ON THE DISTRIBUTION MODULO 1 OF THE SEQUENCE $\alpha n^{2}+\beta n$

WOLFGANG M. SCHMIDT
In memory of H. Heilbronn

1. Introduction. Dirichlet's Theorem says that for any real α and for $N \geqq 1$, there exists a natural $n \leqq N$ with

$$
\|\alpha n\|<N^{-1}
$$

where || || denotes the distance to the nearest integer. Heilbronn [2], improving estimates of Vinogradov [3], showed that for α, N as above and for $\epsilon>0$, there exists an $n \leqq N$ with

$$
\left\|\alpha n^{2}\right\|<c_{1}(\epsilon) N^{-(1 / 2)+\epsilon} .
$$

Davenport [1], as part of a more general investigation, proved that for a quadratic polynomial $\alpha x^{2}+\beta x$, for $N \geqq 1$ and $\epsilon>0$, there is an $n \leqq N$ with

$$
\left\|\alpha n^{2}+\beta n\right\|<c_{2}(\epsilon) N^{-(1 / 3)+\epsilon} .
$$

The example $0 . x^{2}+0 . x+\frac{1}{2}$ shows that the restriction to polynomials with constant term zero is essential. An important feature of the results is that they are uniform in α, β and they are "localized", i.e. they specify n to lie in a given range. They imply but are not implied by non-localized results; e.g. Heilbronn's Theorem implies that there are infinitely many n with $\left\|\alpha n^{2}\right\|<c_{1}(\epsilon) n^{-(1 / 2)+\epsilon}$.

Theorem. Suppose α, β are real, and $\epsilon>0$. Given $N \geqq 1$, there exists an $n \leqq N$ with

$$
\left\|\alpha n^{2}+\beta n\right\|<c_{3}(\epsilon) N^{-(1 / 2)+\epsilon}
$$

This generalizes Heilbronn's Theorem and sharpens Davenport's estimate. Our point of departure from the standard arguments will be the estimate (7) for exponential sums.
2. A routine beginning. We start out with the Heilbronn-Davenport approach. Write $e(x)=e^{2 \pi i x}$. Suppose $M>2$, and let r be natural. According to Vinogradov ($\left[\mathbf{4}\right.$, Lemma 12], applied with $\beta=-\alpha=\frac{1}{2} M^{-1}, \Delta=M^{-1}$), there exists a real-valued periodic function

$$
\psi(x)=\sum_{m=-\infty}^{\infty} c_{m} e(m x)
$$

[^0]with
(i) $\psi(x)=0 \quad$ if $\|x\| \geqq M^{-1}$,
(ii) $c_{0}=M^{-1}$,
(iii) $\left|c_{m}\right| \ll \min \left(M^{-1},|m|^{-r-1} M^{r}\right)$
for $m \neq 0$, where the constant in << depends only on r.
Put
$$
M=N^{1 / 2-\epsilon}
$$
and suppose N to be a large integer, say $N>c_{4}(\epsilon)$. Everything is fine if there exists an $n \leqq N$ with $\left\|\alpha n^{2}+\beta n\right\|<M^{-1}$. We therefore assume that there is no such n. Then by (i),
$$
\sum_{n=1}^{N} \psi\left(\alpha n^{2}+\beta n\right)=0
$$

In view of (ii) we obtain
(1) $\sum_{m \neq 0} c_{m} S_{m}=-N M^{-1}$
with

$$
S_{m}=\sum_{n=1}^{N} e\left(m\left(\alpha n^{2}+\beta n\right)\right)
$$

Putting $L=\left[M^{1+\epsilon}\right]$ where [] denotes the integer part, we have
(2) $\quad N^{1 / 2-\epsilon}<L \leqq N^{1 / 2-(\epsilon / 2)}$.

By (iii),

$$
\sum_{|m|>L}\left|c_{m}\right| \ll M^{\tau} L^{-\tau} \ll M^{-\epsilon \tau} \ll M^{-2}
$$

if we fix $r>2 \epsilon^{-1}$. Here and in the sequel, the constants in \ll and in 'big O^{\prime} depend only on ϵ. If N, whence M, is sufficiently large, we have

$$
\sum_{|m|>L}\left|c_{m} S_{m}\right| \leqq N \sum_{|m|>L}\left|c_{m}\right|<\frac{1}{2} N M^{-1}
$$

Comparison with (1) yields

$$
\left|\sum_{0<|m| \leqq L} c_{m} S_{m}\right| \geqq \frac{1}{2} N M^{-1}
$$

whence

$$
\sum_{0<|m| \leqq L}\left|S_{m}\right| \gg N
$$

by (iii). Since $\left|S_{-m}\right|=\left|S_{m}\right|$, and by Cauchy's inequality,
(3) $\sum_{m=1}^{L}\left|S_{m}\right|^{2} \gg N^{2} L^{-1}$.

3. Exponential sums.

$$
\left|S_{m}\right|^{2}=\sum_{n_{1}=1}^{N} \sum_{n_{2}=1}^{N} e\left(m\left(n_{2}-n_{1}\right)\left(\alpha\left(n_{1}+n_{2}\right)+\beta\right)\right)
$$

Putting $u=n_{1}+n_{2}, v=n_{2}-n_{1}$, we obtain

$$
\left|S_{m}\right|^{2}=\sum_{u, v} e(m v(\alpha u+\beta)),
$$

where the sum is over integers u, v with $u \equiv v(\bmod 2)$ and

$$
0<u+v \leqq 2 N, \quad 0<u-v \leqq 2 N .
$$

The N summands with $v=0$ give a contribution N. Since the substitution $v \rightarrow-v$ changes each summand into its complex conjugate, we have

$$
\left|S_{m}\right|^{2}=N+2 \operatorname{Re} \sum_{u, v} e(m v(\alpha u+\beta)),
$$

where the sum is over u, v with $u \equiv v(\bmod 2)$ and

$$
\begin{equation*}
0<v<N, \quad v<u \leqq 2 N-v \tag{4}
\end{equation*}
$$

For fixed v, the terms $m v(\alpha u+\beta)$ with integers $u \equiv v(\bmod 2)$ form an arithmetic progression with common difference $2 m v \alpha$. The sum of $e(m v(\alpha u+\beta))$ over the terms of this arithmetic progression (which has length $N-v<N$ by (4)) is

$$
\ll \min \left(N,\|2 m v \alpha\|^{-1}\right) .
$$

Summation over v in $0<v<N$ yields the well known Weyl estimate for $\left|S_{m}\right|^{2}$, namely

$$
\left|S_{m}\right|^{2}=N+O\left(\sum_{v=1}^{N} \min \left(N,\left.\|2 m v \alpha\|\right|^{-1}\right)\right) .
$$

Since by (2), $N L$ is small compared to $N^{2} L^{-1}$, our estimate (3) yields

$$
\sum_{m=1}^{L} \sum_{v=1}^{N} \min \left(N,\|2 v m \alpha\|^{-1}\right) \gg N^{2} L^{-1}
$$

Observing that the number of divisors of an integer $\leqq 2 L N$ is $\ll N^{\epsilon / 3}$, we get
(5) $\quad \sum_{k=1}^{2 L N} \min \left(N,\|k \alpha\|^{-1}\right) \gg N^{2-(\epsilon / 3)} L^{-1}$.

We now reverse the roles of u, v above. The inequalities (4) may be rewritten as

$$
\begin{equation*}
0<u<2 N, \quad 0<v \leqq \min (u-1,2 N-u) . \tag{6}
\end{equation*}
$$

For fixed u, the terms $m v(\alpha u+\beta)$ with $v \equiv u(\bmod 2)$ form an arithmetic progression with common difference $2 m(\alpha u+\beta)$. The sum of $e(m v(\alpha u+\beta))$
over the terms of this arithmetic progression is

$$
\ll \min \left(N,\|2 m(\alpha u+\beta)\|^{-1}\right)
$$

Summation over u yields

$$
\begin{equation*}
\left|S_{m}\right|^{2}=N+O\left(\sum_{u=1}^{2 N} \min \left(N,\|2 m(\alpha u+\beta)\|^{-1}\right)\right) \tag{7}
\end{equation*}
$$

We now invoke (3) to obtain
(8) $\sum_{m=1}^{2 L} \sum_{u=1}^{2 N} \min \left(N,\|m(\alpha u+\beta)\|^{-1}\right) \gg N^{2} L^{-1}$.
4. A first application of Dirichlet's Theorem. We briefly return to Heilbronn's argument, i.e. to (5). By Dirichlet, there are coprime integers a, q with
(9) $\quad 1 \leqq q \leqq N^{2-(\epsilon / 2)} L^{-1}, \quad|\alpha q-a|<N^{-2+(\epsilon / 2)} L$,
so that in particular, $|\alpha-(a / q)|<q^{-2}$. It is well known that for a block \mathscr{B} of q consecutive integers,

$$
\sum_{k \in \mathscr{B}} \min \left(N,\|k \alpha\|^{-1}\right) \ll N+q \log q .
$$

Dividing the range $1 \leqq k \leqq 2 L N$ into $\leqq(2 L N / q)+1$ blocks of q or fewer consecutive integers, we have
(10) $\sum_{k=1}^{2 L N} \min \left(N,\|k \alpha\|^{-1}\right) \ll\left(2 L N q^{-1}+1\right)(N+q \log q)$.

In view of (2) and (9), the only one of the four summands on the right hand side of (10) which could possibly be as large as $N^{2-(\epsilon / 3)} L^{-1}$, is $2 L N^{2} q^{-1}$. Thus by (5) and (2),
(11) $q \ll L^{2} N^{\epsilon / 3} \ll N^{1-(\epsilon / 2)}$.

5. Auxiliary lemmas.

Lemma 1. Suppose $|\sigma| \leqq N^{-1}$. Then

$$
\min \left(N,\|\rho+\sigma\|^{-1}\right) \ll \min \left(N,\|\rho\| \|^{-1}\right) .
$$

Proof. Obvious.
Lemma 2. Let ξ_{1}, \ldots, ξ_{K} be reals with $\left\|\xi_{i}-\xi_{j}\right\| \geqq \rho>0$ for $i \neq j$, and with $\left\|\xi_{1}\right\|=\min \left(\left\|\xi_{1}\right\|, \ldots,\left\|\xi_{K}\right\|\right)$. Then

$$
\sum_{i=2}^{K}\left\|\xi_{i}\right\|^{-1} \ll \rho^{-1} \log K
$$

Proof. We may suppose that $\left\|\xi_{1}\right\| \leqq \ldots \leqq\left\|\xi_{K}\right\|$. Then $\left\|\xi_{i}\right\| \geqq(i-1) \rho / 2$ for $i=2,3, \ldots, K$. The lemma follows.

Lemma 3. Let ρ, σ be real, and K natural with $|K \rho| \leqq 1$. Write

$$
\delta=\min _{1 \leqq j \leqq K}\|\rho j+\sigma\|, \quad \Delta=\max _{1 \leqq j \leqq K}\|\rho j+\sigma\| .
$$

Then
(12) $\sum_{j=1}^{K}\|\rho j+\sigma\|^{-1}=\delta^{-1}+O\left(\Delta^{-1} K \log K\right)$.

Proof. Write the numbers $\rho j+\sigma$ with $j=1, \ldots, K$ as ξ_{1}, \ldots, ξ_{K}, arranged such that $\left\|\xi_{1}\right\|=\delta=\min \left(\left\|\xi_{1}\right\|, \ldots,\left\|\xi_{K}\right\|\right)$. We have $\left\|\xi_{i}-\xi_{j}\right\| \geqq|\rho|$ in view of $|K \rho| \leqq 1$. Thus if $|\rho| \geqq \Delta / 2 K$, the desired conclusion follows from Lemma 2. On the other hand, if $|\rho|<\Delta / 2 K$, then $\|\rho j+\sigma\|>\frac{1}{2} \Delta(j=1, \ldots, K)$, and the sum in (12) is estimated by $2 \Delta^{-1} K$.

Lemma 4. Suppose r, s are coprime,
(13) $1 \leqq s \leqq N$ and $\|\xi s\|=|\xi s-r|<(3 N)^{-1}$.

Then
(14) $\sum_{j=1}^{s} \min \left(N,\|\xi j+\eta\|^{-1}\right) \ll \min \left(N, s\|\eta s\|^{-1}\right)+s \log s$.

Proof. Writing $\xi=(r / s)+\xi_{0}$, we have $\left|j \xi_{0}\right| \leqq\left|s \xi_{0}\right|=||\xi s||<(3 N)^{-1}$. So by Lemma 1, our sum is

$$
\ll \sum_{j=1}^{s} \min \left(N,\|(r / s) j+\eta\|^{-1}\right)=\sum_{j=1}^{s} \min \left(N,\|(j / s)+\eta\|^{-1}\right) .
$$

We now apply Lemma 3 with $K=s, \rho=1 / s, \sigma=\eta$, and obtain

$$
\ll \min \left(N, \delta^{-1}\right)+\Delta^{-1} s \log s .
$$

In our special situation, δ is the distance from η to the nearest integer multiple of $1 / s$, or $\delta=s^{-1}\|\eta s\|$. If $s \geqq 2$, then $\Delta \geqq \frac{1}{4}$, and we are done. Of course we are also done when $s=1$.

Lemma 5. Suppose r, s, N, ξ are as in Lemma 4. Then

$$
\sum_{u=1}^{2 N} \min \left(N,\|\xi u+\eta\|^{-1}\right) \ll(\log N) \min \left(\frac{N^{2}}{s}, \frac{N}{\|\eta s\|}, \frac{1}{\|\xi s\|}\right)
$$

Proof. Write $u=s z+j(j=1, \ldots, s)$. The sum in question is

$$
\leqq \sum_{z=0}^{[2 N / s]} \sum_{j=1}^{s} \min \left(N,\|\xi j+\xi s z+\eta\|^{-1}\right)
$$

and is

$$
\ll \sum_{z=0}^{[2 N / s]}\left(\min \left(N, s\left\|\xi s^{2} z+\eta s\right\|^{-1}\right)+s \log s\right)
$$

by Lemma 4. Writing $\xi_{1}=\xi s-r$ with $\left|\xi_{1}\right|=\|\xi s\|$, we obtain
(15) $\ll N \log N+\sum_{z=0}^{[2 N / s]} \min \left(N, s\left\|\xi_{1} s z+\eta s\right\|^{-1}\right)$.

It is clear that this is

$$
\ll N \log N+\left(N^{2} / s\right) \ll(\log \mathrm{N})\left(N^{2} / s\right),
$$

which is the first of the desired estimates.
To get the other estimates we now apply Lemma 3 to the sum in (15), that is, we apply it with $K=[2 N / s]+1, \rho=\xi_{1} s, \sigma=\eta s-\xi_{1} s$. Observe that $|K \rho| \leqq(3 N / s)\left|\xi_{1} s\right|=3 N| | \xi s| |<1$. We obtain
$\ll N \log N+\min \left(N, s \delta^{-1}\right)+s \Delta^{-1} K \log K$
$\ll N \log N+\Delta^{-1} N \log N$
$\ll \Delta^{-1} N \log N$.
Here Δ is the maximum of $\left\|\xi_{1} s z+\eta s\right\|$ for $z=0, \ldots,[2 N / s]$. Clearly $\Delta \geqq$ $\| \eta s| |$. But since $\left|N \xi_{1}\right|<1 / 3$, we have also

$$
\left|\xi_{1} s[N / s]\right|=\left\|\xi_{1} s[N / s]\right\| \leqq\left\|\xi_{1} s[N / s]+\eta s\right\|+\|\eta s\| \leqq 2 \Delta
$$

whence $\Delta \geqq \frac{1}{2}\left|\xi_{1}\right| s[N / s] \geqq \frac{1}{4}\left|\xi_{1}\right| N=\frac{1}{4} N| | \xi s| |$. We therefore obtain
$\Delta^{-1} N \log N \ll(\log N) \min \left(N\|\eta s\|\left\|^{-1},\right\| \xi s \|^{-1}\right)$.
6. Making use of (8). Let d be a divisor of the integer q of $\S 4$. Let $\boldsymbol{\Sigma}_{d}$ be the double sum in (8), but restricted to summands with (m, q) $=d$. Writing $q=d q_{1}, m=d m_{1}$,

$$
\Sigma_{d}=\sum_{\substack{m_{1}=1 \\\left(m_{1}, q_{1}\right)=1}}^{[2 L / d]} \sum_{u=1}^{2 N} \min \left(N,\left\|\alpha d m_{1} u+\beta d m_{1}\right\|^{-1}\right) .
$$

Since the number of divisors of q is $\ll N^{\epsilon / 3}$, there will by (8) be a d with

$$
\begin{equation*}
\Sigma_{d} \gg N^{2-(\epsilon / 3)} L^{-1} \tag{16}
\end{equation*}
$$

We now consider the inner sum in the definition of Σ_{d}. It is the type of sum considered in Lemma 5, with $\xi=\alpha d m_{1}$ and $\eta=\beta d m_{1}$. With $s=q_{1}, r=a m_{1}$ we have $(s, r)=1$, and

$$
s \leqq q \leqq N
$$

by (11). Further

$$
|\xi s-r|=\left|\alpha d m_{1} s-a m_{1}\right|=|\alpha q-a| m_{1}<N^{-2+(\epsilon / 2)} L(2 L)<(3 N)^{-1}
$$

by (9), (2), so that $\| \xi s| |=|\xi s-r|<(3 N)^{-1}$. The hypotheses of Lemma 5 are satisfied, and the inner sum in the definition of Σ_{d} is

$$
\ll(\log N) \min \left(\frac{N^{2}}{q_{1}}, \frac{N}{\left\|\beta q m_{1}\right\|}, \frac{1}{\left\|\alpha q m_{1}\right\|}\right) .
$$

So by (16), and since $\left\|\alpha q m_{1}\right\|=\|\alpha q\| m_{1}$,

$$
\begin{equation*}
\sum_{m_{1}=1}^{[2 L / \alpha]} \min \left(\frac{N^{2}}{q_{1}}, \frac{N}{\left\|\beta q m_{1}\right\|}, \frac{1}{\|\alpha q\| m_{1}}\right) \gg N^{2-(\epsilon / 2)} L^{-1} \tag{17}
\end{equation*}
$$

7. A second application of Dirichlet's Theorem. There are coprime t, w with

$$
\begin{equation*}
1 \leqq t \leqq 4 L \quad \text { and } \quad\|\beta q t\|=|\beta q t-w|<(4 L)^{-1} \tag{18}
\end{equation*}
$$

Lemma 6. Suppose $m_{1} \leqq 2 L$ is not divisible by t. Then

$$
\left\|\beta q m_{1}\right\| \geqq(2 t)^{-1}
$$

Proof. Assuming that $m_{1} \leqq 2 L$ and that $\left\|\beta q m_{1}\right\|<(2 t)^{-1}$, we have $\left|\beta q m_{1}-l\right|<(2 t)^{-1}$ for some l. Combining this with $|\beta q t-w|<(4 L)^{-1}$, we obtain

$$
\left|l t-m_{1} w\right|<\left(\frac{1}{2}\right)+\left(m_{1} / 4 L\right) \leqq 1
$$

so that $l t-m_{1} w=0$, and t is a divisor of $m_{1} w$, hence of m_{1}.
We are going to apply the lemma to estimate the part of the sum (17) where m_{1} is not divisible by t. Let \mathfrak{C} be a block of $\leqq t / 2$ consecutive integers $\leqq 2 L$ which are not divisible by t. By the lemma we know that $\left\|\beta q m_{1}\right\| \geqq(2 t)^{-1}$ for $m_{1} \in \mathbb{C}$. On the other hand, if m_{1}, m_{1}^{\prime} are distinct elements of \mathfrak{C}, we write $\beta q=(w / t)+\beta_{0}$ and note that $\left|\beta_{0}\right|<(4 t L)^{-1}$, so that

$$
\begin{aligned}
\left\|\beta q m_{1}-\beta q m_{1}{ }^{\prime} \mid\right\| & \geqq(w / t)\left(m_{1}-m_{1}{ }^{\prime}\right) \|-\left|\beta_{0}\right| m_{1}-m_{1}{ }^{\prime} \mid \\
& \geqq t^{-1}-(4 t L)^{-1}(t / 2) \geqq(2 t)^{-1}=\rho
\end{aligned}
$$

say. Lemma 2 yields

$$
\sum_{m_{1} \in \mathbb{E}}\left\|\beta q m_{1}\right\|^{-1} \ll 2 t+\rho^{-1} \log t \ll t \log N
$$

We divide the integers m_{1} in $1 \leqq m_{1} \leqq 2 L / d$ with $t \nmid m_{1}$ into $\leqq(4 L / d t)+1$ blocks of $\leqq t / 2$ consecutive integers, and obtain

$$
\sum_{\substack{m_{1}=1 \\ t \neq m_{1}}}^{[2 L / d]}\left\|\beta q m_{1}\right\|^{-1} \ll(t \log N)((4 L / d t)+1) \ll L \log N .
$$

It follows that the sum (17), restricted to m_{1} with $t \nmid m_{1}$ is $\ll L N \log N$, and is smaller in magnitude than the right hand side of (17). We thus may restrict ourselves to m_{1} of the form $m_{1}=t m_{2}$, and we obtain

$$
\begin{equation*}
\sum_{m_{2}=1}^{[2 L / / t]} \min \left(\frac{N^{2}}{q_{1}}, \frac{1}{\|\alpha q\|!t m_{2}}\right) \gg N^{2-(\epsilon / 2)} L^{-1} . \tag{19}
\end{equation*}
$$

In particular, $(2 L / d t)\left(N^{2} / q_{1}\right) \gg N^{2-(\epsilon / 2)} L^{-1}$, and putting $n=q t$, we have $n=q_{1} d t \ll L^{2} N^{\epsilon / 2}$, whence
(20) $\quad n=q t \leqq N$
by (2). On the other hand, (19) yields

$$
(\|\alpha q\| t)^{-1} \log N \gg N^{2-(\epsilon / 2)} L^{-1}
$$

and

$$
\|\alpha q\| t \ll L N^{\epsilon-2} \ll N^{(\epsilon / 2)-(3 / 2)} .
$$

So

$$
\begin{aligned}
\left\|\alpha n^{2}+\beta n\right\| \leqq n\|\alpha n\|+\|\beta n\| \leqq n t\|\alpha q\| & +\|\beta q t\| \\
& \ll N . N^{(\epsilon / 2)-(3 / 2)}+L^{-1} \ll N^{-(1 / 2)+\epsilon},
\end{aligned}
$$

by (2), (18).

References

1. H. Davenport, On a theorem of Heilbronn, Quart. J. Math. (2) 18 (1967), 337-344.
2. H. Heilbronn, On the distribution of the sequence $n^{2} \theta(\bmod 1)$, Quart. J. Math. 1.9 (1948), 249-256.
3. I. M. Vinogradov. Analytischer Beweis des Satzes iuber die Verteilung der Bruchteile eines ganzen Polynoms, Bull. Acad. Sci. USSR (6) 21 (1927), 567-578.
4. - The method of trigonometric sums in the theory of numbers (1947), English transl. (Interscience, New York, 1954).

University of Colorado,
Boulder, Colorado

[^0]: Received September 10, 1976. This research was written while the author was partially supported by NSF-MCS 75-08233-A01.

