
8
Field transformations

The previous chapters take a pragmatic, almost engineering, approach to the
solution of field theories. The recipes of chapter 5 are invaluable in generating
solutions to field equations in many systems, but the reason for their effective-
ness remains hidden. This chapter embarks upon a train of thought, which lies
at the heart of the theory of dynamical systems, which explain the fundamental
reasons why field theories look the way they do, how physical quantities are
related to the fields in the action, and how one can construct theories which give
correct answers regardless of the perspective of the observer. Before addressing
these issues directly, it is necessary to understand some core notions about
symmetry on a more abstract level.

8.1 Group theory

To pursue a deeper understanding of dynamics, one needs to know the language
of transformations: group theory. Group theory is about families of transforma-
tions with special symmetry. The need to parametrize symmetry groups leads
to the idea of algebras, so it will also be necessary to study these.

Transformations are central to the study of dynamical systems because all
changes of variable, coordinates or measuring scales can be thought of as
transformations. The way one parametrizes fields and spacetime is a matter of
convenience, but one should always be able to transform any results into a new
perspective whenever it might be convenient. Even the dynamical development
of a system can be thought of as a series of transformations which alter the
system’s state progressively over time. The purpose of studying groups is
to understand the implications posed by constraints on a system: the field
equations and any underlying symmetries – but also the rules by which the
system unfolds on the background spacetime. In pursuit of this goal, we shall
find universal themes which enable us to understand many structures from a few
core principles.
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170 8 Field transformations

8.1.1 Definition of a group

A group is a set of objects, usually numbers or matrices, which satisfies the
following conditions.

(1) There is a rule of composition for the objects. When two objects in a
group are combined using this rule, the resulting object also belongs to
the group. Thus, a group is closed under the action of the composition
rule. If a and b are two matrices, then a · b �= b · a is not necessarily true.
If a ·b = b ·a, the group is said to be Abelian, otherwise it is non-Abelian.

(2) The combination rule is associative, i.e. (a · b) · c = a · (b · c).
(3) The identity element belongs to the set, i.e. an object which satisfies

a · I = a.

(4) Every element a in the set has a right-inverse a−1, such that a−1 · a = I .

A group may contain one or more sub-groups. These are sub-sets of the whole
group which also satisfy all of the group axioms. Sub-groups always overlap
with one another because they must all contain the identity element. Every
group has two trivial or improper sub-groups, namely the identity element and
the whole group itself. The dimension of a group dG is defined to be the
number of independent degrees of freedom in the group, or the number of
generators required to represent it. This is most easily understood by looking
at the examples in the next section. The order of a group OG is the number of
distinct elements in the group. In a continuous group the order is always infinite.

If the ordering of elements in the group with respect to the combination rule
matters, i.e. the group elements do not commute with one another, the group is
said to be non-Abelian. In that case, there always exists an Abelian sub-group
which commutes with every element of the group, called the centre. Schur’s
lemma tells us that any element of a group which commutes with every other
must be a multiple of the identity element. The centre of a group is usually a
discrete group, Z N , with a finite number, N , of elements called the rank of the
group.

8.1.2 Group transformations

In field theory, groups are used to describe the relationships between compo-
nents in a multi-component field, and also the behaviour of the field under
spacetime transformations. One must be careful to distinguish between two
vector spaces in the discussions which follow. It is also important to be very
clear about what is being transformed in order to avoid confusion over the
names.
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8.1 Group theory 171

• Representation space. This is the space on which the group trans-
formations act, or the space in which the objects to be transformed
live. In field theory, when transformations relate to internal symmetries,
the components of field multiplets (φ1, φ2, . . . , φdR ) are the coordinates
on representation space. When transformations relate to changes of
spacetime frame, then spacetime coordinates are the representation space.

• Group space. This is an abstract space of dimension dG . The dimension
of this space is the number of independent transformations which the
group is composed of. The coordinates (θ1, θ2, . . . , θdG ) in this space are
measured with respect to a set of basis matrices called the generators of
the group.

Since fields live on spacetime, the full representation space of a field consists
of spacetime (µ, ν indices) combined with any hidden degrees of freedom: spin,
charge, colour and any other hidden labels or indices (all denoted with indices
A, B, a, b, α, β) which particles might have. In practice, some groups (e.g. the
Lorentz group) act only on spacetime, others (e.g. SU (3)) act only on hidden
indices. In this chapter, we shall consider group theory on a mainly abstract
level, so this distinction need not be of concern.

A field, φ(x), might be a spacetime-scalar (i.e. have no spacetime indices),
but also be vector on representation space (have a single group index).

φ(x)A =



φ1(x)
φ2(x)
...

φdR (x)


 . (8.1)

The transformation rules for fields with spacetime (coordinate) indices are
therefore

φ→ φ′

Aµ→ U ν
µ Aν

gµν → U ρ
µ U λ

ν gρλ, (8.2)

and for multiplet transformations they are

φA → UAB φ
B

Aa
µ→ Uab Ab

µ

g A
µν → UAB gB

µν. (8.3)

All of the above have the generic form of a vector v with Euclidean components
vA = vA transforming by matrix multiplication:

v → Uv, (8.4)
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172 8 Field transformations

or

vA ′ = U A
B v

B . (8.5)

The label A = 1, . . . , dR , where dR is the dimension of the representation. Thus,
the transformation matrix U is a dR×dR matrix and v is a dR-component column
vector. The group space is Euclidean, so raised and lowered A, B indices are
identical here.

Note that multiplet indices (those which do not label spacetime coordinates)
for general group representations G R are labelled with upper case Latin charac-
ters A, B = 1, . . . , dR throughout this book. Lower case Latin letters a, b =
1, . . . , dG are used to distinguish the components of the adjoint representation
Gadj.

In general, the difference between a representation of a group and the group
itself is this: while a group might have certain unique abstract properties which
define it, the realization of those properties in terms of numbers, matrices or
functions might not be unique, and it is the explicit representation which is
important in practical applications. In the case of Lie groups, there is often a
variety of possible locally isomorphic groups which satisfy the property (called
the Lie algebra) that defines the group.

8.1.3 Use of variables which transform like group vectors

The property of transforming a dynamical field by simple matrix multiplication
is very desirable in quantum theory where symmetries are involved at all
levels. It is a direct representation of the Markov property of physical law. In
chapter 14, it becomes clear that invariances are made extremely explicit and
are algebraically simplest if transformation laws take the multiplicative form in
eqn. (8.5).

An argument against dynamical variables which transform according to group
elements is that they cannot be observables, because they are non-unique.
Observables can only be described by invariant quantities. A vector is, by
definition, not invariant under transformations; however, the scalar product of
vectors is invariant.

In classical particle mechanics, the dynamical variables q(t) and p(t) do
not transform by simple multiplication of elements of the Galilean symmetry.
Instead, there is a set of eqns. (14.34) which describes how the variables change
under the influence of group generators. Some would say that such a formulation
is most desirable, since the dynamical variables are directly observable, but the
price for this is a more complicated set of equations for the symmetries.

As we shall see in chapter 14, the quantum theory is built upon the idea that
the dynamical variables should transform like linear combinations of vectors on
some group space. Observables are extracted from these vectors with the help

https://doi.org/10.1017/9781009289887.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.011


8.2 Cosets and the factor group 173

of operators, which are designed to pick out actual data as eigenvalues of the
operators.

8.2 Cosets and the factor group

8.2.1 Cosets

Most groups can be decomposed into non-overlapping sub-sets called cosets.
Cosets belong to a given group and one if its sub-groups. Consider then a group
G of order OG , which has a sub-group H of order OH . A coset is defined by
acting with group elements on the elements of the sub-group. In a non-Abelian
group one therefore distinguishes between left and right cosets, depending on
whether the group elements pre- or post-multiply the elements of the sub-group.
The left coset of a given group element is thus defined by

G H ≡ {
G H1,G H2, . . . ,G HdH

}
(8.6)

and the right coset is defined by

H G = {
H1G, H2G, . . . , HdH G

}
. (8.7)

The cosets have order OH and one may form a coset from every element of G
which is not in the sub-group itself (since the coset formed by a member of the
coset itself is simply that coset, by virtue of the group axioms). This means that
cosets do not overlap.

Since cosets do not overlap, one can deduce that there are OG − OH distinct
cosets of the sub-group. It is possible to go on forming cosets until all these
elements are exhausted. The full group can be written as a sum of a sub-group
and all of its cosets.

G = H + G1 H + G2 H + · · · + G p H, (8.8)

where p is some integer. The value of p can be determined by counting the
orders of the elements in this equation:

OG = OH + OH + OH + · · · + OH = (p + 1)OH . (8.9)

Thus,

OG = (p + 1)OH . (8.10)

Notice that the number of elements in the sub-group must be a factor of the
number of elements in the whole group. This is necessarily true since all cosets
are of order OH .
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174 8 Field transformations

8.2.2 Conjugacy and invariant sub-groups

If g1 is an element of a group G, and g2 is another element, then gc defined by

gc = g2 g g−1
2 (8.11)

is said to be an element of the group G which is conjugate to g1. One can form
conjugates from every other element in the group. Every element is conjugate
to itself since

g = I g I−1. (8.12)

Similarly, all elements in an Abelian group are conjugate only to themselves.
Conjugacy is a mutual relationship. If g1 is conjugate to g2, then g2 is conjugate
to g1, since

g1 = g g2 g−1

g2 = g−1 g1 (g
−1)−1. (8.13)

If g1 is conjugate to g2 and g2 is conjugate to g3, then g1 and g3 are also
conjugate. This implies that conjugacy is an equivalence relation.

Conjugate elements of a group are similar in the sense of similarity transfor-
mations, e.g. matrices which differ only by a change of basis:

A′ =  M  −1. (8.14)

The conjugacy class of a group element g is the set of all elements conjugate to
g: {

I g I−1, g1 g g−1
1 , g2 g g−1

2 , . . .
}
. (8.15)

A sub-group H of G is said to be an invariant sub-group if every element of the
sub-group is conjugate to another element in the sub-group:

Hc = G H G−1 = H. (8.16)

This means that the sub-group is invariant with respect to the action of the group,
or that the only action of the group is to permute elements of the sub-group. It
follows trivially from eqn. (8.16) that

G H = H G, (8.17)

thus the left and right cosets of an invariant sub-group are identical. This means
that all of the elements within H commute with G. H is said to belong to the
centre of the group.
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8.2 Cosets and the factor group 175

8.2.3 Schur’s lemma and the centre of a group

Schur’s lemma states that any group element which commutes with every other
element of the group must be a multiple of the identity element. This result
proves to be important in several contexts in group theory.

8.2.4 The factor group G/H

The factor group, also called the group of cosets is formed from an invariant
sub-group H of a group G. Since each coset formed from H is distinct, one can
show that the set of cosets of H with G forms a group which is denoted G/H .
This follows from the Abelian property of invariant sub-groups. If we combine
cosets by the group rule, then

Hg1 · Hg2 = H H g1 g2 = H(g1 · g2, ) (8.18)

since H · H = H . The group axioms are satisfied.

(1) The combination rule is the usual combination rule for the group.

(2) The associative law is valid for coset combination:

(Hg1 · Hg2) · Hg3 = H(g1 · g2) · Hg3 = H((g1 · g2) · g3). (8.19)

(3) The identity of G/H is H · I .

(4) The inverse of Hg is Hg−1.

The number of independent elements in this group (the order of the group) is,
from eqn. (8.10), p + 1 or OG/OH . Initially, it might appear confusing from
eqn. (8.7) that the number of elements in the sub-group is in fact multiplied
by the number of elements in the group, giving a total number of elements in
the factor group of OG × OH . This is wrong, however, because one must be
careful not to count cosets which are similar more than once; indeed, this is
the point behind the requirement of an invariant sub-group. Cosets which are
merely permutations of one another are considered to be equivalent.

8.2.5 Example of a factor group: SU (2)/Z2

Many group algebras generate groups which are the same except for their
maximal Abelian sub-group, called the centre. This virtual equivalence is
determined by factoring out the centre, leaving only the factor group which
has a trivial centre (the identity); thus, factor groups are important in issues
of spontaneous symmetry breaking in physics, where one is often interested in
the precise group symmetry rather than algebras. As an example of a factor
group, consider SU (2). The group elements of SU (2) can be parametrized in
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176 8 Field transformations

terms of dG = 3 parameters, as shown in eqn. (8.131). There is a redundancy in
these parameters. For example, one can generate the identity element from each
of the matrices g1(θ1), g2(θ2), g3(θ3) by choosing θA to be zero.

A non-trivial Abelian sub-group in these generators must come from the
diagonal matrix g3(θ3). Indeed, one can show quite easily that g3 commutes with
any of the generators for any θA �= 0, if and only if exp(i 1

2θ3) = exp(−i 1
2θ3) =

±1. Thus, there are two possible values of θ3, arising from one of the generators;
these lead to an Abelian sub-group, and the group elements they correspond to
are:

H =
{ (

1 0
0 1

)
,

( −1 0
0 −1

) }
, (8.20)

which form a 2 × 2 representation of the discrete group Z2. This sub-group is
invariant, because it is Abelian, and we may therefore form the right cosets of
H for every other element of the group:

H · H = { 1 , −1 }
H · g1(θ1) = {g1(θ1) , −g1(θ1)}
H · g1(θ

′
1) = {g1(θ

′
1) , −g1(θ

′
1)}

H · g1(θ
′′
1 ) = {g1(θ

′′
1 ) , −g1(θ

′′
1 )}

...

H · g2(θ2) = {g2(θ2) , −g2(θ2)}
H · g2(θ

′
2) = {g2(θ

′
2) , −g2(θ

′
2)}

...

H · g3(θ3) = {g3(θ3) , −g2(θ3)}
... (8.21)

The last line is assumed to exclude the members of g3, which generate H , and
the elements of g1 and g2, which give rise to the identity in Z2, are also excluded
from this list. That is because we are listing distinct group elements rather than
the combinations, which are produced by a parametrization of the group.

The two columns on the right hand side of this list are two equivalent copies
of the factor group SU (2)/Z2. They are simply mirror images of one another
which can be transformed into one another by the action of an element of Z2.
Notice that the full group is divided into two invariant pieces, each of which has
half the total number of elements from the full group. The fact that these coset
groups are possible is connected with multiple coverings. In fact, it turns out
that this property is responsible for the double-valued nature of electron spin,
or, equivalently, the link between the real rotation group SO(3) (dG = 3) and
the complexified rotation group, SU (2) (dG = 3).
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8.3 Group representations 177

8.3 Group representations

A representation of a group is a mapping between elements of the group and
elements of the general linear group of either real matrices, GL(n, R), or
complex matrices, GL(n,C). Put another way, it is a correspondence between
the abstract group and matrices such that each group element can be represented
in matrix form, and the rule of combination is replaced by matrix multiplication.

8.3.1 Definition of a representation G R

If each element g of a group G can be assigned a non-singular dR × dR matrix
UR(g), such that matrix multiplication preserves the group combination rule
g12 = g1 · g2,

UR(g12) = UR(g1 · g2) = UR(g1)UR(g2), (8.22)

then the set of matrices is said to provide a dR dimensional representation of
the group G. The representation is denoted collectively G R and is composed
of matrices UR . In most cases we shall call group representations U to avoid
excessive notation.

8.3.2 Infinitesimal group generators

If one imagines a continuous group geometrically, as a vector space in which
every point is a new element of the group, then, using a set of basis vectors, it is
possible to describe every element in this space in terms of coefficients to these
basis vectors. Matrices too can be the basis of a vector space, which is why
matrix representations are possible. The basis matrices which span the vector
space of a group are called its generators.

If one identifies the identity element of the group with the origin of this
geometrical space, the number of linearly independent vectors required to reach
every element in a group, starting from the identity, is the dimension of the
space, and is also called the dimension of the group dG . Note that the number
of independent generators, dG , is unrelated to their size dR as matrices.

Thus, given that every element of the group lies in this vector space, an
arbitrary element can be described by a vector whose components (relative to the
generator matrices) uniquely identify that element. For example, consider the
group SU (2), which has dimension dG = 3. In the fundamental representation,
it has three generators (the Pauli matrices) with dR = 2:

T1 = 1

2

(
0 1
1 0

)
, T2 = 1

2

(
0 −i
i 0

)
, T3 = 1

2

(
1 0
0 −1

)
. (8.23)

A general point in group space may thus be labelled by a dG dimensional vector
(θ1, θ2, θ3):

& = θ1 T1 + θ2 T2 + θ3 T3. (8.24)
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178 8 Field transformations

A general element of the group is then found by exponentiating this generalized
generator:

UR = exp(i&). (8.25)

UR is then a two-dimensional matrix representation of the group formed from
two-dimensional generators. Alternatively, one may exponentiate each gener-
ator separately, as in eqn. (8.131) and combine them by matrix multiplication
to obtain the same result. This follows from the property that multiplication of
exponentials leads to the addition of the arguments.

For continuous groups generally, we can formalize this by writing a Taylor
expansion of a group element U (θ) about the identity I ≡ U (0),

U (θA) =
dG∑

A=1

θA

(
∂U

∂θA

) ∣∣∣
θA=0

+ · · · , (8.26)

where dG is the dimension of the group. We can write this

U (θ) = U (0)+
dG∑

A=1

θATA + 1

2!
θAθB TATB + · · · + O(θ3)

= I +
dG∑

A=1

θATA + 1

2!
θAθB TATB + · · · + O(θ3), (8.27)

where

TA =
(
∂U

∂θA

) ∣∣∣
θA=0

. (8.28)

TA is a matrix generator for the group.

8.3.3 Proper group elements

All infinitesimal group elements can be parametrized in terms of linear com-
binations of generators TA; thus, it is normal for group transformations to be
discussed in terms of infinitesimal transformations. In terms of the geometrical
analogy, infinitesimal group elements are those which are very close to the
identity. They are defined by taking only terms to first order in θ in the sum
in eqn. (8.27). The coefficients θA are assumed to be infinitesimally small, so
that all higher powers are negligible. This is expressed by writing

U (δθ) = U (0)+ δθATA, (8.29)

with an implicit summation over A. With infinitesimal transformations, one
does not get very far from the origin; however, the rule of group composition
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may be used to build (almost) arbitrary elements of the group by repeated
application of infinitesimal elements. This is analogous to adding up many
infinitesimal vectors to arrive at any point in a vector space.

We can check the consistency of repeatedly adding up N group elements by
writing δθA = θA/N , combining U (θ) = U (δθ)N and letting N → ∞. In this
limit, we recover the exact result:

U (θ) = lim
N→∞

(
I + i

δθA

N
TA

)
= eiθATA , (8.30)

which is consistent with the series in eqn. (8.27). Notice that the finite group
element is the exponential of the infinitesimal combination of the generators. It
is often stated that we obtain a group by exponentiation of the generators.

It will prove significant to pay attention to another form of this exponentiation
in passing. Eqn. (8.30) may also be written

U (θ) = exp

(
i
∫ θ

0
TAdθ ′A

)
. (8.31)

From this we note that

∂U (θ)

∂θA
= iTA U (θ), (8.32)

and hence

dU

U
= iTAdθ ≡ �. (8.33)

This quantity, which we shall often label � in future, is an infinitesimal linear
combination of the generators of the group. Because of the exponential form, it
can also be written as a differential change in the group element U (θ) divided
by the value of U (θ) at that point. This quantity has a special significance in
geometry and field theory, and turns up repeatedly in the guise of gauge fields
and ‘connections’.

Not all elements of a group can necessarily be generated by combining
infinitesimal elements of the group. In general, it is only a sub-group known
as the proper group which can be generated in this way. Some transformations,
such as reflections in the origin or coordinate reversals with respect to a
group parameter are, by nature, discrete and discontinuous. A reflection is
an all-or-nothing transformation; it cannot be broken down into smaller pieces.
Groups which contain these so-called large transformations are expressible as a
direct product of a connected, continuous group and a discrete group.
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8.3.4 Conjugate representations

Given a set of infinitesimal generators, T A, one can generate infinitely many
more by similarity transformations:

T A →  T A −1. (8.34)

This has the effect of generating an equivalent representation. Any two
representations which are related by such a similarity transformation are said
to be conjugate to one another, or to lie in the same conjugacy class. Conjugate
representations all have the same dimension dR .

8.3.5 Congruent representations

Representations of different dimension dR also fall into classes. Generators
which exponentiate to a given group may be classified by congruency class. All
group generators with different dR exponentiate to groups which are congruent,
modulo their centres, i.e. those which are the same up to some multiple covering.
Put another way, the groups formed by exponentiation of generators of different
dR are identical only if one factors out their centres.

A given matrix representation of a group is not necessarily a one-to-one
mapping from algebra to group, but might cover all of the elements of a group
one, twice, or any integer number of times and still satisfy all of the group
properties. Such representations are said to be multiple coverings.

A representation UR and another representation UR′ lie in different congru-
ence classes if they cover the elements of the group a different number of times.
Congruence is a property of discrete tiling systems and is related to the ability
to lay one pattern on top of another such that they match. It is the properties of
the generators which are responsible for congruence [124].

8.4 Reducible and irreducible representations

There is an infinite number of ways to represent the properties of a given group
on a representation space. A representation space is usually based on some
physical criteria; for instance, to represent the symmetry of three quarks, one
uses a three-dimensional representation of SU (3), although the group itself is
eight-dimensional. It is important to realize that, if one chooses a large enough
representation space, the space itself might have more symmetry than the group
which one is using to describe a particular transformation. Of the infinity
of possible representations, some can be broken down into simpler structures
which represent truly invariant properties of the representation space.
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8.4.1 Invariant sub-spaces

Suppose we have a representation of a group in terms of matrices and vectors;
take as an example the two-dimensional rotation group SO(2), with the repre-
sentation

U =
(

cos θ sin θ
− sin θ cos θ

)
, (8.35)

so that the rotation of a vector by an angle θ is accomplished by matrix
multiplication: (

x ′1
x ′2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x1

x3

)
. (8.36)

It is always possible to find higher-dimensional representations of the same
group by simply embedding such a group in a larger space. If we add an extra
dimension x3, then the same rotation is accomplished, since x1 and x2 are altered
in exactly the same way:

 x ′1
x ′2
x ′3


 =


 cos θ3 sin θ3 0
− sin θ3 sin θ3 0

0 0 1





 x1

x2

x3


 . (8.37)

This makes sense: it is easy to make a two-dimensional rotation in a three-
dimensional space, and the same generalization carries through for any number
of extra dimensions. The matrix representation of the transformation has zeros
and a diagonal 1, indicating that nothing at all happens to the x3 coordinate. It
is irrelevant or ignorable:

U =

 cos θ3 sin θ3 0
− sin θ3 sin θ3 0

0 0 1


 . (8.38)

A six-dimensional representation would look like this:


x ′1
x ′2
x ′3
x ′4
x ′5
x ′6



=




cos θ3 sin θ3 0 0 0 0
− sin θ3 sin θ3 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1







x1

x2

x3

x4

x5

x6


 . (8.39)

The matrix has a block-diagonal form. These higher-dimensional represen-
tations are said to be reducible, since they contain invariant sub-spaces, or
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coordinates which remain unaltered by the group. In the six-dimensional case
above, the 6× 6 matrix factorizes into a direct sum of block-diagonal pieces: a
2×2 piece, which is the actual SO(2) part, and a trivial four-dimensional group
composed of only the identity I4. The direct sum is written

SO(2)6 = SO(2)2 ⊕ I4. (8.40)

When a matrix has the form of eqn. (8.39), or is related to such a form by a
similarity transformation

 −1 U  , (8.41)

it is said to be a completely reducible representation of the group. In block-
diagonal form, each block is said to be an irreducible representation of the
group. The smallest representation with all of the properties of the group
intact is called the fundamental representation. A representation composed
of dG × dG matrices, where dG is the dimension of the group, is called the
adjoint representation. In the case of SO(3), the fundamental and adjoint
representations coincide; usually they do not.

Whilst the above observation might seem rather obvious, it is perhaps less
obvious if we turn the argument around. Suppose we start with a 6 × 6 matrix
parametrized in terms of some group variables, θA, and we want to know which
group it is a representation of. The first guess might be that it is an irreducible
representation of O(6), but if we can find a linear transformation  which
changes that matrix into a block-diagonal form with smaller blocks, and zeros
off the diagonal, then it becomes clear that it is really a reducible representation,
composed of several sub-spaces, each of which is invariant under a smaller
group.

8.4.2 Reducibility

The existence of an invariant sub-space S in the representation space R implies
that the matrix representation G R is reducible. Suppose we have a representation
space with a sub-space which is unaffected by the action of the group. By
choosing coordinates we can write a group transformation g as(

X ′R
X ′S

)
=

(
A(g) B(g)

0 C(g)

)(
X R

X S

)
, (8.42)

which shows that the coordinates X S belonging to the sub-space are independent
of the remaining coordinates X R . Thus no matter how X R are transformed, X S

will be independent of this. The converse is not necessarily true, but often is.
Our representation,

UR(g) =
(

A(g) B(g)
0 C(g)

)
, (8.43)
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satisfies the group composition law; thus,

UR(g1)UR(g2) =
(

A(g1) B(g1)

0 C(g1)

)(
A(g2) B(g2)

0 C(g2)

)

=
(

A(g1) A(g2) A(g1)B(g2)+ B(g1)C(g2)

0 C(g1)C(g2)

)
(8.44)

Comparing this with the form which a true group representation would have:(
A(g1 · g2) B(g1 · g2)

0 C(g1 · g2)

)
, (8.45)

one sees that A and C also form representations of the group, of smaller size.
B does not, however, and its value is constrained by the condition B(g1 · g2) =
A(g1)B(g2) + B(g1)C(g2). A representation of this form is said to be partially
reducible.

If B = 0 in the above, then the two sub-spaces decouple: both are invariant
under transformations which affect the other. The representation is then said
to be completely reducible and takes the block-diagonal form mentioned in the
previous section.

8.5 Lie groups and Lie algebras

Groups whose elements do not commute are called non-Abelian. The com-
mutativity or non-commutativity of the group elements U (θ) follows from
the commutation properties of the generators Ta , as may be seen by writing
the exponentiation operation as a power series. In a non-Abelian group the
commutation relations between generators may be written in this form:

[Ta, Tb] = Cab. (8.46)

A special class of groups which is interesting in physics is the Lie groups, which
satisfy the special algebra,

[Ta, Tb] = −i f c
ab Tc. (8.47)

f c
ab is a set of structure constants, and all the labels a, b, c run over the group

indices from 1, . . . , dG . Eqn. (8.47) is called a Lie algebra. It implies that the
matrices which generate a Lie group are not arbitrary; they are constrained to
satisfy the algebra relation. The matrices satisfy the algebraic Jacobi identity

[T a, [T b, T c]]+ [T b, [T c, T a]]+ [T c, [T a, T b]] = 0. (8.48)

Many of the issues connected to Lie algebras are analogous to those of the
groups they generate. We study them precisely because they provide a deeper
level of understanding of groups. One also refers to representations, equivalence
classes, conjugacy for algebras.
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8.5.1 Normalization of the generators

The structure of the dR × dR dimensional matrices and the constants fabc which
make up the algebra relation are determined by the algebra relation, but the
normalization is not. If we multiply T a

R and fabc by any constant factor, the
algebra relation will still be true. The normalization of the generators is fixed
here by relating the trace of a product of generators to the quadratic Casimir
invariant:

Tr
(
T a

R T b
R

) = I2(G R)δ
ab, (8.49)

where I2 is called the Dynkin index for the representation G R . The Dynkin
index may also be written as

I2(G R) = dR

dG
C2(G R) (8.50)

where dR is the dimension (number of rows/columns) of the generators in
the representation G R , and dG is the dimension of the group. C2(G R) is the
quadratic Casimir invariant for the group in the representation, G R: C2(G R)

and I2(G R) are constants which are listed in tables for various representations
of Lie groups [96]. dG is the same as the dimension of the adjoint representation
of the algebra Gadj, by definition of the adjoint representation. Note, therefore,
that I2(Gadj) = C2(Gadj).

The normalization is not completely fixed by these conditions, since one
does not know the value of the Casimir invariant a priori. Moreover, Casimir
invariants are often defined with inconsistent normalizations, since their main
property of interest is their ability to commute with other generators, rather
than their absolute magnitude. The above relations make the Casimir invariants
consistent with the generator products. To complete the normalization, it is usual
to define the length of the longest roots or eigenvalues of the Lie algebra as 2.
This fixes the value of the Casimir invariants and thus fixes the remaining values.
For most purposes, the normalization is not very important as long as one is
consistent, and most answers can simply be expressed in terms of the arbitrary
value of C2(G R). Thus, during the course of an analysis, one should not be
surprised to find generators and Casimir invariants changing in definition and
normalization several times. What is important is that, when comparisons are
made between similar things, one uses consistent conventions of normalization
and definition.

8.5.2 Adjoint transformations and unitarity

A Lie algebra is formed from the dG matrices T a which generate a Lie group.
These matrices are dR × dR matrices which act on the vector space, which
has been denoted representation space. In addition, the dG generators which
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fulfil the algebra condition form a basis which spans the group space. Since
the group is formed from the algebra by exponentiation, both a Lie algebra A
and its group G live on the vector space referred to as group space. In the case
of the adjoint representation G R = Gadj, the group and representation spaces
coincide (dG = dR , a, b, c ↔ A, B,C). The adjoint representation is a direct
one-to-one mapping of the algebra properties into a set of matrices. It is easy to
show that the structure constants themselves form a representation of the group
which is adjoint. This follows from the Jacobi identity in eqn. (8.48). Applying
the algebra relation (8.47) to eqn. (8.48), we have

[T a,−i f bcd T d]+ [T b,−i f cad T d]+ [T c,−i f abd T d] = 0. (8.51)

Using it again results in[− f bcd f ade − f cad f bde − f abd f cde
]

T e = 0. (8.52)

Then, from the coefficient of T e, making the identification,[
T a

]
BC
≡ i f a

BC (8.53)

it is straightforward to show that one recovers

[T a, T b] = −i f abd T d . (8.54)

Thus, the components of the structure constants are the components of the
matrices in the adjoint representation of the algebra. The representation is
uniquely identified as the adjoint since all indices on the structure constants
run over the dimension of the group a, b = 1, . . . , dG .

The group space to which we have been alluding is assumed, in field
theory, to be a Hilbert space, or a vector space with a positive definite metric.
Representation space does not require a positive definite metric, and indeed, in
the case of groups like the Lorentz group of spacetime symmetries, the metric
in representation space is indefinite. The link between representation space and
group space is made by the adjoint representation, and it will prove essential
later to understand what this connection is.

Adjoint transformations can be understood in several ways. Suppose we take
a group vector va which transforms by the rule

v′a = Uadj
a
b v

b, (8.55)

where

Uadj = exp
(

iθa T a
adj

)
. (8.56)

It is also possible to represent the same transformation using a complete set of
arbitrary matrices to form a basis for the group space. For the matrices we shall
choose the generators TR , is an arbitrary representation

VR = va T a
R . (8.57)
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If we assume that the va in eqns. (8.55) and (8.57) are the same components,
then it follows that the transformation rule for VR must be written

V ′
R = va ′T a

R = U−1
R VR UR, (8.58)

where

UR = exp
(
iθa T a

R

)
. (8.59)

This now has the appearance of a similarity transformation on the group space.
To prove this, we shall begin with the assumption that the field transforms as in
eqn. (8.58). Then, using the matrix identity

exp(A)B exp(−A) = B + [A, B]+ 1

2!
[A, [A, B]]+

1

3!
[A, [A, [A, B]]]+ · · · , (8.60)

it is straightforward to show that

VR
′ = va

{
δa

r − θb f ab
r +

1

2
θbθc f ca

s f bs
r +

− 1

3!
θbθcθd f da

q f cq
p f bp

r + · · ·
}

T r
R, (8.61)

where the algebra commutation relation has been used. In our notation, the
generators of the adjoint representation may written

(T a
adj)

b
c = i f ab

c , (8.62)

and the structure constants are real. Eqn. (8.61) may therefore be identified as

VR
′ = va(Uadj)

a
bT b

R , (8.63)

where

Uadj = exp(iθaT a
adj). (8.64)

If we now define the components of the transformed field by

VR
′ = v′aT a

R , (8.65)

in terms of the original generators, then it follows that

v′a = (Uadj)
a
bv

b. (8.66)

We can now think of the set of components, va and v′a , as being grouped into
dG-component column vectors v and v′, so that

v′ = Uadjv. (8.67)
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Thus, we see that the components of a group vector, va , always transform
according to the adjoint representation, regardless of what type of basis we
use to represent them. To understand the significance of this transformation
rule, we should compare it with the corresponding tensor transformation rule in
representation space. If we use the matrix

UR = [UR]A
B (8.68)

where A, B = 1, . . . , dR , as a transformation of some representation space
vector φA or tensor [VR]A

B , then, by considering the invariant product

φ† VR φ→ (Uφ)† U VRU−1 (Uφ), (8.69)

we find that the transformation rule is the usual one for tensors:

φA = U A
B φ

B (8.70a)

VAB = U A
CU B

D VC D. (8.70b)

The transformation rule (8.58) agrees with the rule in eqn. (8.70b) provided

U † = U−1. (8.71)

This is the unitary property, and it is secured in field theory also by the use
of a Hilbert space as the group manifold. Thus, the form of the adjoint
transformation represents unitarity in the field theory, regardless of the fact that
the indices A, B might have an indefinite metric.

The object VR , which transforms like U−1V U , signifies a change in the
disposition of the system. This form is very commonly seen; for example, in
dynamical changes:

∂µφ→ ∂µ(Uφ) = (∂µU )φ +U (∂µφ)

= U (∂µ + �µ)φ (8.72)

where

�µ = U−1∂µU. (8.73)

This object is usually called a ‘connection’, but, in this context, it can be viewed
as an expression of a change in the dynamical configuration, of the internal
constraints on a system. In the following two chapters, we shall see examples of
these transformations, when looking at the Lorentz group and gauge symmetries
in particular.
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8.5.3 Casimir invariants

From the Lie algebra relation in eqn. (8.47), it is straightforward to show that
the quadratic sum of the generators commutes with each individual generator:

[T a, T bT b] = T a T bT b − T bT b T a

= T a T bT b − T b (T aT b + i f abcT c)

= [T a, T b] T b − i f abc T bT c

= −i f abc [T cT b + T bT c]

= 0. (8.74)

The last line follows since the bracket is a symmetric matrix, whereas the
structure constants are anti-symmetric. In fact, the quadratic sum of the
generators is proportional to the identity matrix. This follows also from Schur’s
lemma:

T aT a = 1

dG
C2(G R) IR, (8.75)

or

f a
bc f dbc = − 1

dG
C2(Gadj)δ

ad . (8.76)

8.5.4 Sub-algebra

Just as groups have sub-groups, algebras have sub-algebras. A sub-set, H , of an
algebra, A, is called a linear sub-algebra of A if H is a linear sub-space of the
group space and is closed with respect to the algebra relation. i.e. for any matrix
elements of the sub-algebra h1, h2 and h3, one has

[t1, t2] = −i f 3
12 t3. (8.77)

This is a non-Abelian sub-algebra. Sub-algebras can also be Abelian:

[h1, h2] = 0. (8.78)

8.5.5 The Cartan sub-algebra

The Cartan sub-algebra is an invariant sub-algebra whose elements generate the
centre of a Lie group when exponentiated. This sub-algebra has a number of
extremely important properties because many properties of the group can be
deduced directly from the sub-set of generators which lies in the Cartan sub-
algebra.
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The generators of the Cartan sub-algebra commute with one another but not
necessarily with other generators of the group. Since the Cartan sub-algebra
generates the centre of the group (the maximal Abelian sub-group) under
exponentiation, Schur’s lemma tells us that the group elements found from these
are diagonal and proportional to the identity matrix. The Cartan sub-algebra is
the sub-set the group generators T a which are simultaneously diagonalizable in
a suitable basis. In other words, if there is a basis in which one of the generators,
T a , is diagonal, then, in general, several of the generators will be diagonal in the
same basis. One can begin with a set of generators, T a

R , in a representation, G R ,
and attempt to diagonalize one of them using a similarity transformation:

T a ′ →  T a
R  

−1. (8.79)

The same transformation,  , will transform a fixed number of the matrices into
diagonal form. This number is always the same, and it is called the rank of
the group or rank(G). The diagonalizable generators are denoted Hi , where
i = 1, . . . , rank(G). These form the Cartan sub-algebra. Note that, in the case
of the fundamental representation of SU (2), the third Pauli matrix is already
diagonal. This matrix is the generator of the Cartan sub-algebra for SU (2) in
the dR = 2 representation. Since only one of the generators is diagonal, one
concludes that the rank of SU (2) is 1.

8.5.6 Example of diagonalization

The simplest example of a Cartan sub-algebra may be found in the generators
of the group SO(3) in the fundamental representation, or identically of SU (2)
in the adjoint representation. These matrices are well known as the generators
of rotations in three dimensions, and are written:

T 1 =

 0 0 0

0 0 −i
0 i 0




T 2 =

 0 0 i

0 0 0
−i 0 0




T 3 =

 0 −i 0

i 0 0
0 0 0


 . (8.80)

To find a basis which diagonalizes one of these generators, we pick T 1 to
diagonalize, arbitrarily. The self-inverse matrix of eigenvectors for T 1 is easily
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found. It is given by

 =



−1 0 0

0 1√
2

−i√
2

0 i√
2

−1√
2


 . (8.81)

Constructing the matrices  −1T a , one finds a new set of generators,

T 1 =

 0 0 0

0 1 0
0 0 −1




T 2 = 1√
2


 0 1 i

1 0 0
−i 0 0




T 3 = 1√
2


 0 i 1
−i 0 0
1 0 0


 . (8.82)

Since only one of these is diagonal, rank rank SU (2) = 1. Equally, we could
have chosen to diagonalize a different generator. This would then have had
the same eigenvalues, and it would have been the generator of the Cartan sub-
algebra in an alternative basis. None of the generators are specially singled out
to generate the sub-algebra. The diagonalizability is an intrinsic property of the
algebra.

8.5.7 Roots and weights

The roots and weights of algebra representations are proportional to eigenvalues
of the Cartan sub-algebra generators for different dR . The roots are denoted αA

and the weights are denoted λA. Because the algebra relation ensures exactly dG

independent vectors on the group space, there are dG independent eigenvalues
to be found from the generators.1 We shall explore the significance of these
eigenvalues in the next section.

1 This might seem confusing. If one has rank(G) simultaneously diagonalizable dR × dR
matrices, then it seems as though there should be dR × rank(G) eigenvalues to discern. The
reason why this is not the case is that not all of the generators are independent. They are
constrained by the algebra relation. The generators are linearly independent but constrained
through the quadratic commutator condition
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For generators of the Cartan sub-algebra, Hi
R , in a representation G R , the

weights are eigenvalues:

Hi
R =



λi

1
λi

2
λi

3
. . .


 . (8.83)

The name root is reserved for an eigenvalue of the adjoint representation:

Hi
adj =



αi

1
αi

2
αi

3
. . .


 . (8.84)

The significance of the adjoint representation is that it is a direct one-to-one
mapping of intrinsic algebra properties. The roots have a special significance
too: the algebra can be defined purely in terms of its roots. The diagonal basis
we have referred to above is a step towards showing this, but to see the true
significance of the root and weights of an algebra, we need to perform another
linear transformation and construct the Cartan–Weyl basis.

8.5.8 The Cartan–Weyl basis

The Cartan–Weyl basis is one of several bases in which the generators of
the Cartan sub-algebra are diagonal matrices. To construct this basis we can
begin from the diagonal basis, found in the previous section, and form linear
combinations of the remaining non-diagonal generators. The motivation for this
requires a brief theoretical diversion.

Suppose that& and# are arbitrary linear combinations of the generators of a
Lie algebra. This would be the case if & and # were non-Abelian gauge fields,
for instance

& = θa T a

# = φa T a, (8.85)

where a = 1, . . . , dG . Then, consider the commutator eigenvalue equation

[&,#] = α#, (8.86)

where α is an eigenvalue for the ‘eigenvector’ #. If we write this in component
form, using the algebra relation in eqn. (8.47), we have

θaφb fabcT c = α φl T
l . (8.87)
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Now, since the T a are linearly independent we can compare the coefficients of
the generators on the left and right hand sides:

(φa f c
ab − α δ c

b )φ
b = 0. (8.88)

This equation has non-trivial solutions if the determinant of the bracket vanishes,
and thus we require

det
∣∣φa f c

ab − α δ c
b

∣∣ = 0. (8.89)

For a dG dimensional Lie algebra this equation cannot have more than dG

independent roots, α. Cartan showed that if one chooses & so that the secular
equation has the maximum number of different eigenvalues or roots, then only
zero roots α = 0 can be degenerate (repeated). If α = 0 is r -fold degenerate,
then r is the rank of the semi-simple Lie algebra.

The generators associated with zero eigenvalues are denoted Hi , where i =
1, . . . , rank(G) and they satisfy

[θ j H j , Hi ] = 0, (8.90)

i.e. they commute with one another. The remaining generators, which they do
not commute with are written Eα, for some non-zero α, and they clearly satisfy

[θ j H j , Eα] = α Eα. (8.91)

We can think of the roots or eigenvalues as vectors living on the invariant sub-
space spanned by the generators Hi . The components can be found by allowing
the Hi to act on the Eα. Consider

[θ j H j , [Hi , Eα]] = [θ j H j , Hi Eα]− [θ j H j , EαHi ]

= α[Hi , Eα]. (8.92)

This result can be interpreted as follows. If Eα is an ‘eigenvector’ associated
with the eigenvalue α, then there are rank(G) eigenvectors [Hi , Eα] belonging
to the same eigenvalue. The eigenvectors must therefore each be proportional to
Eα:

[Hi , Eα] = αi Eα, (8.93)

and the components of the vector are defined by

α = αi θ i . (8.94)

This relation defines the components of a root vector on the invariant Cartan
sub-space. Comparing eqn. (8.93) with the algebra relation in eqn. (8.47),

f b
ia = αi δ

b
a . (8.95)
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Finally, by looking at the Jacobi identity,

[&, [Eα, Eβ]]+ [Eα, [Eβ,&]]+ [Eβ, [&, Eα]] = 0, (8.96)

we find that

[&, [Eα, Eβ]] = (α + β)[Eα, Eβ]. (8.97)

This means that [Eα, Eβ] is the eigenvector associated with the root (α + β),
provided that α + β �= 0. If α + β = 0 then, since the zero eigenvalues are
associated with Hi , we must have

[Eα, E−α] = f i
α,−α Hi

= αi H i . (8.98)

This shows how the Eα act as stepping operators, adding together solutions to
the eigenvalue equation. It also implies that if there is a zero root, then there
must be pairs of roots α,−α. In summary,

[Hi , Eα ] = αi Eα

[Eα, E−α] = αi Hi

What is the physical meaning of the root vectors? The eigenvalue equation is
an equation which tells us how many ways one generator of transformations
maps to itself, up to a scalar multiple under the action of the group. The
H are invariant sub-spaces of a symmetry group because they only change
the magnitude of a symmetry state, not its character. In other words, the
Cartan sub-algebra represents the number of simultaneous labels which can be
measured or associated with a symmetry constraint. Labels represent physical
properties like spin, momentum, energy, etc. The stepping operators for a given
representation of the group determine how many independent values of those
labels can exist based on symmetry constraints. This is the number of weights in
a stepping chain. In the case of rotations, the root/weight eigenvalues represent
the spin characteristics of particles. A system with one pair of weights (one
property: rotation about a fixed axis) in a dR = 2 representation can only be in
a spin up or spin down state because there are only two elements in the stepping
chain. A dR = 3 representation has three elements, so the particle can have spin
up down or zero etc.

The Chevalley normalization of generators is generally chosen so as to make
the magnitude of the longest root vectors equal to (α, α) = √αaαa = 2.
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8.5.9 Group vectors and Dirac notation

In quantum mechanics, Dirac introduced a notation for the eigenvectors of an
operator using bra and ket notation. Dirac’s notation was meant to emphasize
the role of eigenvectors as projection operators which span a vector space.
Dirac’s notation is convenient since it is fairly intuitive and is widely used in
the physics literature. An eigenvector is characterized by a number of labels,
i.e. the eigenvalues of the various operators which share it as an eigenvector.
If we label these eigenvalues α, β, . . . and so on, then we may designate the
eigenvectors using a field or eigenfunction

ψαi ,β j ,... (8.99)

or in Dirac notation as a ket:

|αi , β j , . . .〉. (8.100)

Notice that, in Dirac’s notation, the redundant symbol ψ is removed, which
helps to focus one’s attention on the relevant labels: the eigenvalues themselves.
The operators which have these eigenfunctions as simultaneous eigenvectors
then produce:

Ai ψαi ,β j ,... = αi ψαi ,β j ,...

B j ψαi ,β j ,... = β j ψαi ,β j ,... (i, j not summed), (8.101)

or, equivalently,

Ai |αi , β j , . . .〉 = αi |αi , β j , . . .〉
B j |αi , β j , . . .〉 = β j |αi , β j , . . .〉 (i, j not summed). (8.102)

In most physical problems we are interested in group spaces with a positive
definite metric, i.e. Hilbert spaces. In that case, the dual vectors are written as a
Hermitian conjugate:

ψ
†
αi ,β j ,...

(8.103)

or in Dirac notation as a bra:

〈α, β, . . . |. (8.104)

The length of a vector is then given by the inner product

〈αi , β j |αk, βl〉 = ψ†
αi ,β j

ψαk ,βl = δikδ jl × length. (8.105)

The eigenvectors with different eigenvalues are orthogonal and usually normal-
ized to unit length.

The existence of simultaneous eigenvalues depends on the existence of
commuting operators. Operators which do not commute, such as xi , p j and
group generators, T a, T b, can be assigned eigenvectors, but they are not all
linearly independent; they have a projection which is a particular group element:

〈x |p〉 = ei p x/h̄. (8.106)
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8.5.10 Example: rotational eigenvalues in three dimensions

In this section, we take a first look at the rotation problem. We shall return
to this problem in chapter 11 in connection with angular momentum and
spin. The generators of three-dimensional rotations are those of SO(3), or
equivalently su(2) in the adjoint representation. The generators are already
listed in eqns. (8.80). We define

T 2 = T aT a

E± = T2 ∓ iT3

H = T1. (8.107)

In this new basis, the generators satisfy the relation

[H, E±] = ± E±. (8.108)

The stepping operators are Hermitian conjugates:

E†
+ = E−. (8.109)

The generator H labels a central generator, or invariant sub-space, and cor-
responds to the fact that we are considering a special axis of rotation. The
eigenvalues of the central generator H are called its weights and are labelled
 c

H | c〉 =  c| c〉. (8.110)

| c〉 is an eigenvector of H with eigenvalue  c. The value of the quadratic
form, T 2, is also interesting because it commutes with H and therefore has its
own eigenvalue when acting on H ’s eigenfunctions, which is independent of c.
It can be evaluated by expressing T 2 in terms of the generators in the new basis:

E+E− = T 2
2 + T 2

3 − i[T2, T3]

E−E+ = T 2
2 + T 2

3 + i[T2, T3], (8.111)

so that, rearranging and using the algebra relation,

T 2 = E−E+ + T 2
1 − i[T2, T3]

= E−E+ + T 2
1 − i(−iT1)

= E−E+ + H(H + 1), (8.112)

where we have identified T1 = H in the last line. By the analogous procedure
with ± labels reversed, we also find

T 2 = E+E− + H(H − 1). (8.113)
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These forms allow us to evaluate the eigenvalues of T 2 for two of the eigen-
functions in the full series. To understand this, we note that the effect of the E±
generators is to generate new solutions step-wise, i.e. starting with an arbitrary
eigenfunction | c〉 they generate new eigenfunctions with new eigenvalues.
This is easily confirmed from the commutation relation in eqn. (8.108), if
we consider the ‘new’ eigenvector E±| c〉 from | c〉 and try to calculate the
corresponding eigenvalue:

H E± | c〉 = (E±H + [H, T±]) | c〉
= (E±H ± E±) | c〉
= ( c ± 1) E± | c〉. (8.114)

We see that, given any initial eigenfunction of H , the action of E± is to produce
a new eigenfunction with a new eigenvalue, which differs by ±1 from the
original, up to a possible normalization constant which would cancel out of this
expression:

E± | c〉 ∝ | c ± 1〉. (8.115)

Now, the number of solutions cannot be infinite because the Schwarz (triangle)
inequality tells us that the eigenvalue of T 2 (whose value is not fixed by the
eigenvalue of H , since T 2 and T a commute) must be bigger than any of the
individual eigenvalues T a:〈

 c|E+E− + E−E+ + H 2| c
〉
> 〈 c|H 2| c〉, (8.116)

so the value of H acting on | c〉 must approach a maximum as it approaches
the value of T 2 acting on | c〉. Physically, the maximum value occurs when
all of the rotation is about the a = 1 axis corresponding to our chosen Cartan
sub-algebra generator, T1 = H .

In other words, there is a highest value,  max, and a lowest eigenvalue,  min.
Now eqns. (8.112) and (8.113) are written in such a way that the first terms
contain E±, ready to act on any eigenfunction, so, since there is a highest and
lowest eigenvalue, we must have

E+ | max〉 = 0

E− | min〉 = 0. (8.117)

Thus,

T 2| max〉 =  max( max + 1) | max〉, (8.118)

and

T 2| min〉 =  min( min − 1) | min〉. (8.119)
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From these two points of reference, we deduce that

 max( max + 1) =  min( min − 1). (8.120)

This equation has two solutions,  min =  max + 1 (which cannot exist, since
there is no solution higher than  max by assumption), and

 max = − min, (8.121)

thus

T 2 =  max( max + 1) I. (8.122)

The result means that the value T 2 is fixed by the maximum value which H can
acquire. Strangely, the value is not  2

max (all rotation about the 1 axis), which
one would expect from the behaviour of the rotation group. This has important
implications for quantum mechanics, since it is the algebra which is important
for angular momentum or spin. It means that the total angular momentum can
never be all in one fixed direction. As  max → ∞ the difference becomes
negligible.

The constant of proportionality in eqn. (8.115) can now be determined from
the Hermitian property of the stepping operators as follows. The squared norm
of E+| c〉 may be written using eqn. (8.112)

|E+| c〉|2 = 〈 c|E−E+| c〉
= 〈 c|T 2 − H(H + 1)| c〉
=  max( max + 1)− c( c + 1)

= ( max − c)( max + c + 1). (8.123)

Thus,

E+| c〉 =
√
( max − c)( max + c + 1)| c + 1〉

E−| c〉 =
√
( max + c)( max − c + 1)| c − 1〉. (8.124)

Eqn. (8.121), taken together with eqn. (8.114), implies that the eigenvalues are
distributed symmetrically about  c = 0 and that they are separated by integer
steps. This means that the possible values are restricted to

 c = 0,±1

2
,±1,±3

2
,±2, . . . ,± max. (8.125)

There are clearly 2 max + 1 possible solutions. In the study of angular
momentum,  max, is called the spin up to dimensional factors (h̄). In group
theory, this is referred to as the highest weight of the representation. Clearly,
this single value characterizes a key property of the representation.
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What the above argument does not tell us is the value of  max. That is
determined by the dimension of the irreducible representation which gives rise
to rotations. In field theory the value of max depends, in practice, on the number
of spacetime indices on field variables. Since the matrices for rotation in three
spatial dimensions are fixed by the spacetime dimension itself, the only freedom
left in transformation properties under rotations is the number of spacetime
indices which can be operated on by a rotational transformation matrix. A
scalar (no indices) requires no rotations matrix, a vector (one index) requires
one, a rank 2-tensor requires two and so on. The number of independently
transforming components in the field becomes essentially blocks of 2 max + 1
and defines the spin of the fields.

8.6 Examples of discrete and continuous groups

Some groups are important because they arise in field theory with predictable
regularity; others are important because they demonstrate key principles with a
special clarity.

8.6.1 GL(N ,C): the general linear group

The group of all complex N × N , non-singular matrices forms a group. This
group has many sub-groups which are important in physics. Almost all physical
models can be expressed in terms of variables which transform as sub-groups of
this group.

(1) Matrix multiplication combines non-singular matrices into new non-
singular matrices.

(2) Matrix multiplication is associative.

(3) The identity is the unit matrix

I =




1 0 . . . 0
0 1 . . . 0

0
... 1 0

0 . . . 0 1


 . (8.126)

(4) Every non-singular matrix has an inverse, by definition.

The representation space of a collection of matrices is the vector space on which
the components of those matrices is defined. Since matrices normally multiply
vectors, mapping one vector, vA, onto another vector, v′A,

vA → v′A = UAB v
B, (8.127)
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it is normal to think of these matrices as acting on group vectors. In field
theory, these transformations are especially important since the group vectors
are multiplets of fields, e.g.

φ(x)A =



φ1(x)
φ2(x)
...

φdR (x)


 , (8.128)

where dR is the dimension of the representation, or the size of the dR × dR

matrices. Note: the dimension of a representation (the number of components
in a multiplet) is not necessarily the same as the dimension of the group itself.
For example: a three-dimensional vector (dR = 3) might be constrained,
by some additional considerations, to have only an axial symmetry (group
dimension dG = 1, a single angle of rotation); in that case one requires a 3× 3
representation of a one-dimensional group, since vectors in three dimensions
have three components.

8.6.2 U (N ): unitary matrices

U (N ) is the set of all unitary matrices of matrix dimension N . An N×N unitary
matrix satisfies

U † U = (U T)∗ U = I, (8.129)

where I is the N × N unit matrix, i.e. U † = U−1. When n = 1, the matrices
are single-component numbers. An N × N matrix contains N 2 components;
however, since the transpose matrix is related to the untransposed matrix by
eqn. (8.129), only half of the off-diagonal elements are independent of one
another. Moreover, the diagonal elements must be real in order to satisfy the
condition. This means that the number of independent real elements in a unitary
matrix is (N 2 − N )/2 complex plus N real means N 2 real numbers. This is
called the dimension of the group. U (N ) is non-Abelian for U > 1.

8.6.3 SU (N ): the special unitary group

The special unitary group is the sub-group of U (N )which consists of all unitary
matrices with unit determinant. Since the requirement of unit determinant is an
extra constraint on the all of the independent elements of the group (i.e. the
product of the eigenvalues), this reduces the number of independent elements
by one compared with U (N ). Thus the dimension of SU (N ) is N 2 − 1 real
components. SU (N ) is non-Abelian for N > 1. SU (N ) has several simple
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properties:

C2(Gadj) = N

dG = N 2 − 1

dF = N

C2(G f ) = N 2 − 1

2N
, (8.130)

where C2(G) is the quadratic Casimir invariant in representation G, dG is
the dimension of the group, and dF is the dimension of the fundamental
representation R → F .

8.6.4 SU (2)

The set of 2×2 unitary matrices with unit determinant has N 2−1 = 3 elements
for n = 2. Up to similarity transformations, these may be written in terms of
three real parameters (θ1, θ2, θ2):

g1 =
(

cos
(

1
2θ1

)
i sin

(
1
2θ1

)
i sin

(
1
2θ1

)
cos

(
1
2θ1

)
)

(8.131a)

g2 =
(

cos
(

1
2θ2

)
sin

(
1
2θ2

)
− sin

(
1
2θ2

)
cos

(
1
2θ2

)
)

(8.131b)

g3 =
(

ei 1
2 θ3 0
0 e−i 1

2 θ3

)
. (8.131c)

These matrices are the exponentiated Pauli matrices e
i
2σi . Using this basis,

any element of the group may be written as a product of one or more of these
matrices with some θi .

8.6.5 U (1): the set of numbers z : |z|2 = 1

The set of all complex numbers U = eiθ with unit modulus forms an Abelian
group under multiplication:

(1) eiθ1 eiθ2 = ei(θ1+θ2).

(2) (eiθ1 eiθ2) eiθ3 = eiθ1 (eiθ2 eiθ3).

(3) eiθ ei0 = eiθ .

(4) U−1 = U ∗ since eiθ e−iθ = ei0 = 1.
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The representation space of this group is the space of complex scalars #, with
constant modulus:

#∗#→ (U#)∗U# = #∗ U ∗U # = #∗#. (8.132)

This group is important in electromagnetism; it is this symmetry group of
complex phases which is connected to the existence of a conserved electrical
charge.

8.6.6 Z N : the Nth roots of unity

The N th roots of unity form a sub-group of U (1). These complex numbers may
be written in the form exp(2π i p

N ), for p = 0, . . . , N − 1. The group Z N is
special because it is not infinite. It has exactly N discrete elements. The group
has the topology of a circle, and the elements may be drawn as equi-distant
points on the circumference of the unit circle in the complex plane. Z N is a
modulo group. Its elements satisfy modulo N arithmetic by virtue of the multi-
valuedness of the complex exponential. The group axioms are thus satisfied as
follows:

(1) exp
(
2π i p

N

)
exp

(
2π i p′

N

)
= exp

(
2π i p+p′

N

)
= exp

(
2π i

[
p+p′

N + m
])

,

where N ,m, p are integers;

(2) follows trivially from U (1);

(3) follows trivially from U (1);

(4) the inverse exists because of the multi-valued property that

exp
(
−2π i

p

N

)
= exp

(
2π i

N − p

N

)
. (8.133)

Thus when p = N , one arrives back at the identity, equivalent to p = 0.

The representation space of this group is undefined. It can represent translations
or shifts along a circle for a complex scalar field. Z2 is sometimes thought of
as a reflection symmetry of a scalar field, i.e. Z2 = {1,−1} and φ → −φ. An
action which depends only on φ2 has this symmetry.

Usually Z N is discussed as an important sub-group of very many continuous
Lie groups. The presence of Z N as a sub-group of another group usually
signifies some multi-valuedness or redundancy in that group. For example,
the existence of a Z2 sub-group in the Lie group SU (2) accounts for the
double-valued nature of electron spin.
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8.6.7 O(N ): the orthogonal group

The orthogonal group consists of all matrices which satisfy

U T U = I (8.134)

under normal matrix multiplication. In other words, the transpose of each matrix
is the inverse matrix. All such matrices are real, and thus there are (N 2−N )/2+
n = N (N + 1)/2 real components in such a matrix. This is the dimension of the
group. The orthogonal group is non-Abelian for N > 2 and is trivial for n = 1.

The special orthogonal group is the sub-group of O(N ) which consists of
matrices with unit determinant. This reduces the dimension of the group by one,
giving N (N − 1)/2 independent components.

8.6.8 SO(3): the three-dimensional rotation group

This non-Abelian group has three independent components corresponding to
rotations about three-independent axes in a three-dimensional space. The group
elements may be parametrized by the rotation matrices gi about the given axis i:

Ux =

 1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1


 (8.135)

Uy =

 cos θ2 0 − sin θ2

0 1 0
sin θ2 0 cos θ2


 (8.136)

Uz =

 cos θ3 sin θ3 0
− sin θ3 sin θ3 0

0 0 1


 . (8.137)

The representation space of this group is a three-dimensional Euclidean space
and the transformations rotate three-dimensional vectors about the origin, pre-
serving their lengths but not their directions. Notice that these matrices do not
commute; i.e. a rotation about the x axis followed by a rotation about the y axis,
is not the same as a rotation about the y axis followed by a rotation about the x
axis.

8.6.9 SO(2): the two-dimensional rotation group

This group has only one element, corresponding to rotations about a point in a
plane. Any element of SO(2) may be written in the form

U =
(

cos θ sin θ
− sin θ cos θ

)
. (8.138)
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The representation space of this group is a two-dimensional Euclidean space,
and the transformation rotates two-component vectors about the origin. Notice
how the matrices parametrizing SO(3) are simply rotations of SO(2) embedded
in a three-dimensional framework.

8.7 Universal cover groups and centres

We know that groups can contain other groups, as sub-groups of the whole,
and therefore that some are larger than others. The universal cover group is
defined to be a simply connected group which contains an image of every point
in a given Lie group. If we consider an arbitrary Lie group, in general it will
have companion groups which are locally the same, but globally different. The
best known example of this is the pair SU (2) and SO(3), which are locally
isomorphic, but globally different. In fact SU (2) contains two images of SO(3)
or covers it twice, or contains two equivalent copies of it. Taking this a step
further, if three groups have the same local structure, then they will all be sub-
groups of the universal cover groups.

If we begin with a Lie algebra, it is possible to exponentiate the generators of
the algebra to form group elements:

& = θ A T A → G = ei&. (8.139)

The group formed by this exponentiation is not unique; it depends on the
particular representation of the algebra being exponentiated. For instance,
the 2 × 2 representation of SU (2) exponentiates to SU (2), while the 3 × 3
representation of SU (2) exponentiates to SO(3). Both of these groups are
locally isomorphic but differ in their centres. In the case of SU (2) and SO(3),
we can relate them by factorizing out the centre of the universal cover group,

SU (2)/Z2 = SO(3). (8.140)

From Schur’s lemma, we know that the centre of a group is only composed
of multiples of the identity matrix, and that, in order to satisfy the rules of group
multiplication, they must also have modulus one. It follows from these two facts
that any element of the centre of a group can be written

gc = exp(±2π i q/N ) I, q = 0, . . . , N − 1. (8.141)

These elements are the N th roots of unity for some N (in principle infinite, but
in practice usually finite). If we start off with some universal cover group then,
whose centre is Z N , there will be many locally isomorphic groups which can
be found by factoring out sub-groups of the centre. The largest thing one can
divide out is Z N itself, i.e. the whole centre. The group formed in this way is
called the adjoint group, and it is generated by the adjoint representation:

group

centre of group
= adjoint group. (8.142)
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Table 8.1. Some common Lie algebras and groups.

Algebra Centre Cover

AN Z N SU (N − 1)
BN Z2 SO(2N + 1)
CN Z2 Sp(2N )
DN Z4 (Nodd) SO(2N )

Z2 × Z2 (Neven)
E6 Z3 E6

G2, F4, E8 Z3

But it is not necessary to factor out the entire centre, one can also factor out a
sub-group of the full centre; this will also generate a locally isomorphic group.
For example, SU (8) has centre Z8. We can construct any of the following
locally isomorphic groups:

SU (8) SU (8)/Z8 SU (8)/Z4 SU (8)/Z2. (8.143)

Some well known Lie groups are summarized in table 8.1.

8.7.1 Centre of SU (N ) is Z N

SU (N ) is a simply connected group and functions as its own universal cover
group. As the set of N×N matrices is the fundamental, defining representation,
it is easy to calculate the elements of the centre. From Schur’s lemma, we know
that the centre must be a multiple of the identity:

gc = α IN . (8.144)

where IN is the N × N identity matrix. Now, SU (N ) matrices have unit
determinant, so

det IN = αN = 1. (8.145)

Thus, the solutions for α are the N th roots of unity, Z N .

8.7.2 Congruent algebras: N-ality

Since roots and weights of representations can be drawn as vectors in the Cartan
sub-space, different representations produce similar, but not identical, patterns.
Elements Eα of the algebra step through chains of solutions, creating a laced
lattice-work pattern. Representations which exponentiate to the same group
have patterns which are congruent to one another [124].
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Congruence is a property of discrete sets. The correct terminology is
‘congruent to x modulo m’. The property is simplest to illustrate for integers. x
is said to be conjugate to y modulo m if y − x is an integer multiple of m:

y = x + km, (8.146)

for integer k,m. Congruence modulo m is an equivalence relation, and it sorts
numbers into classes or congruent sets. The patterns made by congruent sets
can be overlain consistently. The equivalence class, Ex , is the set of all integers
which can be found from x by adding integer multiples m to it:

Ex = {x + km | integer k}
= {. . . ,−2m + x,−m + x, x, x + m, x + 2m, . . .}. (8.147)

There are exactly m different congruence classes modulo m, and these partition
the integers; e.g. for m = 4, we can construct four classes:

E0 = {. . . ,−8,−4, 0, 4, 8, . . .}
E1 = {. . . ,−7,−3, 1, 5, 9, . . .}
E2 = {. . . ,−6,−2, 2, 6, 10, . . .}
E3 = {. . . ,−5,−1, 3, 7, 11, . . .}. (8.148)

Lie algebra representations can also be classified into congruence classes.
Historically, congruence classes of SU (N ) modulo N are referred to as N -ality
as a generalization of ‘triality’ for SU (3). Each congruence class has a label
q; q = 0 corresponds to no centre, or the adjoint congruence class. The well
known algebras contain the following values [56]:

q =
n∑

k=1

αk (mod n + 1) for An (8.149)

q = αn (mod 2) for Bn (8.150)

q = α1 + α3 + α5 (mod 2) for Cn (8.151)

q = α1 − α2 + α4 − α5 (mod 3) for E6 (8.152)

q = α4 + α6 + α7 (mod 2) for E7 (8.153)

q = 0 for all representations of E7, E8, F4,G2. (8.154)

In the special case of Dn , the congruence classes require classification by a
two-component vector:

q1 = (αn−1 + αn, 2α1 + α3 + · · ·
+ 2αn−2 + (n − 2)αn−1 + nαn + · · ·) (mod 2) odd n

q2 = (αn−1 + αn, 2α1 + 2α3 + · · ·
+ 2αn−3 + (n − 2)αn−1 + nαn) (mod 4) even n.

(8.155)
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The congruence is modulo the order of the centre. The algebra Dn requires a
two-dimensional label, since its centre is two-dimensional. E7, E8, F4, and G2

all have trivial centres, thus they all lie in a single class congruent to the adjoint.

8.7.3 Simple and semi-simple Lie algebras

A Lie algebra is simple if it has no proper invariant sub-algebras; i.e if only
one element (the identity) commutes with every other in the group. A simple
algebra is necessarily semi-simple. A semi-simple Lie algebra can be written in
block-diagonal form, as a direct sum of invariant sub-algebras, each of which is
a simple Lie algebra

A = A1 ⊕ A2 ⊕ A3 ⊕ · · · AN , (8.156)

i.e. it factorizes into block-diagonal form with simple blocks. A semi-simple
algebra has no Abelian invariant sub-algebras.

8.8 Summary

The existence of a symmetry in a physical system means that it is possible to re-
label parameters of a model without changing its form or substance. Identify the
symmetries of a physical system and one can distinguish between the freedom
a system has to change and the constraints which hold it invariant: symmetries
are thus at the heart of dynamics and of perspective.

Symmetries form groups, and can therefore be studied with the group theory.
Since a symmetry means that some quantity Rξ does not change, when we vary
the action with respect to a parameter ξ , conservation of Rξ is also linked to
the existence of the symmetry. All of the familiar conservation laws can be
connected to fundamental symmetries.

In the case of electromagnetism, Lorentz covariance was exposed just by
looking at the field equations and writing them in terms of (3+ 1) dimensional
vectors. The chapters which follow examine the transformations which change
the basic variables parametrizing the equations of motion, and the repercussions
such transformations have for covariance.
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