
16

Unpolarized lepton-hadron scattering

16.1 Moment sum rules

We shall consider the previous lepton-hadron unpolarized process studied in Section 15.3
governed by the T-product of two electromagnetic currents. The general Lorentz decompo-
sition of the hadronic tensor has the form:

Jµ(x)Jν(0) = (∂µ∂ ′
ν − gµν)OL (x)

+ (gµλ∂ρ∂
′
ν + gρν∂µ∂ ′

λ − gµλgρν∂ · ∂ − gµν∂λ∂
′
ρ)Oλρ

2 (x)

+ iεµνλρ∂
λOρ

3 (x)

+ i(εµνλρ∂ · ∂ ′ − εµσλρ∂ν∂
′σ + ενσλρ∂µ∂ ′σ )Oλρ

4 (x) , (16.1)

where ∂µ ≡ ∂/∂xµ and Oi are suitable bilocal operators, where OL corresponds to the
longitudinal structure functions W2 − 2xW1 defined in Eq. (15.36). The operators O3,4 do
not contribute to the unpolarized process. Using the result in Eq. (15.56), one can write an
OPE for the invariants. In the QCD deep inelastic scattering region, one can neglect quark
mass corrections such that we have a good realization of the SU (n) f flavour symmetry.
For the case n f = 2 here (isospin symmetry), the electromagnetic current corresponds to
the third component of SU (2) such that the product J (x)J (0) and the associate composite
operators O belong to the representations:

3 ⊗ 3 = 1 ⊕ 3 ⊕ 5 . (16.2)

Therefore the lowest twist (τ = 2) gauge invariant operators which dominate the light-
cone expansion are, the non-singlet (λa/2 is the SU (n) f flavour matrix):

O(i)
N S,µ1···µk

= i k−1

k!

{
ψ̄

λa

2
γµ1 Dµ2 · · · Dµk ψ + permutations

}
, (16.3)

and singlet operators which mix under renormalizations:

O(i)
S,µ1···µk

= i k−1

k!
{ψ̄γµ1 Dµ2 · · · Dµk ψ + permutations} ,

O(i)
g,µ1···µk

= 2
i k−2

k!
T r
{
Gµ1α Dµ1 · · · Dµk Gα

µk
+ permutations

}
. (16.4)
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16 Unpolarized lepton-hadron scattering 161

We have omitted terms containing gµν , the so-called trace terms. Substituting Eq. (15.56)
into Eq. (16.1), one can deduce in momentum space:

Tµν = i
∫

d4x eiqx 〈p|T Jµ(x)Jν(0)|p〉

= − (gµνq2 − qµqν)
∑
i,n

〈p|O(i)
L ,µ1···µn

(0)|p〉C (i)
L ,n(−q2)qµ1 · · · qµn

(−q2

2

)−n−1

+ (gµλqρqν + gρνqµqλ − q2gµλgρν − gµνqλqρ)

×
∑
i,n

〈p|O(i)λρ
2,µ1···µn

(0)|p〉C (i)
2,n(−q2)qµ1 · · · qµn

(−q2

2

)−n−1

, (16.5)

where we have defined the Fourier transform of the coefficient functions:

C (i)
L ,n(−q2)qµ1 · · · qµn

(−q2

2

)−n−1

= i
∫

d4x eiqx xµ1 · · · xµn C (i)
L ,n(x2) ,

C (i)
2,n+2(−q2)qµ1 · · · qµn 2

(−q2

2

)−n−2

= i
∫

d4x eiqx xµ1 · · · xµn C (i)
2,n(x2) , (16.6)

and we have used the simplified notation:

〈p|T Jµ(x)Jν(0)|p〉 ≡ 1

2

∑
λ

〈p; λ|T Jµ(x)Jν(0)|λ; p〉 . (16.7)

Using the tensor structures:

〈p|O(i)
L ,µ1···µn

(0)|p〉 = ÔL ,n pµ1 · · · pµn + · · ·
〈p|O(i)λρ

2,µ1···µn
(0)|p〉 = Ô2,n+2 pλ pρ pµ1 · · · pµn + · · · , (16.8)

where Ôi are reduced matrix elements not calculable in perturbation theory, and we have
omitted terms containing gµν , we finally deduce:

Tµν = 2ωn
∑

i,n even

eµνC (i)
L ,n(−q2)Ô(i)

L ,n − dµνC (i)
2,n(−q2)Ô(i)

2,n , (16.9)

with:

eµν ≡ gµν − qµqν/q2 ,

dµν ≡ gµν − q2 pµ pν/(p · q)2 − (pµqν + pνqµ)/(p · q) , (16.10)

where ω−1 ≡ Q2/(2p · q) is the Bjorken variable. Because of crossing symmetry:

Tµν(ω) = Tµν(−ω) , (16.11)

the sum runs only over even n. The unphysical relation in Eq. (16.9) (0 ≤ ω ≤ 1) can be
converted to a physical one ω ≥ 1 by using a Cauchy integral to both sides of Eq. (16.9).
Since Tµν is an analytic function in the complex ω plane with branch cuts along the real
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162 IV Deep inelastic scatterings at hadron colliders

C

-1 1

ω

Fig. 16.1. Integration contour.

axis for ω ≤ −1 and ω ≥ 1, as shown in Fig. 16.1, it obeys the dispersion relation:

Tµν = 1

π

{∫ ∞

Q2/2
−
∫ −Q2/2

−∞

}
dν ′

ν ′ − ν
ImTµν(Q2, ν) + subtractions . (16.12)

Using the Cauchy integration to both sides of Eq. (16.9) along the contour in Fig. 16.1,
one obtains:

1

2iπ

∮
C

Tµν

ωn
= 2

π

∫ ∞

1

dω

ωn
ImTµν = 2

∫ 1

0
dx xn−2Wµν , (16.13)

where we have used the definitions in Eqs. (15.34) and (15.35) and the crossing symmetry
in Eq. (16.11).

Noting that:
∮

C
dω ωm−n = δm,n−1 , (16.14)

one can write:

Tµν = 2
∑

i

eµνC (i)
L ,n−1(−q2)Ô(i)

L ,n−1 − dµνC (i)
2,n−1(−q2)Ô(i)

2,n−1 . (16.15)

Equating Eqs. (16.15) and (16.13), one can deduce the moment sum rules for the structure
functions [226]:

M(n)
L (Q2) ≡

∫ 1

0
dx xn−2 FL (x, Q2) =

∑
i

C (i)
L ,n(−q2)Ô(i)

L ,n ,

M(n)
2 (Q2) ≡

∫ 1

0
dx xn−2 F2(x, Q2) =

∑
i

C (i)
2,n(−q2)Ô(i)

2,n , (16.16)
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16 Unpolarized lepton-hadron scattering 163

where the structure functions FL ≡ F2 − 2x F1 (longitudinal structure functions) and F2

are defined through:

Wµν = ω[eµν FL + dµν F2] , (16.17)

and are related to the W1,2 in Eq. (15.36) as:

FL (x, Q2) = −W1(ν, Q2) +
(

1 + ν2

Q2

)
W2(ν, Q2) ,

F2(x, Q2) = ν

M2
p

W2(ν, Q2) . (16.18)

The coefficient functions C (i)
L ,n and C (i)

2,n in Eq. (16.16) are of short-distance nature and
are calculable using perturbative QCD. The reduced matrix elements Ô(i)

L ,n and Ô(i)
2,n are

of long-distance nature and cannot be calculable. They can be determined experimen-
tally, which can be done by measuring the moments in Eq. (16.16) at a fixed Q2

0 and
solve it for the reduced matrix elements. In practice, the moments are not very conve-
nient as they are expressed in such a way that direct predictions of the structure func-
tions cannot be made. Instead, one can take their inverse Mellin transform, which can be
obtained by analytically continuing from integer n to complex n following the Carlson
theorem [227].

One gets:

FL;2(x, Q2) = 1

2iπ

∫ c+i∞

c−i∞
dn ζ 1−nC (i)

L;2,n(Q2)Ô(i)
L;2,n , (16.19)

where C is an arbitrary real positive constant. Assuming (for simplifying the discussion)
that only one operator contributes to the moment, we can suppress the index i . Therefore,
one can deduce from the moments in Eq. (16.16):

ÔL;2,n = 1

CL;2,n
(
Q2

0

)
∫ 1

0
dx xn−2 FL;2

(
x, Q2

0

)
, (16.20)

which, when inserted into Eq. (16.19), gives after rearranging the integral:

FL;2(x, Q2) =
∫ 1

x

dy

y
K
( y

x
, Q2, Q2

0

)
FL;2

(
y, Q2

0

)
, (16.21)

where the kernel function is:

K
(
z, Q2, Q2

0

) = 1

2iπ

∫ c+i∞

c−i∞
dn z1−n CL;2,n(Q2)

CL;2,n
(
Q2

0

) . (16.22)

Equation (16.21) expresses that once we know the structure function at a given Q2
0 for all

x (0 < x < 1), one can predict its value at another Q2 using a perturbative QCD calculation
of the kernel function K .
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164 IV Deep inelastic scatterings at hadron colliders

16.2 RGE for the Wilson coefficients

The Q2-dependence of the structure functions is completly contained into the one of the
Wilson coefficients. As the electromagnetic current is not renormalized, the anomalous
dimension of the composite operators should be cancelled by the one of the Wilson co-
efficients. Using the discussions in Chapter 11, we can write the RGE for the Wilson
coefficients:{

ν
∂

∂ν
+ β(αs)αs

∂

∂αs
−
∑

j

γm(αs)m j
∂

∂m j
− γ (i)

n

}
C (i)

n (−q2) = 0 . (16.23)

where γ (i)
n is the anomalous dimension of the composite operators Ô(i)

n , which can be proven
to be gauge invariant such that the gauge-dependent term in the RGE is absent here. In the
case of non-singlet structure functions, we have only one operator. In the case of singlet
operators, we have coupled RGE due to the mixing of the two operators presented previously
in Eq. (16.4). In this case, one should understand the anomalous dimension as a 2 × 2 matrix
and the Wilson coefficient as a two-component vector. The solution to the RGE is:

C (i)
n (Q2/ν2, αs, m) = C (i)

n (1, ᾱs(t), m̄(t)) exp

[
−
∫ t

0
dt ′γ (i)

n [ḡ(t ′)]
]

, (16.24)

where t = 1/2 log(Q2/ν2). One can also rewrite the solution as:

C (i)
n (Q2) = C (i)

n (1, ᾱs(t)) exp

[
−
∫ ᾱs

αs

dg
γ (i)

n (g)

β(g)

]
, (16.25)

where the β function has been defined in Chapter 11 (Table 11.1):

β = β1

(αs

π

)
+ β2

(αs

π

)2
+ · · · . (16.26)

16.3 Anomalous dimension of the non-singlet structure functions

In the following, one can safely suppress the index i because in the non-singlet case, only
one operator dominates the light-cone expansion. Therefore:

γ
(i)
N S,n ≡ γN S,n = γ 0

n

(αs

π

)
+ γ 1

n

(αs

π

)2
+ · · · (16.27)

In the following, we shall explicitly discuss the evaluation of γ 0
n . It comes from the

Feynman diagrams in Fig. 16.2.
Using the Feynman rules given in Appendix E for the composite operators, Fig. 16.2a

gives in the massless case and in the Feynman gauge:

V (a)
i j = i5g2

∑
a,l

λa
il

2

λa
l j

2

∫
d N k

(2π )N

γ µk̂�̂(� · k)n−1k̂γ ν

k4

(−gµν)

(p − k)2
. (16.28)

The relevant contribution to the anomalous dimension is the divergent part of the coef-
ficient of (� · p)n−1�̂. Using standard Feynman parametrization and shift of momentum
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16 Unpolarized lepton-hadron scattering 165
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(b) (c)

(d)

1
2

Fig. 16.2. Diagrams involved in the evaluation of γ 0
n .

(see Appendix F), the divergent part is:

V (a)
i j

∣∣
ε pole = ig2δi j CF

∫ 1

0
dx(1 − x)

∫
d N k

(2π )N

N
[k2 + p2x(1 − x)]3 , (16.29)

where:

N = −2k2

N
γ αγ β�̂γβγαxn−1�̂(� · p)n−1 . (16.30)

Therefore:

V (a)
i j

∣∣
ε pole =

(αs

π

) 2

ε̂

CF

4

2

n(n + 1)
�̂(� · p)n−1 , (16.31)

where CF = (N 2
c − 1)/2Nc for SU (N )c and:

2

ε̂
≡ 2

ε
+ log 4π − γE . (16.32)

Figures 16.2b and c give the same result. It reads:

V (b)
i j = V (c)

i j = −i3g2CFδi j

∫
d N k

(2π )N

�µ�̂
[∑n−2

n=0(� · p)l[� · (p + k)]n−l−2
]
( p̂k̂)γµ

k2(k + p)2
.

(16.33)

The pole part of the coefficient of (� · p)n−1�̂ is:

V (b)
i j

∣∣
ε pole = 2ig2CFδi j�̂

∫ 1

0
dx
∫

d N k

(2π )N

∑n−2
n=0(� · p)l(� · k + x�k)n−l−1

[k2 + p2x(1 − x)]2

= −
(αs

π

) 2

ε̂

CF

2
δi j (� · p)n−1�̂

{∫ 1

0
dx

n−1∑
l=1

xl =
n∑

l=2

1

l

}
. (16.34)
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166 IV Deep inelastic scatterings at hadron colliders

The diagrams in Fig. 16.2d give the same contributions as the fermion wave function
renormalization constant Z2F defined in Eqs. (9.22) and (9.29). In the Feynman gauge, it
gives:

V (d)
i j

∣∣
ε pole = −

(αs

π

) 2

ε̂

CF

4
δi j (� · p)n−1�̂ (16.35)

Adding the different contributions, one obtains the renormalization constant defined as:

Z N S
n ≡ 1 +

V (a+b+c+d)
i j

∣∣
ε pole

(� · p)n−1�̂
. (16.36)

Using the definition of the anomalous dimension:

γn = ν

Z

d Z

dν
≡ coefficient of −

(
1

ε̂

)
, (16.37)

one obtains the result:

γ 0
n = CF

2

[
1 − 2

n(n + 1)
+ 4

n∑
l=2

1

l

]
, (16.38)

or equivalently:

γ 0
n = CF

2

[
4S1,n − 3 − 2

n(n + 1)

]
, (16.39)

with

S1,n ≡
n∑

l=1

1

l
. (16.40)

The expression of S1,n can be analytically continued to complex n thanks to the Carlson
theorem [227] which we have used previously when taking the inverse Mellin transform.
In this case, one can write:

S1,n = n
∞∑

k=1

1

k(k + n)
= ψ(n + 1) + γE : ψ(z) ≡ d log �(z)

dz
. (16.41)

where the expression of γ 1
n is also known [228] and corrected in [232]. At this order,

the problem of even (resp. odd) structure functions arises. The corresponding anomalous
dimensions are γ 1,±

n . They read:

γ 1,±
n = 32

9
S1,n

[
67 + 8(2n + 1)

n2(n + 1)2

]
− 64S1,n S2,n − 32

9
[S2,n − S±

2,n/2]

[
2S1,n − 1

n(n + 1)

]

− 128

9
S̃±

n + 32

3
S2,n

[ 3

n(n + 1)
− 7
]

+ 16

9
S±

3,n/2 − 28

− 16
151n4 + 260n3 + 96n2 + 3n + 10

9n3(n + 1)3

± 32

9

(2n2 + 2n + 1)

n3(n + 1)3
+ 32n f

27

[
6S2,n − 10S1,n + 3

4
+ 11n2 + 5n − 3

n2(n + 1)2

]
, (16.42)
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16 Unpolarized lepton-hadron scattering 167

where:

S+
l,n/2 = Sl,n/2 , S−

l,n/2 = Sl,(n−1)/2 , S̃±
n = −5

8
ζ3 ∓

∞∑
k=1

(−1)k

(k + n)2
Sl,n+k . (16.43)

16.4 Strategy for obtaining the Wilson coefficients

The main task in perturbative QCD is to calculate the Wilson coefficients. This can be
simplified by the key observation that they are independent of the states which sandwich
the light-cone expansion of the T-product of the electromagnetic current for the forward
Compton amplitude Tµν . For instance, instead of taking proton states, one could consider
quark or gluon Green’s function with the insertion of the T-product of electromagnetic
current. In the case of quark fields, the truncated (quark external line) Green’s function
reads:

�µν(q, p)trunc = i
∫

d4xd4x1d4x2 e−qx+p(x1−x2)〈0|T Jµ(x)Jν(0)ψ(x1)ψ̄(x2)|0〉 , (16.44)

where p is the quark momentum. Repeating the same reasoning as in the previous section,
one can write the OPE analogous to the one in Eq. (16.9):

�µν(q, p)trunc = 2ωn
∑

i,n even

eµνC (i)
L ,n(−q2)Ô(i,pert)

L ,n − dµνC (i)
2,n(−q2)Ô(i,pert)

2,n , (16.45)

where the Wilson coefficients are the same as in Eq. (16.9) but the ‘composite operators’
Ô(i,pert)

L:2,n are calculable in perturbative QCD. The strategy is to calculate �µν(q, p)trunc

and Ô(i,pert)
L:2,n in perturbation theory and then deduce the Wilson coefficients order by order

of perturbative QCD.

16.4.1 Non-singlet part of the Bjorken sum rule

In the non-singlet part of the Bjorken sum rule, the Wilson coefficients can be expressed as:

Cn,N S(1, αs(Q2)) = C0
n,N S

{
1 + C1

n,N S

(αs

π

)
+ · · ·

}
(16.46)

For their evaluation, we shall consider the quark Green’s functions:

Tµν(q, ψ) = i
∫

d4x eiqx 〈ψ |T Jµ(x)Jν(0)|ψ〉 , (16.47)

which has the decomposition:

Tµν(q) = eµνTL + dµνT2 , (16.48)

where eµν and eµν have been defined in Eq. (16.10). We shall also use:

Ô(i,pert)
L:2,n pµ1 · · · pµn = 〈ψ |O(i),µ1···µn

L:2,n |ψ〉 . (16.49)
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+

γ*

γ* γ*

γ*

p

p+q

q

Fig. 16.3. Tree-level diagram for a photon-quark scattering.

The quark tree-level diagram shown in Fig. 16.3 leads to the amplitude:

T 0
µν = Q2

ψ

1

2

∑
λ

ūλ(p)

[
γµ

1

p̂ + q̂ − m
γν + γµ

1

p̂ − q̂ − m
γν

]
uλ(p) . (16.50)

where u j (p) is the quark spinor, and Qψ is its charge in units of e. Introducing the Bjorken
variables, one has:

T 0
µν = Q2

ψdµν

(
1

x − 1
− 1

x + 1

)
= 2Q2

qdµν

∑
n=2,4···

(
1

x

)n

, (16.51)

where dµν has been defined in Eq. (16.10). Then, ones find:

T 0
2 = Q2

ψ

2

x2 − 1
, T 0

L = 0 . (16.52)

These results are already known from the free-field theory discussed in the beginning of
this chapter. Solving the RGE for the Wilson coefficient, one obtains the modification due
to QCD at leading order:

C2,n(Q2) ∼
(

log
Q2

�2

)γ 0
n /2β1

, (16.53)

showing that the naı̈ve Bjorken scaling is modified by the running coupling of QCD to
leading order. To second order, one has [233]:

C1
n,N S = CF

4

(
2S2

1,n + 3S1,n − 2S2,n − 2S1,n

n(n + 1)
+ 3

n
+ 4

n + 1
+ 2

n2
− 9

)
. (16.54)

Therefore, to second order, the non-singlet moments read:

MN S
n (Q2) =

(
αs
(
Q2

0

)
αs(Q2)

)γ 0
n /β1

(
1 + β2/β1(αs(Q2)/π )

1 + β2/β1
(
αs
(
Q2

0

)
/π
)
)−pn

×
(

1 + C1
N S,n(αs(Q2)/π )

1 + C1
N S,n

(
αs
(
Q2

0

)
/π
)
)
MN S

n

(
Q2

0

)
, (16.55)
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16 Unpolarized lepton-hadron scattering 169

where:

pn = γ 1
n /β2 − γ 0

n /β1 . (16.56)

This relation is well verified experimentally and used to measure the QCD coupling αs .

16.4.2 Callan–Gross scaling violation

To leading order, the longitudinal structure function, coming from the diagram in Fig. 16.3,
vanishes being defined as F2 − 2x F1. In the following, we analyze the structure function
to order αs .

Non-singlet part

To order αs , the non-singlet part comes from the diagram in Fig. 16.4.
The analysis is simplified by noting that TL is the only amplitude multiplied by qµqν .

The amplitude from the direct diagram is:

T i j
µν

∣∣
dir = −iCFδi j g

2 1

4

∑
σ

ū(p, σ )

×
∫

d N k

(2π )N

γα( p̂ + k̂)γ µ( p̂ + k̂ + q̂)γ ν( p̂ + k̂)γ α

(p + k)4(p + k + q)2k2
u(p, σ ) . (16.57)

Using:
∑

σ

ū(p, σ )Mu(p, σ ) = T r [ p̂M] , (16.58)

and extracting term proportionnal to qµqν , one obtains after usual manipulations:

T N S
L

∣∣
dir =

(αs

π

)
CF

2

x

∫ 1

0
ydy

∫ 1

0
dz

y(1 − yz)

[y − [1 − (1 − y − yz)/x]]2 , (16.59)

p+k

q p+k+q

p+k      + crossed

i,p j,p

Vµ Vν

Fig. 16.4. Diagrams contributing to F N S
L .
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Expanding in powers of 1/x and integrating, one obtains:

T N S
L

∣∣
dir =

(αs

π

)
CF

∞∑
n=1

1

n + 1

(
1

x

)n

. (16.60)

The crossed diagram doubles the even n contribution and cancels the odd one. Then, one
finally obtains:

T N S
L = 2

(αs

π

)
CF

∞∑
n=even

1

n + 1

(
1

x

)n

. (16.61)

Comparing with Eqs. (16.52) and (16.16), one can deduce the scaling violation QCD
correction to the Callan–Gross relation:

MN S
L ,n = δN S

L

(αs

π

) CF

n + 1
MN S

2,n , (16.62)

where for ep scattering δN S
L = 1/6. Taking the Mellin transforms, one can derive the non-

singlet part of the structure functions:

F N S
L (x, Q2) =

∫ 1

x
dy C L

N S(y, Q2)F N S
2

(
x

y
, Q2

)
, (16.63)

where:

C N S
L (y, Q2) = CF x(αs(Q2)/π ) + O(α2

s

)
, (16.64)

where the α2
s correction has been evaluated in [235].

Singlet part

The calculation of the singlet part is similar to that for the non-singlet. To the quark diagram
in Fig. 16.3, one has to add the gluonic diagram in Fig. 16.5.

p+k

k

q q

          + crossed

p p

Fig. 16.5. Diagrams contributing to the gluon component of the structure function.
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For electron-proton scattering, the singlet structure function can be decomposed as:

F S
L (x, Q2) =

∫ 1

x
dy

{
C L

S (y, Q2)F S
2

(
x

y
, Q2

)
+ C L

G(y, Q2)F S
G

(
x

y
, Q2

)}
, (16.65)

where:

C L
S (x, Q2) ≡ C L

N S + C L
QS ,

C L
QS(x, Q2) = C1,L

QS

(
αs(Q2)

π

)2

,

C L
G(x, Q2) = 4n f TR x(1 − x)

(
αs(Q2)

π

)
+ C1,L

G

(
αs(Q2)

π

)2

. (16.66)

C L
N S has been defined in Eq. (16.64). The coefficients C1,L

QS and C1,L
G have been evaluated in

[235–237]. The full longitudinal structure function is the sum of the non-singlet and quark
singlet components.

It is given by:

FL ≡ F2 − 2x F3 = F S
L + F N S

L . (16.67)

16.5 Singlet anomalous dimensions and moments

The singlet calculations are more involved than the case of non-singlet and longitudinal
structure functions. The corresponding anomalous dimension is a 2 × 2 matrix because of
the mixing of the operators in Eq. (16.4). Using an expansion of the anomalous dimension
and Wilson coefficient function:

γn = γ0n

(αs

π

)
+ γ1n

(αs

π

)2
+ · · ·

C (i)
n (1, αs(Q2)) = C0

n,i

{
1 + C1

n,i

(αs

π

)
+ · · ·

}
(16.68)

To leading order,

C (i)
n (1, αs(Q2)) = C0

n, j

(
αs
(
Q2

0

)
αs(Q2)

)γ0n/β1

i j

(16.69)

where the indices i, j ≡ q, g indicate quark and gluon composite operators respectively.
The calculation of C0

n,i is very analogous to the non-singlet case by considering the forward
Compton amplitude sandwiched between two quark states for C0

n,q and two gluon states for
C0

n,g . One obtains to this order:

C0
n,q =

{ 1 for Cn,2

0 for Cn,L
. (16.70)

Since the gluon does not couple to the photon to lowest order, one obtains:

C0
n,g(Q2) = 0 . (16.71)
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(a)

+ +

(b)

+ +

(c)

Fig. 16.6. Diagrams contributing to the singlet anomalous dimensions.

The anomalous dimension matrix reads to leading order:

γ0n =
⎛
⎝γ

qq
0n γ

qg
0n

γ
gq

0n γ
gg

0n

⎞
⎠ . (16.72)

The diagrams contributing to the anomalous dimensions are given in Fig. 16.6, in addition
to the contribution from the diagrams in Fig. 16.2. The results are [168,234]:

γ
qq
0n = CF

2

[
1 − 2

n(n + 1)
+ 4

n∑
j=2

1

j

]
,

γ
qg
0n = −2n f TR

n2 + n + 2

n(n + 1)(n + 2)
,

γ
gq

0n = −CF
n2 + n + 2

n(n2 − 1)
,

γ
gg

0n = 2

[
CG

(
1

12
− 1

n(n + 1)
− 1

(n + 1)(n + 2)
+

n∑
j=2

1

j

)
+ TR

n f

3

]
, (16.73)

where CF = (N 2
c − 1)/2Nc, TR = 1/2 and CG = Nc for SU (N )c. To this order, the mo-

ments in Eq. (16.16) read:

M2,n(Q2) =
∑

i

C0
n,i

(
αs
(
Q2

0

)
αs(Q2)

)γ0n/β1

iq

,

ML ,n(Q2) = 0 . (16.74)
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In order to make a comparison with experiment, it is convenient to diagonalize the
anomalous dimension matrix γon . On this basis, one can write:

M2,n(Q2) = C0
+,n

(
log

Q2

�2

)−γ +
0n/2β1

+ C0
−,n

(
log

Q2

�2

)−γ −
0n/2β1

, (16.75)

with:

γ ±
0n = 1

2

[
γ

qq
0n + γ

gg
0n ±

√(
γ

qq
0n + γ

gg
0n

)2 + 4γ
qg
0n γ

gq
0n

]
. (16.76)

To the next order, the expressions of the anomalous dimensions are known and the Wilson
coefficients read [233]:

C1
n,q = C1

n,N S = CF

4

(
2S2

1,n + 3S1,n − 2S2,n − 2S1,n

n(n + 1)
+ 3

n
+ 4

n + 1
+ 2

n2
− 9

)
,

C1
n,g = TF n f

(
−1

n
+ 1

n2

6

n + 1
− 6

n + 2
− S1,n

n2 + n + 2

n(n + 1)(n + 2)

)
. (16.77)

To this order, the moments in the singlet case have more involved expressions, because of
the mixing of operators. We refer the readers to, for example, the papers in [228,232,233],
the review in [49] and book [46] for some expositions of this case. Finally, the expressions
of few moments including three-loop corrections have been evaluated in [238].
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