ON A METHOD OF OBTAINING HALF-YEARLY AND QUARTERLY PREMIUMS FROM THE ANNUAL PREMIUM.

To the Editor of the Assurance Magazine.

Sir,-AAllow me to draw the attention of your readers to a method of obtaining half-yearly and quarterly premiums from the annual premium. As it is one of much utility to the practical computer, and I do not remember to have met with it in any of the works in use among actuaries, it may not be altogether unworthy of a place in your columns.

The subject has been treated by the late Mr. Orchard in his exceedingly valuable work, Single and Annual Assurance Premiums, where at p. vii. of the Introduction he gives the expression for finding c_{x}, the quantity to be added to half the yearly premium to form the half-yearly premium. That expression is as follows:-

$$
\frac{1-d(1+x)}{2}\left(r_{x}+\cdot 75-r_{x+1}\right)=\frac{\mathrm{A}_{x}\left(r_{x}+75-r_{x+1}\right)}{2}=c_{x}
$$

which, translated into symbols more generally adopted, is as follows:-

$$
\frac{1-d\left(1+a_{x}\right)}{2}\left(\frac{1}{.75+a_{x}}-\frac{1}{1+a_{x}}\right)=\frac{\mathrm{A}_{x}}{2}\left(\frac{1}{75+a_{x}}-\frac{1}{1+a_{x}}\right)=c_{x^{*}}
$$

The arithmetical operation is a very simple one, and the value of the increment c_{x} is easily obtained with the assistance of a table of reciprocals; but when these results are collected into a tabular form, there is an inconvenience in the use of them which is not altogether unimportant-viz., that before entering the table it is necessary to find from the annual premium the corresponding annoity, which annuity is made the argument of the table of c_{x}.

The method now submitted enables us, by a very obvious substitution in one of the terms of the above quoted expressions, to form the values of c_{x} in terms of the annual premium, instead of in terms of the single premium, and to use the annual premium directly as the argument to the tabular results. It is as follows:-

$$
\begin{gathered}
\text { Since } \frac{1-d\left(1+a_{x}\right)}{1+a_{x}}=\pi_{x}=\text { annual premium, } \\
\pi_{x}\left(1+a_{x}\right)=1-d\left(1+a_{x}\right)
\end{gathered}
$$

and substituting the former of these equivalents for the latter, we obtain a more elegant and convenient expression for the required value of c_{x}.

The annual premium then being $\frac{\pi_{x}\left(1+a_{x}\right)}{1+a_{x}}=\pi_{x}$, and the annual amount of the half-yearly premium by the usually adopted approximation being $\frac{\pi_{x}\left(1+a_{x}\right)}{75+a_{x}}=\pi_{x}+c_{x}$, it is required to find the value of their difference, viz.,

$$
\frac{\pi_{x}\left(1+a_{x}\right)}{75+a_{x}}-\frac{\pi_{x}\left(1+a_{x}\right)}{1+a_{x}}=c_{x} .
$$

Dividing by $\pi_{x}\left(\mathrm{I}+a_{x}\right)$, and again multiplying by that quantity, we obtain

$$
\pi_{x} \cdot\left(\frac{1+a_{x}}{\cdot 75+a_{x}}-1\right)=\pi_{x}\left(\frac{\left(1+a_{x}\right)-\left(\cdot 75+a_{x}\right)}{75+a_{x}}\right)=\pi_{x} \frac{25}{75+a_{x}}=c_{x} .
$$

Then the half-yearly premium $=\frac{\pi_{x}+c_{x}}{2}$ will be

$$
\frac{\pi_{x}+\pi_{x}\left(\frac{\cdot 25}{75+a_{x}}\right)}{2}=\frac{\pi_{x}}{2}\left(1+\frac{\cdot 25}{75+a_{x}}\right) .
$$

And geneally, when the premium is payable m times a year, the addition to the annuity will be $\left(1-\frac{m-1}{2 m}\right)=\frac{m+1}{2 m}$; and substituting this value in the above equation, it becomes

$$
\pi_{x}\left\{\frac{\left(1+a_{x}\right)-\left(\frac{m+1}{2 m}+a_{x}\right)}{\frac{m+1}{2 m}+a_{x}}\right\}=\pi_{x} \frac{\frac{m-1}{2 m}}{\frac{m+1}{2 m}+a_{x}}=c_{x}
$$

and the premium for the m th portion of a year will be

$$
\frac{\pi_{x}}{m}\left(1+\frac{\frac{m-1}{2 m}}{\frac{m+1}{2 m}+a_{x}}\right)
$$

Reference has been made above to the facility with which the half-yearly values (to which Mr. Orchard confined his table) may be calculated by his method. The one here given may, however, lay claim to attention upon the ground that the arithmetical operation is thereby still further simplified. An example worked by both methods will enable the reader to form his own estimate of the comparative merits of each of them.

Example.-To find the half-yearly premium when the annual premium is $£ 4 \cdot 100$.

By Mr. Orchard's method.
To $\pi_{x}=4 \cdot 100$ the corresponding annuity* is $13 \cdot 260$.
Then $13 \cdot 260+\cdot 75=14 \cdot 010$; its reciprocal $\cdot 071377$ $13 \cdot 260+1=14 \cdot 260 \quad " \quad, \cdot 070126$
$\cdot 001251$

* \imath e., The argument of Mr. Orchard's tables.

$$
\begin{aligned}
& \cdot 001251 \\
& \mathrm{~A}_{x} \text { corresponding to annuity* } 13 \cdot 260=58 \cdot 466 \\
& \text { and } \frac{58 \cdot 466}{2}=\frac{33292}{2502} \text { inverted } \\
& 1126 \\
& 25 \\
& 4 \\
& \cdot 03657 \\
& \frac{\pi_{x}}{2}=\frac{4 \cdot 100}{2}-2050 \\
& 2 \cdot 087
\end{aligned}
$$

By the method above adduced.
To $\pi_{x}=4 \cdot 100$, the corresponding annuity* is $13 \cdot 260$,

$$
\begin{gathered}
\text { and } \begin{array}{c}
\frac{1}{13 \cdot 260+\cdot 75}=\cdot 071377 \text { and } \frac{.071377}{4}+1 \\
=1 \cdot 01784 \\
\pi_{x}=\frac{4 \cdot 100}{2}=\frac{502 \text { inverted }}{2036} \\
\frac{51}{2 \cdot 087}
\end{array}
\end{gathered}
$$

I have calculated a table of half-yearly and quarterly premiums, at 3 per cent., by this method; which I think will be found generally useful, being true for all cases given, irrespective of the rate of mortality, and not first requiring the finding of the corresponding annuity, as is the case with Mr. Orchard's table as already referred to. A copy of the table so calculated is snbjoined.

> I am, Sir,
> \quad Your obedient servant,

Eagle Life Office,
SAMUEL L. LAUNDY. Dec. 1, 1863.

See Note, ante, p. 233.

Table of Half-yearly and Quarterly Premiums, at 3 per Cent., for any Rate of Mortality, derived from the Annual Premiums by means of the expression

$$
\frac{\pi_{x}}{m} \cdot\left(1+\frac{\frac{m-1}{2 m}}{\frac{m+1}{2 m}+a_{x}}\right)
$$

Yearly.	Half-	$\begin{aligned} & \text { Quar- } \\ & \text { terly. } \end{aligned}$	Yearly.	Half-	$\begin{aligned} & \text { Quar- } \\ & \text { terly. } \end{aligned}$	Yearly.	Half-	Quar-	Yearly.	Halfyearly.	$\begin{aligned} & \text { Quar- } \\ & \text { terly. } \end{aligned}$	Proportional Parts.		
1.00	0.5050	$0 \cdot 254$	$3 \cdot 30$	$1 \cdot 676$	$0 \cdot 845$	5.60	2861	1-446	$7 \cdot 90$	$4 \cdot 060$	$2 \cdot 058$	Δ	13	25
-05	$\cdot 530$	'266	-35	$\cdot 702$	-858	-65	$\cdot 887$	$\cdot 459$	$\cdot 95$	-086	$\cdot 072$			
$\cdot 10$	-556	$\cdot 279$	-40	$\cdot 727$	-871	$\cdot 70$	$\cdot 913$	$\cdot 473$	$8 \cdot 00$	$\cdot 112$	085			
$\cdot 15$	$\cdot 581$	-292	$\cdot 45$	-753	$\cdot 884$	$\cdot 75$	$\cdot 939$	$\cdot 486$	$\cdot 05$	$\cdot 138$	-099	1	$\cdot 000,3$	5
$\cdot 20$	-606	$\cdot 305$	$\cdot 50$	-779	-897	-80	-965	-499	$\cdot 10$	$\cdot 165$	$\cdot 112$	2	000,3 , 5	1,0
$\cdot 25$. 632	$\cdot 317$. 55	-804	$\cdot 910$	-85	-991	$\cdot 512$	$\cdot 15$	$\cdot 191$	-126	3	, 8	1,5
-30	-657	-330	-60	-830	-923	$\cdot 90$	$3 \cdot 016$	- 525	$\cdot 20$	217	-139	4	1,0	2,0
-35	-682	- 343	-65	-855	$\cdot 936$	$\cdot 95$	$\cdot 042$	$\cdot 539$	$\cdot 25$	-243	-153	4 5	1,3	2,5 2,5
-40	$\cdot 708$	$\cdot 356$	$\cdot 70$	-881	$\cdot 949$	6.00	-068	$\cdot 552$	-30	$\cdot 270$	$\cdot 166$	6	1,6	3,0
$\cdot 45$	$\cdot 733$	-369	$\cdot 75$	-907	$\cdot 962$	-05	-094	$\cdot 565$	- 35	$\cdot 296$	$\cdot 180$	7	1,8	3,5 3,5
$\cdot 50$	$\cdot 758$	-381	$\cdot 80$	-932	$\cdot 975$	-10	$\cdot 120$	$\cdot 578$	-40	-322	-193	8	2,1	4,0
$\cdot 55$	$\cdot 784$	-394	-85	-958	-988	-15	$\cdot 146$	- 592	$\cdot 45$	-349	- 207	8	2,1 2,3	4,0 4,5
-60	-809	-407	$\cdot 90$	-984	I-001	-20	$\cdot 172$	-605	$\cdot 50$	-375	$\cdot 220$	9	2,3	5
-65	$\cdot 834$	-420	$\cdot 95$	$2 \cdot 009$	$\cdot 014$	$\cdot 25$	$\cdot 198$	-618	$\cdot 55$	-401	$\cdot 234$			
$\cdot 70$	'860	$\cdot 433$	4.00	$\cdot 035$	-027	$\cdot 30$	$\cdot 224$	$\cdot 631$	-60	$\cdot 427$	$\cdot 247$			
$\cdot 75$	$\cdot 885$	-445	$\cdot 05$	$\cdot 061$	$\cdot 040$	- 35	$\cdot 250$	-645	$\cdot 65$	$\cdot 454$	$\cdot 261$	Δ	14	26
-80	-91]	-458	$\cdot 10$	$\cdot 087$	$\cdot 053$	-40	$\cdot 276$	$\cdot 658$	$\cdot 70$	-480	$\cdot 274$			
-85	-936	$\cdot 471$	$\cdot 15$	$\cdot 112$	-066	$\bullet 45$	$\cdot 302$	-671	$\cdot 75$	-506	-288			
$\cdot 90$	-962	$\cdot 484$	${ }^{20}$	$\cdot 138$	-079	$\cdot 50$	-328	-684	-80	-533	-301	-001	$\cdot 000,3$	000,5
-95	-987	-497	$\cdot 25$	$\cdot 164$	$\cdot 092$	-55	-354	$\cdot 698$	$\cdot 35$	- 559	-315	2	, 6	1,0
$2 \cdot 00$	$1 \cdot 012$	$\cdot 509$	$\cdot 30$	$\cdot 189$	-105	'60	- 380	$\cdot 711$	$\cdot 90$	- 585	-328	3	,8	1,6
-05	-038	- 522	$\cdot 35$	$\cdot 215$	$\cdot 118$	$\cdot 65$	$\cdot 406$	$\cdot 724$	$\cdot 95$	-612	-342	4	1,1	2,1
-10	-063	$\cdot 535$	$\cdot 40$	$\cdot 241$	$\cdot 131$	$\cdot 70$	$\cdot 432$	-738	9.00	-638	-355	5	1,4	2,6
$\cdot 15$	$\cdot 089$. 548	. 45	$\cdot 267$	$\cdot 144$	$\cdot 75$	-459	$\cdot 751$	$\cdot 05$	-664	$\cdot 369$	6	1,7	3,1
$\cdot 20$	$\cdot 114$	$\cdot 561$	-50	$\cdot 292$	$\cdot 157$	-80	$\cdot 485$	$\cdot 764$	-10	-691	-382	7	2,0	3,6
- 25	$\cdot 140$	-574	-55	-318	-170	$\cdot 85$	$\cdot 511$	$\cdot 778$	$\cdot 15$	$\cdot 717$	- 396	8	2,2	4,2
$\cdot 30$	-165	-586	-60	-344	-183	-90	-537	-791	- 20	$\cdot 744$	- 409	9	2,5	4,7
$\cdot 35$	-191	- 599	$\cdot 65$	$\cdot 370$	-196	-95	-563	-804	$\cdot 25$	$\cdot 770$	$\cdot 423$			1,7
-40	-216	$\cdot 612$	$\cdot 70$	-396	-210	$7 \cdot 00$	$\cdot 589$. 818	$\cdot 30$	$\cdot 796$	$\cdot 437$			
-45	$\cdot 242$	-625	$\cdot 75$	$\cdot 421$	$\cdot 223$	-05	-615	.831	$\cdot 35$	-823	- 450	Δ	15	27
-50	-267	-638	-80	$\cdot 447$	-236	$\cdot 10$	-641	-844	$\cdot 40$	-849	-464	Δ	15	27
-55	293	$\cdot 651$	-85	-473	-249	-15	-667	-858	-45	$\cdot 876$	$\cdot 477$			
$\cdot 60$	-318	-664	'90	-499	-262	$\cdot 20$	-693	$\cdot 871$	-50	-902	-491			
. 65	-344	$\cdot 677$	$\cdot 95$	525	$\cdot 275$	- 25	$\cdot 720$	-884	$\cdot 55$.929	-505	001	000,3	-000,5
$\cdot 70$	-369	-690	$5 \cdot 00$	$\cdot 550$	$\cdot 288$	$\cdot 30$	$\cdot 746$	$\cdot 898$	-60	$\cdot 955$	$\cdot 518$	2	, 6	1,1
$\cdot 75$	-395	-702	-05	-576	$\cdot 301$	-35	$\cdot 772$	$\cdot 911$	-65	. 981	$\cdot 532$	3	,9	1,6
-80	-420	$\cdot 715$	-10	-602	- 314	-40	798	$\cdot 924$	$\cdot 70$	$5 \cdot 008$	-545	4	1,2	2,2
$\cdot 85$	-446	$\cdot 728$	$\cdot 15$	-628	- 328	-45	. 824	-938	$\cdot 75$	$\cdot 034$	$\cdot 559$	5	1,5	2,7
$\cdot 90$	$\cdot 471$	$\cdot 741$	$\cdot 20$	-654	-341	- 50	-850	$\cdot 951$	- 80	$\cdot 061$	$\cdot 573$	6	1,8	3,3
$\cdot 95$	$\cdot 497$	$\cdot 744$	$\cdot 25$	-680	$\cdot 354$	$\cdot 55$. 876	$\cdot 965$	-85	$\cdot 087$	$\cdot 586$		2,1	3,8
$3 \cdot 00$	-522	$\cdot 767$	$\cdot 30$	-706	$\cdot 367$	$\cdot 60$	$\cdot 903$	-978	$\cdot 90$	$\cdot 114$	- 600		2,4	4,3
. 05	-548	$\cdot 780$	-35	$\cdot 731$	$\cdot 380$	-65	$\cdot 929$	-991	$\cdot 95$	$\cdot 140$	$\cdot 614$	9	2,7	4,9
$\cdot 10$	$\cdot 574$	793	$\cdot 40$	$\cdot 757$	$\cdot 393$	$\cdot 70$	-955	$2 \cdot 005$	$10 \cdot 00$	$5 \cdot 167$	-627			
$\cdot 15$	-599	-806	-45	$\cdot 783$	$\cdot 407$	$\cdot 75$. 981	-018						
-20	-625	819	$\cdot 50$	809	$\cdot 420$. 80	$4 \cdot 007$	-032						
$\cdot 25$	$\cdot 650$	$\cdot 832$	$\bullet 55$	-835	$\cdot 433$	85	$\cdot 034$	$\cdot 045$						

