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1. Definitions and results

Let E be a vector lattice in the sense of Birkhoff [1]. We use the follow-
ing notations:

x+ = x u 0, x~ = (—x)+ and \x\ = x+-\-x~.

A subset / is called an ideal if (i) / is a linear subset and (ii) x e I and
\y\ <Lx imply yel.

An ideal is said to be maximal if it is a proper ideal and is not a proper
subset of another proper ideal.

E is said to be semi-simple if the intersection of all maximal ideals
consists of only zero element.

E is said to be radical if there exist no maximal ideals.
An element a is said to be atomic if

\a\ = ax-\-a2 and ax n a2 = 0 imply either ax = 0 or a2 = 0.

For any a e E, the set

I(a) = {x e E | \x\ n \a\ = 0}

is an ideal. The following theorem can be proved easily.

THEOREM 1. / / the ideal I (a) is maximal, the element a is atomic.
The converse of this theorem is not true. For example, let us consider

the space (C) of all real-valued continuous functions defined on the interval
[0, 1]. This space (C) is a vector lattice, if we define, for x(t) and y{t) in
(C), the vector lattice structure as follows:

(i) (az+/fy)(0 = o*:{t)+P(y)t for every t e [0, 1];
(ii) x ^ y if and only if x(t) ^ y(t) for every t e [0, 1].

Now, let us take, for example, the following element:

a(t) = 0 if 0 ^ t ^ I; = t - \ if \ < t ^ 1,

then a is atomic and the ideal Ha) is not maximal, because
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I(a) = {xe (C) I x{t) = 0 for t e (£, 1]}
C {x e (C) | x(t) = 0 for t e (f, 1]}.

(We owe this example to Professor P. Conrad.)
As is well-known, this vector lattice (C) is not conditionally complete.

A vector lattice is said to be conditionally complete if every subset which is
bounded from above has the least upper bound. We can prove the following
theorem.

THEOREM 2. If E is conditionally complete, the ideal I(a) is maximal
whenever a is atomic.

A vector lattice E is said to be atomic if the set A (E) of all atomic
elements is dense: if x n a = 0 for every a e A(E), then x — 0. E is said
to be non-atomic if A (E) is empty.

The following theorem follows immediately from Theorem 1 and 2.

THEOREM 3. If E is conditionally complete,

1. E is atomic if and only if the intersection of all closed ideals consists
of only zero element.

2. E is non-atomic if and only if there are no closed maximal ideals.

An ideal I is said to be closed if, for any increasing set xx el [X e A),
x = \JxeAxk implies x el. (cf. [1], p. 232) The ideal I (a) is closed, because,
if xxeJ(a){XeA) and x = U A ^ ^ A . 1*1 n \a\ ^ \JXsA (|asA| n \a\) = 0.
Maximal ideals are not always closed. As an example of vector lattices in
which every maximal ideal is closed, we take BK-spaces which have been
introduced by [2].

A conditionally complete vector lattice E is said to be a BK-space
if it is a normed lattice with a norm \\x\\ {x e E) which satisfies the following
two conditions:

(i) Iimwco xn = 0 in order convergence implies Hm,,.,,,,, ||a;B|| = 0;
(ii) / / {xn} is increasing and is not bounded from above then lim,^,,, | |a;n| | = oo.

(The condition (ii) has been studied in detail in [4].) Then, the following
theorem, which is the main theorem of this paper, is an easy consequence
of Theorem 3.

THEOREM 4. Let E be a BK-space. Then,

1. E is semi-simple if and only if E is atomic.
2. E is radical if and only if E is non-atomic.

Most of the standard function spaces which appear in Functional
Analysis are Sif-spaces. For example, the sequence space lp (p ^ 1) and
the function space LP[0, 1] (p ^ 1) are -Bif-spaces, because they are
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conditionally complete vector lattices under the usual definitions of vector
lattice structure and the norms:

11*11 = ( 2 I*.!')1'* for *=(*.) 6/,
n=l

and

satisfy the above conditions (i) and (ii). The space / is atomic, because
the elements:

ek = (el) where el = 0 if k ^ n and el = 1 if k = n

are atomic and ek n |a;| = 0 (k = 1, 2, • • •) implies x = 0. The space Lp

is non-atomic, because, since a function which is not zero only on a set of
measure zero is regarded as a zero function, every non-zero function can
be expressed as the sum of two non-zero functions which are mutually
disjoint.

2. Proof of theorem 1

Assume that a is not atomic, then there exist a pair of positive (non-
zero) elements ax and a2 such that

\a\ = «!+a2 and axn a2 = 0.

Let us consider the ideal / which is generated by I (a) and av Obviously,
I (a) is a proper subset of I, because ax is not in I (a). Moreover,/ is a proper
ideal. In fact, if a2 e / , then

a2 5̂  x-\-na1 for some x el(a) and integer n.

Since axn a2 = 0, we have a2 ^ x, from which it follows that a2el(a).
This is a contradiction, because 0 < a2 < \a\.

3. Proof of theorem 2

The vector lattice E is assumed to be conditionally complete.

LEMMA 1. (Theorem 19, p. 233, [1]) Let J be a closed ideal and J1- be
its orthogonal complement:

J1- = {x e E | |a;| n \y\ = 0 for every y e / } .
Then,

i. Ux)x = J;
2. E = J+Jx, in other words, for any x e E there exists uniquely a

pair of elements x{J) e J and x(/-"-) e J1- such that x = x{J)-\-x(J±).
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LEMMA 2. / / a is atomic, for the ideal I generated by I (a) and a, we have
I = E.

PROOF. Take an arbitrary element b. Without loss of generality, we can
assume that a and b are positive. Let us denote by Jn the ideals
I({b-na)+)x . Then,

na{Jn) ^ &(/„) ^ b for every n = 1, 2, • • •,
because

= (b-na)(Jn) = (b-na)+ ^ 0.

Therefore, since a(Jn) ^ b/n for every n and E is conditionally complete,
the sequence {«(/„)} converges to zero in order convergence. On the other
hand, since a is atomic and

we have either a(Jn) = 0 or a(J^) = 0. Assume that

for an infinite number of n, then, for such n, we have

« = «(/») -* 0,

which is a contradiction. Therefore, there exists nQ such that a(Jn) = 0,
which means that

Now, let us consider the set

J(a) = I(a)± = {a; e E \ \x\ n \y\ = 0 for every

Then, / (a) is a closed ideal and, since

b—noa = (b—noa)+^(b—noa)-
and

(b-noa)+el(a)=j(a)\

we have (6—noa)+(J(a)) = 0 and

= b(J(a))-noa(J(a)) = (6-

from which it follows that, for the ideal / which is generated by I (a) and
a, b(J(a)) <noa el. Therefore, b(j{a))el. Since ^(/(a)-1-) el (a), we have
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b = b(J{a))+b(J(a)J-)eI,

hence it follows that I = E.
Now, assume that I (a) is not maximal, then there exists a proper

ideal / such that I (a) is a proper subset of / . Therefore, we can find a
positive element b such that bel and b$I(a). Then, for J(b) =/(6)-L,
since a = a{J(b))+«(/(b)^) and a is atomic, we have

a = a(J(b))
because b $I(a).

Next, we consider the set B of the elements b(J(x)), for J(x) = I{x)1-,
such that

\x\ n \a\ = 0 and J(x)CJ{b).

Since the set B is bounded from above by b, there exists the least upper
bound, which is denoted by c. Obviously, c is orthogonal to a. Now, put

then, we can prove that b is an atomic element.
Assume that

b0 = b1-\-b2 and bx n b2 = 0,
then

Therefore,

Since a is atomic, either «(/(&!)) or «(/(62)) is zero. Let us assume that
a(J(bi)) = 0- Then, since

6 1 n a = 0 and

we have &(/(6i)) ^ c. On the other hand, since

bx ^ b0 = b(J(c)±),

we have i(/(^i)) = 0, from which it follows that bx = 0, because b n b1 = 0
andO ^ \ ^ ' 6 .

Finally, since b is atomic, we can prove that a el by the same method
as in the proof of Lemma 2, if we denote by / „ the closed ideals /((a—nbQ)+)•L.

4. Proof of theorem 3

We need the following lemma.

LEMMA 3. Let E be conditionally complete and I be a closed maximal
ideal. Then, there exists an atomic element a such that I = I (a).
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PROOF. Since I is closed, by Lemma 1, we have / = (I±)J~. Since / is
a proper ideal, (Ix)± $ E, hence it follows that there exists an element a > 0
such that a e / x . Therefore, I CI{a). The maximality of / implies / = I{a)
and hence a is atomic by Theorem 1.

Now, let us prove our theorem.
1. From Theorem 2 and Lemma 3, it follows that

n w
aeA(E)

is exactly the intersection of all closed maximal ideals. Moreover,

xe n I (a)
aeA(E)

is equivalent to that

\x\ n \a\ = 0 for every aeA(E).

Therefore, E is atomic if and only if f\aeA{E) I(a) = {0}.
2. If there exists a closed maximal ideal, then A (E) ^ <f> by Lemma 3.

If A (E) j=- <f>, then there exists a maximal ideal by Theorem 2.

5. Proof of theorem 4

We have only to prove that every maximal ideal is closed. Let / be a
maximal ideal. Then, by [3], Proposition 2], / is the kernel of a real-
valued function f(x) on E which satisfies the following conditions:
(i) f{«x+Py) = *f(*)+Pf(3t); (ii) * ^ 0 implies /(*) ^ 0; (iii) \x\ n \y\ = 0
implies f(x)f(y) = 0. Therefore, / is a positive linear functional on E. By
[Theorem 8, p. 245 and Theorem 10, p. 248 [1]], / is a norm-continuous
linear functional. Now, assume that {a;A e / (A e A)} is an increasing set and
x = \JxeAxx- By the condition (i) in the definition of BK-spaces, we can
select a sequence x^n (n = 1, 2, • • •) such that x = U ^ - I ^ A , - Since / is
norm-continuous, we have

/(*) = lim f{xK) = 0,
n-»oo

which means that / is closed.
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