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Abstract. It is proved that a product of four or more terms of positive integers in arithmetic
progression with common difference a prime power is never a square. More general results are
given which completely solve (1.1) with ged(n,d) =1,k >3 and 1 < d < 104.
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1. Introduction

We shall always denote by n, d, k, b, y positive integers such that b is square free,
k=2 and P(b) < k, where P(b) denotes the greatest prime factor of » with the
understanding that P(1) = 1. We consider the equation

nin+d)---(n+(k— Dd) = by* inn,d,k, b,y with P(b) < k. (1.1)

For a survey of results on (1.1), we refer to [14, 15, 18]. We observe that (1.1) with
k = 2 has infinitely many solutions. The first result on (1.1) is due to Fermat (see [6,
pp. 21-22] or [1, p. 440]) that there are no four squares in an arithmetic progression.
Further, Euler (see [1, p. 635]) proved that (1.1) with ged(n,d) =1,k =4,b=11s
not possible. This is also the case if k = 5, b = 1 by a result of Oblath [7].

Let d =1 and k > 3. It is a consequence of some old diophantine results that (1.1)
with k = 3 is possible only when n = 1, 2, 48. If P(b) < k and k > 4, Erdos and Self-
ridge [3], developing on the work of Erdos [2] and Rigge [8], showed that (1.1) with
n > k> does not hold. The assumption P(h) < k has been relaxed to P(b) < k and
P(b) < pi in [10] and [13], respectively, where p; denotes the least prime exceeding
k. Furthermore, it is shown in [13] that for n > k> k>4 and (n, k) # (24, 4),
(47, 4), (48, 4) there exist distinct primes p; and p, such that the maximal power of
each of p; and p, dividing the left-hand side of (1.1) is odd. This finds application
in the proof of Theorem 1 stated below. We observe that the assumption n > k>
in the above results is necessary otherwise we see from (1.1) that P(y) < k and
(1.1) has infinitely many solutions. Finally, we see that n > k? follows if (1.1) holds
such that the left-hand side is divisible by a prime exceeding k.
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Let d > 1 and k > 3. Then the assumption n > k? is no longer necessary since the
left-hand side of (1.1) with gcd(n, d) = 1 is divisible by a prime exceeding k unless
(n,d, k)=(2,7,3). This was proved by Shorey and Tijdeman [17]. Marszalek [5]
showed that (1.1) with gcd(n,d) =1, b = 1 implies that k is bounded by an effec-
tively computable number depending only on d. Further, Shorey and Tijdeman
[16] showed that (1.1) with gcd(n, d) = 1 is not possible if k exceeds an effectively
computable number depending only on w(d) where w(1) = 0 and w(d) denotes the
number of distinct prime divisors of d.

Let

D={yt*|y,aintegerswith 1 < y <12,y #11,0> 0,7 prime, gcd(y, 1) =1}.
(1.2)
We shall always write t = p if T > 2. We observe that every d with 1 < d < 104 is an
element of D and w(d) < 2 for d € D unless y = 6, 10, 12 in which case w(d) = 3. We
restrict (1.1) to d € D in this paper. We observe that (1.1) with ged(n,d) =1,d € D
and k = 2 has infinitely many solutions if d is odd or 8 | d otherwise there is no solu-

tion. Thus we assume that k£ > 3 from now on. The first result is on (1.1) with d =
p* and P(b) < k.

THEOREM 1. Let d = p*. Assume (1.1) with P(b) < k. We have

G) Ifb=1, then k = 3.
(i) If df n, then k <9.

Assume (1.1)withged(n,d) = 1, b = 1, d = pand k = 3. Then we observe that either

n:y%, n—l—d:y%, n+2d:y§ or n:2y%, n—}—d:y%,
n+2d=2y;

for some positive integers )y, y1, y» which are pairwise coprime. Assume the first pos-
sibility. Then y} — y3 = d and y3 — y? = d. This implies that y; —yo = 1,1 +yo =d
and y; —y; = 1, y2 + y; = dsince d = p. Thus yy = y, which is not possible. Now we
turn to the second possibility. Then y3 — 3 = d implying that y, —yo =1 and
y2+yo =d. Thus yo = (d — 1)/2 which gives n = (d — 1)*/2 and since n+d = )7},
we get d* — 2y7 = —1. We do not know whether the preceding equation has infinitely
many solutions in d, y; with d prime. Thus it is an open problem that (1.1) with
b =1,d=p and k = 3 has infinitely many solutions.

Let k be even. We write k! = bz> where b is square free and we observe that
P(b) < k. Now we see that the left hand side of (1.1) with n=d is hy*> where
y=1zd 3. Thus the assumption df n is necessary in Theorem 1(ii). This is also the case
when k is odd by considering (1.1) with n = d = k.

Next we give a result on (1.1) with d # p* and P(b) < k.
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THEOREM 2. Let d € D, d # p* and P(b) < k. Assume (1.1) such that df n if d = 2*
and yfn otherwise. Then k=3 or k=5,y=10,5|n,2fn or (n,d k)= (4-11%,
7-11%,5) with o odd.

We consider an analogue of Theorem 2 with y | n. Then we should assume that d} n
as mentioned above. Thus we suppose that t* J n. Now we divide both sides of (1.1) by
¥ to suppose that d = t* and we conclude by Theorem 2 for t = 2 and by Theorem 1(ii)
for T > 2 that k < 9. If the assumption y / n is replaced by ged(n, d) = 1 in Theorem 2,
then either k = 3,d = 7p” or (n, d, k) = (1, 24, 3), see Corollary 4(iii). Like (1.1) with
k =3 and d = p, the case k = 3, d = 7p also remains open. If k = 3 in Theorem 2, we
observe that (1.1) has infinitely many solutions (1, d) = (2*73, 3 - 2%), 2**!,7-2%),
(9-2%+17.2%). This is also the case with the second possibility in the assertion of
Theorem 2. For this, we observe (n, d, k) = (5- 7%, 10 - 7%, 5) with « odd are solutions
of (1.1). The second possibility is ruled out if gcd(n, y) = 1 and the third possibility is
excluded if gcd(n, d) = 1. Now we give a result on (1.1) with P(b) = k.

THEOREM 3. Let d € D and k be prime. Then (1.1) with ged(n, d) = 1 and P(b) = k
implies that k < 29,d=p* or k =3,d="p".

The main purpose of this paper is to consider (1.1) when d runs through an expli-
citly given infinite set including all prime powers and Theorems 1, 2, 3 are results in
this direction. Further we find large dj such that (1.1) with ged(n,d) =1 can be
solved completely for 1 < d < dy. For elaborating this application, we show in
the next result that dy can be taken as 104. This is not the optimal value of dj
obtainable by the method of this paper.

COROLLARY 1. All the solutions of (1.1) with gcd(n,d)=1 and 1 <d < 104
are given by (n,d) e {(2,7),(18,7),(64, 17),(2,23), (4, 23), (75, 23), (98, 23), (338,
23),(3675,23), (1, 24), (800, 41), (2, 47), (27, 71), (50, 71), (96, 73), (864,97} if k = 3;
(n,d) € {(75,23)} if k = 4.

Saradha [11] proved Corollary 1 when d < 22 and Filakovszky and Hajdu [4]
covered 23 < d < 30.
We derive Theorem 3 from the following result.

THEOREM 4. Let d € D, ged(n,d) =1, P(b) < k,k = 4 and i be any integer with
0<i<k—1.Then

nn+d)-- -+ G- Dd)n+ @G+ Dd)--(n+ (k — 1)d) = by (1.3)

implies that either (n,d, k,i) € {(1,8,4,2),(1,40,4,1),(25,48,4, 1)} or d € {p*, 5p*,
Tp*} such that k <29 if d = p* and k < 5 if d = 5p*, Tp*.

We observe that (1.3) with b = 1, k = 3 has infinitely many solutions unless 2 || d in

which case it has no solution. The case d = 1 of Theorem 4 is given in [13] where we
proved that (1.3) with d=1,n > k*, P(b) < k,k >4 and 0 < i < k — 1 implies that
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(n, k, i) = (24, 4, 2). This result has been applied in [13] to settle a question of Erdés
and Selfridge [3, p. 300] that there is no square other than 122 = ¢ and 720> = 1%
such that it can be written as a product of k£ — 1 integers out of k consecutive positive
integers. For 1 < d < 67, we solve (1.3) completely in the next result.

COROLLARY 2. Let 1 <d < 67 and i be an integer with 0 <i <k — 1. Then (1.3)
with gcd(n, d) = 1, P(b) < k and k = 4 implies that

k=4 and (n,d)e{(1,5),(3,5),(49,5),(4,7),(1,8),(3,11),(36,13),(108,13),
(27,23),(75,23), (288,25),(363,29),(2116,31),(289,37),(1,40),(400,43),
(3,47),(6,47),(75,47),(484,47),(1587,47),(25,48),(7744,59),(900,61)};
k=5 and (n,d)e{(4,7),(4,23)};

k=6 and (n,d)e{(5,11)}.

Corollaries 1 and 2 with d =y have been used in relaxing the assumption
ged(n, d) = 1 in Corollary 4(iii) to yf n in Theorem 2. Another application of Cor-
ollaries 1 and 2 is given as follows. Let | < d < 67,k > 4 and ged(n, d) = 1. Suppose
that there exists exactly one prime p > k dividing the left-hand side of (1.1) to an odd
power. This means we have

nn+d)---(n+(k—1)d) = bpy? (1.4)

for some positive integers b and y such that b is square free and P(b) < k. We delete
the one term divisible by p. If p | n or p | (n+ (k — 1)d), we get an equation of the
form (1.1). Then we apply Corollary 1 to find out all the exceptions. If p | (n+ i)
where i # 0, k — 1, then we get an equation of the form (1.3). Now we apply Corol-
lary 2 to find out all the exceptions. Thus Corollaries 1 and 2 can be combined to list
all the solutions of (1.4) when 1 < d < 67. If there exists no prime > k dividing the
left hand side of (1.1) to an odd power, then (n, d, k) = (75, 23, 4) by Corollary 1.
Thus we obtain all the finitely many triples (n,d, k) with 1 <d <67,k >4 and
ged(n, d) = 1 such that there exists at most one prime p > k dividing the left hand
side of (1.1) to an odd power. The case k = 3 of the preceding assertion remains open.

As in Shorey and Tijdeman [16], the proofs depend on comparing an upper bound
and lower bound for n 4 (k — 1)d. For example, in proving Theorem 1(ii) we show
that (1.1) with &k — 1 prime which we may assume by Lemma 16 implies

n+(k—1)d > Lid +3.252 for k = 104, (1.5)

n+ (k= 1)d < min( K2d + (k — 1)d, k> +4.25k%),d < 4k fork =12 (1.6)

and a sharper inequality
n+ (k- 1)d < min(3K>d + (k — )d, 31> +3.25k%), d < 3k for k=68  (1.7)

when d is a power of an odd prime with d} n. We combine (1.5) and (1.7) to conclude
that k£ < 104. Then we apply an algorithm given in Section 9 to solve (1.1) for the

https://doi.org/10.1023/A:1025408727362 Published online by Cambridge University Press


https://doi.org/10.1023/A:1025408727362

ALMOST SQUARES IN ARITHMETIC PROGRESSION 77

finite but large number of possibilities (n, d, k) given by (1.6) for 12 < k < 68 and
(1.7) for 68 < k < 104. See Lemma 12 for proofs of (1.6) and (1.7). An algorithm
for (1.5) is given in Lemma 6 and it yields very sharp lower bounds as shown in
Corollary 3. It is quite efficient and this is also the case with the algorithm of Section
9 mentioned above. These algorithms are new contributions in the proofs of our the-
orems. The inequality (1.6) is an explicit version of one essentially contained in [16]
but the improvement (1.7) is new and useful for the proofs.

The approach of this paper works also for other values of y but this may increase
computational load considerably. This is why we have avoided taking y = 11 in our
results. Further, if d is divisible by more than one prime which are not fixed, then the
method in Sections 7 and 8 would give n < C1k* and d < C,k?> where C;, C, are
some effectively computable absolute constants. Also the bound for k£ obtainable
would be very large. In that case covering the remaining values of kK may become
computationally impossible. Apart from the techniques of [3] and [16], the proofs
involve developing a fundamental argument of Erdos given in Lemma 3 and its repe-
ated applications leading to Corollary 3, an extensive use of Legendre Symbol and
congruences, the method of Runge for the case k = 8,5 = 1, d = p* and several other
arguments. The algorithms referred above are carried out by MATHEMATICA on
a computer. We also use SIMATH for solving several elliptic equations. This pack-
age has already been used in [4] in a similar context but we use some combinatorial
arguments to ensure that we get only those elliptic equations that can be solved by
SIMATH. In the next section we continue listing the notation required in the paper
and we also give a plan of the paper at the end of the section.

2. Notation

Unless otherwise specified, we shall always assume that d € D where D is given by
(1.2). We see that every d # 30, 60, 70, 84, 90, 132 can be uniquely written as yt* with
2, T, o satisfying (1.2) such that

<t (2.1)

and we shall always represent d # 30, 60, 70, 84, 90, 132 in this way throughout the
paper. Thus y =2 if d=10 and y =5 if d=45. By (2.1), we see that o > 2 if
d=3-2%a>=3 if d=5-2%7-2* and >4 if d=9 2% Further, we write
90 = 10p? with p = 3; 30 = 6p and 60 = 12p with p = 5; 70 = 10p and 84 = 12p with
p=7,132=12p with p =11. Thus y =6 if d=30 and y =10 if d = 70,90 and
y =12 if d =60, 84, 132. One may also take 30 = 10p with p =3 and y = 10 but
we use the earlier representation to avoid confusion. We denote by t’ a prime divisor
of d. Thus 7’ is either 7 or a prime divisor of y. Further we put

_ o ifd=yp,
Xl—{zx if d = 2. 22)
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Let ¢; < g < --- be the sequence of all primes coprime to d and p; < p, < --- be the
sequence of all primes. We write ,(x) for the number of primes < x and coprime to
d, n(x) for the number of primes < x. We shall use the estimates (see [9, p. 69])

qi = p;=ilogi fori>=1, (2.3)
X 1.5 x
Ta(x) < n(x) < 5 for x > 1 2.4)
log x log” x
and
(x) > o for x > 17 (2.5)
Y P— . .
log x
For an integer x > 0, we write
qi(X) = Gry+i Withi=1 (2.6)
and
n+ (k—1)d
p= "D 2.7)

Further we put

B=Bd k=] O g = gi(d k)= (k— DI
|d
and for s > 0

(k—1)log(k — 1)+ 1logp

S) = ,k,; Zk_l_
Ba(s) = Bo(d, k. 5) 2log(k — 1) +logs — log2

—rdk—1)—1, (2.8)

(k—Dlog(k—1)+logp . d 2
Ba(s. )= Bu(d. e, s, iy = | © 1 Shoakeoggy - k= DA > E

0, otherwise,

and

(k—1Dlog(k —1)+1logp

Bals, ) = ald fe, s, ) =k =1 = 3log(k — 1) +1logs —log?2

tak — 1) —1—h.

Now we set

_ [ Bss, ), it d=p*,dp,
F(s, h) = { Bu(s, h), otherwise,

and F*(s, h) = max(1, [F(s, h)] + 1). For any r >0 and s > 0, we put N(r,s) =
[(r+ s — 1)/s] and for any prime 1’ dividing d, we write
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Ni(r,2), ifv=22]|d,
N, 4), ift=2,4|d,
Ny(r,8), iftv=2,8]d,
min(N,(r, r/)(f%l), [r]D), if dis odd.

No(r, 7', d) =

For any integer u > 0, we denote by d;(u) the number of ways p can be written as
Ui, such that ged(y;, up) = 2. For example if 4 = 16, then (i, ity) € {(2, 8), (8, 2)}
and d,(16) = 2. For r > 0, we define

Gi(r) =Y _diw, (2.9)

u<r
8l

0, ifl <d<4,
I, if5<d<s,
Go(r) = | M2(%,2,d), if diseven > 8,
Nz(é, v,d), ifdisodd > 8,7 |y, 1 €{3,5 7},
[1+Gi(r).  ifd=p*

and
0, ifde{2% p* 2p* 3p*, 4p*}
3, ifde{5p*, 7p*}
Gr — 6, if d e {6p*, 8p*, 9p*, 10p*, 3 - 2%}
T o, ifd=12p
12, ifd=5-2"
18, ifd=7-2%9.2%
We put
Gar) = Ga(r) + G, (2.10)

Let dy < --- < d, be integers with d; € [0, k) for 1 <i<t. Thus ¢ < k. We shall
always take 1t = k or t = k — 1 with ¢ > 3. We consider the equation

(n+did)---(n+dd) = by’ (2.11)

in positive integers n,d, k,b,y and dy, ..., d,. We recall that P(b) < k. We shall
always assume that ged(n, d) = 1 whenever we refer to (2.11). This is not the case
regarding (1.1) which will be referred only in Section 11. Thus ged(n, d) = 1 through-
out Sections 3—10. If t = k, we see that d; = i for 0 < i < k. If t = k — 1, then the left-
hand side of (2.11) is obtained by omitting a term n + id for some i with 0 < i< k
from {n,n+d, ..., n+ (k — 1)d}. Further (2.11) with t = k — 1 includes (1.3). We
shall assume that

(n,d, k) &1(2,7,3),(1,5,4),(2,7,4),(3,5,4),(1,2,5),(2,7,5),(4,7.5), (4,23, 5)}.
(2.12)
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Then we see from [17] and [12, Theorem 4] that the left-hand side of (2.11) is divisible
by a prime exceeding k. Furthermore, by [12, Theorem 4], the left-hand side of (2.11)
is divisible by at least two distinct primes exceeding k whenever ¢t = k > 4. Thus we
see from (2.11), (2.6) and (2.7) that

n+(k—Dd=qk) = (k+ 1) (2.13)
and
2
(I1(k) 1
02 S5 >4 (2.14)

Further, by (2.11), we write

n+ did = a,-x%, P(a;) < max(P(b), k — 1), a; square free for 1 < i<t (2.15)

and

n+did = A; X2, P(4;) < max(P(b), k — 1), gcd(l_[p, X,-) —1, forl<i<t
(2.16)

where the product []p is taken over all primes p with p < max(P(b), k —1). Let
S={A41,...., 4}, Si={ul X, #1,1 <pu<1t} and S, be the set of all 4, € S with
u € S;. We divide the set S into subsets with the property that two integers u, v with
1 < p,v <t belong to the same subset if and only if 4, = 4,. Now we arrange the
integers in each subset in the increasing order. If 1, is the maximum of the integers
in a particular subset, we call the subset as V. Thus S; = UV, . Let S’ be the set of
such y’s. We put S(li) ={uy | uy € 8, |Vy,| = i}. Then we see that

NIEDIRNY (2.17)
i>1
and
11 = 18" = > Is{]. (2.18)
i>1
Analogously, we partition the set of g;’s in the following way. Let R = {ay, ..., a;}

and Ry = {i| 1 <i<t}. We divide R; into subsets with the property that two inte-
gers p, v with 1 < pu, v <t belong to the same subset if and only if a, =a,. We
arrange the integers in each subset in the increasing order. If p is the maximum
of the integers in a particular subset, we call the subset as W, . Thus Ry = UW,,.
Let R be the set of such py’s. We put R(li) ={po | po € R, |W, | =1i}. Then
IR =R =3, IRl

Let By < By <--- < Bjgand e¢; < e < --- < ¢ be the distinct elements of S and
R, respectively. Suppose 7’ is a prime and o’ > 0 is an integer such that " = T
divides d. Then by (2.16), we see that n = 4;X*(mod t”). If X* can take value in
residue classes mod t”, then we find that all the B;’s fall in # residue classes mod

7. We write any integer i>1 as i=iyn+i, where iy, i; are integers with
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0 < i; <. Then we observe that B; = ipt” +i;. Thus B; = (i7" /) — (" — y). For
instance, if 7 = 3, then n = 1 and B; > 3i — 2. We can extend this argument to more
than one prime power dividing ¢ by Chinese Remainder Theorem. Further, by
(2.15), the above argument can be applied to ¢;’s as well. We put

d, ifd=2,4,12,

¥ ifd=yp* with y #£9,
T1=1(d)= 14 8y, ifd=y2"withoa>2,y#9,

3, ifd=9%",

24, ifd=9.2*

and

Tii—11+1, ifd=yt* with y #5,7,10,
ug(i) = max(%‘i —11+4+2,1), ifd=>51% 1077, (2.19)
max(%‘i—rl +3,1), ifd="7"

By the argument given above, we see that
B =z uy(i) for1<i<|S|; e =uy(i), forl<i<|R| (2.20)

Let d = hyhy with ged(hy, hy) = 1 or 2. We call such pairs (A1, /;) as partitions of d.
When a; = a; with i #j we observe from (2.15) that (i —j)d = a;(x] — x7). Since
ged(n, d) =1, we have ged(d, @) = 1 and ged(d, x; — x;, x; + x;) = 1 or 2 according
as d is odd or even, respectively. Thus d | (x? — xf). We say that a partition
(1, ho) of d corresponds to a; = a; with i #j if hy | (x; — x;) and Ay | (x; + x;). It is
clear that such a partition (/;, h;) of d corresponding to a; = a; with i # j always
exists. If d is odd, we observe that it is unique. This need not be the case when d
is even. We define

0, ifd=2,4,

L ifd=p*,

if d=2% with o > 2,2p*, 3p*, 5p*, T1p*, Ip*,
if d =4p*,

if d = 6p*, 8p*, 10p*,3.2%,5.2% 7.2%,9.2%,
, ifd=12p*,

(2.21)

1
2
3
4
6

4, if2|d,
2, if4|d,
1
8
1

. if8]d, (2.22)
, if dis odd and d # p*,
6, ifd=p*

ro =

2, ifdiseven and d/y, odd,

1, otherwise, (2.23)

€0

2, ifd= 2",

1, otherwise (2.24)

€] =
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and

{2, if 41d,
€ =

1, otherwise. (2.25)

For any integer m > 1, we denote by f(m) the number of e¢;’s composed of
q17 ey qﬂl‘ Then

fim) = R~ Y (H+) =: fo(m). (2.26)

= m+l H

where ¢, =0 if g, > k or g, | k and ¢, = 1 otherwise. Since ¢;’s are square free, we
observe that

Sfim) <27 (2.27)

We shall follow the notation introduced in Sections 1 and 2 throughout the paper.

We end this section with a plan of the paper. Every section, other than 6, 10, 11,
begins with the precise assumptions to be followed in that section. These assump-
tions will not be mentioned in the statements of lemmas of that section. Further,
in each section, we give a brief introduction to the results proved in that section. Sec-
tions 3 to 10 are devoted to solving (2.11) which we assume in this paragraph. In Sec-
tion 3 we solve (2.11) completely for k < 11 and d # p*. In the subsequent sections
we solve (2.11) for other values of d and k. In Section 4, we give a lower bound for
the number of distinct 4;’s with X; # 1 which leads to a lower bound for n + (k — 1)d
in Section 5. The next step is to find an upper bound for n + (k — 1)d in Sections 7
and 8. To achieve this, we show in Section 6 that there are several ¢;’s which are repe-
ated. A comparison of the lower and upper bounds for n + (kK — 1)d imply that n, d, k
are bounded as proved in Section 8. We give an algorithm in Section 9 to solve (2.11)
when 7, d, k are bounded. In fact, we solve (2.11) in Section 9 with the assumption
k — 1 prime if k> 12 which we justify in the Section 10. The final Section 11 is
devoted to the proofs of the theorems and corollaries.

3. Equation (2.11) with x > 1 and k& Small

We suppose (2.11) with either P(b) < k if t = k or P(b) < k if t = k — 1. In this sec-
tion, we solve (2.11) with d # p* and k < 11 by using Legendre symbol. We begin
with

LEMMA 1. Let i be a nonnegative integer.

(i) Supposei<k—1andn+id=x? n+(i+1)d= x?ﬂ. Then

hy — hy hz—l-hl)

(xi,xi+1)=< )
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for some partition d = hihy with hy < hy of d satisfying gcd (hy, hy) = 1 if d is odd
and ged(hy, hy) = 2,8 | d if d is even.
(i) Suppose i<k —2andn+id=x>n+ (i+2)d= xla_z. Then d is even and
o= (5 e )
2 2
where 2d = hihy with hy < hy and ged(hy, hy) = 2.
(ii1) Suppose i < k — 2 and

neid=x2n+ i+ Dd=x2 . n+ (i +2d = x2,,.

Then (x;, Xiy1, Xip2) = (1,5, 7).
(iv) Suppose i < k — 3 and

n+id=x,2,n+(i+2)d=x?+2’”+(i+3)d=xlg+3'

Then (x;, Xit2, xiv3) € {(5, 11, 13), (1,9, 11)}.
(v) Suppose i < k —3 and

ntid= 2 n+(i+)d=x%,.n+(i+3)d=x,.

Then (x;, xi+1, xiy3) = (1, 3, 5).

Proof. (i) Since d = x7,; — x7, the assertion is immediate.

(ii) We have 2d = x7,, — x7 which implies that both x;, x> are odd or even.
Hence, d is even. Now the assertion follows immediately.

(ii1) We observe that 8 | d by (ii) and (i). Let d = 8p*. Then (x;, x;41) and (X1, Xi42)
belong to {(2p* — 1, 2p* + 1), (p* — 2, p* + 2)} implying d = 24 which is not possible
by (2.1). The proof for the other cases d = y2* with y € {1, 3,5, 7,9}, « = 3 is similar.
The triple (1, 5, 7) corresponds to y = o = 3.

(iv) By (i) and (i), we have 8 |d. Let d=8p”*. Then (x;, x;2) € {(4p* —1,
4+ 1), (p* =4, p* +4)} and (xi2, xip3) € {(2p" — 1, 2p" + 1), (p* =2, p*+2)}.
This implies d = 40 contradicting (2.1). Let d = y2* with y € {1,3,5,7,9},0 > 3.
Then (x;, xi12) equals (2% 1 — 1, x2*7 ' + 1) or (12*7' — »| , 2*"' + y). Further, (x4,
Xip3) equals (12772 — 1, 72" +1) or (1272 = yl, 272 4 7). Thus (x;, Xi42, Xiy3) €
{(5,11,13), (1,9, 11)}.

(v) We proceed as in (iv) to get the assertion. O

LEMMA 2. Letd # p* and k < 11. Assume that k = 6 if t =k — 1 and d = 5p*, Tp*.
Ift =k, then either k =3,d =Tp* or (n,d, k) =(1,24,3). If t =k — 1, then k = 4 and
(n,d) € {(1, 8), (1, 24), (1, 40), (25, 48)}.

Proof. Letk =3. Then t = ksince t = 3. Let d be odd. If 3 | d, we see from (2.15)
and ged(n, d) = 1 that a;’s belong to {1,2}. Since ayx3 = a;x? = apx3 (mod d), we
have (ao/3)=1(ai/3) =(az/3). It follows that either ay=a =a»=1 or
ap = a; = a, = 2. However, at most two of the numbers n, n + d, n + 2d can be even.
This implies that @y = a; = a = 1. Now the assertion follows from Lemma 1(iii).
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Let d = 5p* and 3fd. Then a;’s belong to {1, 6} or {2, 3}. By Lemma 1(iii), we get
(ag, a1, ax) € {(1,1,6),(1,6,1),(6,1,1),(2,3,2)}. Let (ag,ai,a)=(1,1,6). Then
n+2d =0 (mod 3). Hence, 1 = (x§/3) = (n/3) = (—2d/3) = (d/3). But we also have
1 =(x?/3)=((n+d)/3) = (—=d/3) = —(d/3), a contradiction. All other cases are
excluded similarly by using Legendre Symbol mod 3. If d is even, then a;’s belong to
{1, 3} and we conclude as above that (n,d) = (1, 24).

Let k = 4 and ¢ = k. By the result of Euler stated in Section 1 and Lemma 1, we see
that there are exactly 3 distinct a;’s. On the other hand, we find that a;’s belong to
{1,3}if diseven, {1,2}if 3| d, {1,6} or {2,3}if 5| dand {1, 2} or {3,6} if 7 | d. This
is not possible. Now let r = k — 1. Suppose that d is even. We see that a;’s take values
from {1} if 4 | d and from {1,3} if 2| d. Let 4 | d. We apply Lemma 1 to see that
(n,d) € {(1,8),(1,24),(1,40),(25,48)}. Let 2| d. There are two a;’s equal to 1 or
3. Thus for some 0 <j < i < 4, we have

(i—jpd= a(xf — xf) (3.1

with a; = @ = a = 1 or 3 and x;, x; odd. The right-hand side of (3.1) is divisible by 8.
This is a contradiction since 2 || d. Suppose d is odd. Then 3 | d by the assumption
and «;’s belong to {1,2}. Further, by Lemma 1, we find that one of the g;’s must
be equal to 2. Since 2 can divide at most two «;’s, there is an ¢; equal to 1. Thus
—1 =3 = =1, a contradiction.

Let kK = 5. Since 5 can divide at most one a;, we omit from the left-hand side of
(2.11) the term divisibile by 5 if r = k and P(b) = k to observe that there is no loss
of generality in assuming that P(b) < k whenever d ## 7p*. Let d be even. Now we
argue as in the case k = 4 to assume that 2 || d and a;’s belong to {1, 3}. Since ¢ > 4,
there are two a;’s equal to 1. Thus (3.1) is satisfied with a =1 and 0 <j < i< 4.
Hence, ay = a4 = 1. Further at least one of the remaining «@;’s equals 1 since no
two of them can take the value 3. Now we apply again (3.1) to arrive at a contra-
diction. Let d be odd. Suppose 3 | d. Then a; = 1 for all i or a; = 2 for all i. Since
at most three a;’s can take the value 2, the latter possibility is excluded and the
former is excluded by Lemma 1. Let 5 | d and 3} d. Then t = k by the assumption.
Further a;’s belong to {1, 6} or {2, 3}. The first possibility is excluded by Lemma 1
while the second possibility does not hold since 3 can divide at most two «; ’s and
the three other a;’s cannot be equal to 2. Let 7 | d with 3 and 5 not dividing d.
Then ¢t = k and «;’s belong to {1, 2, 15, 30} or {3, 5, 6, 10}. Since 5 divides at most
one a¢; and 3 divides at most two «;’s we see that the latter possibility does not
hold. In the first possibility if there are three odd terms, then (ag,az,a4) €
{(1,1,1),(15,1, 1), (1, 15, 1), (1, 1, 15)} which is excluded by (3.1). Thus we may
assume that there are exactly two odd terms and by (3.1), one of them has its
a; = 15 implying that (d/5) = —1. Further, we see from (3.1) that the ;s corre-
sponding to the three even terms are (ag, a2, a4) = (2,2,1),(1,2,2),(1,2,1). Let
(ag, ay, aq) = (2,2, 1). If a; =15, we see from ay = a, =2 that 3| d, a contradic-
tion. If a3 =15, then a4 = 1 implies that (d/5) =1, a contradiction. The other
possibilities are excluded similarly.
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Let k = 6. First let d be even. If 8 | d, we observe that ¢; € {1} contradicting Lemma
1. If 4| d, we see that a; € {1, 5} and there is an i with @; = a@;;; = 1 which is not pos-
sible by (3.1). Let 2 || d. From (3.1) we see that no other value of a; except 1 is repeated
and exactly one of the relations @y = a4 = 1 and a; = as = 1 holds. Then at least three
a;’s must assume the values 3, 5, 15 which is not possible by (3.1). Let d be odd. The
argument for the cases 3| d, 5| d is similar to the case k = 5. Let 7| d. Then a;’s
belong to {1, 2, 15, 30} or {3, 5, 6, 10}. Arguing as earlier, we need to consider only
t=k—1,a/’s belong to {1, 2,15}, 15 equals an a; corresponding to an odd term
and an odd term is omitted. Then we see from (3.1) that the @;’s corresponding to
the three even terms {ay, az, a4} or {a, as, as} belongs to {(2, 2, 1), (1, 2,2), (1, 2, 1)}.
Let us take the even terms to be n,n+2d,n-+4d. Then we observe that
n+2d =2 (mod38). Let (ay, a2, as) = (2,2, 1). Suppose 15| (n+d). If n+ 5d is not
an omitted term, then (n/5)= ((n+ 5d)/5)= (x}/5)=1. On the other hand,
(n/5) = (2x3/5) = —1. This is a contradiction implying that n + 5d is the omitted
term. Thus n 4+ 3d = 1 (mod 8) which, together with n + 2d = 2 (mod 8), implies that
d =7 (mod 8). Also n 4+ d = 7 (mod 8) which, together with n + 2d = 2 (mod 8), gives
d=3 (mod 8), a contradiction. Thus 15)(n+ d). The proof for the assertion
15/(n+5d) is similar. Let 15|(n+3d). Then —1 = (2x3/5) = ((n+2d)/5) =
(4d/5) implying (d/5) = —1. On the other hand, —1 = (2x3/5) = (n/5) = (—3d/5) =
(2d/5) implying (d/5) = 1, a contradiction. The other cases are excluded similarly.
The possibility that n + d, n 4 3d, n 4 5d are even is also excluded likewise.

Let k = 7. If P(b) < 7, the assertion follows from the case k = 6. If P(b) = 7, then
t = k by assumption and we omit the term divisible by 7 on the left hand side of
(2.11) to observe that the assertion follows from k = 6.

Let k =8. Then ¢ > 7. Let d be even. Suppose 8 | 4. Then «g; € {1, 105}. Hence,
there are at least six ¢;’s equal to 1 and we use Lemma 1 to exclude this case. Let
4] d. Then a; € {1, 5,21, 105} and there are at least four @;’s equal to 1. Hence by
(3.1), we see that either ag=a; =as=as =1 or ay =a3 =as =a; = 1. Then
5, 105 is assumed by at most one «;. Thus there are at least five a;’s equal to 1 which
is impossible by (3.1). Let 2 || d. Then a; € {1, 3, 5,7, 15, 21, 35, 105}. If 7 divides two
a;’s, then the assertion follows from the case k = 6. Therefore there are at most three
a;’s divisible by 5 and 7. Further, by (3.1), we observe that ¢; = 3 at most once only.
Hence there are at least three ¢;’s € {1} which is again not possible by (3.1). Let now d
be odd. There are at least 3 odd terms. If 3|d, then a; €{1,7,10,70} or
a; € {2, 5,14, 35}. Thus there are at least two odd terms with the same «; in {1, 7}
or {5, 35} contradicting (3.1). The cases 5 | d and 7 | d follow similarly by considering
Legendre Symbol mod 5 and mod 7, respectively.

The cases k =9, 10, 11 follow from the case k = 8. O

4. Lower Estimate for the Number of 4;’s With X; #1

We assume (2.11) with P(b) < k. We determine explicitly a lower estimate for the
number of A;’s with X; # 1. In other words, we estimate |S;| from below. This is
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done in Lemma 5. This estimate has been derived from Lemmas 3, 4 and (4.7). Fur-
ther, we remark that the proofs of Lemmas 3,4 and (4.7) can be adapted for any d to
get a lower bound for |S>|. But the lower bound would be trivial when w(d) is large.

LEMMA 3. Let k> 4. Then

B (k—1)log(k — 1) +1logp

51 > 1 logd + log(k — 1)

—malk — 1) — 1 @.1)

and

(k—1)log(k — 1) +1logp
B log ngy B
where ng = max(n,3),0=1ifn=1,2and 0 =0 if n > 2.

Proof. Let S3={u| X, =1,1<u<1t} so that |S;| =¢—|S3]. We may assume
that |S3| > my(k — 1) for a proof of (4.1). We follow an argument of Erdos. Let g be a
prime <k with ¢ [ d. Let u, be chosen such that

|S1] > ¢

gk — 1) — 0, 4.2)

ord,(A4, ) = max (ord,4,).
a i€S;

Let Sy be the subset of S3 obtained by deleting g, for every such prime g. Thus
[S4] = |S3] — ma(k — 1). Let u € S4. Then n + d,d= A, and

ordy(n + d,d) < ordy(|d, — d#q|),

since ged(n, d) = 1. Therefore

ordq(l_[(n + d#d)> < ordy(dy \(k — 1 —d,)!) < ordy(k — 1)!.

HES]
Thus
ordy( T (n+d,d)) (k—=1)!
[[o+dd)=]Ta " " < =——saamm=h
HES, qld Hr’\a"c
q<k

This implies that dS3I=*=D=1(|§3| — 4k — 1) — 1)! < B, and

plS3l—mate=1) Bi. 4.3)
We get

(1831 = ma(k — 1) = D logd < log((k — 1) -+ - (|S3] — ma(k — 1)) +log 8
< (k —|83] 4+ my(k — 1)) log(k — 1) + log 3,

the latter relation holds with strict inequality since |S3| < k — 2 for k > 4 as pointed
out after (2.12). This shows that

(k—1)log(k — 1)+logﬁ+nd(k_ 1)_’_logd—i—log(k— 1)

S
1551 < logd + log(k — 1) logd + log(k — 1)
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which implies (4.1). By (4.3), we have

- (k—1Dlogk —1)+1logp

|S3] |
ogn

+ ma(k — 1)
which yields (4.2) whenever n > 3. Let n = 1,2. We see that n 4 d,d > 3 for p € S,
except for at most one u for which d, = 0. Hence

n‘OS3|_nl/(k_1)_l < B
implying (4.2) as above. ]

Let ry be given by (2.22) in the next three lemmas.

LEMMA 4. For k = max(ry, 4) we have |S1(2)| < Gy(ry).
Proof. Let yg € Sl(z). Then there exists u; € Sy with py > u; such that 4, = A4,
and hence by (2.16), we have

(1o — m)d = Ay (X — Xy )Xy, + X)) (4.4)

The left-hand side of (4.4) is less than kd whereas the right-hand side is at least 4k
since X, > k and X, > k are odd integers. Thus we see that d > 4. If 5 < d <8,
then 4, =1 implying |S(12)| = 1. Now we assume that d > 8. Let d be odd and 7/
be a prime dividing 4. Then by (2.16), we have

(%) = (g) for1 <j<t

Further we observe that there are (7" — 1)/2 quadratic residues and (¢ — 1)/2 quad-
ratic nonresidues mod 7’. Therefore the number of distinct 4; < k/r¢ does not
exceed Ny(k/ro,7',d) <|k/rg]. Let d be even. Then the number of distinct
A; < k/ry does not exceed Na(k/ro, 2, d) since A;’s are odd, 4; =n (mod 4) if 4 | d
and A; =n (mod 8) if 8 | d. Therefore the number of distinct A4, < k/ro does not
exceed Ny(k/ro, 7', d). Let now S(lz)(k/ro) ={uy | o € 5(12) and A, > k/ro}. Then it
is enough to show that

sy (50)‘ < Gi(ro) ifd=p* (4.5)

and Sﬁz)(k/ro) = ¢ otherwise. To show this we proceed as follows. Let d be written as
hihy with hy | (X, — X)) and Ky | (X, + X)) and ged(hy, hy) =1 or 2. Thus (4.4)
gives

X, — X,

- 1l X¢+X¢
oo () (),

Thus
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X, — X X, X,
Ho i Ho + H < 1o, (46)
h hy

since A,, > k/ro. We write

X, — X,

h

Xllo + XM]
/12

0 1

=ry, =r withr rn=r <r.

Then we observe that 4 | 7/ if 2||d,2 | ¥ if 4| d. Also if d is odd, then gcd(ry, r2) =2
and 8 | ¥. Hence by the choice of ry, we may assume that d = p*. This implies, by
(4.4), that hy =1, iy = d and we see that the number of (X, X, ) satisfying (4.6)
is at most G(r¢) by (2.9). This proves (4.5). O

LEMMA 5. For k = max(rg, 4) we have |S>| = |S1| — Ga(rp).
Proof. By subtracting (2.18) from (2.17), we see from Lemma 4 and (2.10) that it
suffices to show

> (= DISYI < Gs. 4.7)

iz3

We denote by uj an element of U, > 35(1") for which 4, = 1. It may or may not exist.

Suppose p, € U,>3S(1’). Then, y, € S(li) for some i > 3. Thus there exist y, ..., 4;_;
with pg > py > -+ > p; | such that 4, =4, =---=4,_,. Hence,
(u—v)d=A,(X,— X)X, + X)) for u,vefuy, . ..,pm 1}, nu>v. (4.8)

Thus, d > 4. We write d = h1h, with ged(hy, hy) =1 or 2 such that i | (X, — X)),
hy | (X, + X,). Since i > 3, we see that (4.8) holds with

(s v) € {(os 1) (o5 25 (g5 o)} 4.9

Let U be the set of possible values of h;. We consider (4.8) with pu = u,. If
i = |U| + 2, then there is a value of /; which divides X, — X, for two distinct values
of ve{uy,...,p_}. For simplicity, we assume that v = y; andy,. Thus /; divides
X, — Xy, and X, — X, giving n | (X, —X,). We also have h, dividing
X, + X, and X, + X,,. Therefore h, | (X,, — X},). Hence X, — X, = d/2. This
is impossible by (4.8) with u = y; and v = u,. Thus we conclude that i < |U| + 1
which implies that

Y- IsP <101y s, (4.10)
i3 i=3
Suppose d € {2%, p*, 2p*, 3p*, 4p*}. Then we have U as {l1}if d=p* {1,2}if d=
2% or if d = 2p*; {1, 3}if d = 3p*; {1, 2,4} if d = 4p*. Suppose d=2* Then h €
{1,2} divides X,, — X,, and X, — X,,. Then 2*7' =4 divides X, — X,,. This is
impossible by (4.8). Similarly d # p*, 2p*, 3p*, 4p* by (4.8). Thus [S"| = 0 for i > 3
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and (4.7) follows. Now we consider the remaining values of d other than
9p*,5-2%7-2%and 9 - 2*. Suppose py # 1. Then we see from (4.8) that there exists
(u,v) as given in (49) with X,—-X,>22p*ifd#3-2* and X,—-X, >
2=l if d = 3 - 2*. This is impossible by (4.8) since Ay, = 2 and further 4, >3 if dis
even. Thus, yy = y in these cases. Hence, we derive that ), 5 |S(1i)| = 1 which toge-
ther with (4.10) and |U =3 if d=5p* 7p* |U =6 if d=6p* 8p*, 10p*,
3.2%|Ul =9 if d=12p”" implies (4.7). Finally we consider the cases d = 9p”,
5.2%,7-2%9.2% We argue as above to conclude that A, belongs to {I1,2}
iftd=9p%{1,3}ifd=5-2%1{1,3,5}ifd=7-2% {1,5,7}ifd=9-2*. Now the
assertion (4.7) follows from (4.10) and |U| = 3 if d = 9p*; |U| = 6 otherwise. O

5. Iterative Procedure for Obtaining a Lower Estimate for n + (k — 1)d

We assume (2.11) with P(b) < k. It is proved in Shorey and Tijdeman [16, Lemma 1]
that for any d, we get n+ (k — 1)d = C; k* log’k where C; is an absolute constant.
But Cj is not explicitly given and it turns out to be small. Therefore, it does not pro-
vide a good lower bound when k is bounded. We show that it is possible to obtain a
good lower bound for n 4+ (kK — 1)d whenever d € D, see Corollary 3. We shall derive
Corollary 3 from Lemma 6 which involves an iterative procedure. This procedure
makes use of the lower estimate for |S;| obtained in Lemma 5.

LEMMA 6. Let k = max(ry, 4). Then the following assertions hold.

(i) n+ (k= 1)d = ugmax([Bo(1) = Ga(ro)] + 1, Dpag 1y = S where uy(i) is given
by (2.19).

(i) Let n+ (k — 1)d = g1k with g\ > }. For i > 2, define g; by the recurrence relation
g,-k3 = ua([F*(gi-1, G4(”0)])Pi(k_1)+1-

Then n+ (k — 1)d > g;k>.
(iii) Let iy be fixed with n+ (k — 1)d > g, k>. Let

o= F @i Galro)) —, _ [.16, if W > 16,
-k ~ 4. otherwise
k—1
/ — / " — / _ v _ 1
= = O R e

and

uq([h"k] + 1)p[2h’lk]—[h”k]+n(k—l) , ug(W'k)(H] log )
0= 5 . = - .

Then n+ (k —1)d = Lik* and for k =19, we have n+ (k — 1)d > L\k* where
L) = max(g;,, £1) and L} = max(g;, £}).
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(iv) Fori= 2, let

_ F*(Li—1, Ga(ro)) k—1

A = -k -14+—
K, p I

and
uq([h'k] + 1)P[2/1;k]_[h”k]+n(k—1) , ug(W'k) (W log b))
= o . = & :
Then n+ (k— 1)d > Lik* and for k =19, we have n+ (k — 1)d > L'k® where
L; = max(Li_1, ¢;) and L; = max(L/_,, £}).

Proof. We recall that 1 = k — 1.

(1) Suppose d = (kK — 1)/2. Then we use (4.1) to estimate |S;]. If d < (kK — 1)/2, we
use (2.13) to find that n > k?/2 which we use in (4.2) to estimate |S;|. Thus we
get |S1| > f,(1) by (2.8). By Lemma 5, we have |Sz| = [f,(1) — G4(ro)] + 1 and
we recall that |Sy| > 1. Thus there are at least max([f,(1) — Ga(ro)] + 1, 1) dis-
tinct 4;’s with j € §1. We arrange the 4;’s in the increasing order and observe
that each of the corresponding X;’s has a prime factor > k. This yields the
estimate in (i) by (2.20).

(ii) Let n+ (k — 1)d > g,k* and we prove the assertion for i = 2. Let d = p*, 4p*. In
these cases we proceed as follows. We may assume that g; > d/k> 4+ 2/k> other-
wise F*(g1, G4(ro)) = 1 and the assertion follows immediately from (2.13). Thus
n> (g1 — d/k*)k’ > 2. Now by (4.2) and Lemma 5, we get |S»| > B3(g1, G4(ro))
which gives n+ (k—1)d > g2k*. Now let d ¢ {p*, 4p*}. We use (4.1) if
d = (g1(k — 1)*)/2 and if otherwise, we use (4.2) to estimate |S;| and we apply
Lemma 5. We derive that [S,| > B4(g1, Ga(r9)) which implies n+ (k — 1)d =
2>k?. The assertion for i > 3 follows similarly.

(iii) We have n+ (k — 1)d > g; k. We proceed as in (i) to get |Sz| = F*(gi,, Ga(ro)).
Thus there are at least [hk] distinct A;’s with j € S;. We arrange them in
increasing order and remove the first [4"k] of these 4;’s. Then we are left with
[h k] — [1"k] > 0 number of A;’s each of which exceeds u([A"k] + 1) by (2.20).
Now we arrange the corresponding X;’s in the increasing order. Thus the largest
Xj is divisible by a prime = pyy k- kj+=k—1)- This gives the first assertion. The
second assertion follows by using (2.3) and (2.5) in the definition of £;.

(iv) We proceed by induction on i > 2. We have n+ (k — 1)d > L,k*. Hence, we get
|S2| = F*(L1, Ga(ro)). Thus there are at least [A5k] distinct 4;’s with j € S;. Fur-
ther we observe that F*(s, h) is an increasing function of s. Hence /), > h}. Now
we proceed as in (iii) to get n + (k — 1)d = u ([h"k] + l)plzh; K- k+nk—1)- Hence,
n+ (k —1)d = max(Li, £,)k>. This proves the first assertion with i = 2 and the
second assertion follows by using (2.3) and (2.5) in the definition of £,. The
assertion for i > 3 follows similarly. O
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Table 1.

d v vy vy

P’ I+8 104 318
2p* 1+3 48 180
3p* I+3 30 80
4p" 2413 80 308
5p 1p6 60 138
6 113 42 98
Tp* R 80 168
8p* 2428 90 192
9p* a4 68 132
9p* 405 80 138
10p* +8 54 128
12p* 2+% 60 132
2 2+14 38 140
3.27 2+% 60 300
5.2 2+ 68 128
7.2° 2+ 102 174
9.2% 2+ 47 80 140
9.2 405 90 140

COROLLARY 3. Let k—1 be prime and d #2,4. Assume that d < 3(k—1) if
d=p*and d < 12(k — 1) if d = 4p™. For vy, v, given in Table 1 above we have § = v,
for k = v,.

We use the exact values of n(k) for the assertion of Corollary 3 with v, < k < v)}.
In fact the assumption k — 1 prime is not used for k > v/,.

Proof. We give proofs for the cases d = p* and d = 5p*. The proofs for other
cases are similar. We follow the notation of Lemma 6.

Letd = p* and d < 3(k — 1). Then rg = 16. First, let k = 318. By Lemma 6(i), we get
f = .0888. We put g; = .0888 and apply the iteration process in Lemma 6(ii) to obtain
g2 = .1615, g3 > .1697, g4 = .1704. We fix iy = 4. Then g;, = .1704, b} > .3385, 1" =
.16, ¢} > 4307 and L} > .4307. Further L) > 4987, L, > .5090, L} > .5105. Thus
by Lemma 6(iv), we have ¢ > .5105 > %—l— 13/(4k) for k= 318. Now we take
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104 < k < 318. For these values of k, we use the exact value of 7(k) in Lemma 6. We
give the details of computation for k£ = 104. By Lemma 6(i) we find that /> .1221.
Now we take g; =.1221 and use the iteration process in Lemma 6 (i) to get
g2 = 2748, g3 = .3053, g4 = .3155. We fix iy = 4. Then g;, = .3155, i} = 2980, 1" =
.16 and /; > .4951. Hence L, > .4951. Now we use the iteration process in Lemma
6(iv) to compute L, = .5513, L3 = .5629, L, > .5629. Thus we get 6 > .5629 >
%—i— 13/(4k) for k = 104. Similarly for 104 < k < 318 with kK — 1 prime, we find
0= %—i— 13/(4k). This proves Corollary 3 when d = p*.

Let d = 5p*. Then ry = 8. Suppose k > 138. By Lemma 6(i), we get /> .1658. We
take gy = .1658 and apply Lemma 6(ii) to secure g, > .3217, g3 > .3450, g4 = .3474.
Let iy = 4. Then g;, = .3474, 1} > .2902, h" = .16, ¢} = .5771 and L| > .5771. Also
L, > .6375. Thus by Lemma 6(iv), we have § > .6375 > %—l— 65/(4k) for k = 138. Let
60 < k < 138 and we fix k£ = 60. We derive from Lemma 6 that g, = f > .2067, g»
> 5081, g3 = .5943, g, = g4 = .6373, 1) = 2666, 1" = .16, ¢ > .8067 and L| >
.8067. Hence ¢ = .8067 > %—i— 65/(4k) for k = 60. Similarly the assertion follows for
60 < k < 138 with k — 1 prime. This proves Corollary 3 for d = 5p”. |

6. An Upper Bound for the Number of Distinct a;’s

We show that not all ¢;’s are distinct. For example, we prove that |R| < k — 1 when-
ever (2.11) with t =k and b =1 holds. We achieve this in two stages viz., when
k < 12 and when k > 12. First when k < 12, by Lemma 2 we need to consider only
the case d = p*. This is done in Lemma 7 below where we may assume that k£ > 6 by
the results of Fermat and Oblath stated in Section 1. As in Lemma 2, here again we
make use of Legendre Symbol. Further we resort to Runge’s method for the case
k = 8. Secondly for k£ > 12, the method rests on an argument of Erdés and Rigge
as explained in Lemma 8 below and we prove a sharper inequality than
|R| < k — 1 which is also valid when t =k — 1 or b > 1. Further the arguments of
Lemma 8 have been applied in Lemma 8’ to exclude the cases d = 2, 4. The proof
of Lemma 8 extends to any d and bounded M. In that case, the upper bounds for
|R| in Lemma 8 are valid whenever k exceeds a number depending only on M.

LEMMA 7. Let d=p* and 6 < k < 11. Assume that b =1 whenever k <9. Then
(2.11) with t =k, P(b) < k and |R| = k — 1 does not hold.

Proof. We assume (2.11) with t =k, P(b) <k and |R| = k—1. Let k=6. By
|R| = 5 and (2.27), we derive that at least one «; is divisible by 5. Further, we see
from b =1 that 5 divides ayp and as. Hence a, as, a3, as belong to {1, 2,3, 6}. If
|R| = k, then a1, ay, a3, as are distinct and this contradicts the result of Euler stated
in Section 1. Let |R| = kK — 1. We observe again that a;, a, a3, a4 are not all distinct.
Since 5 | ag, we have 5 | n. Thus (a;/5) = (n+ d)/5) = (d/5). Similarly

H-() ©-(5) ©-(5)
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Hence

aj ag an as
(5)=() = (3)=)

Thus ay, a4 € {1, 6}, ay, a3 € {2,3} or ay, a4 € {2, 3}, ar, a3 € {1, 6}. Therefore we have
eitheraj = =1lorax=a3=1.Ifay=as=1,thenay =2, a3 =3 0ora, =3,a; =
2. This gives (ao,a;, @, as, aq,as) =(30,1,2,3,1,5) or (51,3,2,1,30). By
a; = aq = 1, we see from (2.15) and d = p* that d = (2x; + 1)/3 or 2x; + 3. Further
from d? = L((n +2d)(n + 3d) — n(n + 5d)), we get d*> = (x2x3)* — (5xoxs)” implying
that d?+1=2xyx3. Also 6x3x3 = (x] +d)(x} +2d). Hence 24(d>+1)*—
(d*+2d+9)(d>—2d+9)=0 if d=2x;+3 and 24(d>+1)> —(9d> +2d+ 1)
(9d*> —2d+1) =0 if d = (2x; + 1)/3. By observing that the constant terms in the
above polynomials in d are divisible by d, we derive that either d = 2x; +3 =3, 19
or d = (2x; 4+ 1)/3 = 23. These possibilities are easily excluded. If a; = a3 = 1, then
ay =2,a4 =3 or ay = 3,a4 = 2. In both cases, we see that 3f apas and (2.11) with
b =1 is not satisfied.

Let £k =7. Then, by » = 1 and |R| = 6, we may assume that either 5 divides ay, as
or 5 divides ay, ag. Let 5 divide ag, as. Then ay, ar, a3, as, ag € {1,2, 3,6} and the
repeated element is among ay, ay, a3, a4. Then as in the case k = 6, we have either
ay =ay =1 or ay = a3 = 1. The first possibility implies that ag = 6, a3 = 3, a, = 2,
as =5, ap € {10, 15, 30} and we observe that (2.11) with » =1 is not satisfied. In
the second possibility, we see that ay, as4, ag € {2,3} contradicting |R| > 6. The
argument for the case when 5 divides a; and a¢ is similar.

Let k£ = 8. If |R| = 8, then we may assume that 7 divides ay, a7 and 5 divides ay, ag.
Hence a,, a3, a4, as is a permutation of 1,2, 3, 6 implying (n + 2d)(n + 3d)(n + 4d)
(n+ 5d) is a square which is impossible by the result of Euler. Let now |R| = 7. By
b =1, we may assume that 7 divides ay, a7 and 5 divides aq, as or a;, ag or as, a;.
Let 5 divide ay, ag. Then ay, as, a4, as belong to {1, 2, 3, 6}. By mod 7 consideration,
we find that either a,, a4 or a3, as take values from {3, 6} which is impossible. Let 5
divide ay, as or ay, a;. Then by mod 7 and mod 5 considerations, we find that either

n:35x§,n+d=x%,n+2d=2x§,n+3d=3x§,n+4d:xi,n+5d:5x§,
n+6d=6x§,n+7d=7x%

or

n=7x%,n+d=6x%,n+2d=5x§,n+3d=x§,n+4d=3xi,n+5d=2x§,
n+6d = xg,n+7d=35x3.

We give the argument for the first possibility. We have x3 —x? =3d. Hence
x4 —x; =1 or 3 giving
2x1+1

d=p*= 3 or 2x;+3. 6.1)
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Also we note that gcd(x;, 210) = 1 implying x; > 11. Further

2
G)-()-G)-G)-()-
which, together with (6.1), implies that d > 163. We observe that (n + 2d)(n + 3d)
(n+ 6d) = (6x2x3x6)> which gives

284 10
Ox$ + 48x7 4 92x} + Txf + 57x7 +20x; + 3= Y?
with Y| = 18x,x3x6 if d = (2)(,‘1 + 1)/3 and
x84 16x7 4+ 92x] 4 284x7 4 513x7 4 540x; + 270 = Y3

with Y, = 6xox3x¢6 if d = 2x; + 3. In the former case we take square root on both
sides to get

Ox +24x7 + 14x1 +9 < 3Y7 < 9x7 4+ 24x7 + 14x + 10

which is impossible. In the latter case we observe from d > 163 that x; > 80 and then
we take square root on both the sides to obtain

X3 4 8x7 + 14x; +29 < ¥y < x3 + 87 + 14x; + 30,
a contradiction. The second possibility is excluded similarly.

Let kK = 9. Then we may assume that 7 divides two a;’s and 5 divides two other a;’s.
Thus we have 7 divides ag, a7, 5 divides ay, ag or 5 divides as, ag; 7 divides ay, ag, 5
divides ag, as or 5 divides a;, a;. We take the possibility 7 dividing ag, a7, 5 dividing
ay, ag. By using Legendre Symbol mod 7, we see that ay, a4, ag € {1, 2}, a3, as € {3, 6}
or ay, ay, ag € {3, 6}, as, as € {1, 2}. Since a3 and as are not both divisible by 3 and
ar, ag, ag are all not divisible by 3, this is excluded. The argument for other
possibilities is similar.

When k£ = 10, 11, we get f(2) = 5 contradicting (2.27). O

LEMMA 8. Assume (2.11) with P(b) < k. Let k = 12 such that k — 1 is prime and
d+#+2,4.

@) Ifd=p*and t =k —1, let k = 30. Then |R| <t— M — 1 where M is given
by (2.21).
(b) Let k=68 if d=p*; k=54 if d=12p*; k=30 if d=3p*,3-2%5.2%
7-2%9.2%k > 18 if d =2" and k = 38 otherwise. Then |R| <t —4M — 1.
The assumption k — 1 prime is not used when k > 210 if d = p* and k > 160 if
d#p*.

Proof. We assume (2.11) with P(b) < k. We recall that g;’s are square free and

P(a;) < k. We shall denote by py any prime <k. We put y, = ord,, (HmeR a,-). Itis
clear that
k—1
p < [ ] i 6.2)
Po
Since
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Haiz sz;my

a;€R po<k

it follows that
]‘[ai}(k— DT ro- (6.3)
a;€R po<k

Let

7, = ordy, ((k -0 p0>.

po<k

Suppose pg <k-1< pg“ where / is a positive integer. Then

1,_[k—1]+[k—1}+ +[k—l}+1
LT 7 ol

The estimate for y, given in (6.2) can be improved as follows. We observe that
7p, =0 if po | d. Let po)d. Then we see that y, equals the number of terms in
{(n+dd,...,n+dd} divisible by py to an odd power. We remove from the above
set a term in which py appears to a maximum power. The number of terms in the
remaining set divisible by py to an odd power is at most

- () B ()
. (["p‘gl} 1 +<—1>“>,

where ¢; = 1 or 0 according as / is even or odd, respectively. Note that the above
expression is always positive. Thus we obtain
k—1
+ pgfl+€3

, k—1
ypo—ypogh—l+63—2<|: 5 ]+
Py

k—1 k=1 h—1+c¢
Sh—1+46=2 2 tooet =1+ :
Po Py ’ 2
2k —1 1
P VRS TS P i) " |
Py —1 Py

Since pi > (k — 1)/py and h < log k/log py, we get
2k 2logk 242p7°

. = — 2¢3 — 2.
T ST T T log po | -1 e
Thus we see that
2k 2 log k
I —_—— 6.4
/Po VPO < p(z) —1 + log Po T ( )
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where
2, lfp() = 2,
1, ifp() = 3,
€4 = %, ifpo — 5’ (6.5)
3. ifpo=T7.

From (6.3) we get

[Ta| =0T e TT 2™ (6.6)
a;eR po<k  po<7
Using (6.4) and (6.5) we estimate ], -, p,° " < 52 k%(2.5907)™%. From [9, p. 71]
we get [[, _,po < (2.78). Thus (6.6) implies that

[T a <520k = DiB(1.0731)". (6.7)
a;eR
Let d = p*. Then M =1 by (2.21). Assume that |R| > k — 5 which is satisfied if
|R| > t—4M — 1 since t = k — 1. Then

[Ta=]]s (6.8)

where s; denotes the ith square free integer. We first show that
si= 151 foriz=39. (6.9)

We check that (6.9) is valid for 39 < i< 70. Let i > 71. We write s; = 36 + v, where
i and v are integers with u >0, 0 <v <36 and v ¢{0,4,8,9,12,16, 18,20, 24,
27,28, 32}. Further we check that for any integer v as above, we can choose an inte-
ger i, such that 39 <i, <70, s;, = v(mod 36). Then s; — s;, = 365 for some integer
n > 0. By deleting multiples of 4 and 9, we find that in any set of 36 consecutive inte-
gers, the number of square free integers is <24. Thus the number of square free inte-
gers in (s;,, s;] is at most 24n. Therefore i — i, < %(s,— — ;). Hence s; = 1.5(i — i)+
s;, = 1.5 i since s;, = 1.5 i, for 39 < i, < 70. This proves (6.9). Now we use (6.9) to
get [T=7 s = (1.5 7>(k — 5)! for k > 68, by induction on k. Thus by (6.8), we have

[Tai= 0.5 k=35" fork=e68. (6.10)

a;eR

We combine (6.7) and (6.10) to get (1.3978) < 395 k'2 for k > 68 which implies that
k <210. Now we check that fy(4)>17 for 68 <k < 139;/fy(5) =33 for
140 < k£ < 210. This is a contradiction by (2.26) and (2.27). Thus k < 67 if
|R| = k — 5. Further we check that f;(3) = 9 for 30 < k < 67 if |R| = k — 2. Thus
it remains to consider only the cases k= 12,14,18,20,24 with t=k and
|IRl=>k—1. Then we have f,(3)=8 for k=24 and fy(2)=4 for
k € {12, 14, 18, 20}. By (2.27), we derive that fy(3) = 8 for k = 24 and f;(2) = 4 for

https://doi.org/10.1023/A:1025408727362 Published online by Cambridge University Press


https://doi.org/10.1023/A:1025408727362

ALMOST SQUARES IN ARITHMETIC PROGRESSION 97

k € {12, 14, 18, 20}. Let k = 24. Since fy(3) = 8, we see that |R| = k — 1. Further the
number of /s for which g;’s are divisible by the primes 23, 19, 17, 13, 11, 7 is exactly
2,2,2,2,3,4, respectively, and none of these g;’s is divisible by more than one of
these primes. Hence 23 divides ag, ap; ; 7 divides ay, ag, a;s, ax. Then 11 does not
divide three other a;’s. This is a contradiction. Thus k # 24. The other cases are
excluded similarly. This completes the proof of Lemma 8 when d = p*.

Now we take d # p*. Let k be as in Lemma 8(b) and assume that |R| > t —4M — 1
which implies that |R| >k —4M — 1. Let d=2p*. Then M =2 by (2.21) and
|R| = k — 9. Hence by (2.20), we have

k=9 k—9
[Ta=]ei-D=[]26-1)=2"%—10)
i=1 i=2

a;€R

Similarly, we find that [],_p a; exceeds

a;eR

810k — 10)! if d = 2%; 35710k — 10)! if d = 3p*; 4514 (k — 14)! if d = 4p*;
Q.5 Mk — 11)if d = 5p*; 6F Bk — 18)! if d = 6p*; (D" (k — 1)l if d = Tp*;
8K=18(k — 18)! if d = 8p™; 3710k — 10)! if d = 9p*; 5~ °(k — 19)! if d = 10p*;
126726 (k — 26)! if d = 12p*; 245k — 18)! if d = 3 - 2* with o > 3;

1268k — 18)1 if d = 12; 20" (k — 19)! if d = 5 2%;

CO (k= 21)if d=7-2% 245 8(k — 18)1 if d =9 - 2%,

Now we combine these lower bounds with the upper bound (6.7) to conclude that
k < 160. To bring down the value of k& we use the counting argument as in the case
d=p*. We obtain k<98 if d=8p*, 12p*;k <62 if d=4p*; k <54 if d= 6p*,
3.2%5.2%7.2%9.2% and k < 32 otherwise. Finally, we use a congruence argu-
ment to complete the proof of Lemma 8(b). We explain one instance. Let d = 8p*.
By counting argument we get k < 98. Now we use the fact that a; = a; (mod 8)
for all 7,j with 0 < i,j < ¢ to find that k < 32.

For Lemma 8(a), we assume that |R| >t — M — 1 >k — M — 2. Then it remains
to consider only those values of k not covered in Lemma 8(b). We use counting argu-
ment to exclude all values of k other than k=12,14,d = 4p*; k = 12, 14, 18,
20,24, d =8p*; k =12,14,d = 12p* and k = 12, 14, d = 7p*. All the cases other than
the last one are excluded by congruence argument given above. Let now k = 12, 14
and d = 7p*. Then 7 f a; for any i and f((2) = 4. If k = 12, this implies that 11 divides
ay, aj; and 5 divides 3 other a;’s which is impossible. If £ = 14, we find that 13 divides
ay, ais, 11 divides ay, a;; and 5 divides 3 other a;’s which is again impossible. O

LEMMA 8. If d=2,4, then (2.11) with either P(b) <k if t=k or P(b) <k if
t =k — 1 does not hold.

Proof. Let d =2,4. Suppose |R| < t. Then there exists 7, j with 0 < j < i < t such
that a; = a; = a, say, and (3.1) holds. As d is even, we have x;, x; odd. Thus
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x; = x; + 2. Further, by (2.13), we get n > k> — 2k + 5 > (k — 1)>. Therefore
4k —1) = (i = d = a(x} — x}) > 4ax; > 4ax) ) > dnt > 4(k - 1),

a contradiction. Hence |R| = #. As in Lemma 8, we see that (6.7) holds and [[, . a:
exceeds 2872(k — 2)! implying k < 75. Now we use counting argument to conclude
that k£ < 11 and the assertion follows from Lemma 2. O

In view of Lemma &', we suppose that d # 2, 4 from now on throughout the paper.
Thus o > 3 whenever d = 2.

7. Upper Bound for n+ (kK — 1)d

We suppose that (2.11) with P(b) < k is satisfied. Further we suppose that k > 6 if
d=p*, t=k;k=30ifd=p*, t=k—1and k > 12 otherwise. Also let » = 1 when-
ever k < 9. We bound n from above by C4k* and d by Csk where C, and Cs are con-
stants depending on y. We find that the constants Cs and Cs are small since y < 12.
Thus we get rather good upper bounds for n and d. To achieve this, we proceed as
follows. Lemmas 2,7 and 8 guarantee that |R| < ¢t — M — 1 under some restrictions
on k. This bound on |R| gives rise to two cases. In the first case, there is an a; being
repeated more than two times. This case is treated in Lemma 9. In the second case,
there exist distinct integers g, pi, vo, vi With a,, # a,,, a,, = a,,, a,, = a,, and there
exists a partititon of d corresponding to both a,, = a,,, a,, = a,,. This case is treated
in Lemmas 10 and 11. Here we use an argument of Shorey and Tijdeman [16, Lemma
2]. For large values of k, we have |R| < t —4M — 1 by Lemma 8(b) and refining the
above procedure we obtain sharper estimates for n and d, see Lemma 11. The proofs
of the Lemmas 9 and 10 can be adapted for any d whereas the proof of Lemma 11
can be adapted for any d with w(d) bounded.

LEMMA 9. Suppose that one of the following possibilities hold.

(a) R(li) %+ ¢ for some i = 3.
(b) Leta; = a; withi> j and%] hy for some partition (hy, hy) of d corresponding to
a; = aj.

Then

— 1)3%,2 — 1),2

2 9
4¢ €

Proof. Suppose (a) holds. Let y, € R(li) with i > 3. Then there exist integers y;, i,
with uy > p; > p, such that

(= v)d = ay(x, — x,)(x + xy) (7.2)

is valid for (u, v) satisfying (4.9). Also there exists (u, v) from (4.9) and a partition
(h1, hy) of d corresponding to a, = a, such that d/y; | hy. Thus d/y; | (x, — x,).
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Further if d is even and d/y,; is odd, we find that 2d/y; | (x, — x,) since x, — x, is
even. Then we see from (7.2) and (2.23) that

2
k—l},u—v>—(avx3%>ﬂn% (7.3)
1 bél
and
v d del
k—1>u—v>“"<2xv+ﬂ>>i§. (7.4)
21 21 a

Now we derive (7.1) from (7.3) and (7.4).

Suppose (b) holds. Then (7.2) is valid with (u, v) = (i, ). Since for the partition
(h1, hy) of d corresponding to a; = a; we have d/y [ h,, we find that d/y; | h1. Now
we argue as in the preceding paragraph to obtain (7.3), (7.4) which imply (7.1). [
LEMMA 10. Let gy, vo € R? with py # vo and

Ay = Ay, Ay, = Qy,. (7.5)

Suppose that there exists a partition (hy, hy) of d corresponding to both a,, = a,
and a,, = a,, with d/y, | hy. Let ¢ > 0. If

k—1 k—1
lto — vol < — Il —vil < P (7.6)

then
1
d < 2ey(k— l)(l +Z> (7.7)

and

Ez_d ak—1) +%> (7.8)

— 2 1
n<(k-=1) m1n<4 - 4

Proof. Since pg > p; and vg > vy, we see that x,, > x,, and x,, > x,,. Let (A, h2)
be a partition of d corresponding to both a, =a, and a, =a,. We put
€ = ged(h, hy) and we observe that € < ¢; where ¢; is given by (2.25). We write

Xyy = Xy =M1, Xy A+ X =haray Xy =Xy, =l Xy Xy = M08,

where rq, 17, 51, 52 are some positive integers. Further, we see from (2.15) that

hory + hyry 2 sy + hysy 2
(g = vo)d = auoxio — ay,x;, = ay, <2 ) s S—

= %{(a,lor% — av(]s%)h% + (auor% — avOs%)hg + 2(ay, 1112 — ay,S152)hiho}.

Hence, we see that

h h |
2 2. 2 2 2
¢ (aﬂ()r2 - aVOSZ)’ ¢ (allol 1 a"osl)‘
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Thus there exist non-zero integers fi, f> such that

flhlh% 2 2
¢ = a#n(xllo + xﬂl) - aVo(x"o + le)
and
fohih 2 2
¢ = aﬂn(xllo - xﬂl) - avo(xvo - xvl) .

Therefore, from (7.5) we have

Sihih3 2 2 2 2
o= (@, — Ao X)) + (ap, Xy, — @, Xy) + 25 Xy Xy, — Qg Xyg Xy,)
and
Sahthy 2 2 2 2
o = (aﬂux#o — a‘,oxvo) + (aulxm — alevl) — 2(apy Xy Xy, — Gy Xy Xy,)-

Further, from

_ 2 2 2 2
(11 = vo)d = ap,x;, — Ay Xy, < QugXpgXp, — Ay Xy Xy, < Ay Xy — Ay X

= (1o —v1)d
we get

1@y Xy Xy, — g Xy X, | < (ke — 1)d.
We see from (7.10), (7.12) and (7.6) that
hy <2 (k — 1)(1 —i—%)
Further since d/y; | hy, we get from (2.2) that

no< 120 always,
PS4, if ged(hy, hy) =2,d # 12%,

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

which, together with (7.13) and (2.24), gives (7.7). We obtain from (7.11) and (7.6) that

2|aﬂnxﬂox#1 =y Xy, Xy, | <

2(k = 1)d hid
( : ) +|f2l/1 .

We use this inequality in (7.10) to get
¢ (4(k -1 n |f2|h1>.

hy <
AN e ¢
Also from (7.9) we get

| folhihy
6/

2 2
< max(ay, (Xy, — X)) @y (X, — Xy,)7).
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We know from (2.15) and x,, > x,,, x,, > x,, that

n<la,(x,+x,)7  n<lay(x, +x,)% (7.17)
We combine (7.16) and (7.17) to get

| f2lh3han

: e’l = < max(%(auoxio - a.u]xlztl)z’ g (anxy, — amxa)z)-
Hence, we have n < /(4| f2])(k — l)2h2 which, by h, < d, (7.15), (7.14) and (2.24),
implies (7.8). O

Using Lemma 10 we derive the following lemma.

LEMMA 11. Let k — 1 be prime if k = 12. Suppose (a) and (b) of Lemma 9 do not
hold. Then the following are valid.

(1) We have
n<(k_1)2min<%l,e§(k—1)+%>, d < derg(k —1).

(1) For k satisfying the assumptions of Lemma 8(b), we have

n<(k— l)zmin<€2d,6%(k_l)+%>, d < 3ery,(k —1).
4 2 4

Proof. Since (a) and (b) of Lemma 9 do not hold, we have R = ¢ fori>= 3 andif
a; = a; with i > j then for every possible partition (%, ;) of d corresponding to
a; = a;, we have d/y; | hy.

(1) By Lemma 8(a), we derive that |R| < t— M — 1 for k > 12. This is also the case
for d = p* with k < 11 by Lemma 7 and M = 1. Then there exists at least M + 1 dis-
tinct pairs (u, v) with 4 > v, € R(lz), a, = a, and (7.2) holds. Further since d/y; | h,
the number of partitions (%, h,) of d corresponding to a, = a, equals M. Therefore
there exist distinct ), v € R(lz) and p, v; with gy > py, vo > v; satisfying (7.5) and a
partition (/11, i) of d corresponding to both a,, = a,, and a,, = a,,. Further (7.6)
holds with ¢ =1. Hence, by Lemma 10, we conclude that (7.7) and (7.8) with
¢ = 1 hold implying the assertion.

(i1) By Lemma 8(b), we derive that |R| < t —4M — 1. We argue as in (i) to find that
there is a partition (%, hy) corresponding to the five relations

Auy = Ay Ay, = Ay, Ury = lyy, Ay = ysy 5 ag, = ag
where g, vo, 70, ¥, (o are distinct elements of R(lz). Further we see that there exist
two pairs, say, (i, 1) with o > u; and (vo, v;) with vy > v; such that

k—1 k—1
lttg — vol < — Iy — il < —
Thus (7.6) is satisfied with ¢ = 2. Hence, by Lemma 10, we derive that (7.7) and
(7.8) with ¢ = 2 are valid. Now the assertion follows immediately. O
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8. n,d, k are Bounded

We assume (2.11) with P(b) < k. Further we suppose that k satisfies the assumptions
stated in the begining of Section 7 and k — 1 is prime if £ > 12. We combine Lemmas
9 and 11 to derive an upper bound for d and n + (k — 1)d in terms of k. Further using
the lower estimate for n 4+ (k — 1)d from Corollary 3, we show that k is bounded by
an absolute constant. Therefore n and d are also bounded by an absolute constant.

LEMMA 12. (i) Let d # yt* with y € {5,7,9}. Then

d<dey(k—1). (8.1
If k satisfies the assumptions of Lemma 8(b), then
d < 3ery(k—1). (8.2)
(i) Let d = yz* with y € {5,7,9}. Then
e
d<(k—1= (8.3)
&0
(iii) Let d # {12, 40, 56, 144}. If d < de1y,(k — 1), then
n+(k—1)d < mm((k —1)? 620]+ (k — 1)d, k3( 17:;{“)). (8.4)
If k satisfies the assumptions of Lemma 8(b) and d < 3e1y,(k — 1), then
3 % 13e17,
n+ (k—1)d < min (k—l) +(k—l)d k P . (8.5)

(iv) Let d = yt* with y € {5,7,9}. Suppose that d = 3e,y,(k — 1) if k satisfies the
assumptions of Lemma 8(b) and d = 4e;y,(k — 1) otherwise. Then

2
n+(k—l)d<min<( 42) 14— 1ya, K ) (8.6)
4cg

(v) Let d € {12, 40, 56, 144}. Then (8.6) holds.

Proof. First we consider the case that (a) and (b) of Lemma 9 do not hold. Then
the assertions of Lemma 11 are valid. Thus, we need not consider (iv). Further, (i)
and (iii) follow directly from Lemma 11. In fact (8.4) is also valid for
d =12, 40, 56, 144. Further, we observe that (8.4) with d = 12, 40, 56, 144 implies
(8.6). Thus it remains to prove (ii). Let d=yt* with y € {5,7,9}. Then
d < 4e;y(k — 1) by Lemma 11(i). Further, we observe that 4e;y; < x3/€3. Hence,
d < (k — 1)3 /€. This proves (ii).

Next we suppose that (a) or (b) of Lemma 9 holds. Then (7.1) is valid. Further, we
observe that (7.1) implies (8.6). This proves (iv) and (v). Let d # 12, 40, 56, 144. We
see that (7.1) with d < 4¢y,(k — 1) implies (8.4). Further (7.1) with d < 3¢;y,(k — 1)
implies (8.5) whenever k satisfies the assumptions of Lemma 8(b). This proves (iii).
Also we see that (ii) is immediate from (7.1). Finally (8.2) follows from the estimate
for d in (7.1) whenever d # yt* with 7 € {5, 7, 9}. This proves (i). O
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As a consequence of Lemma 12 and Corollary 3 we get
LEMMA 13. We have k < k = k(d) where (x, d) is given by

(102, p%), (44, 2p%), (24, 3p%), (T4, 4p™), (54, 5p™), (38, 6p%),
(74, Tp"), (84, 8p), (74, 9p*), (48, 10p%), (54, 12p%), (32, 2%), (8.7)
(54,3 .2%),(62,5-2%), (98,7 - 2%), (84,9 - 2%).

Proof. Let d=p*. Then y, =¢ =¢ =1. By Lemma 12(i), we see that
d < 3(k—1) for k> 68. Then (8.5) with k > 68 is valid by Lemma 12(iii). Thus
0 < %—i— 13/4k if k = 68. Hence from Corollary 3, we get k < 102. Thus k¥ = 102 if
d=p~.

We give another example d = 5p*. Then y; =5,¢0 =¢; =¢; = 1. By Lemma
12(i1), we have d < 25(k — 1). Assume that k& > 38. Then we observe that k satisfies
the assumption of Lemma 8(b). Now (8.5) if d < 15(k — 1) and (8.6) if 15(k — 1) <
d < 25(k — 1) hold by Lemma 12(iii) and (iv). Therefore ¢ < %+65/(4k). Hence
from Corollary 3, we get k < 54. Thus k = 54 if d = 5p*. The value of « in all other
cases is obtained similarly implying (8.7). OJ

Lemma 13 is proved under the assumption that k — 1 is prime. If it is not satisfied,
we can take x = max(v5, 160). This is clear from the proofs of our lemmas.

9. An Algorithm for Solving (2.11) with all Variables Bounded

We shall assume (2.11) with P(b) < k. By Lemma 13, there are only finitely many
possibilities for k. Let k = ky. By Lemma 12, we see that n and d are bounded by
numbers depending only on k. Let oy, oy, a3, 04 and o5 be positive numbers depend-
ing only on ky. Let n+ (kg — 1)d < o and o < d < o3. We give an algorithm for
finding possible solutions of (2.11) with k = ky and we shall always suppose that
ko = 6 while applying this algorithm. This algorithm depends on Lemma 12 and
Corollary 3. Therefore it is efficient only when w(d) is small.

Step 1. Let a4 be given by Lemma 6 satisfying n + (kg — 1)d = o4. Then n = oy—
(ko — 1oz and we use (4.2) to find a lower bound for |S;|. Further we use the argu-
ment in the begining of Lemma 6(ii) with g; = ¢}(ko)/kj by (2.14) to obtain another
lower bound for |S;|. We also recall that |S;| > 1. Now we take os to be the maxi-
mum of the three lower bounds given above for |.S;|. We conclude that there is a term
on the left hand side of (2.11) divisible by a prime Q¢ = prx,—1)++s t0 an even power.
Thus it is of the form 7y Q3 where 7, is a positive integer. We compute all primes Q
such that pr,—1)+e; < O < /1. Let d be fixed with oy < d < a3. For each Q we form
the set

Do = {tQ0? | ged(tQ?, d) = 1, max(ou — (ko — 1)d, 2) < t0* < oy}
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We observe that Lemma 12 and Corollary 3 provide a good upper bound for [Dy].
We put E£;=JDp where the union is taken over all @ satisfying
Drko—1)+2s < O < Jo1. Thus &, contains a term from the left-hand side of (2.11).

Step 2. Suppose N € £,;. For a positive integer i, we say that the property Piq
holds for N if r; = P(N +id) > ko such that ord, (N +id ) = 1(mod 2) and property
P_iq holds for Nifr, = P(N —id) > ko such that ord,,(N —id ) = 1 (mod 2). Finally,
we say that the property Piiq holds for NV if both the properties P,iq and P_jq hold.
Let E, be the set of those N € &£, for which Py, holds and E, be the set of those
N e &, for which Pyyq holds. Let EY and Ef denote the complements of E; and E;
in &, respectively. Put £, = ES|J E5. We write £;; = X, + Y, where X and Y,
are disjoint subsets of &, given by X; = E{JE§ — (E{ N ES) and Y, = E{ N E.
Let E5 be the set of N € £, for which Py3; holds. Then we form £, = X2 + Y>
where X; = X — E35NX;+E35NY; and Y, = Y, — E;N Y, are disjoint. Now we
proceed inductively to form the sets

Ea2E41 24228432 -

such that for i > 2, £;; = X;+ Y; where
Xi=Xian—EnNXig+EqNYi, Yi=Y g —Eq NYig

and E;y is the set of N € £;;_1 for which Py (1)¢ holds.
Step 3. We construct the sequence &4, E41,E42,E43,... for every d with
oy <d<os.

LEMMA 14. If €4 = ¢ for some iwith 1 < i< [ko/2] — 1, then (2.11) has no solution
with k = ky.

Proof. Let N € £;such that Nis a term from the left-hand side of (2.11). Such a N
exists as already pointed out. Suppose £;; = ¢ for some i with 1 < i< [ko/2]— 1.
Then by the construction of &;;’s, we find that there exist integers m;, m, with
1 <m <my <i+1<[ko/2] such that P,,,,and Py,,s hold for N. Let N =
n+ ud with 0 < u < [ko/2] — 1. Then N+ md and N+ myd are <n—+ (kg — 1)d
and since at most one term in the product n(n+d)---(n+ (k — 1)d) is omitted,
there is a term in the product which equals N+ ijd with i =m; or m; and P; 4
holds. This is a contradiction. Let N =n+ ud with [ko/2] < u <ky—1. Then
N —myd and N — mypd are > n and we obtain the contradiction as above. O

If the hypothesis of Lemma 14 is not satisfied (and this is the case for small values
of k), we check directly that there is a term in the left-hand side of (2.11) which is
divisible by a prime >k( to an odd power.

LEMMA 15. Suppose that k satisfies the assumptions stated in the begining of
Section 7. Also let k — 1 be prime if k = 12. Then (2.11) with P(b) < k does not hold.

Proof. By Lemmas 12 and 13, the bounds for 7, d, k are given by (8.1)—(8.7). We
make use of the algorithm described above to prove the assertion of the lemma. We
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illustrate with two examples. First we consider the case d = p*. Then k < 102 by
(8.7). Further we take k£ = 102. In the notation of the algorithm, we fix k = ko = 102.
By (8.5) and (8.2), we get n+ (kg — 1)d < 564417, d < 3(ko — 1). On the other hand,
by Lemma 6, we get n+ (kg — 1)d > .52k8. Thus we have

o = 564417, o =3, o3 =293, og = 551828 and n = 522235.

We follow the procedure in Step 1 to get |S;| = 39. Thus as = 39. We fix d = 293.
Then 313 < O < 751. Suppose Q = 751. Then Dy = {564001}. For each O, we form
the set Dy and we obtain

Ea= UDQ ={528529, 531723, 537289, 538756, 542882, 546121, 547058,
547805, 552049, 556516, 557283, 562467, 564001}.

Now we follow Step 2. We find &, = {556516, 573049} and &£;, = ¢. Hence, by
Lemma 14, we find that (2.11) has no solution with k£ = 102 and d = 293. Similarly
we exclude all values of d. We proceed like this to show that (2.11) has no solution for
all k£ with 68 < k < 102 and k — 1 prime. Now let k < 62. We fix k = ky = 62. By
(8.1), (8.4) and Lemma 6, we get oy = 254665, 0, = 3,03 = 243, g = 94068,
as = 20. We fix d = 243. Now we apply the algorithm as earlier. We find that &,
has 90 elements and £;3 = ¢. We apply Lemma 14 to derive that (2.11) has no
solution for k = 62. All other values of k < 62 with kK — 1 prime are excluded simi-
larly. This completes the proof of Lemma 15 when d = p*.

Next we explain the case d = 5p*. Then y; = 5,¢) = ¢; = ¢, = 1. By (8.7) and (8.3),
we have

k<54, d <250k —1). 9.1)

We fix k=ko=54. By Lemma 6, we get n+ (ko — 1)d>.6599 kj. Let
d < 15(kg — 1). Then (8.5) is valid since k satisfies the assumption of Lemma 8(b).
Thus n+ (kg — 1)d < 126117. Further we have o) = 126117, 0, = 35,03 = 785,
og = 103910. Also n = a4 — 53 a3 = 62305. By Step 1, we get |S;| = 20. Thus
as =20. We fix d=785. Then 151 < Q <353. Suppose Q =353. Then
Do = {124609}. For each Q, we compute Dy and form &,;. We find that £, contains
46 elements. Now we follow Step 2. We find

Ea1 = {69169, 72361, 74498, 85849, 98283, 99458, 108578, 113569, 124609}

and £, = ¢. Hence, we conclude from Lemma 14 that (2.11) has no solution with
k =54,d ="785. Similarly we exclude all values of d with 35 < d < 785. Thus we
may suppose by (9.1) that 15(kg — 1) < d < 25(kg —1). Then by (8.6), we get
n+ (ko — 1)d < 91125. On the other hand, n + (kg — 1)d = 103910 by Lemma 6. This
is a contradiction. Thus (2.11) has no solution with k£ = 54. We proceed like this to
exclude all values of k with 38 < k < 54 such that k — 1 is prime. Let 12 < k < 38.
We fix k=ko=232. By Lemma 6, we get n+(ko—1)d>.0417k]. Let
d <20(ko —1). Then by (8.4), we get n+ (ko — 1)d < 54528. Thus we have
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oy = 54528, 0y = 35, 03 = 605, 04 = 1366, 05 = 8. We fix d = 605. We find that &,
contains 98 elements and &;3 =¢. Hence, (2.11) has no solution with
k =32,d=605. Similarly we exclude all values of d. Thus we may suppose that
20(ko — 1) < d < 25(kg—1). By (8.6), we get n-+(ko—1)d<32000. Thus
op = 32000, oy = 635, a3 = 755, 04 = 1366, a5 = 8. We fix d = 755. We find that &,
contains 45 elements and &;3 =¢. Hence (2.11) has no solution with
k =32,d="755. Similarly we exclude all values of d. Thus (2.11) has no solution
with k = 32. Likewise we exclude all values of k with 12 < k < 32 and k — 1| prime.
The proof for other values of d # p*, 5p* is similar. O

10. The Assumption k—1 Prime if £ > 12 and the Final Lemma

For removing the assumption that kK — 1 is prime if k > 12 in Lemma 15 we prove the
following result which is true for any d.

LEMMA 16. Let ¢ €{0,1} and d be given. Let ki< ky be positive integers such
that ky — 1 and ky, — 1 are consecutive primes. Suppose that (2.11) with k =k, and
t = ky— @ has no solution in integers n,d,, ...,d, and b with n > 0, d; € [0, k) for
1<i<t and P(b) <ky. Let ki <ky. Then (2.11) with k=k,t=k'— ¢ and
P(b) < k' does not hold.

Proof. Let ¢ € {0, 1} and d be given. Suppose (2.11) holds for some k = &’ with
ki <k' <kyt=k—¢ and P(b) < k'. We see that k' — 1 is not a prime. Hence
P(b) < k' — 1 and each term n + d;d = aix,? satisfies P(a;) < k' — 1 such that

n+did)---(n+d,_d) = b'y? (10.1)
with P(b') < k' — 1. If k' — 1 = ky, then by our hypothesis, (10.1) has no solution and

hence (2.11) with k =k, t = k" — ¢ and P(b) < k' has no solution. If k' — 1 > ki,
then k' — 2 is not a prime and arguing as before from (10.1), we get

(n+did)...(n+d_»d)=b"y*
with P(b") < k' — 2 and we proceed inductively to see that the assertion of the lemma
holds. If ¢ = 1 we continue to be in the case ¢ = 1 throughout the induction process.
This is clear when 7 is the omitted term. For securing this when 7 is not an omitted
term, we regard n(n+d)---(n+id) as a product from n(n+d)---(n+ i+ 1)d)
with n + (i + 1)d as an omitted term. O

We combine Lemmas 15 and 16 to conclude the following result.

LEMMA 17. Assume (2.11) with P(b) < k andk > 4. Thenk <9 and b > 1 if d = p*,
t=k;k<29ifd=p*,t=k—1and k < 11 otherwise.

Proof. We assume (2.11) with P(b) < k with k = 4. Then we derive that b > 1 if
k = 4,5 and ¢ = k by the results of Euler and Oblath stated in Section 1. Further, we
may suppose that k satisfies the assumptions stated in the begining of Section 7. By
Lemma 16, there is no loss of generality in assuming that k — 1 is prime for & > 12.
Finally we apply Lemma 15 to arrive at a contradiction. O
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11. Proofs of the Theorems and Corollaries

From Lemma 17, we derive
COROLLARY 4. Assume (1.1) with gcd(n,d) = 1 and P(b) < k.

() If d=p*,b=1, then k = 3.
(i) If d = p*, then k < 9.
(iil) If d # p*, then either k =3,d =Tp* or (n,d, k) = (1, 24, 3).

Proof. Assume (1.1) with ged(n, d) = 1 and P(b) < k. Then (2.11) with ¢ = k and
P(b) < k holds. Now (i) and (ii) follow directly from Lemma 17 and (iii) is obtained
by combining Lemmas 17 and 2. O

Proof of Theorem 4. By Lemma 17, we may assume that d # p*, k < 11 and the
assertion follows from Lemma 2. O

Proof of Theorem 3. Assume (1.1) with ged(n, d) = 1 and P(b) = k. Further we
may assume that k > 30 if d = p*. Also we see from Lemma 2 that k > 12 if d # p*.
We delete the term divisible by k on the left-hand side of (1.1). By Corollary 4, we
may suppose that the deleted term is neither » nor n + (kK — 1)d. Hence (1.3) is valid
with 0 < i < k — 1. This is not possible by Theorem 4. O

Proof of Corollary 1. Assume (1.1) with ged(n,d) =1 and 1 < d < 104. Then
deD. Let d e {p*, 7p*}, k = 3. Now (1.1) can be written as

YV +a\ XY +dyY =X +dX* + a,X + df,
where X =b(n+d), Y = by, d| = a) = d; = dy = 0, dy = —b*d*. Thus we have

Y’ = X° - pPd*X (11.1)
with X and Y as above. The cases

d=17,103 and b=1;d=61,101 and b=3; d=25 and b=6

are excluded by congruence considerations. In the remaining cases we compute all
the integral solutions (X, Y) of the above elliptic equation using SIMATH from
which we find that the solutions of (1.1) are given by

(n,d) €{(2,7),(18,7), (64, 17),(2,23), (4, 23), (75, 23), (98, 23), (338, 23),
(3675,23), (800, 41), (2,47), (27, 71), (50, 71), (96, 73), (864,97)}. (11.2)

Further, for d # p*, 7p* and k = 3, we see that (n, d) = (1, 24) by Lemma 2. Suppose
d=p*, k=4. Then (1.1) with d=p* k=3 holds and by (11.2) we see that
(n,d) = (75,23). Next let d = p”*, k = 5. Then we may assume that 5 | @, otherwise
the assertion follows from (11.2) as above. We see that ao, aj, a3, as € {1, 2, 3, 6}
and by using Legendre Symbol mod 5 we have either ay, a4 € {1, 6}, a;, a3 € {2, 3}
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or ap, ds € {2, 3}, ar,az € {1, 6}. Hence, ay = a4 = 1 with x(, x4 odd or a1 = a3 =1
with x;, x3 odd. This is not possible by (3.1). Thus we may assume that k > 6 when-
ever d = p*. By Corollary 4 and Theorem 3 we need to consider only

d=p*with 6 <k <9 orifkisprime, 11 <k <29. (11.3)

Let |R| =k —1. By (2.15), we see that (n/p) = (a;/p) for 0 <i < k. Further,
f(2) = 3. Therefore p#3 and (2/p) = (3/p) =1 which implies that d= 23,47,
71,73, 97. Further, we may assume that P(a;,) = 5 for some i, with 0 < iy < k. Thus
p #5 and 1 = (a;,/p) = (5/p). On the other hand, we observe that (5/p) = —1 for
p =23,47,73,97. This is a contradiction implying that d = 71. For k > 8, there
exists 7; such that P(a;) =7 and 1 = (a;,/71) = (7/71) = —1, a contradiction. Thus
k =6,7. Since f(2) = 3, there exist nonnegative integers 7, i and j with i > 0 and
I +i<i+j<k—1such that

X'(X'+id) X' +jd) = by} (11.4)

where X’ = n+ 7d, and by, y; are positive integers with P(b;) < 3. We may assume
that ged (X', 4,/, by) = 1. We rewrite the above equation as

X(X 4+ ib1d)(X + jbid) = Y?

where X =50 X", Y = b%yl. Then we use SIMATH to find all the solutions of the
above elliptic curve and we conclude that (1.1) with d = 71 has no solution.

Let |R| < k—2. Suppose (a) and (b) of Lemma 9 do not hold. Arguing as in
Lemma 11(i)), we see that there exist distinct g, vo € R(]z) and py,v; with
Uy > Ky, vo > vy satisfying (7.5) and (hy, hy) = (1, p*) is the partition corresponding
to both a,, = a,, and a,, = a,,. Further, (7.6) holds with ¢ = 1. Hence, we conclude
from Lemma 10 that

n<(k—1)2min(§',k—%>, d<4k—1). (11.5)
Suppose (a) or (b) of Lemma 9 holds. Then (7.1) is valid which gives (11.5). Thus
(11.5) is always valid. Now we apply the algorithm of Section 9 after replacing
P(b) < k by P(b) < k and the values of n, d, k given by (11.5), (11.3) are excluded. [

Proof of Corollary 2. We shall use (11.4) several times with the assumption on b;
relaxed to P(b;) < 5. We denote by by, ..., bs and y,, ..., ys positive integers such
that P(b;) < 5. Assume (1.3) with ged(n,d) =1 and P(b) < k. By Theorem 4, we
need to consider only

k<29,d=p* k=4,5d=35,45,55, 63, 65. (11.6)
The following cases of (11.4) are solved by congruence considerations in addition to
the ones stated in the begining of the proof of Corollary 1:

by=2,d=25orb=1,d=611ifi=1,j=3;
by=3,d=250rb;=2,d=430r by =2,d=53ifi=2,j=3;
by =30,d=59o0r by =15d=67o0or by =5,d=671fi=1,j=2.
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It will be assumed in the subsequent argument without reference that the above cases
are already solved.

Let £k =4,5. Then we find that an equation of the form (11.4) with P(b;) < 3 is
valid. Now we use SIMATH as in Corollary 1 to find all the solutions of (1.3).
Thus we assume that k > 6. Then d = p* by (11.6). We shall again use SIMATH
in the remaining part of the proof without reference for solving elliptic equations
in integers.

First we consider the case |R| = k — 2. Then we see that p # 3 from f{(2) > 2 and
() #@3. Let k>9. Then f(2) >3 which implies that (2/p)=(3/p) = 1. Thus
d=23,47. But there exists i with 0<iy <k such that P(aq;,)=5. Hence
1 =(ai,/p) = (5/p) = —1 for p=23,47 a contradiction. Thus we conclude that
k < 8. Let k =6 or 7. Then we see that either

n(n+d)n+2d) = byy3
or
(n+ 3d)(n + 4d)(n + 5d) = b3)>.

Thus (11.1) is valid with b=by, X =bhy(n+d), Y =by; or with b=bhs, X =

by(n+4d), Y = b3y;. Now we compute all the integral solutions of these elliptic

equations from which we see that (1.3) has the only solution (n, d, k) = (5, 11, 6).
Let k = 8. Suppose 7 divides @y and ay. Then

(n+id)n+ (i + Dd)(n + (i + 2)d) = bsy> (11.7)

with i =1 holds. Hence (11.1) is valid with b = by, X = by(n + 2d), Y = bﬁy4. By
computing all the integral solutions of these elliptic equations we see that (1.3) has
no solution. Suppose 7 divides only one a;. Then (11.7) holds for some i with
0<i<5or7]|a; and n+ 5d is omitted or 7| as and n + 2d is omitted. The first pos-
sibility is excluded as earlier. In the latter two possibilities we see that (11.4) holds
with X’ =n, y; = ys, by = bs, i = 1,j = 3. Now we compute all the integral solutions
of these elliptic equations from which we find that (1.3) has no solution.

Suppose |R| < k — 3. Then as seen in Corollary 1, (11.5) holds. Further the values
of n,d, k given by (11.5) and k < 29, d = p* are excluded by using the algorithm of
Section 9. O

Proof of Theorem 2. We denote by bg, b7, bg and yg, y7, yg positive integers such
that P(b;) < k. Let the assumptions of Theorem 2 be satisfied. We may assume that
k = 4. By Corollary 4(iii), we may suppose that gcd(n, d) > 1. Further we divide
both the sides of (1.1) by ged(n, ) to observe that there is no loss of generality in
assuming that ged(n, y) = 1. For the preceding observation we assume that the
second possibility in the assertion of Theorem 2 is excluded. We observe that y > 1
unless d = 2*. Further ged(n,d) =1, > 0. Let ' =n/t* and d’ = d/f = g F
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Then (1.1) becomes
P*n' ' +dy. .. (0 + (k= 1)d") = by? (11.8)
with ged(n',d’) = 1.
Let o — f > 0. If t > k, we observe that fk is even and we derive from (11.8) that
W +dy...(n+(k—1)d') = byt (11.9)
Further (11.9) follows from (11.8) when t < k. Thus (11.9) is always valid. On the
other hand, (11.9) is not possible by y > 1 if d # 2* and Corollary 4(iii).

Thus we may assume that o« — f = 0. Then d # 2* since d f n. Therefore y > 1.
From (11.8) we get either

w4y + (k= 1)y) = bry3 (11.10)
or T =p = k,ok odd and
w4 y)-- (' + (k= 1)y) = pbsyi. (11.11)

We exclude (11.10) by Corollary 1 since y < 12. Suppose that (11.11) holds. Then
k =5 and k # 6. We omit the term divisible by p on the left-hand side of (11.11).
We may suppose that the omitted term is neither #' nor #’ + (k — 1)y since otherwise
the assertion follows from Corollary 1. Now we apply Corollary 2 to (11.11)
to get (W, y,p,k)= (4,7,11,5). This implies that (n,d, k)= (4-11*,7-11%5)
with o odd. O

Proof of Theorem 1. We assume (1.1) with d = t* where 1 = p, k > 4, P(b) < k.
We may suppose that ged(n, d) > 1 by Corollary 4(i),(ii). Let f = min(ord,(n), o),
n =n/pf,d =d/pP. Thus ged(’,d) =1 and (11.8) is valid.

(i) Suppose b = 1. Let ord,(n) # a. Then the order of p dividing the left hand side
of (11.8) is fk and it is even. This is not possible by Corollary 4(i) and a result of
Erdés [2] and Rigge [8] proved independently that a product of two or more conse-
cutive positive integers is not a square. Thus ord,(n) = o and we re-write (11.8) as

P+ 1)+ k—1) =y (11.12)
Further, we may suppose as above that k is odd. Let n' > k. We see from [13,
Corollary 3(ii)] that #/(n’ +1)...(n 4+ k — 1) is divisible by at least two distinct
primes exceeding k unless n' = 6,8 and k = 5. The latter possibilities are excluded
by (11.12) and we conclude from (11.12) that n’ > k*>. Now, as stated in Section 1
on (1.1) with d =1, we derive that n'(n’ +1)--- (' + k — 1) is divisible by at least
two distinct primes exceeding k to odd powers. This contradicts (11.12). Hence, we
conclude that n’ < k. If ' + k < 12, we check directly that (11.12) is not valid. Thus
we may assume 7' + k > 12. Further ' < (W' +k)/2 <nw' +k—1and n(w +k — 1)—
n((n’ 4+ k)/2) = 2. Thus the left hand side of (11.12) is divisible by a prime exactly to
the first power. This is not possible.

(ii) Let b > 1 and d f n. Then 4 > 1 and ord,(n) # a. Then we observe as above
from (11.8) that Sk is even if p > k and we derive (11.9). Now we apply Corollary
4(ii) to (11.9) for getting k < 9. O
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