Xm2Þ. We also have h2 dividing

Xm0 þ Xm1 and Xm0 þ Xm2 . Therefore h2 j ðXm1 � Xm2Þ. Hence Xm1 � Xm2 5 d=2. This

is impossible by ð4:8Þ with m ¼ m1 and n ¼ m2. Thus we conclude that i4 jUj þ 1

which implies thatX
i5 3

ði� 1ÞjS
ðiÞ
1 j4 jUj

X
i5 3

jS
ðiÞ
1 j: ð4:10Þ

Suppose d 2 f2a; pa; 2pa; 3pa; 4pag. Then we have U as f1g if d ¼ pa; f1; 2g if d ¼

2a or if d ¼ 2pa; f1; 3gif d ¼ 3pa; f1; 2; 4g if d ¼ 4pa. Suppose d ¼ 2a. Then h1 2

f1; 2g divides Xm0 � Xm1 and Xm0 � Xm2 . Then 2a�1 ¼ d
2 divides Xm1 � Xm2 . This is

impossible by ð4:8Þ. Similarly d 6¼ pa; 2pa; 3pa; 4pa by (4.8). Thus jS
ðiÞ
1 j ¼ 0 for i5 3
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and (4.7) follows. Now we consider the remaining values of d other than

9pa; 5 � 2a; 7 � 2a and 9 � 2a. Suppose m0 6¼ m�0. Then we see from (4.8) that there exists

ðm; nÞ as given in ð4:9Þ with Xm � Xn 5 2pa if d 6¼ 3 � 2a and Xm � Xn 5
2a�1 if d ¼ 3 � 2a. This is impossible by ð4:8Þ since Am0 5 2 and further Am0 5 3 if d is

even. Thus, m0 ¼ m�0 in these cases. Hence, we derive that
P

i5 3 jS
ðiÞ
1 j ¼ 1 which toge-

ther with ð4:10Þ and jUj ¼ 3 if d ¼ 5pa; 7pa; jUj ¼ 6 if d ¼ 6pa; 8pa; 10pa;

3 � 2a; jUj ¼ 9 if d ¼ 12pa implies (4.7). Finally we consider the cases d ¼ 9pa;

5 � 2a; 7 � 2a; 9 � 2a. We argue as above to conclude that Am0 belongs to f1; 2g

if d ¼ 9pa; f1; 3g if d ¼ 5 � 2a; f1; 3; 5g if d ¼ 7 � 2a; f1; 5; 7g if d ¼ 9 � 2a. Now the

assertion ð4:7Þ follows from ð4:10Þ and jUj ¼ 3 if d ¼ 9pa; jUj ¼ 6 otherwise. &

5. Iterative Procedure for Obtaining a Lower Estimate for nþ ðk� 1Þd

We assume (2.11) with PðbÞ < k. It is proved in Shorey and Tijdeman [16, Lemma 1]

that for any d, we get nþ ðk� 1Þd5C3 k3 log2k where C3 is an absolute constant.

But C3 is not explicitly given and it turns out to be small. Therefore, it does not pro-

vide a good lower bound when k is bounded. We show that it is possible to obtain a

good lower bound for nþ ðk� 1Þd whenever d 2 D, see Corollary 3. We shall derive

Corollary 3 from Lemma 6 which involves an iterative procedure. This procedure

makes use of the lower estimate for jS2j obtained in Lemma 5.

LEMMA 6. Let k5maxðr0; 4Þ. Then the following assertions hold.

ðiÞ nþ ðk� 1Þd5 udðmaxð½b2ð1Þ � G4ðr0Þ� þ 1; 1Þp2pðk�1Þþ1 ¼: fk3 where udðiÞ is given

by ð2:19Þ.

ðiiÞ Let nþ ðk� 1Þd5 g1k
3 with g1 5 1

k. For i5 2, define gi by the recurrence relation

gik
3 ¼ udð½F

�ðgi�1;G4ðr0Þ�Þp
2
pðk�1Þþ1:

Then nþ ðk� 1Þd5 gik
3.

ðiiiÞ Let i0 be fixed with nþ ðk� 1Þd5 gi0k
3. Let

h0 ¼
F �ðgi0 ;G4ðr0ÞÞ

k
; h00 ¼

:16; if h0 > 16;
h0

2 ; otherwise

�

h01 ¼ h0; h001 ¼ ðh01 � h00Þk� 1þ
k� 1

logðk� 1Þ

and

‘1 ¼
udð½h

00k� þ 1Þp2½h0
1
k��½h00k�þpðk�1Þ

k3
; ‘01 ¼

udðh
00kÞðh001 log h

00
1Þ

2

k3
:

Then nþ ðk� 1Þd5L1k
3 and for k5 19, we have nþ ðk� 1Þd5L0

1k
3 where

L1 ¼ maxðgi0 ; ‘1Þ and L0
1 ¼ maxðgi0 ; ‘

0
1Þ:
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ðivÞ For i5 2, let

h0i ¼
F �ðLi�1;G4ðr0ÞÞ

k
; h00i ¼ ðh0i � h00Þk� 1þ

k� 1

logðk� 1Þ

and

‘i ¼
udð½h

00k� þ 1Þp2½h0
i
k��½h00k�þpðk�1Þ

k3
; ‘0i ¼

udðh
00kÞðh00i log h

00
i Þ

2

k3
:

Then nþ ðk� 1Þd5Lik
3 and for k5 19, we have nþ ðk� 1Þd5L0

ik
3 where

Li ¼ maxðLi�1; ‘iÞ and L0
i ¼ maxðL0

i�1; ‘
0
iÞ.

Proof. We recall that t5 k� 1:

(i) Suppose d5 ðk� 1Þ=2. Then we use (4.1) to estimate jS1j. If d < ðk� 1Þ=2, we

use (2.13) to find that n > k2=2 which we use in (4.2) to estimate jS1j. Thus we

get jS1j > b2ð1Þ by (2.8). By Lemma 5, we have jS2j5 ½b2ð1Þ � G4ðr0Þ� þ 1 and

we recall that jS2j5 1. Thus there are at least maxð½b2ð1Þ � G4ðr0Þ� þ 1; 1Þ dis-

tinct Aj’s with j 2 S1. We arrange the Aj’s in the increasing order and observe

that each of the corresponding Xj’s has a prime factor 5 k. This yields the

estimate in (i) by (2.20).

(ii) Let nþ ðk� 1Þd5 g1k
3 and we prove the assertion for i ¼ 2. Let d ¼ pa; 4pa. In

these cases we proceed as follows. We may assume that g1 > d=k2 þ 2=k3 other-

wise F �ðg1;G4ðr0ÞÞ ¼ 1 and the assertion follows immediately from (2.13). Thus

n > ðg1 � d=k2Þk3 > 2. Now by (4.2) and Lemma 5, we get jS2j > b3ðg1;G4ðr0ÞÞ

which gives nþ ðk� 1Þd5 g2k
3. Now let d 62 fpa; 4pag. We use (4.1) if

d5 ðg1ðk� 1Þ2Þ=2 and if otherwise, we use (4.2) to estimate jS1j and we apply

Lemma 5. We derive that jS2j > b4ðg1;G4ðr0ÞÞ which implies nþ ðk� 1Þd5
g2k

3. The assertion for i5 3 follows similarly.

(iii) We have nþ ðk� 1Þd5 gi0k
3. We proceed as in (ii) to get jS2j5F �ðgi0 ;G4ðr0ÞÞ.

Thus there are at least ½h01k� distinct Aj’s with j 2 S1. We arrange them in

increasing order and remove the first ½h00k� of these Aj’s. Then we are left with

½h01k� � ½h00k� > 0 number of Aj’s each of which exceeds udð½h
00k� þ 1Þ by (2.20).

Now we arrange the corresponding Xj’s in the increasing order. Thus the largest

Xj is divisible by a prime 5 p½h0
1
k��½h00k�þpðk�1Þ. This gives the first assertion. The

second assertion follows by using (2.3) and (2.5) in the definition of ‘1.

(iv) We proceed by induction on i5 2. We have nþ ðk� 1Þd5L1k
3. Hence, we get

jS2j5F �ðL1;G4ðr0ÞÞ. Thus there are at least ½h
0
2k� distinct Aj’s with j 2 S1. Fur-

ther we observe that F �ðs; hÞ is an increasing function of s. Hence h02 5 h01. Now

we proceed as in (iii) to get nþ ðk� 1Þd5 udð½h
00k� þ 1Þp2½h0

2
k��½h00k�þpðk�1Þ. Hence,

nþ ðk� 1Þd5maxðL1; ‘2Þk
3. This proves the first assertion with i ¼ 2 and the

second assertion follows by using (2.3) and (2.5) in the definition of ‘2. The

assertion for i5 3 follows similarly. &
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COROLLARY 3. Let k� 1 be prime and d 6¼ 2; 4. Assume that d4 3ðk� 1Þ if

d ¼ pa and d4 12ðk� 1Þ if d ¼ 4pa. For v1; v2 given in Table 1 above we have d5 v1
for k5 v2.

We use the exact values of pðkÞ for the assertion of Corollary 3 with v2 4 k < v02.

In fact the assumption k� 1 prime is not used for k5 v02:

Proof. We give proofs for the cases d ¼ pa and d ¼ 5pa. The proofs for other

cases are similar. We follow the notation of Lemma 6.

Let d ¼ pa and d4 3ðk� 1Þ. Then r0 ¼ 16. First, let k5 318. ByLemma 6(i), we get

f5 :0888. We put g1 ¼ :0888 and apply the iteration process in Lemma 6(ii) to obtain

g2 5 :1615; g3 5 :1697; g4 5 :1704. We fix i0 ¼ 4. Then gi0 ¼ :1704; h01 5 :3385; h00 ¼

:16; ‘01 5 :4307 and L0
1 5 :4307. Further L0

2 5 :4987;L0
3 5 :5090;L0

4 5 :5105. Thus

by Lemma 6(iv), we have d5 :51055 1
2 þ 13=ð4kÞ for k5 318. Now we take

Table I.

d v1 v2 v02

pa 1
2 þ

13
4k 104 318

2pa 1
2 þ

13
2k 48 180

3pa 1
2 þ

39
4k 30 80

4pa 2þ 13
k 80 308

5pa 1
2 þ

65
4k 60 138

6pa 1
2 þ

39
2k 42 98

7pa 1
2 þ

91
4k 80 168

8pa 2þ 26
k 90 192

9pa 1
2 þ

117
4k 68 132

9pa 405
4k 80 138

10pa 1
2 þ

65
2k 54 128

12pa 2þ 39
k 60 132

2a 2þ 13
k 38 140

3 � 2a 2þ 39
k 60 300

5 � 2a 2þ 65
k 68 128

7 � 2a 2þ 91
k 102 174

9 � 2a 2þ 117
k 80 140

9 � 2a 405
k 90 140
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1044 k < 318. For these values of k, we use the exact value of pðkÞ in Lemma 6. We

give the details of computation for k ¼ 104. By Lemma 6(i) we find that f5 :1221.

Now we take g1 ¼ :1221 and use the iteration process in Lemma 6 (ii) to get

g2 5 :2748; g3 5 :3053; g4 5 :3155. We fix i0 ¼ 4. Then gi0 5 :3155; h01 5 :2980; h00 ¼

:16 and l1 5 :4951. Hence L1 5 :4951. Now we use the iteration process in Lemma

6(iv) to compute L2 5 :5513;L3 5 :5629;L4 5 :5629. Thus we get d5 :56295
1
2 þ 13=ð4kÞ for k ¼ 104. Similarly for 104 < k < 318 with k� 1 prime, we find

d5 1
2 þ 13=ð4kÞ. This proves Corollary 3 when d ¼ pa.

Let d ¼ 5pa. Then r0 ¼ 8. Suppose k5 138. By Lemma 6(i), we get f5 :1658. We

take g1 ¼ :1658 and apply Lemma 6(ii) to secure g2 5 :3217; g3 5 :3450; g4 5 :3474.

Let i0 ¼ 4. Then gi0 ¼ :3474; h01 5 :2902; h00 ¼ :16; ‘01 5 :5771 and L0
1 5 :5771. Also

L0
2 5 :6375. Thus by Lemma 6(iv), we have d5 :63755 1

2 þ 65=ð4kÞ for k5 138. Let

604 k < 138 and we fix k ¼ 60. We derive from Lemma 6 that g1 ¼ f5 :2067; g2
5 :5081; g3 5 :5943; gi0 ¼ g4 5 :6373; h01 5 :2666; h00 ¼ :16; ‘01 5 :8067 and L0

1 5
:8067. Hence d5 :80675 1

2 þ 65=ð4kÞ for k ¼ 60. Similarly the assertion follows for

60 < k < 138 with k� 1 prime. This proves Corollary 3 for d ¼ 5pa. &

6. An Upper Bound for the Number of Distinct ai’s

We show that not all ai’s are distinct. For example, we prove that jRj < k� 1 when-

ever (2.11) with t ¼ k and b ¼ 1 holds. We achieve this in two stages viz., when

k < 12 and when k5 12. First when k < 12, by Lemma 2 we need to consider only

the case d ¼ pa. This is done in Lemma 7 below where we may assume that k5 6 by

the results of Fermat and Obláth stated in Section 1. As in Lemma 2, here again we

make use of Legendre Symbol. Further we resort to Runge’s method for the case

k ¼ 8. Secondly for k5 12, the method rests on an argument of Erdo
0 0

s and Rigge

as explained in Lemma 8 below and we prove a sharper inequality than

jRj < k� 1 which is also valid when t ¼ k� 1 or b > 1. Further the arguments of

Lemma 8 have been applied in Lemma 80 to exclude the cases d ¼ 2; 4. The proof

of Lemma 8 extends to any d and bounded M. In that case, the upper bounds for

jRj in Lemma 8 are valid whenever k exceeds a number depending only on M.

LEMMA 7. Let d ¼ pa and 64 k4 11. Assume that b ¼ 1 whenever k4 9. Then

ð2:11Þ with t ¼ k;PðbÞ < k and jRj5 k� 1 does not hold.

Proof. We assume (2.11) with t ¼ k;PðbÞ < k and jRj5 k� 1. Let k ¼ 6. By

jRj5 5 and (2.27), we derive that at least one ai is divisible by 5. Further, we see

from b ¼ 1 that 5 divides a0 and a5. Hence a1; a2; a3; a4 belong to f1; 2; 3; 6g. If

jRj ¼ k, then a1; a2; a3; a4 are distinct and this contradicts the result of Euler stated

in Section 1. Let jRj ¼ k� 1. We observe again that a1; a2; a3; a4 are not all distinct.

Since 5 j a0, we have 5 j n. Thus ða1=5Þ ¼ ððnþ d Þ=5Þ ¼ ðd=5Þ. Similarly

a2
5

	 

¼

2d

5


 �
;

a3
5

	 

¼

3d

5


 �
;

a4
5

	 

¼

4d

5


 �
:
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Hence

a1
5

	 

¼

a4
5

	 

and

a2
5

	 

¼

a3
5

	 

:

Thus a1; a4 2 f1; 6g; a2; a3 2 f2; 3g or a1; a4 2 f2; 3g; a2; a3 2 f1; 6g. Therefore we have

either a1 ¼ a4 ¼ 1 or a2 ¼ a3 ¼ 1. If a1 ¼ a4 ¼ 1, then a2 ¼ 2; a3 ¼ 3 or a2 ¼ 3; a3 ¼

2. This gives ða0; a1; a2; a3; a4; a5Þ ¼ ð30; 1; 2; 3; 1; 5Þ or ð5; 1; 3; 2; 1; 30Þ. By

a1 ¼ a4 ¼ 1, we see from (2.15) and d ¼ pa that d ¼ ð2x1 þ 1Þ=3 or 2x1 þ 3. Further

from d 2 ¼ 1
6 ððnþ 2d Þðnþ 3d Þ � nðnþ 5d ÞÞ, we get d 2 ¼ ðx2x3Þ

2
� ð5x0x5Þ

2 implying

that d 2 þ 1 ¼ 2x2x3. Also 6x2
2x

2
3 ¼ ðx2

1 þ d Þðx2
1 þ 2d Þ. Hence 24ðd 2 þ 1Þ2�

ðd 2 þ 2dþ 9Þðd 2 � 2dþ 9Þ ¼ 0 if d ¼ 2x1 þ 3 and 24ðd 2 þ 1Þ2 � ð9d 2 þ 2dþ 1Þ

ð9d 2 � 2dþ 1Þ ¼ 0 if d ¼ ð2x1 þ 1Þ=3. By observing that the constant terms in the

above polynomials in d are divisible by d, we derive that either d ¼ 2x1 þ 3 ¼ 3; 19

or d ¼ ð2x1 þ 1Þ=3 ¼ 23. These possibilities are easily excluded. If a2 ¼ a3 ¼ 1, then

a1 ¼ 2; a4 ¼ 3 or a1 ¼ 3; a4 ¼ 2. In both cases, we see that 3 j= a0a5 and (2.11) with

b ¼ 1 is not satisfied.

Let k ¼ 7. Then, by b ¼ 1 and jRj5 6; we may assume that either 5 divides a0; a5
or 5 divides a1; a6. Let 5 divide a0; a5. Then a1; a2; a3; a4; a6 2 f1; 2; 3; 6g and the

repeated element is among a1; a2; a3; a4. Then as in the case k ¼ 6, we have either

a1 ¼ a4 ¼ 1 or a2 ¼ a3 ¼ 1. The first possibility implies that a6 ¼ 6; a3 ¼ 3; a2 ¼ 2;

a5 ¼ 5; a0 2 f10; 15; 30g and we observe that (2.11) with b ¼ 1 is not satisfied. In

the second possibility, we see that a1; a4; a6 2 f2; 3g contradicting jRj5 6. The

argument for the case when 5 divides a1 and a6 is similar.

Let k ¼ 8. If jRj ¼ 8, then we may assume that 7 divides a0; a7 and 5 divides a1; a6.

Hence a2; a3; a4; a5 is a permutation of 1; 2; 3; 6 implying ðnþ 2d Þðnþ 3d Þðnþ 4d Þ

ðnþ 5d Þ is a square which is impossible by the result of Euler. Let now jRj ¼ 7. By

b ¼ 1, we may assume that 7 divides a0; a7 and 5 divides a0; a5 or a1; a6 or a2; a7.

Let 5 divide a1; a6. Then a2; a3; a4; a5 belong to f1; 2; 3; 6g. By mod 7 consideration,

we find that either a2; a4 or a3; a5 take values from f3; 6g which is impossible. Let 5

divide a0; a5 or a2; a7. Then by mod 7 and mod 5 considerations, we find that either

n ¼ 35x2
0; nþ d ¼ x2

1; nþ 2d ¼ 2x2
2; nþ 3d ¼ 3x2

3; nþ 4d ¼ x2
4; nþ 5d ¼ 5x2

5;

nþ 6d ¼ 6x2
6; nþ 7d ¼ 7x2

7

or

n ¼ 7x2
0; nþ d ¼ 6x2

1; nþ 2d ¼ 5x2
2; nþ 3d ¼ x2

3; nþ 4d ¼ 3x2
4; nþ 5d ¼ 2x2

5;

nþ 6d ¼ x2
6; nþ 7d ¼ 35x2

7:

We give the argument for the first possibility. We have x2
4 � x2

1 ¼ 3d. Hence

x4 � x1 ¼ 1 or 3 giving

d ¼ pa ¼
2x1 þ 1

3
or 2x1 þ 3: ð6:1Þ
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Also we note that gcdðx1; 210Þ ¼ 1 implying x1 5 11. Further

2

p


 �
¼

3

p


 �
¼

5

p


 �
¼

7

p


 �
¼

n

p


 �
¼ 1

which, together with (6.1), implies that d5 163. We observe that ðnþ 2d Þðnþ 3d Þ

ðnþ 6d Þ ¼ ð6x2x3x6Þ
2 which gives

9x6
1 þ 48x5

1 þ 92x4
1 þ

284

3
x3
1 þ 57x2

1 þ 20x1 þ
10

3
¼ Y2

1

with Y1 ¼ 18x2x3x6 if d ¼ ð2x1 þ 1Þ=3 and

x6
1 þ 16x5

1 þ 92x4
1 þ 284x3

1 þ 513x2
1 þ 540x1 þ 270 ¼ Y2

2

with Y2 ¼ 6x2x3x6 if d ¼ 2x1 þ 3. In the former case we take square root on both

sides to get

9x3
1 þ 24x2

1 þ 14x1 þ 9 < 3Y1 < 9x3
1 þ 24x2

1 þ 14x1 þ 10

which is impossible. In the latter case we observe from d5 163 that x1 5 80 and then

we take square root on both the sides to obtain

x3
1 þ 8x2

1 þ 14x1 þ 29 < Y2 < x3
1 þ 8x2

1 þ 14x1 þ 30;

a contradiction. The second possibility is excluded similarly.

Let k ¼ 9. Then we may assume that 7 divides two ai’s and 5 divides two other ai’s.

Thus we have 7 divides a0; a7; 5 divides a1; a6 or 5 divides a3; a8; 7 divides a1; a8; 5

divides a0; a5 or 5 divides a2; a7. We take the possibility 7 dividing a0; a7; 5 dividing

a1; a6. By using Legendre Symbol mod 7, we see that a2; a4; a8 2 f1; 2g, a3; a5 2 f3; 6g

or a2; a4; a8 2 f3; 6g, a3; a5 2 f1; 2g. Since a3 and a5 are not both divisible by 3 and

a2; a4; a8 are all not divisible by 3, this is excluded. The argument for other

possibilities is similar.

When k ¼ 10; 11, we get fð2Þ5 5 contradicting (2.27). &

LEMMA 8. Assume ð2:11Þ with PðbÞ < k. Let k5 12 such that k� 1 is prime and

d 6¼ 2; 4:

ðaÞ If d ¼ pa and t ¼ k� 1, let k5 30. Then jRj4 t�M� 1 where M is given

by ð2:21Þ.

ðbÞ Let k5 68 if d ¼ pa; k5 54 if d ¼ 12pa; k5 30 if d ¼ 3pa; 3 � 2a; 5 � 2a;

7 � 2a; 9 � 2a; k5 18 if d ¼ 2a and k5 38 otherwise. Then jRj4 t� 4M� 1.

The assumption k� 1 prime is not used when k > 210 if d ¼ pa and k > 160 if

d 6¼ pa.

Proof. We assume (2.11) with PðbÞ < k. We recall that ai’s are square free and

PðaiÞ < k. We shall denote by p0 any prime <k. We put gp0 ¼ ordp0

Q
ai2R

ai

� �
. It is

clear that

gp0 4
k� 1

p0

� �
þ 1: ð6:2Þ

Since
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Y
ai2R

ai ¼
Y
p0<k

p
gp0
0 ;

it follows thatY
ai2R

ai

��� ðk� 1Þ!
Y
p0<k

p0: ð6:3Þ

Let

g0p0 ¼ ordp0 ðk� 1Þ!
Y
p0<k

p0

 !
:

Suppose ph
0 4 k� 1 < phþ1

0 where h is a positive integer. Then

g0p0 ¼
k� 1

p0

� �
þ

k� 1

p20

� �
þ � � � þ

k� 1

ph
0

� �
þ 1:

The estimate for gp0 given in (6.2) can be improved as follows. We observe that

gp0 ¼ 0 if p0 j d. Let p0 j= d. Then we see that gp0 equals the number of terms in

fnþ d1d; . . . ; nþ dtdg divisible by p0 to an odd power. We remove from the above

set a term in which p0 appears to a maximum power. The number of terms in the

remaining set divisible by p0 to an odd power is at most

k� 1

p0

� �
�

k� 1

p20

� �
� 2


 �
þ

k� 1

p30

� �
�

k� 1

p40

� �
� 2


 �
þ � � � þ ð�1ÞE3�

�
k� 1

ph
0

� �
� 1þ ð�1ÞE3


 �
;

where E3 ¼ 1 or 0 according as h is even or odd, respectively. Note that the above

expression is always positive. Thus we obtain

gp0 � g0p0 4 h� 1þ E3 � 2
k� 1

p20

� �
þ � � � þ

k� 1

ph�1þE3
0

" # !

4 h� 1þ E3 � 2
k� 1

p20
þ � � � þ

k� 1

ph�1þE3
0

�
h� 1þ E3

2

 !

¼ 2h� 2þ 2E3 �
2ðk� 1Þ

p20 � 1
1�

1

ph�1þE3
0

 !
:

Since ph
0 > ðk� 1Þ=p0 and h < log k=log p0, we get

gp0 � g0p0 < �
2k

p20 � 1
þ
2 log k

log p0
þ
2þ 2p2�E3

0

p20 � 1
þ 2E3 � 2:

Thus we see that

gp0 � g0p0 < �
2k

p20 � 1
þ
2 log k

log p0
þ E4 ð6:4Þ
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where

E4 ¼

2; if p0 ¼ 2;
1; if p0 ¼ 3;
1
2 ; if p0 ¼ 5;
1
3 ; if p0 ¼ 7:

8>><
>>: ð6:5Þ

From (6.3) we getY
ai2R

ai

��� ðk� 1Þ!
Y
p0<k

p0
Y

p0 4 7

p
gp0�g0p0
0 : ð6:6Þ

Using (6.4) and (6.5) we estimate
Q

p0 4 7 p
gp0�g0p0
0 4 52 k8ð2:5907Þ�k. From [9, p. 71]

we get
Q

p0<k p0 4 ð2:78Þk. Thus (6.6) implies thatY
ai2R

ai 4 52ðk� 1Þ!k8ð1:0731Þk: ð6:7Þ

Let d ¼ pa. Then M ¼ 1 by (2.21). Assume that jRj5 k� 5 which is satisfied if

jRj > t� 4M� 1 since t5 k� 1. Then

Y
ai2R

ai 5
Yk�5

i¼1

si ð6:8Þ

where si denotes the ith square free integer. We first show that

si 5 1:5 i for i5 39: ð6:9Þ

We check that (6.9) is valid for 394 i4 70. Let i5 71. We write si ¼ 36mþ n, where
m and n are integers with m > 0; 04n < 36 and n 62 f0; 4; 8; 9; 12; 16; 18; 20; 24;

27; 28; 32g. Further we check that for any integer n as above, we can choose an inte-

ger in such that 394 in 4 70; sin � nðmod 36Þ. Then si � sin ¼ 36Z for some integer

Z > 0. By deleting multiples of 4 and 9, we find that in any set of 36 consecutive inte-

gers, the number of square free integers is 424. Thus the number of square free inte-

gers in ðsin ; si� is at most 24Z. Therefore i� in 4 2
3 ðsi � sin Þ. Hence si 5 1:5ði� inÞþ

sin 5 1:5 i since sin 5 1:5 in for 394 in 4 70. This proves (6.9). Now we use (6.9) to

get
Qk�5

i¼1 si 5 ð1:5Þk�5
ðk� 5Þ! for k5 68, by induction on k. Thus by (6.8), we have

Y
ai2R

ai 5 ð1:5Þk�5
ðk� 5Þ! for k5 68: ð6:10Þ

We combine (6.7) and (6.10) to get ð1:3978Þk 4 395 k12 for k5 68 which implies that

k4 210. Now we check that f0ð4Þ5 17 for 684 k4 139; f0ð5Þ5 33 for

1404 k4 210. This is a contradiction by (2.26) and (2.27). Thus k4 67 if

jRj5 k� 5. Further we check that f0ð3Þ5 9 for 304 k4 67 if jRj5 k� 2. Thus

it remains to consider only the cases k ¼ 12; 14; 18; 20; 24 with t ¼ k and

jRj5 k� 1. Then we have f0ð3Þ5 8 for k ¼ 24 and f0ð2Þ5 4 for

k 2 f12; 14; 18; 20g. By (2.27), we derive that f0ð3Þ ¼ 8 for k ¼ 24 and f0ð2Þ ¼ 4 for
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k 2 f12; 14; 18; 20g. Let k ¼ 24. Since f0ð3Þ ¼ 8, we see that jRj ¼ k� 1. Further the

number of i’s for which ai’s are divisible by the primes 23; 19; 17; 13; 11; 7 is exactly

2; 2; 2; 2; 3; 4, respectively, and none of these ai’s is divisible by more than one of

these primes. Hence 23 divides a0; a23 ; 7 divides a1; a8; a15; a22. Then 11 does not

divide three other ai’s. This is a contradiction. Thus k 6¼ 24. The other cases are

excluded similarly. This completes the proof of Lemma 8 when d ¼ pa.

Now we take d 6¼ pa. Let k be as in Lemma 8(b) and assume that jRj > t� 4M� 1

which implies that jRj5 k� 4M� 1. Let d ¼ 2pa. Then M ¼ 2 by (2.21) and

jRj5 k� 9. Hence by (2.20), we have

Y
ai2R

ai 5
Yk�9

i¼1

ð2i� 1Þ5
Yk�9

i¼2

2ði� 1Þ ¼ 2k�10ðk� 10Þ!

Similarly, we find that
Q

ai2R
ai exceeds

8k�10ðk� 10Þ! if d¼ 2a;3k�10ðk� 10Þ! if d¼ 3pa;4k�14ðk� 14Þ! if d¼ 4pa;

ð2:5Þk�11
ðk� 11Þ! if d¼ 5pa;6k�18ðk� 18Þ! if d¼ 6pa; ð73Þ

k�11
ðk� 11Þ! if d¼ 7pa;

8k�18ðk� 18Þ! if d¼ 8pa;3k�10ðk� 10Þ! if d¼ 9pa;5k�19ðk� 19Þ! if d¼ 10pa;

12k�26ðk� 26Þ! if d¼ 12pa;24k�18ðk� 18Þ! if d¼ 3 � 2a with a53;

12k�18ðk� 18Þ! if d¼ 12;20k�19ðk� 19Þ! if d¼ 5 � 2a;

ð563 Þ
k�21

ðk� 21Þ! if d¼ 7 � 2a;24k�18ðk� 18Þ! if d¼ 9 � 2a:

Now we combine these lower bounds with the upper bound (6.7) to conclude that

k4 160. To bring down the value of k we use the counting argument as in the case

d ¼ pa. We obtain k4 98 if d ¼ 8pa; 12pa; k4 62 if d ¼ 4pa; k4 54 if d ¼ 6pa;

3 � 2a; 5 � 2a; 7 � 2a; 9 � 2a and k4 32 otherwise. Finally, we use a congruence argu-

ment to complete the proof of Lemma 8(b). We explain one instance. Let d ¼ 8pa.

By counting argument we get k4 98. Now we use the fact that ai � aj (mod 8)

for all i; j with 04 i; j4 t to find that k4 32.

For Lemma 8(a), we assume that jRj > t�M� 15 k�M� 2. Then it remains

to consider only those values of k not covered in Lemma 8(b). We use counting argu-

ment to exclude all values of k other than k ¼ 12; 14; d ¼ 4pa; k ¼ 12; 14; 18;

20; 24; d ¼ 8pa; k ¼ 12; 14; d ¼ 12pa and k ¼ 12; 14; d ¼ 7pa. All the cases other than

the last one are excluded by congruence argument given above. Let now k ¼ 12; 14

and d ¼ 7pa. Then 7 j= ai for any i and f0ð2Þ ¼ 4. If k ¼ 12, this implies that 11 divides

a0; a11 and 5 divides 3 other ai’s which is impossible. If k ¼ 14, we find that 13 divides

a0; a13, 11 divides a1; a12 and 5 divides 3 other ai’s which is again impossible. &

LEMMA 80. If d ¼ 2; 4, then ð2:11Þ with either PðbÞ4 k if t ¼ k or PðbÞ < k if

t ¼ k� 1 does not hold.

Proof. Let d ¼ 2; 4. Suppose jRj < t. Then there exists i; j with 04 j < i4 t such

that ai ¼ aj ¼ a, say, and (3.1) holds. As d is even, we have xi; xj odd. Thus
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xi 5 xj þ 2. Further, by (2.13), we get n5 k2 � 2kþ 5 > ðk� 1Þ2. Therefore

4ðk� 1Þ5 ði� jÞd ¼ aðx2
i � x2

j Þ5 4axj 5 4ðax2
j Þ

1
2 5 4n

1
2 > 4ðk� 1Þ;

a contradiction. Hence jRj ¼ t. As in Lemma 8, we see that (6.7) holds and
Q

ai2R
ai

exceeds 2k�2ðk� 2Þ! implying k4 75. Now we use counting argument to conclude

that k4 11 and the assertion follows from Lemma 2. &

In view of Lemma 80, we suppose that d 6¼ 2; 4 from now on throughout the paper.

Thus a5 3 whenever d ¼ 2a:

7. Upper Bound for nþ ðk� 1Þd

We suppose that (2.11) with PðbÞ < k is satisfied. Further we suppose that k5 6 if

d ¼ pa; t ¼ k; k5 30 if d ¼ pa; t ¼ k� 1 and k5 12 otherwise. Also let b ¼ 1 when-

ever k4 9. We bound n from above by C4k
3 and d by C5k where C4 and C5 are con-

stants depending on w. We find that the constants C4 and C5 are small since w4 12.

Thus we get rather good upper bounds for n and d. To achieve this, we proceed as

follows. Lemmas 2,7 and 8 guarantee that jRj4 t�M� 1 under some restrictions

on k. This bound on jRj gives rise to two cases. In the first case, there is an ai being

repeated more than two times. This case is treated in Lemma 9. In the second case,

there exist distinct integers m0; m1; n0; n1 with am0 6¼ an0 ; am0 ¼ am1 ; an0 ¼ an1 and there

exists a partititon of d corresponding to both am0 ¼ am1 ; an0 ¼ an1 . This case is treated

in Lemmas 10 and 11. Here we use an argument of Shorey and Tijdeman [16, Lemma

2]. For large values of k, we have jRj4 t� 4M� 1 by Lemma 8(b) and refining the

above procedure we obtain sharper estimates for n and d, see Lemma 11. The proofs

of the Lemmas 9 and 10 can be adapted for any d whereas the proof of Lemma 11

can be adapted for any d with oðd Þ bounded.

LEMMA 9. Suppose that one of the following possibilities hold.

ðaÞ R
ðiÞ
1 6¼ f for some i5 3.

ðbÞ Let ai ¼ aj with i > j and d
w1
=j h2 for some partition ðh1; h2Þ of d corresponding to

ai ¼ aj.

Then

n <
ðk� 1Þ2w21

4E20
; d <

ðk� 1Þw21
E20

: ð7:1Þ

Proof. Suppose (a) holds. Let m0 2 R
ðiÞ
1 with i5 3. Then there exist integers m1; m2

with m0 > m1 > m2 such that

ðm� nÞd ¼ anðxm � xnÞðxm þ xnÞ ð7:2Þ

is valid for ðm; nÞ satisfying (4.9). Also there exists ðm; nÞ from (4.9) and a partition

ðh1; h2Þ of d corresponding to am ¼ an such that d=w1 j h1. Thus d=w1 j ðxm � xnÞ.
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Further if d is even and d=w1 is odd, we find that 2d=w1 j ðxm � xnÞ since xm � xn is

even. Then we see from (7.2) and (2.23) that

k� 15m� n >
2E0
w1

ðanx
2
nÞ

1
2 5

2E0
w1

n
1
2 ð7:3Þ

and

k� 15m� n5
anE0
w1

2xn þ
dE0
w1


 �
>

dE20
w21

: ð7:4Þ

Now we derive (7.1) from (7.3) and (7.4).

Suppose (b) holds. Then (7.2) is valid with ðm; nÞ ¼ ði; jÞ. Since for the partition

ðh1; h2Þ of d corresponding to ai ¼ aj we have d=w1j=h2, we find that d=w1 j h1. Now

we argue as in the preceding paragraph to obtain (7.3), (7.4) which imply (7.1). &

LEMMA 10. Let m0; n0 2 R
ð2Þ
1 with m0 6¼ n0 and

am0 ¼ am1 ; an0 ¼ an1: ð7:5Þ

Suppose that there exists a partition ðh1; h2Þ of d corresponding to both am0 ¼ am1
and an0 ¼ an1 with d=w1 j h2. Let c > 0. If

jm0 � n0j4
k� 1

c
; jm1 � n1j4

k� 1

c
; ð7:6Þ

then

d < 2E1w1ðk� 1Þ 1þ
1

c


 �
ð7:7Þ

and

n < ðk� 1Þ2 min
E2d
4

;
E22ðk� 1Þ

c
þ
E1w1
4


 �
: ð7:8Þ

Proof. Since m0 > m1 and n0 > n1, we see that xm0 > xm1 and xn0 > xn1 . Let ðh1; h2Þ

be a partition of d corresponding to both am0 ¼ am1 and an0 ¼ an1 . We put

E0 ¼ gcdðh1; h2Þ and we observe that E0 4E2 where E2 is given by (2.25). We write

xm0 � xm1 ¼ h1r1; xm0 þ xm1 ¼ h2r2; xn0 � xn1 ¼ h1s1; xn0 þ xn1 ¼ h2s2;

where r1; r2; s1; s2 are some positive integers. Further, we see from (2.15) that

ðm0 � n0Þd ¼ am0x
2
m0
� an0x

2
n0 ¼ am0

h2r2 þ h1r1
2


 �2

�an0
h2s2 þ h1s1

2


 �2

¼ 1
4 fðam0r

2
1 � an0s

2
1Þh

2
1 þ ðam0r

2
2 � an0s

2
2Þh

2
2 þ 2ðam0r1r2 � an0s1s2Þh1h2g:

Hence, we see that

h1
E0
jðam0r22 � an0s

2
2Þ;

h2
E0
jðam0r21 � an0s

2
1Þ:
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Thus there exist non-zero integers f1; f2 such that

f1h1h
2
2

E0
¼ am0 ðxm0 þ xm1 Þ

2
� an0ðxn0 þ xn1Þ

2

and

f2h
2
1h2
E0

¼ am0 ðxm0 � xm1 Þ
2
� an0ðxn0 � xn1Þ

2: ð7:9Þ

Therefore, from (7.5) we have

f1h1h
2
2

E0
¼ ðam0x

2
m0
� an0x

2
n0Þ þ ðam1x

2
m1
� an1x

2
n1 Þ þ 2ðam0xm0xm1 � an0xn0xn1Þ ð7:10Þ

and

f2h
2
1h2
E0

¼ ðam0x
2
m0
� an0x

2
n0Þ þ ðam1x

2
m1
� an1x

2
n1 Þ � 2ðam0xm0xm1 � an0xn0xn1Þ: ð7:11Þ

Further, from

ðm1 � n0Þd ¼ am1x
2
m1
� an0x

2
n0 < am0xm0xm1 � an0xn0xn1 < am0x

2
m0
� an1x

2
n1

¼ ðm0 � n1Þd

we get

jam0xm0xm1 � an0xn0xn1 j < ðk� 1Þd: ð7:12Þ

We see from (7.10), (7.12) and (7.6) that

h2 < 2E0ðk� 1Þ 1þ
1

c


 �
: ð7:13Þ

Further since d=w1 j h2, we get from (2.2) that

h1 4
w1; always,
w1
2 ; if gcdðh1; h2Þ ¼ 2; d 6¼ w2a;

�
ð7:14Þ

which, together with (7.13) and (2.24), gives (7.7).We obtain from (7.11) and (7.6) that

2jam0xm0xm1 � an0xn0xn1 j4
2ðk� 1Þd

c
þ
j f2jh1d

E0
:

We use this inequality in (7.10) to get

h2 4
E0

j f1j

4ðk� 1Þ

c
þ
j f2jh1
E0


 �
: ð7:15Þ

Also from (7.9) we get

j f2jh
2
1h2

E0
4 maxðam0 ðxm0 � xm1 Þ

2; an0ðxn0 � xn1Þ
2
Þ: ð7:16Þ
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We know from (2.15) and xm0 > xm1 ; xn0 > xn1 that

n < 1
4 am0 ðxm0 þ xm1 Þ

2; n < 1
4 an0ðxn0 þ xn1Þ

2: ð7:17Þ

We combine (7.16) and (7.17) to get

j f2jh
2
1h2n

E0
< maxð14 ðam0x

2
m0
� am1x

2
m1
Þ
2; 14 ðan0x

2
n0 � an1x

2
n1 Þ

2
Þ:

Hence, we have n < E0=ð4j f2jÞðk� 1Þ2h2 which, by h2 4 d, (7.15), (7.14) and (2.24),

implies (7.8). &

Using Lemma 10 we derive the following lemma.

LEMMA 11. Let k� 1 be prime if k5 12. Suppose ðaÞ and ðbÞ of Lemma 9 do not

hold. Then the following are valid.

ðiÞ We have

n < ðk� 1Þ2 min
E2d
4

; E22ðk� 1Þ þ
E1w1
4


 �
; d < 4E1w1ðk� 1Þ:

ðiiÞ For k satisfying the assumptions of Lemma 8ðbÞ, we have

n < ðk� 1Þ2 min
E2d
4

;
E22ðk� 1Þ

2
þ
E1w1
4


 �
; d < 3E1w1ðk� 1Þ:

Proof. Since (a) and (b) of Lemma 9 do not hold, we have R
ðiÞ
1 ¼ f for i5 3 and if

ai ¼ aj with i > j then for every possible partition ðh1; h2Þ of d corresponding to

ai ¼ aj, we have d=w1 j h2:
(i) By Lemma 8(a), we derive that jRj4 t�M� 1 for k5 12. This is also the case

for d ¼ pa with k4 11 by Lemma 7 and M ¼ 1. Then there exists at least Mþ 1 dis-

tinct pairs ðm; nÞ with m > n; m 2 R
ð2Þ
1 ; am ¼ an and (7.2) holds. Further since d=w1 j h2,

the number of partitions ðh1; h2Þ of d corresponding to am ¼ an equals M. Therefore

there exist distinct m0; n0 2 R
ð2Þ
1 and m1; n1 with m0 > m1; n0 > n1 satisfying (7.5) and a

partition ðh1; h2Þ of d corresponding to both am0 ¼ am1 and an0 ¼ an1 . Further (7.6)

holds with c ¼ 1. Hence, by Lemma 10, we conclude that (7.7) and (7.8) with

c ¼ 1 hold implying the assertion.

(ii) By Lemma 8(b), we derive that jRj4 t� 4M� 1. We argue as in (i) to find that

there is a partition ðh1; h2Þ corresponding to the five relations

am0 ¼ am1 ; an0 ¼ an1 ; at0 ¼ at1 ; ac0
¼ ac1

; az0 ¼ az1

where m0; n0; t0;c0; z0 are distinct elements of R
ð2Þ
1 . Further we see that there exist

two pairs, say, ðm0; m1Þ with m0 > m1 and ðn0; n1Þ with n0 > n1 such that

jm0 � n0j4
k� 1

2
; jm1 � n1j4

k� 1

2
:

Thus (7.6) is satisfied with c ¼ 2. Hence, by Lemma 10, we derive that (7.7) and

(7.8) with c ¼ 2 are valid. Now the assertion follows immediately. &
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8. n; d;k are Bounded

We assume (2.11) with PðbÞ < k. Further we suppose that k satisfies the assumptions

stated in the begining of Section 7 and k� 1 is prime if k5 12. We combine Lemmas

9 and 11 to derive an upper bound for d and nþ ðk� 1Þd in terms of k. Further using

the lower estimate for nþ ðk� 1Þd from Corollary 3, we show that k is bounded by

an absolute constant. Therefore n and d are also bounded by an absolute constant.

LEMMA 12. ðiÞ Let d 6¼ wta with w 2 f5; 7; 9g. Then

d < 4E1w1ðk� 1Þ: ð8:1Þ

If k satisfies the assumptions of Lemma 8ðbÞ, then

d < 3E1w1ðk� 1Þ: ð8:2Þ

ðiiÞ Let d ¼ wta with w 2 f5; 7; 9g. Then

d < ðk� 1Þ
w21
E20

: ð8:3Þ

ðiiiÞ Let d 6¼ f12; 40; 56; 144g. If d < 4E1w1ðk� 1Þ, then

nþ ðk� 1Þd < min ðk� 1Þ2
E2d
4

þ ðk� 1Þd; k3 E22 þ
17E1w1
4k


 �
 �
: ð8:4Þ

If k satisfies the assumptions of Lemma 8ðbÞ and d < 3E1w1ðk� 1Þ, then

nþ ðk� 1Þd < min ðk� 1Þ2
E2d
4

þ ðk� 1Þd; k3
E22
2
þ
13E1w1
4k


 �
 �
: ð8:5Þ

ðivÞ Let d ¼ wta with w 2 f5; 7; 9g. Suppose that d5 3E1w1ðk� 1Þ if k satisfies the

assumptions of Lemma 8ðbÞ and d5 4E1w1ðk� 1Þ otherwise. Then

nþ ðk� 1Þd < min
ðk� 1Þ2w21

4E20
þ ðk� 1Þd;

5k2w21
4E20


 �
: ð8:6Þ

ðvÞ Let d 2 f12; 40; 56; 144g. Then ð8:6Þ holds.

Proof. First we consider the case that (a) and (b) of Lemma 9 do not hold. Then

the assertions of Lemma 11 are valid. Thus, we need not consider (iv). Further, (i)

and (iii) follow directly from Lemma 11. In fact (8.4) is also valid for

d ¼ 12; 40; 56; 144. Further, we observe that (8.4) with d ¼ 12; 40; 56; 144 implies

(8.6). Thus it remains to prove (ii). Let d ¼ wta with w 2 f5; 7; 9g. Then

d < 4E1w1ðk� 1Þ by Lemma 11(i). Further, we observe that 4E1w1 < w21=E
2
0. Hence,

d < ðk� 1Þw21=E
2
0. This proves (ii).

Next we suppose that (a) or (b) of Lemma 9 holds. Then (7.1) is valid. Further, we

observe that (7.1) implies (8.6). This proves (iv) and (v). Let d 6¼ 12; 40; 56; 144. We

see that (7.1) with d < 4E1w1ðk� 1Þ implies (8.4). Further (7.1) with d < 3E1w1ðk� 1Þ

implies (8.5) whenever k satisfies the assumptions of Lemma 8(b). This proves (iii).

Also we see that (ii) is immediate from (7.1). Finally (8.2) follows from the estimate

for d in (7.1) whenever d 6¼ wta with t 2 f5; 7; 9g. This proves (i). &
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As a consequence of Lemma 12 and Corollary 3 we get

LEMMA 13. We have k4k ¼ kðd Þ where ðk; d Þ is given by

ð102; paÞ; ð44; 2paÞ; ð24; 3paÞ; ð74; 4paÞ; ð54; 5paÞ; ð38; 6paÞ;

ð74; 7paÞ; ð84; 8paÞ; ð74; 9paÞ; ð48; 10paÞ; ð54; 12paÞ; ð32; 2aÞ;

ð54; 3 � 2aÞ; ð62; 5 � 2aÞ; ð98; 7 � 2aÞ; ð84; 9 � 2aÞ:

ð8:7Þ

Proof. Let d ¼ pa. Then w1 ¼ E1 ¼ E2 ¼ 1. By Lemma 12(i), we see that

d < 3ðk� 1Þ for k5 68. Then (8.5) with k5 68 is valid by Lemma 12(iii). Thus

d4 1
2 þ 13=4k if k5 68. Hence from Corollary 3, we get k4 102. Thus k ¼ 102 if

d ¼ pa.

We give another example d ¼ 5pa. Then w1 ¼ 5; E0 ¼ E1 ¼ E2 ¼ 1. By Lemma

12(ii), we have d < 25ðk� 1Þ. Assume that k5 38. Then we observe that k satisfies

the assumption of Lemma 8(b). Now (8.5) if d < 15ðk� 1Þ and (8.6) if 15ðk� 1Þ4
d < 25ðk� 1Þ hold by Lemma 12(iii) and (iv). Therefore d4 1

2 þ 65=ð4kÞ. Hence

from Corollary 3, we get k4 54. Thus k ¼ 54 if d ¼ 5pa. The value of k in all other

cases is obtained similarly implying (8.7). &

Lemma 13 is proved under the assumption that k� 1 is prime. If it is not satisfied,

we can take k ¼ maxðv02; 160Þ. This is clear from the proofs of our lemmas.

9. An Algorithm for Solving (2.11) with all Variables Bounded

We shall assume (2.11) with PðbÞ < k. By Lemma 13, there are only finitely many

possibilities for k. Let k ¼ k0. By Lemma 12, we see that n and d are bounded by

numbers depending only on k0. Let a1; a2; a3; a4 and a5 be positive numbers depend-

ing only on k0. Let nþ ðk0 � 1Þd4a1 and a2 4 d4a3. We give an algorithm for

finding possible solutions of (2.11) with k ¼ k0 and we shall always suppose that

k0 5 6 while applying this algorithm. This algorithm depends on Lemma 12 and

Corollary 3. Therefore it is efficient only when oðd Þ is small.

Step 1. Let a4 be given by Lemma 6 satisfying nþ ðk0 � 1Þd5a4. Then n5a4�
ðk0 � 1Þa3 and we use (4.2) to find a lower bound for jS1j. Further we use the argu-

ment in the begining of Lemma 6(ii) with g1 ¼ q21ðk0Þ=k
3
0 by (2.14) to obtain another

lower bound for jS1j. We also recall that jS1j5 1. Now we take a5 to be the maxi-

mum of the three lower bounds given above for jS1j. We conclude that there is a term

on the left hand side of (2.11) divisible by a prime Q0 5 ppðk0�1Þþa5 to an even power.

Thus it is of the form t0 Q2
0 where t0 is a positive integer. We compute all primes Q

such that ppðk0�1Þþa5 4Q4
ffiffiffiffiffi
a1

p
. Let d be fixed with a2 4 d4a3. For each Q we form

the set

DQ ¼ ftQ2 j gcdðtQ2; d Þ ¼ 1;maxða4 � ðk0 � 1Þd; 2Þ4 tQ2 4a1g:
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We observe that Lemma 12 and Corollary 3 provide a good upper bound for jDQj.

We put Ed ¼
S

DQ where the union is taken over all Q satisfying

ppðk0�1Þþa5 4Q4
ffiffiffiffiffi
a1

p
. Thus Ed contains a term from the left-hand side of (2.11).

Step 2. Suppose N 2 Ed. For a positive integer i, we say that the property Pþid

holds for N if r1 ¼ PðNþ id Þ5 k0 such that ordr1ðNþ id Þ � 1(mod 2) and property

P�id holds for N if r2 ¼ PðN� id Þ5 k0 such that ordr2 ðN� id Þ � 1 (mod 2). Finally,

we say that the property P�id holds for N if both the properties Pþid and P�id hold.

Let E1 be the set of those N 2 Ed for which P�d holds and E2 be the set of those

N 2 Ed for which P�2d holds. Let Ec
1 and Ec

2 denote the complements of E1 and E2

in Ed, respectively. Put Ed;1 ¼ Ec
1

S
Ec
2. We write Ed;1 ¼ X1 þ Y1 where X1 and Y1

are disjoint subsets of Ed;1 given by X1 ¼ Ec
1

S
Ec
2 � ðEc

1 \ Ec
2Þ and Y1 ¼ Ec

1 \ Ec
2.

Let E3 be the set of N 2 Ed;1 for which P�3d holds. Then we form Ed;2 ¼ X2 þ Y2

where X2 ¼ X1 � E3 \ X1 þ E3 \ Y1 and Y2 ¼ Y1 � E3 \ Y1 are disjoint. Now we

proceed inductively to form the sets

Ed � Ed;1 � Ed;2 � Ed;3 � � � �

such that for i5 2; Ed;i ¼ Xi þ Yi where

Xi ¼ Xi�1 � Eiþ1 \ Xi�1 þ Eiþ1 \ Yi�1;Yi ¼ Yi�1 � Eiþ1 \ Yi�1

and Eiþ1 is the set of N 2 Ed;i�1 for which P�ðiþ1Þd holds.

Step 3. We construct the sequence Ed; Ed;1; Ed;2; Ed;3; . . . for every d with

a2 4 d4a3.

LEMMA 14. If Ed;i ¼ f for some i with 14 i4 ½k0=2� � 1, then ð2:11Þ has no solution

with k ¼ k0.

Proof. Let N 2 Ed such that N is a term from the left-hand side of (2.11). Such a N

exists as already pointed out. Suppose Ed;i ¼ f for some i with 14 i4 ½k0=2� � 1.

Then by the construction of Ed;i’s, we find that there exist integers m1; m2 with

14m1 < m2 4 iþ 14 ½k0=2� such that P�m1d and P�m2d hold for N. Let N ¼

nþ md with 04m4 ½k0=2� � 1. Then Nþm1d and Nþm2d are 4 nþ ðk0 � 1Þd

and since at most one term in the product nðnþ d Þ � � � ðnþ ðk� 1Þd Þ is omitted,

there is a term in the product which equals Nþ i1d with i1 ¼ m1 or m2 and Pi1d

holds. This is a contradiction. Let N ¼ nþ md with ½k0=2�4m4 k0 � 1. Then

N�m1d and N�m2d are 5 n and we obtain the contradiction as above. &

If the hypothesis of Lemma 14 is not satisfied (and this is the case for small values

of k), we check directly that there is a term in the left-hand side of (2.11) which is

divisible by a prime 5k0 to an odd power.

LEMMA 15. Suppose that k satisfies the assumptions stated in the begining of

Section 7. Also let k� 1 be prime if k5 12. Then ð2:11Þ with PðbÞ < k does not hold.

Proof. By Lemmas 12 and 13, the bounds for n; d; k are given by (8.1)–(8.7). We

make use of the algorithm described above to prove the assertion of the lemma. We
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illustrate with two examples. First we consider the case d ¼ pa. Then k4 102 by

(8.7). Further we take k ¼ 102. In the notation of the algorithm, we fix k ¼ k0 ¼ 102.

By (8.5) and (8.2), we get nþ ðk0 � 1Þd4 564417; d4 3ðk0 � 1Þ. On the other hand,

by Lemma 6, we get nþ ðk0 � 1Þd > :52k30. Thus we have

a1 ¼ 564417; a2 ¼ 3; a3 ¼ 293; a4 ¼ 551828 and n5 522235:

We follow the procedure in Step 1 to get jS1j5 39. Thus a5 ¼ 39. We fix d ¼ 293.

Then 3134Q4 751. Suppose Q ¼ 751. Then DQ ¼ f564001g. For each Q, we form

the set DQ and we obtain

Ed ¼
[

DQ ¼f528529; 531723; 537289; 538756; 542882; 546121; 547058;

547805; 552049; 556516; 557283; 562467; 564001g:

Now we follow Step 2. We find Ed;1 ¼ f556516; 573049g and Ed;2 ¼ f. Hence, by

Lemma 14, we find that (2.11) has no solution with k ¼ 102 and d ¼ 293. Similarly

we exclude all values of d. We proceed like this to show that (2.11) has no solution for

all k with 684 k < 102 and k� 1 prime. Now let k4 62. We fix k ¼ k0 ¼ 62. By

(8.1), (8.4) and Lemma 6, we get a1 ¼ 254665; a2 ¼ 3; a3 ¼ 243; a4 ¼ 94068;

a5 ¼ 20. We fix d ¼ 243. Now we apply the algorithm as earlier. We find that Ed

has 90 elements and Ed;3 ¼ f. We apply Lemma 14 to derive that (2.11) has no

solution for k ¼ 62. All other values of k < 62 with k� 1 prime are excluded simi-

larly. This completes the proof of Lemma 15 when d ¼ pa.

Next we explain the case d ¼ 5pa. Then w1 ¼ 5; E0 ¼ E1 ¼ E2 ¼ 1. By (8.7) and (8.3),

we have

k4 54; d < 25ðk� 1Þ: ð9:1Þ

We fix k ¼ k0 ¼ 54. By Lemma 6, we get nþ ðk0 � 1Þd5 :6599 k30. Let

d < 15ðk0 � 1Þ. Then (8.5) is valid since k satisfies the assumption of Lemma 8(b).

Thus nþ ðk0 � 1Þd4 126117. Further we have a1 ¼ 126117; a2 ¼ 35; a3 ¼ 785;

a4 ¼ 103910. Also n5a4 � 53 a3 ¼ 62305. By Step 1, we get jS1j5 20. Thus

a5 ¼ 20. We fix d ¼ 785. Then 1514Q4 353. Suppose Q ¼ 353. Then

DQ ¼ f124609g. For each Q, we compute DQ and form Ed. We find that Ed contains

46 elements. Now we follow Step 2. We find

Ed;1 ¼ f69169; 72361; 74498; 85849; 98283; 99458; 108578; 113569; 124609g

and Ed;2 ¼ f. Hence, we conclude from Lemma 14 that (2.11) has no solution with

k ¼ 54; d ¼ 785. Similarly we exclude all values of d with 354 d < 785. Thus we

may suppose by (9.1) that 15ðk0 � 1Þ4 d < 25ðk0 � 1Þ. Then by (8.6), we get

nþ ðk0 � 1Þd4 91125. On the other hand, nþ ðk0 � 1Þd5 103910 by Lemma 6. This

is a contradiction. Thus (2.11) has no solution with k ¼ 54. We proceed like this to

exclude all values of k with 384 k < 54 such that k� 1 is prime. Let 124 k < 38.

We fix k ¼ k0 ¼ 32. By Lemma 6, we get nþ ðk0 � 1Þd5 :0417k30. Let

d < 20ðk0 � 1Þ. Then by (8.4), we get nþ ðk0 � 1Þd4 54528. Thus we have
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a1 ¼ 54528; a2 ¼ 35; a3 ¼ 605; a4 ¼ 1366; a5 ¼ 8. We fix d ¼ 605. We find that Ed

contains 98 elements and Ed;3 ¼ f. Hence, (2.11) has no solution with

k ¼ 32; d ¼ 605. Similarly we exclude all values of d. Thus we may suppose that

20ðk0 � 1Þ4 d < 25ðk0 � 1Þ. By (8.6), we get nþ ðk0 � 1Þd4 32000. Thus

a1 ¼ 32000; a2 ¼ 635; a3 ¼ 755; a4 ¼ 1366; a5 ¼ 8. We fix d ¼ 755. We find that Ed

contains 45 elements and Ed;3 ¼ f. Hence (2.11) has no solution with

k ¼ 32; d ¼ 755. Similarly we exclude all values of d. Thus (2.11) has no solution

with k ¼ 32. Likewise we exclude all values of k with 124 k < 32 and k� 1 prime.

The proof for other values of d 6¼ pa; 5pa is similar. &

10. The Assumption k�1 Prime if k5 12 and the Final Lemma

For removing the assumption that k� 1 is prime if k5 12 in Lemma 15 we prove the

following result which is true for any d.

LEMMA 16. Let j 2 f0; 1g and d be given. Let k1< k2 be positive integers such

that k1 � 1 and k2 � 1 are consecutive primes. Suppose that ð2:11Þ with k ¼ k1 and

t ¼ k1� j has no solution in integers n; d1; . . . ; dt and b with n > 0; di 2 ½0; k1Þ for

14 i4 t and PðbÞ < k1. Let k1 < k2. Then ð2:11Þ with k ¼ k0; t ¼ k0 � j and

PðbÞ < k0 does not hold.

Proof. Let j 2 f0; 1g and d be given. Suppose (2.11) holds for some k ¼ k0 with

k1 < k0 < k2; t ¼ k0 � j and PðbÞ < k0. We see that k0 � 1 is not a prime. Hence

PðbÞ < k0 � 1 and each term nþ did ¼ aix
2
i satisfies PðaiÞ < k0 � 1 such that

ðnþ d1d Þ � � � ðnþ dt�1d Þ ¼ b0y2 ð10:1Þ

with Pðb0Þ < k0 � 1. If k0 � 1 ¼ k1, then by our hypothesis, (10.1) has no solution and

hence (2.11) with k ¼ k0; t ¼ k0 � j and PðbÞ < k0 has no solution. If k0 � 1 > k1,

then k0 � 2 is not a prime and arguing as before from (10.1), we get

ðnþ d1d Þ . . . ðnþ dt�2d Þ ¼ b
00

y2

with Pðb
00

Þ < k0 � 2 and we proceed inductively to see that the assertion of the lemma

holds. If j ¼ 1 we continue to be in the case j ¼ 1 throughout the induction process.

This is clear when n is the omitted term. For securing this when n is not an omitted

term, we regard nðnþ d Þ � � � ðnþ id Þ as a product from nðnþ d Þ � � � ðnþ ðiþ 1Þd Þ

with nþ ðiþ 1Þd as an omitted term. &

We combine Lemmas 15 and 16 to conclude the following result.

LEMMA 17. Assume ð2:11Þ with PðbÞ < k and k5 4. Then k4 9 and b > 1 if d ¼ pa;

t ¼ k; k4 29 if d ¼ pa; t ¼ k� 1 and k4 11 otherwise.

Proof. We assume (2.11) with PðbÞ < k with k5 4. Then we derive that b > 1 if

k ¼ 4; 5 and t ¼ k by the results of Euler and Obláth stated in Section 1. Further, we

may suppose that k satisfies the assumptions stated in the begining of Section 7. By

Lemma 16, there is no loss of generality in assuming that k� 1 is prime for k5 12.

Finally we apply Lemma 15 to arrive at a contradiction. &
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11. Proofs of the Theorems and Corollaries

From Lemma 17, we derive

COROLLARY 4. Assume ð1:1Þ with gcdðn; d Þ ¼ 1 and PðbÞ < k.

ðiÞ If d ¼ pa; b ¼ 1, then k ¼ 3:

ðiiÞ If d ¼ pa, then k4 9:

ðiiiÞ If d 6¼ pa, then either k ¼ 3; d ¼ 7pa or ðn; d; kÞ ¼ ð1; 24; 3Þ.

Proof. Assume (1.1) with gcdðn; d Þ ¼ 1 and PðbÞ < k. Then (2.11) with t ¼ k and

PðbÞ < k holds. Now (i) and (ii) follow directly from Lemma 17 and (iii) is obtained

by combining Lemmas 17 and 2. &

Proof of Theorem 4. By Lemma 17, we may assume that d 6¼ pa, k4 11 and the

assertion follows from Lemma 2. &

Proof of Theorem 3. Assume (1.1) with gcdðn; d Þ ¼ 1 and PðbÞ ¼ k. Further we

may assume that k5 30 if d ¼ pa. Also we see from Lemma 2 that k5 12 if d 6¼ pa.

We delete the term divisible by k on the left-hand side of (1.1). By Corollary 4, we

may suppose that the deleted term is neither n nor nþ ðk� 1Þd. Hence (1.3) is valid

with 0 < i < k� 1. This is not possible by Theorem 4. &

Proof of Corollary 1. Assume (1.1) with gcdðn; d Þ ¼ 1 and 1 < d4 104. Then

d 2 D. Let d 2 fpa; 7pag; k ¼ 3. Now (1.1) can be written as

Y2 þ a01XYþ a03Y ¼ X3 þ a02X
2 þ a04Xþ a06;

where X ¼ bðnþ d Þ;Y ¼ b2y; a01 ¼ a02 ¼ a03 ¼ a06 ¼ 0; a04 ¼ �b2d 2. Thus we have

Y2 ¼ X3 � b2d 2X ð11:1Þ

with X and Y as above. The cases

d ¼ 17; 103 and b ¼ 1; d ¼ 61; 101 and b ¼ 3; d ¼ 25 and b ¼ 6

are excluded by congruence considerations. In the remaining cases we compute all

the integral solutions ðX;YÞ of the above elliptic equation using SIMATH from

which we find that the solutions of (1.1) are given by

ðn;d Þ 2fð2;7Þ; ð18;7Þ; ð64;17Þ; ð2;23Þ; ð4;23Þ; ð75;23Þ; ð98;23Þ; ð338;23Þ;

ð3675;23Þ; ð800;41Þ; ð2;47Þ; ð27;71Þ; ð50;71Þ; ð96;73Þ; ð864;97Þg: ð11:2Þ

Further, for d 6¼ pa; 7pa and k ¼ 3, we see that ðn; d Þ ¼ ð1; 24Þ by Lemma 2. Suppose

d ¼ pa; k ¼ 4. Then (1.1) with d ¼ pa; k ¼ 3 holds and by (11.2) we see that

ðn; d Þ ¼ ð75; 23Þ. Next let d ¼ pa; k ¼ 5. Then we may assume that 5 j a2 otherwise

the assertion follows from (11.2) as above. We see that a0; a1; a3; a4 2 f1; 2; 3; 6g

and by using Legendre Symbol mod 5 we have either a0; a4 2 f1; 6g; a1; a3 2 f2; 3g
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or a0; a4 2 f2; 3g; a1; a3 2 f1; 6g. Hence, a0 ¼ a4 ¼ 1 with x0; x4 odd or a1 ¼ a3 ¼ 1

with x1; x3 odd. This is not possible by (3.1). Thus we may assume that k5 6 when-

ever d ¼ pa. By Corollary 4 and Theorem 3 we need to consider only

d ¼ pa with 64 k4 9 or if k is prime, 114 k4 29: ð11:3Þ

Let jRj5 k� 1. By (2.15), we see that ðn=pÞ ¼ ðai=pÞ for 04 i < k. Further,

fð2Þ5 3. Therefore p 6¼ 3 and ð2=pÞ ¼ ð3=pÞ ¼ 1 which implies that d ¼ 23; 47;

71; 73; 97. Further, we may assume that Pðai0Þ ¼ 5 for some i0 with 04 i0 < k. Thus

p 6¼ 5 and 1 ¼ ðai0=pÞ ¼ ð5=pÞ. On the other hand, we observe that ð5=pÞ ¼ �1 for

p ¼ 23; 47; 73; 97. This is a contradiction implying that d ¼ 71. For k5 8, there

exists i1 such that Pðai1 Þ ¼ 7 and 1 ¼ ðai1=71Þ ¼ ð7=71Þ ¼ �1, a contradiction. Thus

k ¼ 6; 7. Since fð2Þ5 3, there exist nonnegative integers i0; i and j with i > 0 and

i0 þ i < i0 þ j4 k� 1 such that

X 0ðX 0 þ id ÞðX 0 þ jd Þ ¼ b1y
2
1 ð11:4Þ

where X0 ¼ nþ i0d, and b1; y1 are positive integers with Pðb1Þ4 3. We may assume

that gcd ðX0; i; j; b1Þ ¼ 1. We rewrite the above equation as

XðXþ ib1d ÞðXþ jb1d Þ ¼ Y2

where X ¼ b1X
0;Y ¼ b21y1. Then we use SIMATH to find all the solutions of the

above elliptic curve and we conclude that (1.1) with d ¼ 71 has no solution.

Let jRj4 k� 2. Suppose (a) and (b) of Lemma 9 do not hold. Arguing as in

Lemma 11(i), we see that there exist distinct m0; n0 2 R
ð2Þ
1 and m1; n1 with

m0 > m1; n0 > n1 satisfying (7.5) and ðh1; h2Þ ¼ ð1; paÞ is the partition corresponding

to both am0 ¼ am1 and an0 ¼ an1 . Further, (7.6) holds with c ¼ 1. Hence, we conclude

from Lemma 10 that

n < ðk� 1Þ2min
d

4
; k�

3

4


 �
; d < 4ðk� 1Þ: ð11:5Þ

Suppose (a) or (b) of Lemma 9 holds. Then (7.1) is valid which gives (11.5). Thus

(11.5) is always valid. Now we apply the algorithm of Section 9 after replacing

PðbÞ < k by PðbÞ4 k and the values of n; d; k given by (11.5), (11.3) are excluded. &

Proof of Corollary 2. We shall use (11.4) several times with the assumption on b1
relaxed to Pðb1Þ4 5. We denote by b2; . . . ; b5 and y2; . . . ; y5 positive integers such

that PðbiÞ4 5. Assume (1.3) with gcdðn; d Þ ¼ 1 and PðbÞ < k. By Theorem 4, we

need to consider only

k4 29; d ¼ pa; k ¼ 4; 5; d ¼ 35; 45; 55; 63; 65: ð11:6Þ

The following cases of (11.4) are solved by congruence considerations in addition to

the ones stated in the begining of the proof of Corollary 1:

b1 ¼ 2; d ¼ 25 or b1 ¼ 1; d ¼ 61 if i ¼ 1; j ¼ 3;

b1 ¼ 3; d ¼ 25 or b1 ¼ 2; d ¼ 43 or b1 ¼ 2; d ¼ 53 if i ¼ 2; j ¼ 3;

b1 ¼ 30; d ¼ 59 or b1 ¼ 15; d ¼ 67 or b1 ¼ 5; d ¼ 67 if i ¼ 1; j ¼ 2:
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It will be assumed in the subsequent argument without reference that the above cases

are already solved.

Let k ¼ 4; 5. Then we find that an equation of the form (11.4) with Pðb1Þ4 3 is

valid. Now we use SIMATH as in Corollary 1 to find all the solutions of (1.3).

Thus we assume that k5 6. Then d ¼ pa by (11.6). We shall again use SIMATH

in the remaining part of the proof without reference for solving elliptic equations

in integers.

First we consider the case jRj5 k� 2. Then we see that p 6¼ 3 from fð2Þ5 2 and

ð13Þ 6¼ ð23Þ. Let k5 9. Then fð2Þ5 3 which implies that ð2=pÞ ¼ ð3=pÞ ¼ 1. Thus

d ¼ 23; 47. But there exists i0 with 04 i0 < k such that Pðai0 Þ ¼ 5. Hence

1 ¼ ðai0=pÞ ¼ ð5=pÞ ¼ �1 for p ¼ 23; 47 a contradiction. Thus we conclude that

k4 8. Let k ¼ 6 or 7. Then we see that either

nðnþ d Þðnþ 2d Þ ¼ b2y
2
2

or

ðnþ 3d Þðnþ 4d Þðnþ 5d Þ ¼ b3y
2
3:

Thus (11.1) is valid with b ¼ b2;X ¼ b2ðnþ d Þ;Y ¼ b22y2 or with b ¼ b3;X ¼

b3ðnþ 4d Þ; Y ¼ b23y3. Now we compute all the integral solutions of these elliptic

equations from which we see that (1.3) has the only solution ðn; d; kÞ ¼ ð5; 11; 6Þ.

Let k ¼ 8. Suppose 7 divides a0 and a7. Then

ðnþ id Þðnþ ðiþ 1Þd Þðnþ ðiþ 2Þd Þ ¼ b4y
2
4 ð11:7Þ

with i ¼ 1 holds. Hence (11.1) is valid with b ¼ b4;X ¼ b4ðnþ 2d Þ;Y ¼ b24y4. By

computing all the integral solutions of these elliptic equations we see that (1.3) has

no solution. Suppose 7 divides only one ai. Then (11.7) holds for some i with

04 i4 5 or 7 j a2 and nþ 5d is omitted or 7 j a5 and nþ 2d is omitted. The first pos-

sibility is excluded as earlier. In the latter two possibilities we see that (11.4) holds

with X0 ¼ n; y1 ¼ y5; b1 ¼ b5; i ¼ 1; j ¼ 3. Now we compute all the integral solutions

of these elliptic equations from which we find that (1.3) has no solution.

Suppose jRj4 k� 3. Then as seen in Corollary 1, (11.5) holds. Further the values

of n; d; k given by (11.5) and k4 29; d ¼ pa are excluded by using the algorithm of

Section 9. &

Proof of Theorem 2. We denote by b6; b7; b8 and y6; y7; y8 positive integers such

that PðbiÞ < k. Let the assumptions of Theorem 2 be satisfied. We may assume that

k5 4. By Corollary 4(iii), we may suppose that gcdðn; d Þ > 1. Further we divide

both the sides of (1.1) by gcdðn; wÞ to observe that there is no loss of generality in

assuming that gcdðn; wÞ ¼ 1. For the preceding observation we assume that the

second possibility in the assertion of Theorem 2 is excluded. We observe that w > 1

unless d ¼ 2a. Further gcdðn; d Þ ¼ tb; b > 0. Let n0 ¼ n=tb and d 0 ¼ d=tb ¼ wta�b:
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Then (1.1) becomes

tbkn0ðn0 þ d 0Þ . . . ðn0 þ ðk� 1Þd 0Þ ¼ by2 ð11:8Þ

with gcdðn0; d 0Þ ¼ 1.

Let a� b > 0. If t5 k, we observe that bk is even and we derive from (11.8) that

n0ðn0 þ d0Þ . . . ðn0 þ ðk� 1Þd 0Þ ¼ b6y
2
6: ð11:9Þ

Further (11.9) follows from (11.8) when t < k. Thus (11.9) is always valid. On the

other hand, (11.9) is not possible by w > 1 if d 6¼ 2a and Corollary 4(iii).

Thus we may assume that a� b ¼ 0. Then d 6¼ 2a since d j= n. Therefore w > 1.

From (11.8) we get either

n0ðn0 þ wÞ � � � ðn0 þ ðk� 1ÞwÞ ¼ b7y
2
7 ð11:10Þ

or t ¼ p5 k; ak odd and

n0ðn0 þ wÞ � � � ðn0 þ ðk� 1ÞwÞ ¼ pb8y
2
8: ð11:11Þ

We exclude (11.10) by Corollary 1 since w4 12. Suppose that (11.11) holds. Then

k5 5 and k 6¼ 6. We omit the term divisible by p on the left-hand side of (11.11).

We may suppose that the omitted term is neither n0 nor n0 þ ðk� 1Þw since otherwise

the assertion follows from Corollary 1. Now we apply Corollary 2 to (11.11)

to get ðn0; w; p; kÞ ¼ ð4; 7; 11; 5Þ. This implies that ðn; d; kÞ ¼ ð4 � 11a; 7 � 11a; 5Þ

with a odd. &

Proof of Theorem 1. We assume (1.1) with d ¼ ta where t ¼ p; k5 4;PðbÞ < k.

We may suppose that gcdðn; d Þ > 1 by Corollary 4(i),(ii). Let b ¼ minðordpðnÞ; aÞ;
n0 ¼ n=pb; d0 ¼ d=pb. Thus gcdðn0; d0Þ ¼ 1 and (11.8) is valid.

(i) Suppose b ¼ 1. Let ordpðnÞ 6¼ a. Then the order of p dividing the left hand side

of (11.8) is bk and it is even. This is not possible by Corollary 4(i) and a result of

Erdo
0 0

s [2] and Rigge [8] proved independently that a product of two or more conse-

cutive positive integers is not a square. Thus ordpðnÞ ¼ a and we re-write (11.8) as

pakn0ðn0 þ 1Þ � � � ðn0 þ k� 1Þ ¼ y2: ð11:12Þ

Further, we may suppose as above that k is odd. Let n0 > k. We see from [13,

Corollary 3(ii)] that n0ðn0 þ 1Þ . . . ðn0 þ k� 1Þ is divisible by at least two distinct

primes exceeding k unless n0 ¼ 6; 8 and k ¼ 5. The latter possibilities are excluded

by (11.12) and we conclude from (11.12) that n0 > k2. Now, as stated in Section 1

on (1.1) with d ¼ 1, we derive that n0ðn0 þ 1Þ � � � ðn0 þ k� 1Þ is divisible by at least

two distinct primes exceeding k to odd powers. This contradicts (11.12). Hence, we

conclude that n0 4 k. If n0 þ k4 12, we check directly that (11.12) is not valid. Thus

we may assume n0 þ k > 12. Further n0 4 ðn0 þ kÞ=2 < n0 þ k� 1 and pðn0 þ k� 1Þ�

pððn0 þ kÞ=2Þ5 2. Thus the left hand side of (11.12) is divisible by a prime exactly to

the first power. This is not possible.

(ii) Let b > 1 and d j= n. Then d0 > 1 and ordpðnÞ 6¼ a. Then we observe as above

from (11.8) that bk is even if p5 k and we derive (11.9). Now we apply Corollary

4(ii) to (11.9) for getting k4 9. &
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