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Abstract

A class of linear systems subject to sudden jumps in parameter values is considered. To
solve this class of stochastic control problem, we try to seek the best feedback control
law depending only on the measurable output. Based on this idea, we convert the original
problem into an approximate constrained deterministic optimization problem, which can
be easily solved by any existing nonlinear programming technique. An example is solved
to illustrate the efficiency of the method.

1. Introduction

In [2, 3], the study of optimal control for a class of linear systems with random para-
meters was initiated. The class of stochastic optimal control problems considered in
these references involved a jump linear quadratic (JLQ) system, where the paramet-
ers are Markov jump processes with finitely countable states, and where an optimal
control law is sought with respect to the mathematical expection of a quadratic cost.
In [8, 9, 10], it was discovered that the optimal control law for this type of problem
consisted of a full state feedback regulator. In [4], the optimal control law for the
linear quadratic (LQ) problem without jumps in the parameter was established. In [7],
the linear quadratic Gaussian (LQG) problem, where the parameters were subjected to
continuously acting disturbances modelled by Gaussian white noise, was considered.
In [6], the optimal feedback control law depending only on measurable output rather
than on the state of the system for the JLQ problem was established. This result was
further improved when a JLQG regulator was designed in [5] where only part of the
system state, the output, was measured.

This paper deals exactly with the same problem as that considered in [6]. By
seeking the best feedback control law depending only on the measurable output, we
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convert the original problem into an equivalent standard constrained deterministic
optimization problem, which can be easily solved by any nonlinear programming
technique. This method is better than those considered in [4] and [6] which are based
on the necessary condition of optimality, because their algorithms could not guarantee
that the system would be stable in every mode during each iteration of the algorithm.
As in [1], the gradients of both the performance index and the constraints are derived
via the introduction of the Hamiltonian and co-state matrices. Finally, an example is
solved to illustrate the efficiency of our method.

2. Statement of the problem

Consider the following jump linear system

x(t) = A(r(t))x«) + B(r(t)Mt) (la)
y(t) = C(r(t))x(t), (lb)

where x(t) € R" is the state vector, u(t) e Rm is the control vector and y(t) e Rr

is the output vector. The entries of the matrices A(r(t)), B(r(t)) and C(r(t)) are
random, because they depend on the system mode r(t). r(t) is a stochastic jump
process with a finite valuation set 5 = { 1 , . . . , TV}. The dynamics of r(t) are given in
terms of the transition probabilities

l+7r,,A + 0(A) if i = j . w

The initial mode r(t0) is assumed to have a known distribution Po.
For the sake of simplicity, let [A,, Bt, C,] denote the matrices [A(r(t)), B(r(t)),

C(r(t))] when the system operates in the j'th mode (that is, r(t) = i).
We now define a quadratic performance criterion as follows:

J(u,to,x(to),r(to)) =
 E\\j [x(rfQx(r) + M(T)1•= E\\j

(3)
where E stands for the mathematical expectation and Q and R are, respectively, a
semipositive and a positive symmetric weighting matrix.

From [8] and [10], it is clear that the optimal control u* can be expressed in a
closed-loop form

u*(t) = U(x(t),r(t)), (4)

with gains involving a set of N coupled Riccati equations. However, in most problems,
some of the required states or mode variables are not available to the designer. Thus,
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as mentioned in [6], the more practical control law is the linear output feedback mode
dependent law, that is, the law

u\t) = -F{r{t)y(t)) (5)

which minimizes (3).

3. An approximate problem

First, we restrict the control to have the form of linear output feedback mode

u(t) = -Fiy(t) when r(t) = i, (6)

where F,(/ = 1 , . . . , N) e Rmxr is the gain matrix when the system is operating in
mode i.

THEOREM 3.1. Assume that the system starts in mode i0 and the initial state is x0.
Then the performance criteria (3) can be reduced to

7 = l-xjKioxo, (7)

where Kt e Rnxn (when r{t) = i) satisfies the equation

N

K,A, + AjK, + Q + C]F]RFiCi + £ nuK} = 0 , i = l,...,N (8)

where
Ai = Ai-BiFiCi, i = l A/, (9)

provided that the matrices

(10)

are stable.

Although the result of Theorem 3.1 was taken from [6], no proof has been given
in [6]. Thus, for the sake of convenience of the reader, we shall provide the proof of
Theorem 3.1 in Appendix A.

Furthermore, by assuming that the initial state x0 is a random vector uniformly
distributed on the surface of the n -dimension unit sphere, the performance (7) can be
reduced to

7 = 1/(2/!) trace (tf,0). (11)
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The performance degradation of J with respect to the optimal performance under full
state feedback /* can be measured by the degree of suboptimality n, where

M = (/-/*)//*. (12)

From (12) and (11), it is clear that this suboptimality fi depends on the initial plant
mode r(t0). By assuming that r(t0) has a uniform distribution, the average value for
\x can be found. More precisely, if

(13)

an average suboptimal criterion is defined by

Furthermore, a sufficient condition for A,•, i = 1 , . . . , N to be stable is that

A, = \ [-A, - A]] (15)

be positive definite. Thus, by Sylvester's criterion, it is necessary and sufficient to
ensure that for each i = 1 , . . . , N, the determinants of all the principle minors of A,
are greater than or equal to s > 0, where £ is some small positive number. Let the
determinants of the n principle minors of A, be denoted by g,-,i,..., #,,„ respectively.
Then we have

gij>£, j = \,...,n. (16)

Thus, we obtain a deterministic optimization problem (P) as follows:

(P) (17)

subject to gu > e, i = 1 , . . . , N; j = 1 , . . . , n

where AT, are the solutions of (8). The problem (P) can be easily solved by any existing
nonlinear programming software, such as NLQP.

In order to solve the problem (P), we need to calculate the gradient of J and girj

with respect to the gain matrix Ft. The method for calculating these gradients is given
in Section 4.
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4. Gradient of the cost functional and the constraints

To derive a formula for the gradient of the cost function J and the constraints gu,
we need to regard (8) as the state equation in the optimal control problem. We first
introduce the Hamiltonian H and the co-state matrices kk(k = I,... ,N)for J. Let

*•• Kih + AJK< + Q + CJFJRF,Q + J2nuKj ,

where the co-state matrices kk (k = 1, . . . , N) e /?"*" are symmetric, satisfying the
following adjoint system:

3H 1 -T - " T
-— = 0 implies / + XkAk + AkXk + > 7ZV.A., = 0. (19)
BKk

 F 2Nn k j-(

THEOREM 4.1. The gradient of J is given by

dl 8H

iCj (i = l , . . . ,A0 . (20)

The proof of this theorem will be given in Appendix B.

REMARK 4.1. To calculate dJ/dFj, we need to solve the system comprising of (8)
and (19). This system is known as a system of Lyaponuv equations, which can be
solved by existing software.

REMARK 4.2. The method for calculating the gradients of the constraints is exactly
the same as that for calculating the gradients of / .

5. Illustrative example

EXAMPLE 5.1. (Same as the example given in [6, page 899].)
Let x € R2, u € R, y e R. There are two modes, with the transition matrix

n = | I . In mode 1, the plant is governed by

A, = ( ~Q
l °f\ B, = ( ° V C, = (0, 1). (21)
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In mode 2, the plant is governed by

The criterion (3) is considered with unity weighting matrices Q and R.
From [6], we know that the optimal solution with full state feedback is given by:

) a n d a g a i n m a t r i x * = (0.1010 2.4495);2M95

0 5635 VlS) and a gain matrix F2 = (0.5635 1.7688).

The technique employed in [6], which is based on the necessary condition of
optimality, yields the following result:

)0.0995 2 4 5 0 3 ) a n d a 8 a i n m a t r i x * = 2.5135;

L7967) ^ a gain matrix F2 = 1.9319.

The results obtained by solving the approximate problem (P) is as follow:

* 1 = (o.lO5lO 2 ^ 9 7 ) a n d a g a h m a t r i x ^i=2.4749;

* 2 = ( o . 6 5 ° 8 3 L796?) and a gain matrix F2 = 1.9319.

Let J*, J° and / ' be the value of the objective function which corresponds to the
full state feedback solution, the optimal output feedback obtained by Mariton and
Bertrand [6] and the optimal output feedback obtained by our method respectively.
Let fM° and /*' be the value of \i obtained by substituting J = J° and / = 71 in
(12) respectively. The performance can be summed up in Table 5.1, depending on the
initial mode distribution

From the values of fj? and fil in Table 5.1, it is clear that the expected perform-
ances obtained by our method is slightly better than those obtained by Mariton and
Bertrand [6].

When P01 = 1, i~(t0) = 1, the result obtained by our method is 0.02% better than
that obtained in [6]. When P0l = 0.5, Prob (r(t0) = 1) = 0.5, the result obtained
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TABLE 5.1. Comparison of optimal solution

[7]

8x7*
8x/°
8x / '
/x°(%)

1
2.9444
2.9503
2.9497
0.20
0.18

0.5
3.6309
3.8735
3.8732
6.68
6.67

0
4.3168
4.7967
4.7967
11.12
11.12

by our method is 0.01% better than that obtained in [6]. When POi = 0, r(t0) = 2,
the accuracy of the result obtained by our method and that obtained in [6] is exactly
the same. However, for both our method and that used in [6], the worst performance
(/oi = 0, r(t0) = 2) using output feedback (5) is only about 10% worse than the
optimal expected performance using full state feedback.

Appendix A

PROOF OF THEOREM 3.1. From (3), (5), (lb), we get

J = E U f ? \Q + C(r(x))JF{r(r)?RF(r(T))C(r{x))\x<j)dT
L J

(Al)

In view of (8), (Al) can be simplified to

/ = E I i I -x(r)T A(r(z))TK(r(r))
[ 2 Jl0=0 |_

Now let

and

Then, from (la), (5), (lb) and (9), we have

x(t) = A(r(t))x(t).

(A3)

(A4)

(A5)
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Thus, by differentiating (A4), we get

Vi(r) = E {*(0T [A(r(t))JK(r(t)) + K(r(t))A(r(t)) + K(r{t))]x(t) \ r(t) = 1} .
(A6)

On the other hand,

E\K(r(t))\r(t) = i}= l im
1 ' ' A-+0+

(A7)
But

lim A)) \r (r) = / = * , + A > nuKj + 0(A) , (A8)

so that (A7) becomes

(A9)

Thus, from (A6), (A9), we get

^(r(O)A(r(O) + > wy r(f) = i \ .

(A10)
From (A2) and (A10), we get

V(t)dt to,x(t0)r(t0)]
= i [xjKioxQ - E (V(oo) | to, x(t0), r(lb))] . (Al 1)

Since A, + \nnl is stable for all i, we have

(A12)

The conclusion of this theorem follows easily from (All) and (A12).

Appendix B

PROOF OF THEOREM 4.1. Let Ft be any parameter matrix when r(t) = i and let Af)
be any perturbation about Ft. Define

Fi(e) = Fi+eAFi. (Bl)
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For brevity, let Kk(-) and Kk(-, e) (k = I,..., N) denote, respectively, the solu-
tions of (8) corresponding to parameter matrices (F , , . . . FM . . . FN) and the perturbed
parameter matrices (Fu ... F,-_i, F, + eAF,, F , + 1 . . . , FN) respectively. Let

^ £=0

Then, from (17), (19) and (8), we get

A 7 = d/(F,(e))

6=0

= AH

(B3)

where the inner product of two r\ x r2 matrices

A = {akl) and B = {bkl)

is defined by

aklbkl. (B4)

Hence from (19) and (B3), we get

A 7 = / , AF,\. (B5)

Since AF, is arbitrary, the conclusion of the theorem follows readily from (B5).
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