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To Professor Kinjiro Kunugi on the occasion of his 60th birthday

1. In their paper [12], Toda and the author have concerned themselves

in the following

THEOREM OF KURAMOCHI. Let R be a hyperbolic Riemann surface of the

class OHB(OHD, resp.). Then, for any compact subset K of R such that R- K

is connected, R-K as an open Riemann surface belongs to the class OAB(OAΌ,

resp.) (Kuramochi [4]).

They have raised there the question as to whether there exists a hyperbolic

Riemann surface, which has no Martin or Royden boundary point with positive

harmonic measure and has yet the same property as stated in Theorem of

Kuramochi, and given a positive answer to the Martin part of this question.

The main purpose of this paper is to show that the Royden part is also

answered in the positive. In the sequel, we shall investigate covering properties

of analytic functions on Riemann surfaces of the class OADy which was introduced

by Kuroda in his paper [6], give an extension of the D part of Theorem of

Kuramochi and, using this extension, give an example of a Riemann surface

which answers the Royden part of the question in the positive.

2. Let R be a Riemann surface and let G be a domain on R with smooth

relative boundary dG clustering nowhere in R. For simplicity, we shall call

such a domain G a subregion of R. If G admits no non-constant single-valued

analytic function with a finite Dirichlet integral and with real part vanishing

continuously on its relative boundary 'dG, we say that G belongs to the class

SOAD.

Let w = f(p) be a non-constant single-valued analytic function in a subre-

gion G with relative boundary dG of a Riemann surface R. We suppose that
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this function is continuous on G U dG and that, for a certain point w-w* in

the w -plane and for a certain positive number p, the value of this function

f(p) at every point of G lies in the open disc (cP): \w — w*\ <p1] and the

values of f(p) on dG fall on the circumference cp of the disc (cp). Further

we suppose that the spherical area of the Riemannian image Φ of G by w =

f(p) is finite2'.

We denote by E the set of points w in (cP) which are not covered by Φ.

Then, this set E is closed with respect to (cP) and if G and each subregion

G'(czG) of R belong to the class SOAΌ, E is totally disconnected. This can

be proved as follows. First we prove that E has no interior point. In fact,

we may suppose without any loss of generality that w* =*F °°, and contrary

suppose that E contains an interior point W\. Then for a sufficiently small

Pi>0, the disc (ci): \w — ιvi\<pi is contained completely in (cP) and is not

covered by Φ at all. Obviously there exists a non-constant single-valued analytic

function ψ(w) in (cp) — (ci), where (ci) is the closure of (ci), such that its real

part vanishes continuously on cp and \ψ'(w)\ is bounded*. \<p'(w)\^M< -f °°.

The function ψ(f(p)) is a non-constant single-valued analytic function in G

with real part vanishing continuously on dG and has a Dirichlet integral

\lG\f'{p)\2\?'{f(p))\2dxdy<,M2\\\f(p)\2dxdy< + ™)

where we denote by x + iy the local parameter at p. This contradicts that G

belongs to the class SOAD> Next suppose that E contains a non-degenerate

continuum γ. Then we can find a disc (c2) (c(c p )) such that the open set

(c2) - γ has at least two connected components. Consequently each connected

piece Φ1 of Φ lying over (c2) does not cover a set with interior points. The

subregion G1 in G corresponding to Φ1 belongs to the class SOAD by our as-

sumption, so that the same argument as above leads us to a contradiction.

3. Now we shall be concerned with the covering properties of analytic

functions on a Riemann surface of the class OAD. The class OAD is the class

of open Riemann surfaces, any subregion of which belongs to the class SOAΌ.

The following inclusions hold.

χ) When w* = oo, (cp) is the disc \w\>l/p.
2> In the sequel we shall say simply that f(p) has a finite spherical area, when the

spherical area of Φ is finite.
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OHB ϋ OAB ϋ OΛB

m m m
OHD m O°AD m OAD

On the other hand, no inclusion holds between OHD and O°A B or OAB and between

OAD and OAB.

Let R be a Riemann surface and let w = f(p) be a non-constant single-

valued analytic function defined on R. We consider the Riemannian image Φ

of R by w = /(/>) over the w -plane, that is, the covering surface over the w-

plane formed by elements tp, f(p)l. Then the following extension of Kuroda's

theorem [6, Theorem 3] is an immediate consequence of the fact just stated

in §2.

THEOREM 1. Suppose that R belongs to the class 0°AD and the spherical area

of Φ is finite. Then Φ has the Iυersen property.

4. Let R be an arbitrary open Riemann surface and let {Gn)n=i,2,... denote

a sequence of non-compact subregions of R with compact relative boundary

dGn such that Gn^>Gn+iUdGn+ι for each n and Π Gn-&. We classify such
w = l

sequences with the following equivalence relation: Two sequences {Gn)n--i,2,...

and {G«}«=j,2,... are equivalent if and only if, for any m, there is an n such

that Gn^>Gm, and vice versa. Each of these equivalence classes is a boundary

component of R in Kerekjartό-Stoϋow's sense, and we consider it as an ideal

boundary point of R. A neighborhood of this ideal boundary point P means

the union of P and an open set of R containing G m e {Gn}«=i,2,... for some m,

where {G«}M=i,2,... is a representative member of P. Then, for a subdomain

D of R such that P can be approached by a sequence of points in D and for

a single-valued analytic function w=- f(p) of D> we can consider the cluster

set CD(f, P) of f{p) at P.

Let R be an open Riemann surface of the class OAD and let K be a compact

subset such that R-K is connected. Let w-f(p) be a non-constant single-

valued analytic function on R — K with a finite spherical area. We consider a

disc (cp) •* \w — w*\ <p 3 ) such that, for some relatively compact subregion

of i? with smooth boundary 32?0, /(/>) takes no value in the closure of

3 ) In case w* = oo, we consider as (cP) a domain |u;|>/o.
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(Cp) on BRo. Then each connected component Δ of the inverse image f^dcp))

on R-Ro, if exists, belongs to the class SO AD and it follows from the fact

stated in §2 that the set (cP) — f(Δ) is totally disconnected. Therefore by a

localization of so-called Stollow's principle on Iversen's property4) we have

THEOREM 2. Let R be an open Riemann surface belonging to the class OAD.

Then, for any single-valued analytic function w = f(p) with a finite spherical

area defined on R- K, where K is a compact subset such that R— K is connected,

the cluster set Cκ-κ(f, P) is total or reduces to one point at each ideal boundary

point P of R.

As a corollary, we have the following theorem due to Kuramochi [51

THEOREM 3. Let R be an open Riemann surface belonging to the class OAD,

let K be a compact subset such that R— K is connected and let w = f(p) be a

single-valued analytic function on R — K with a finite Dirichlet integral. Then

f(p) has a limit at each ideal boundary point of R.

Proof. Let Ro be a relatively compact subregion of R such that RQ^>K and

R-Ro is connected. Then we have

|9?e/(/>)|< sup |3ίe/(0)|< + oo and \3mf(ρ)\< sup \3mf(p)\< + ™
p^dB p&d£

on R-Ro, and hence f(p) is bounded on R—Ro. Here we shall prove the

first inequality. Suppose that <3ttf(po)>c> sup Ίfltfip) for a point i>oe R- Ro.

Then the restriction fΛp) of f(p) to the connected component Δ of the open set

{pi ΪRtf(p)>c} containing po is non-constant, single-valued and analytic and

its real part is constant on the relative boundary 3Δ of Δ, that is, SRe/Δ(̂ ) =c

on 3J. Obviously the Dirichlet integral of ftXp) over Δ is finite. On the other

hand, Δ belongs to the class SOΛΌ, because R belongs to the class OAD Ϊ this

is a contradiction. By the same reasoning we have ΐίlzf(p) Ξ> inf 9ϊe/(£), so

that |SRe/(ί)|^ sup |9ϊe/(/>)|< + «.

Therefore at any ideal boundary point P of R, the cluster set Cκ-κ(f, P)

can not be total and hence, by Theorem 2, it reduces to one point, .since the

finiteness of the spherical area is derived from the finiteness of the Dirichlet

integral. Our proof is now complete.

4> Cf. K. Noshiro [11], Chapt. IV, § 2.
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5. Let R be an arbitrary open Riemann surface and let {Rn)n=o,i,2,... be a

normal exhaustion of R such that R — Ro is connected. For an ideal boundary

point P of R this exhaustion determines a representative member {Gn} of P

such that every Gn is a connected component of R — Rn. We consider the

harmonic function ωn,m(p) (0<ωn,m(p) <1) in Rm-Gn — Ro(m^n) with boundary

values such that

on (dRm - G») U BRO

on 9G«.

(0
On,m(p) = j

con,m(p) increases as ra-* co, so that ωn.m(P) tends to a harmonic function

ωn{p). Now let w tend to infinity. Then ωn(p) decreases and tends to a non-

negative harmonic function ωP(p) defined on R — RQ. ωP(p) =0 or ωP(p)>0 in

R — Ro, and we say that the harmonic measure of an ideal boundary point P

of R is zero or positive according as the first or the second case occurs,

respectively. Of course this property of P does not depend on the choice of

the exhaustion {Rn} of R.

Now we have an extension of Theorem of Kuramochi stated in § 1.

THEOREM 4. Let R be a Riemann surface of the class O°Λn which has at

least one ideal boundary point with positive harmonic measure. Then, for any

compact subset K of R such that R— K is connected, R— K belongs to the class

OAΌ.

Using Theorem 3, we can give a proof of this theorem quite similar to

that in the case of the paper [12].

6. Constantinescu and Cornea have clarified in their paper [1] that in the

D part of Kuramochi's theorem, HD-mimmsX functions play an essential role.

On the other hand, Kusunoki and Mori [7] and Nakai [9] have proved the

equivalence of the existence of an fiΓO-minimal function and the existence of

a point with positive harmonic measure in Royden's harmonic boundary. But

for the proof of Theorem 4, we do not need the existence of i/D-minimal

functions. In fact, we can give an example of a Riemann surface which does

not belong to the class UHD, that is, has no Royden boundary point with positive

harmonic measure, and yet satisfies the conditions of Theorem 4. Here UHD,

which was introduced by Constantinescu and Cornea [1], is the class of hyper-

bolic Riemann surfaces admitting at least one HD-minimsl function.
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7. Before constructing the example, we shall study the sufficient condition

due to Nakai [10] for a Riemann surface not to belong to the class UHD.

First we shall state Nakai's result. Let R be a Riemann surface. We

denote by CCi, C2] a pair of mutually disjoint simple closed curves Ci and C2

on R satisfying the following two conditions:

(1) Ci and C2 are dividing cycles of R, i.e., the open set R—d (ι = l, 2)

consists of two components,

(2) the union of Ci and C2 is the boundary of a relatively compact domain

(Ci, C2) of R such that (Ci, C2) is of genus one.

We say that two such pairs ίCu C2] and ίC'u C2] are equivalent if there

exists such a third pair [Cί', C2I that

(Ci, C a)n(Cί, Cί)3(Cί', Cί'),

or if there exists a chain of pairs

ίcl9 ca zc?\ cn,..., ccr. e n , cc;, ca

such that each pair of this chain is equivalent to its next one in the above

sense. Then this relation is actually an equivalence relation, so that we divide

the totality of these pairs [Ci, C2] into equivalence classes. Calling each

equivalence class H a handle of Ry we observe that R has at most a countable

number of handles.

An annulus A in R is said to be associated with a handle H of R, A^H

in notation, if there exists a representative [Ci, C2] of H with Ac(Ci, C2)

such that each boundary component of the relative boundary of A rounds the

hole of (Ci, C2) that is,

(3) each boundary component of the relative boundary of A is not adividing

cycle of the domain (Ci, C2),

(4) each boundary component of the relative boundary of A is not homotopic

to any component of an arbitrary level curve of the harmonic function in (Ci,

Cz) with boundary value 0 on d and 1 on C2.

According to Nakai, we say that a Riemann surface R is an almost finite

Riemann surface or that R is of almost finite genus, if there exists a sequence

{An} of annuli in R satisfying the following condition:

(5) An^Hn, where {Hn} is the totality of handles in R,

(6) A r tΠΛm = 0 if
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(7) Σl/mod A»< + oo,
n

where mod An is the modulus of the annulus An.

Nakai's result can be stated as follows.

THEOREM OF NAKAI. Any almost finite Riemann surface does not belong to

the class UHD (Nakai [10]).

8. Here we shall give an alternative proof which does not use the theory

of Royden's compactification.

Let G be a subregion on a Riemann surface R, let u be a positive harmonic

function on R and let U be a positive harmonic function on G vanishing con-

tinuously on dG such that there exists at least one positive superharmonic

function on R dominating U on G (we shall call such a function U admissible).

We denote by I0(u) and EQ(U) the upper envelope of the non-negative subhar-

monic function on G dominated by u and vanishing continuously on dG and

the lower envelope of the positive superharmonic functions on R dominating

U on G, respectively. (These operations was introduced by Kuramochi [3] and

Heins [2]). Further we denote by γn the closed Jordan curve in An which

divides An into two annuli An,i and An,2 such that

mod i4«,i = mod An,2 = mod Aj2.

Nakai's theorem can be derived from the following four propositions.

PROPOSITION 1. Any Riemann surface of planar character does not belong

to the class UHD.

PROPOSITION 2. G = R- U γn is a subregion on R of planar character,
n

PROPOSITION 3. If R$OG and

Σl/mod An< + °°,

n

then

EGIG1 = 1 and IG1GHD.

PROPOSITION 4. Let u be an HP-minimal function on R. If there exists

an admissible function U on G having a finite Dirichlet integral such that EQ(U)

dominates u on Rf then Io(u) is also HD-minimal on G.

Now contrary suppose that an almost finite Riemann surface R admits an
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ifD-minimal function u. It is known that u is bounded,5' so that we assume

that 0 < « < l . Put ϋ = IGl. Then, by Proposition 3, U has a finite Dirichlet

integral and EGU ~ EGIG1 = l>w. Therefore U satisfies all conditions of Pro-

position 4 and so we can conclude that IGu is HP-minimal on G. On the other

hand, by Proposition 2, G is of planar character this contradicts Proposition

1. Thus R can not belong to the class UHD.

9. Proposition 1 is an immediate consequence of Theorem IV in Cons-

tantinescu and Cornea [1], Proposition 2 is obvious and Proposition 4 is

Lemma 6 in Matsumoto [8], and so it remains for us to prove Proposition 3.

Proof of Proposition 3. Let wn{p) be the continuous function on R such

that

harmonic on An — ϊn

1 on γn

0 on R — Any

and let g(p) denote the least harmonic majorant of *Σwn(p) on G = R- U r«.
n n

Then

g(p) + IGl{p) Ξ l o n G

and

On) = 8 τ τ Σ l / m o d An< + °°,

where we denote by D(u) the Dirichlet integral of u taken over R. Hence,

IQI is the constant zero or

Next suppose that EQIG1<1> Then, putting v = 1 — EQIG1 > 0, we have

IQυ = IG{1 - Eβlal) =hl~ IβEβlσl = 0,

because IGEG(U) = C/ for each admissible £/. Now we define the continuous

function υn(p) by

harmonic on An~ΐn

Vn(p) = on

0 on R- An,

5 ) See Constantinescu and Cornea [1].
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and denote by vn(p) the least harmonic majorant of υn(P) on G. Then we

have for each m

D( Σ Vn) ̂  D( Σ Vn) = Σ D(Vn) < Σ D(u)n) = 8 7τΣ 1/mθd An,

and, since 7σz; = 0, have also

v(p) = ̂ ]vn(p) on ff.
n

Let {/?jfe}jfe=o,i,2,... be a normal exhaustion of R such that Ro^ϊi Defining the

continuous function Uk by

uk(p) =

harmonic on i?^ —

0 on n

v on R-

we see that uk tends to v—ϋι uniformly on any compact subset of R —

k-> °°. Further we see that

D(uk — UJ) -^0 as k, j-> oo,

and hence

D(v-vi)= lim D(uk)^Div).

In fact,

D(uk ~ «y) = D(uk) ~ D(uj) if ^ > Λ

and

D(uk) ̂  D(uk+i) ^ DO) for each £,

so that

D(uk-uj) = D(uk)-D(uj)->0 as *, j-+ <».

Similarly we have

^i) for each m.

On the other hand, D(v-vί)>0} because, if 7Gl>0, v is not constant, so that

D(υ - vι) >, D(v) > 0 and, if IQ1 = 0, then v = 1 and υ - ϋ is the harmonic measure

of the ideal boundary of the hyperbolic Riemann surface R with respect to

R-ru so that D(v-ϋi)>0. This contradicts that

m

-'Σvn) =D( Σ ^ « ) < 8 τ r Σ I/mod An-+Q as m^ °°.
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Thus we have

Eolσl = 1,

and hence we see that IQ1 can not be the constant zero and IG1 e HD.

10. From §8, we have

THEOREM 5. Let R be an open Riemann surface. If there exists a subregion

G on R which is of planar character and satisfies that

Eσlol = 1 and IQ1 <= HD,

then R does not belong to the class UΉD.

Remark 1. Let G be an open subset of R, each connected component

Gi of which is a subregion on R. We define Iou by

hu = TGiu on each Gi

and, for an admissible U, EQU by

where we say that U is admissible for G if the restriction Ui of U to each Gi

is admissible in the usual sense. Then we see that, under these difinitions,

the connectivity of G in Theorem 5 is not necessary and the second condition

hi G HD can be relaxed as follows:

IOίl^HD for each G, .

Remark 2. Using Lemma 5 in [8], we can prove the following analogue

of Theorem 5.

THEOREM 6. Let R be an open Riemann surface. If there exists a subre-

gion G on R which is of planar character and satisfies that

then R admits no bounded minimal harmonic function.

11. We shall construct an example of a Riemann surface not belonging

to the class UΉD and yet satisfying the conditions of Theorem 4.

Construction of the example. Our example can be obtained if we take the

slits sufficiently small in the example given in [12],
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Let E be a Cantor set on the closed interval 70 C -1/2, 1/2] with constant

successive ratios ?«, 0 <ζn = 2 ^ < 1. Then i? is of logarithmic positive capacity.

In the quite similar manner in [12], we construct a Riemann surface F with

only one ideal boundary component as a covering surface of the complementary

domain F of E with respect to the extended w-plane. But, this time, we take

as An.kin = 1, 2, . . . k = 1, 2, . . . , 2n) the following ring domains on F.

An,k = {£n(l- g)<\w-Wn,k\< £n'\l- £)/2}

and take the slits S»,Λ(Λ = 1,2, . . . & = 1, 2, . . . , 2n) so small that there

exists an annulus Dn,k which separates Sn>k from E and satisfies that

Dn,k Π D Λ , .* = 0 if (*, *) * (W, *')

and

Σ l / m o d D«,fe< + oo.

Then F is a desired Riemann surface.

To show that F is a desired Riemann surface. By the same reasoning in

[12], F has only one ideal boundary component with positive harmonic measure.

Therefore it is enough to prove that

(i) F€Ξθ°AΏy

(ii) F$UHD.

Proof of (i). Kuroda [6] proved that if a Riemann surface R admits a

sequence of ring domains Bn,k(n = 1,2, . . . & = 1,2, . . . , v(n)) such that, for

each n, all of Bn+i,k (k = 1, 2, . . . , p(n +1)) together separate the ideal bounda-

ry of R from all of Bn,k(k = 1, 2, . . . , v(n)) and

Σ log μn = + °°,
n

then iv? belongs to the class O°Aτ>. Here μn denotes the minimum harmonic

modulus of ring domains Bn,k (k = l,2, . . . , v(n)).

For the sequence of ring domains {An,k) considered above, μn = (£n~1(l - £)

12)1 £n(l- £)=ll2£>\. Hence

Proof of (ii). Let cn,k denote the inner boundary of the annulus Dn,k and

let (cn,k) denote the interior of cn,k. Then for each (cn,k) (n-1,2, . . .

# = 1,2, . . . ,2W), there exists only one connected piece (cn,k) of F over (cn,k)
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which is two-sheeted. We delete from F all of the closures {cn,k) of these

two-sheeted connected pieces (cn,k) (n - 1, 2, . . . k = 1, 2, . . . , 2n) and obtain

an open subset G of F, each connected component of which is a subregion of

F. By our assumption

]l/mod Dn,k< + °°,

the same argument as in §9 leads us to the conclusion that

EθIσl = l and I

Therefore we see by Remark 1 of Theorem 5 that F does not belong to the

class UHD
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