Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T01:11:50.585Z Has data issue: false hasContentIssue false

Microstructure and Physical Properties of GaN Films on Sapphire Substrates

Published online by Cambridge University Press:  03 September 2012

Zhizhong Chen
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P.R.China
Rong Zhang
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P.R.China
Jianming Zhu
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P.R.China
Bo Shen
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P.R.China
Yugang Zhou
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P.R.China
Peng Chen
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P.R.China
Weiping Li
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P.R.China
Yi Shi
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P.R.China
Shulin Gu
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P.R.China
Youdou Zheng
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P.R.China
Get access

Abstract

Transmission electron microscopy (TEM), x-ray diffraction (XRD), photoluminescence (PL) and Raman scattering measurements were applied to study the correlation between the microstructure and physical properties of the GaN films grown by light radiation heating metalorganic chemical vapor deposition (LRH-MOCVD), using GaN buffer layer on sapphire substrates. When the density of the threading dislocation (TD) increases about one order of magnitude, the yellow luminescence (YL) intensity is strengthened from negligible to two orders of magnitude higher than the band edge emission intensity. The full width of half maximum (FWHM) of the GaN (0002) peak of the XRD rocking curve was widened from 11 min to 15 min, and in Raman spectra, the width of E2 mode is broadened from 5 cm-1 to 7 cm-1. A “zippers” structure at the interface of GaN/sapphire was observed by high-resolution electron microscope (HREM). Furthermore the origins of TD and relationship between physical properties and microstructures combining the growth conditions are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S. et al. , Jpn. J. Appl. Phys., 35, L74 (1996).Google Scholar
2. Ogino, T. and Aoki, M., Jpn. J. Appl. Phys. 19, 295 (1998).Google Scholar
3. Neugebauer, J. and Walle, C.G. Van de, Appl. Phys Lett., 69, 503 (1996).Google Scholar
4. Ponce, F.A., Bour, D.P., Götz, W. and Wright, P.J., Appl. Phys. Lett., 68, 57 (1996).Google Scholar
5. Zhang, R. and Kuech, T.F., Appl. Phys. Lett., 72, 1611 (1998).Google Scholar
6. Ning, X.J., Chien, F.R., Pirous, P., Yang, J.W. and Khan, M. A., J. Mater. Res., 11, 580 (1996).Google Scholar
7. Hao, M.S., Sugahara, T., Sato, H., Morishima, Y., Naoi, Y., Romano, L.T., Sakai, S., Jpn. J. Appl. Phys. 37, part2 (3A), L291 (1998).Google Scholar
8 Potin, V., Vermaut, P., Ruterana, P. and Nouet, G., J. Electron. Mater., 27, 266 (1998).Google Scholar
9. Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
10. Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K. and Sawaki, N., J. Crystal Growth 98, 209 (1989).Google Scholar
11. Li, G., Chua, S.J., Xu, S.J., Wang, W., Li, P., Beaumont, G., and Gibart, P., Appl. Phys. Lett. 74, 2821 (1999).Google Scholar
12. Grandjean, N., Massies, J., and Leroux, M., Appl. Phys. Lett. 69, 2071 (1996).Google Scholar
13. Fuke, S., Teshigawara, H., Kuwahara, K. Takano, Y., Ito, T., Yanagihara, M., Ohtsaka, K., J. Appl.Phys. 83, 764 (1998).Google Scholar
14. Rosner, S.J., Carr, E.C., Ludowise, M.J., Appl. Phys. Lett., 70, 420 (1997).Google Scholar
15. Ponce, F.A., Krusor, B.S., Major, J.S., Plano, M.E., and Welch, D.F., Appl.Phys. Lett, 67(3), 410 (1995).Google Scholar
16. Heying, B., Wu, X.H., Keller, S., Li, Y., Kapolnek, D., Keller, B.P., DenBaars, S.P., and Speck, J.S., Appl Phys. Lett. 68(5), 643 (1996).Google Scholar
17. Tsen, S.-C.Y., Smith, D. J., Tsen, K.T., Kim, W. and Morkoc, H., J. Appl. Phys. 82, 6008 (1997).Google Scholar
18. Shen, B., Zhou, Y.G., Chen, Z.Z., Chen, P., Li, W.P., Zheng, Y.D., Appl. Phys. A 68, 593 (1999).Google Scholar
18. Chen, Z.Z., Zhu, J.M., Zhang, R. Shen, B., Zhou, Y.G., Chen, P., W.P. Li (unpublished).Google Scholar
20. Vook, R.W., in Epilayer Growth, edited by Matthews, J.W., (Academic, New York, 1975), p.339.Google Scholar
21. Christiansen, S., Albrecht, M., Dorsch, W., Mater. Sci. Eng. B43, 296 (1997).Google Scholar