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1. Introduction and main results
An essentially free, ergodic, non-singular action G� (X, μ) of a countable group G on
a standard probability space is said to be orbit equivalence (OE) superrigid if the group
G and its action on (X, μ) can be entirely retrieved from the orbit equivalence relation
R(G� X) = {(x, g · x) | x ∈ X, g ∈ G}. Especially in the case where μ is a G-invariant
probability measure, several OE-superrigidity theorems were proven in the context of
Popa’s deformation/rigidity theory; see, for example, [DIP19, Ioa08, Pop05, Pop06].

Beyond the probability measure-preserving setting, OE-superrigidity results are more
scarce; see, for example, [DV21, Ioa14, PV08]. In all these cases, the group action G�
(X, μ) has one of the following Krieger types: II1, II∞ or III1 (see §2 for definitions).
There is a conceptual reason why it is harder to prove OE superrigidity for actions of
type IIIλ, λ ∈ [0, 1). One typically proves OE superrigidity for G� (X, μ) by showing
that every measurable 1-cocycle ω : G×X → � with values in an arbitrary countable
group � is cohomologous to a group homomorphism δ : G → �. When the measure μ is
not G-invariant, the logarithm of the Radon–Nikodym derivative d(g−1 · μ)/dμ provides
a 1-cocycle ω : G×X → R. In type IIIλ with λ ∈ [0, 1), this 1-cocycle is ‘essentially’
similar to a 1-cocycle with values in a countable group. Therefore, cocycle superrigidity
tends to fail.

In this paper, we obtain the first OE-superrigidity results in type IIIλ when λ �= 1.
In Theorem C, we prove OE superrigidity for the affine action of dense subgroups
G < SL(n, R)�Rn on X = Rn. These actions can be of type IIIλ for any λ ∈ (0, 1]. In
this result, OE superrigidity holds in its strongest possible form: for every essentially free,
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ergodic, non-singular action �� (Z, ζ ) that is stably orbit equivalent to G� (X, μ),
there exists an injective group homomorphism δ : G → � such that �� (Z, ζ ) is
isomorphic to the induction of G� (X, μ) along δ.

In Theorem C, we also prove that this strongest form of OE superrigidity can basically
never hold for actions of type III0. In type III0, it is necessary to further reduce the
other action �� (Z, ζ ): after writing �� Z as an induction of �0 � Z0, we need
to take a quotient �0/� � Z0/� by a normal subgroup � whose action on Z0 admits a
fundamental domain, before arriving at an action that is conjugate with G� (X, μ).

This leads to a second, slightly weaker version of OE superrigidity that we denote,
without too much inspiration, as OE superrigidity (v2). In Theorem A and Corollary B,
we then prove that natural skew product actions of dense subgroups of SL(n, R) are OE
superrigid (v2), of type III0, with any prescribed associated flow.

Before stating our main results, we make this terminology more precise. Note that the
concepts of (stable) orbit equivalence, induced actions, conjugate actions, etc., are recalled
in §2.

Beyond the probability measure-preserving setting, one cannot distinguish between
orbit equivalence and stable orbit equivalence. Therefore, induced actions will appear in
any OE-superrigidity statement. We thus formally define the following property for a free,
ergodic, non-singular action G� (X, μ).
• OE superrigidity (v1) of G� (X, μ): any free, ergodic, non-singular action that is

stably orbit equivalent to G� (X, μ) is conjugate to an induction of G� (X, μ).
As we prove in Theorem C, this (v1) of OE superrigidity can basically never hold for

actions of type III0, but does hold for several actions of type IIIλ with λ ∈ (0, 1]. For
actions of type III0, unavoidably the following extra freedom is needed, accommodating
the canonical stable orbit equivalences that come with induction and with quotients by
normal subgroups whose action admits a fundamental domain.
• OE superrigidity (v2) of G� (X, μ): if a free, ergodic, non-singular action ��

(Z, ζ ) is stably orbit equivalent to G� (X, μ), there exist subgroups � < �0 < �

and a non-negligible Z0 ⊂ Z such that �� Z is induced from �0 � Z0, � ��0
is normal, the action � � Z0 admits a fundamental domain and G� (X, μ) is
conjugate with �0/� � Z0/�.

To obtain technically less involved statements, one may restrict to simple actions: in
Definition 4.1, we say that a free, ergodic, non-singular actionG� (X, μ) is simple if the
action is not induced and if G has no non-trivial normal subgroups whose action on (X, μ)
admits a fundamental domain. Then both versions of OE superrigidity for a simple action
G� (X, μ) immediately imply that any stably orbit equivalent simple action must be
conjugate to G� X, bringing us back to a statement that looks similar to the probability
measure-preserving setting.

We use the following skew product construction to obtain OE-superrigid actions of
type III0. Given any non-singular ergodic action G� (X, μ) of type III1, with logarithm
of the Radon–Nikodym cocycle denoted by ω : G×X → R, and given any ergodic flow
R �α (Y , η), we consider

G� (X × Y , μ× η) : g · (x, y) = (g · x, αω(g,x)(y)). (1.1)
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We prove in Proposition 3.4 that this action is ergodic and that its associated flow is given
by the adjoint flow α̂, a new concept that we introduce in Definition 3.2. Since the adjoint
operation is involutive, meaning that the adjoint of α̂ is isomorphic to α, the skew product
construction (1.1) provides a streamlined way of defining group actions with a prescribed
associated flow.

The main result of this paper is the following OE-superrigidity theorem for actions of
type III0.

THEOREM A. LetG� (X, μ) be a free, ergodic, non-singular action of type III1. Assume
that G is finitely generated and has trivial center. Assume that the Maharam extension
of G� (X, μ) is simple and cocycle superrigid with countable targets. Denote by ω :
G×X → R the logarithm of the Radon–Nikodym cocycle.

For any ergodic flow R �α (Y , η), the action G� (X × Y , μ× η) defined in (1.1) is
OE superrigid (v2) and has associated flow α̂.

We provide a more precise version of Theorem A as Corollary 5.6 below. In this more
precise version, the possible group actions �0 � Z0 with normal subgroup � ��0 that
appear in the definition of OE superrigidity (v2) are explicitly described.

As we explain in Example 5.7 and Theorem 5.8, there are many concrete type III1

actionsG� (X, μ) satisfying the assumptions of Theorem A. In particular, we obtain the
following result.

Recall that given a commutative ring A and an integer n ≥ 2, the group E(n, A) is the
subgroup of SL(n, A) generated by the elementary matrices having 1s on the diagonal and
an element of A as an off-diagonal entry. For several rings, including Z[S−1] where S is
a finite set of prime numbers and the ring of integers OK of an algebraic number field, we
have that E(n, A) = SL(n, A) (see Example 6.8 for references and more examples).

COROLLARY B. Let n ≥ 3 be an odd integer and let A ⊂ R be a subring containing an
algebraic number that does not belong to Z. Assume that A is finitely generated as a ring.
For every ergodic flow R �α (Y , η), consider the action

β(n, A, α) : E(n, A)�(Rn × Y )/R : A · (x, y) = (Ax, y)

where R � Rn × Y : t · (x, y) = (et/nx, t · y).
(1) The actions β(n, A, α) are essentially free, ergodic, simple and OE superrigid (v2),

with associated flow α̂.
(2) The actions β(n, A, α) and β(n′, A′, α′) are stably orbit equivalent if and only if

n = n′, A = A′ and α is isomorphic to α′.

We prove Corollary B as Corollary 6.7 below, in which we also describe the outer
automorphism group Out(R(n, A, α)) of the orbit equivalence relations R(n, A, α) of
the actions β(n, A, α) appearing in Corollary B. In Remark 6.9, we also show that the
family of group actions β(n, A, α) in Corollary B is large and complex in a descriptive
set-theoretic sense of the word.

As mentioned above, OE superrigidity (v1) is impossible for actions of type III0, but
does happen for actions of type IIIλ when λ ∈ (0, 1]. The precise result goes as follows
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and provides the first examples of OE superrigidity (v1) for actions of type IIIλ with
λ ∈ (0, 1). Examples of type III1 were given before; see, for example, [PV08, Theorem 5.8]
and [DV21, Proposition 3.3], as well as Corollary 4.7 below.

THEOREM C
(1) Let n ≥ 3 be an integer, p a prime number and 0 < λ < 1. Consider the ring

A = Z[λ, λ−1, p−1]. Define the subgroup � < GL(n, A) of matrices A with
det A ∈ λZ. Then the action of � �An onRn by (A, a) · x = A(a + x) is essentially
free, ergodic, simple, of type IIIλ. It is OE superrigid (v1).

(2) Let G� (X, μ) be any essentially free, ergodic, simple, type III0 action. Then
G� (X, μ) is not OE superrigid (v1).

We prove Theorem C at the end of §4.
For every free, ergodic, non-singular action G� (X, μ) of a countable group G,

the crossed product M = L∞(X)�G is a factor. A group action G� (X, μ) is called
W∗-superrigid if G� (X, μ) can be entirely recovered from this group measure space
construction L∞(X)�G. This is a strictly stronger property than OE superrigidity, and
both properties coincide if one can prove that M has a unique (group measure space)
Cartan subalgebra; see, for example, [PV09]. When dealing with actions that are not
measure-preserving, and especially with actions of type III0, the same nuances as with OE
superrigidity appear and we get the natural definitions of W∗-superrigidity (v1) and (v2).

For none of the concrete actions in Corollary B and Theorem C is it known whether
the crossed product has a unique (group measure space) Cartan subalgebra, up to unitary
conjugacy. Nevertheless, repeating the construction of [Vae13, Proposition D], we obtain
ad hoc examples of group actions that are W∗-superrigid (v2), of type III0, with a
prescribed associated flow. We explain this in Remark 6.10.

2. Preliminaries
Recall that an action of a countable group G on a standard probability space (X, μ) is
called non-singular if it preserves Borel sets of measure zero. We write (g · μ)(U) =
μ(g−1 · U) and consider the Radon–Nikodym derivatives d(g · μ)/dμ, which are well
defined almost everywhere. Given a non-singular actionG� (X, μ) of a countable group
G on a standard probability space (X, μ), we consider the associated Maharam extension

G� X × R : g · (x, s) = (g · x, ω(g, x)+ s), (2.1)

where ω(g, x) = log(d(g−1 · μ)/dμ)(x) is the logarithm of the Radon–Nikodym
1-cocycle. We may and always will assume that ω is a strict 1-cocycle, meaning that
the cocycle identity holds everywhere. We equip X × R with the G-invariant σ -finite
measure dμ(x)× e−s ds. One considers the measure-scaling action

R � X × R : t · (x, s) = (x, t + s), (2.2)

which commutes with the Maharam extension G� X × R. Denote by (Y , η) the space
of ergodic components of G� X × R, together with the non-singular factor map
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π : X × R → Y . Since the actions of G and R on X × R commute, there is an essentially
unique non-singular action R � (Y , η) such that for all t ∈ R, we have that π(t · (x, s)) =
t · π(x, s) for almost every (a.e.) (x, s) ∈ X × R. The action R � (Y , η) is Krieger’s
associated flow of the action G� (X, μ).

By [Zim84, Proposition B.5], after discarding from (X, μ) a G-invariant Borel null
set, we may assume that the factor map π : X × R → Y is strictly G-invariant and
R-equivariant, that is, π(g · (x, s)) = π(x, s) and π(x, s + t) = t · π(x, s) for all g ∈ G,
t ∈R and (x, s)∈X×R. Writing ψ(x)=π(x, 0), we have found a Borel map ψ : X→Y

satisfying

π(x, s) = s · ψ(x) and ψ(g · x) = (−ω(g, x)) · ψ(x) (2.3)

for all x ∈ X, s ∈ R, g ∈ G.
Let G� (X, μ) be an essentially free, ergodic, non-singular action of a countable

group G on a non-atomic standard probability space (X, μ). Recall that the type of this
action is defined as follows: if there exists a G-invariant probability measure ν ∼ μ, the
action is of type II1; if there exists a G-invariant infinite measure ν ∼ μ, the action is
of type II∞; in all other cases, the action is of type III. Also recall that G� (X, μ) is
of type II1 or II∞ if and only if the associated flow is isomorphic to the translation action
R � R. When the associated flow is not the translation action, there are three possibilities:
if Y is reduced to one point, the action is said to be of type III1; if the associated flow is
isomorphic to the periodic flow R � R/Z log λ with 0 < λ < 1, the action is said to be
of type IIIλ; finally, when the associated flow is properly ergodic, the action is said to be
of type III0.

Two non-singular actions G� (X, μ) and �� (Z, ζ ) are said to be conjugate if
there exist an isomorphism of groups δ : G → � and a non-singular isomorphism � :
(X, μ) → (Z, ζ ) such that �(g · x) = δ(g) ·�(x) for all g ∈ G and a.e. x ∈ X. Two
non-singular actions G� (X, μ) and G� (Z, ζ ) of the same group G are said to be
isomorphic if there exists a non-singular isomorphism � : (X, μ) → (Z, ζ ) such that
�(g · x) = g ·�(x) for all g ∈ G and a.e. x ∈ X.

Two essentially free, ergodic, non-singular actions G� (X, μ) and �� (Z, ζ ) are
called stably orbit equivalent if there exist non-negligible Borel sets U ⊂ X, V ⊂ Z and
a non-singular isomorphism � : U → V such that �(U ∩G · x) = V ∩� ·�(x) for a.e.
x ∈ U . The actions are called orbit equivalent if we may choose U = X and V = Z. When
the actions are both of type II∞ or type III, stable orbit equivalence is the same as orbit
equivalence. Recall that the associated flow is invariant under stable orbit equivalence.

We say that a non-singular action G� (X, μ) is induced if there exist a proper
subgroup G0 < G and a G0-invariant Borel set X0 ⊂ X such that the sets (g ·X0)g∈G/G0

are disjoint and μ(X \G ·X0) = 0. We then say that G� X is induced from G0 � X0.
Given any non-singular action G0 � (X0, μ0) and a larger countable group G contain-
ing G0, there is, up to isomorphism, a unique non-singular action G� X that is induced
from G0 � X0. Note that by construction, if G� X is induced from G0 � X0, then
G� X and G0 � X0 are stably orbit equivalent. For later reference, we record the
following lemma.
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LEMMA 2.1. An ergodic non-singular action G� (X, μ) is not induced if and only if for
every action G� I of G on a countable set I, every G-equivariant Borel map X → I is
constant almost everywhere.

Proof. If G� (X, μ) is not induced, G� I and ϕ : X → I is G-equivariant, we can
take i0 ∈ I such that X0 = {x ∈ X | ϕ(x) = i0} is non-negligible. Defining G0 = {g ∈
G | g · i0 = i0}, it follows that X0 is G0-invariant and that (g ·X0)g∈G/G0 is a partition
of X, up to measure zero. Since G� X is not induced, it follows that G0 = G and that
X0 = X, up to measure zero. This means that ϕ is essentially constant.

If G� X is induced from G0 � X0, the map x �→ gG0 for x ∈ g ·X0 is a
G-equivariant map X → G/G0 that is not essentially constant.

An essentially free, non-singular action � � (X, μ) is said to admit a fundamental
domain if there exists a Borel set U ⊂ X such that all g · U , g ∈ �, are disjoint and
μ(X \� · U) = 0. In that case, the quotientX/� is a well-defined standard measure space
and identified with (U , μ).

3. Adjoint flows and type III0 actions with prescribed associated flow
We say that a flow R � (Z, ζ ) scales the σ -finite measure ζ if t · ζ = et ζ for all t ∈ R.

PROPOSITION 3.1. Let R � (Y , η) be an ergodic flow. Up to isomorphism, there is a
unique non-singular ergodic action R2 � (Z, ζ ) of R2 on a standard, σ -finite measure
space (Z, ζ ) such that the actions of both R× {0} and {0} × R scale the measure ζ and
such that R � Z/({0} × R) is isomorphic to R � Y .

Proof. Denote by ω : R× Y → R the logarithm of the Radon–Nikodym cocycle. Define
the measure γ on R by dγ (t) = e−t dt . Define (Z, ζ ) = (Y × R, η × γ ) and define the
action

R2 � (Z, ζ ) : (t , r) · (y, s) = (t · y, ω(t , y)+ t + r + s).

Both the actions by (t , 0) and by (0, r) scale the measure ζ . By construction,
Z/({0} × R) = Y .

Now assume that R2 � (Z′, ζ ′) is a non-singular ergodic action such that the actions
of both R× {0} and {0} × R scale the measure ζ ′ and such that R � Z′/({0} × R) is
isomorphic to R � Y . We prove that R2 � (Z′, ζ ′) is isomorphic to R2 � (Z, ζ ).

Since the action of {0} × R scales the measure ζ ′ and R � Z′/({0} × R) is isomorphic
toR � Y , we find a σ -finite measure μ′ ∼ μ on Y and a measure-preserving isomorphism
� : (Y × R, μ′ × γ ) → (Z′, ζ ′) such that for all (t , r) ∈ R2,

�(t · y, ζ(t , y)+ r + s) = (t , r) ·�(y, s) for a.e. (y, s) ∈ Y × R,

where ζ : R× Y → R is a 1-cocycle. Precomposing � with the measure-preserving map

(Y × R, μ× γ ) → (Y × R, μ′ × γ ) : (y, s) �→ (y, log(dμ′/dμ)(y)+ s)
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and replacing ζ by a cohomologous 1-cocycle, we may assume that μ′ = μ. Expressing
that the action of R× {0} scales the measure μ× γ gives us that ζ(t , y) = ω(t , y)+ t .
So we have found the required isomorphism.

Given the uniqueness of R2 � (Z, ζ ) in Proposition 3.1, we get the following
well-defined notion of an adjoint flow and we automatically have that this adjoint is
an involutive operation: the adjoint of α̂ is isomorphic to α.

Definition 3.2. Given an ergodic flow R �α (Y , η), the adjoint flow R �α̂ (Ŷ , η̂) is
defined as the ergodic flow R � Z/(R× {0}), where R2 � Z is the unique action given
by Proposition 3.1.

Note that we can also define the adjoint flow α̂ more concretely. Denoting by ω : R×
Y → R the logarithm of the Radon–Nikodym cocycle of an ergodic flow R �α Y , we
consider the quotient (Y × R)/R, whereR is acting by t · (y, s) = (t · y, t + ω(t , y)+ s).
On this quotient, we let R act by translation in the second variable. This is the adjoint
flow α̂.

From this concrete description, it immediately follows that α ∼= α̂ whenever the flow
α admits a finite or σ -finite equivalent R-invariant measure. In general, α need not be
isomorphic to α̂, as the following example shows.

Example 3.3. Let R �α (Y , η) be the ergodic flow given as the induction of an ergodic,
type III1 action Z �α0 (Y0, η0). We prove that the adjoint flow α̂ is not isomorphic to α.

Recall that the induced flow α is defined as follows. Consider the action R× Z �
R× Y0 : (t , n) · (s, y) = (t − n+ s, n · y). Then α is defined as the action of R on
(R× Y0)/({0} × Z). To determine the adjoint flow α̂, denote by ω : Z× Y0 → R the
logarithm of the Radon–Nikodym cocycle for α0. Denote by λ the Lebesgue measure on
R and define the measure γ such that (dγ /dλ)(t) = e−t . Then consider the action

R× Z× R � (R× Y0 × R, λ× η0 × γ ) : (t , n, r) · (s, y, s′)
= (t − n+ s, n · y, t + ω(n, y)+ r + s′).

The action of {0} × Z× {0} is measure-preserving. The actions of R× {(0, 0)} and
{(0, 0)} × R are measure-scaling. By construction, α is given by R � (R× Y0 × R)/
({0} × Z× R). We conclude that the adjoint flow α̂ is given by R � (R× Y0 × R)/
(R× Z× {0}).

By construction, the flow α comes with anR-equivariant map Y → R/Z. We prove that
such anR-equivariant map does not exist for the adjoint flow α̂. Assuming the contrary, we
find a map θ : R× Y0 × R → R/Z that is invariant for the action of R× Z× {0} and that
is equivariant for the action of {(0, 0)} × R. By the invariance under R× {(0, 0)} and the
equivariance under {(0, 0)} × R, the map θ must be of the form θ(s, y, s′) = −s + s′ +
ϕ(y) where ϕ : Y0 → R/Z. The invariance under {0} × Z× {0} then says that

ω(n, y)+ ϕ(n · y) = ϕ(y) for all n ∈ Z and a.e. y ∈ Y0.

This means that the map Y0 × R → R/Z : (y, s) �→ s + ϕ(y) is invariant under the action
Z � Y0 × R : n · (y, s) = (n · y, ω(n, y)+ s). This action is ergodic because Z � Y0 is
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assumed to be of type III1. So the map (y, s) �→ s + ϕ(y) is essentially constant, which is
absurd. So we have proven that α̂ is not isomorphic to α.

PROPOSITION 3.4. Let G� (X, μ) be a non-singular ergodic action of type III1, with
logarithm of the Radon–Nikodym cocycle ω : G×X → R. Let R �α (Y , η) be any
ergodic flow. Then the action

G� (X × Y , μ× η) : g · (x, y) = (g · x, αω(g,x)(y)) (3.1)

is ergodic and has associated flow α̂.

Proof. Let R2 � (Z, ζ ) be the unique action given by Proposition 3.1, associated with
the ergodic flow R � (Y , η). Consider the action

G× R � (X × Z, μ× ζ ) : (g, r) · (x, z) = (g · x, (ω(g, x), r) · z). (3.2)

The action of {e} × R scales the measure, while the action of G× {0} is measure-
preserving. By definition, the action of G on (X × Z)/({e} × R) is isomorphic to
G� X × Y . It thus follows that the action in (3.2) is the Maharam extension of
G� X × Y together with its measure-scaling action of R.

By the uniqueness of R2 � (Z, ζ ), we may as well identify (Z, ζ ) = (R× Ŷ , γ × η̂)

with

(t , r) · (s, ŷ) = (t + r + β̂(r , ŷ)+ s, r · ŷ),
where β̂ : R× Ŷ → R is the logarithm of the Radon–Nikodym cocycle for the adjoint
flow R �α̂ Ŷ . Then the action in (3.2) becomes

G× R � (X × R× Ŷ , μ× γ × η̂) : (g, r) · (x, s, ŷ)

= (g · x, ω(g, x)+ β̂(r , ŷ)+ r + s, r · ŷ).
Since G� (X, μ) is ergodic and of type III1, the Maharam extension G� X × R is
ergodic. It follows that the G-invariant functions on X × R× Ŷ are the functions that only
depend on the Ŷ -variable. Since R � Ŷ is ergodic, we conclude that the action in (3.2) is
ergodic. We have proven that the action in (3.1) is ergodic and that its associated flow is
identified with α̂ : R � Ŷ .

4. Versions of OE superrigidity in the type III setting
Definition 4.1. We say that a free, ergodic, non-singular actionG� (X, μ) of a countable
group G is simple if the action is not induced and if there are no non-trivial normal
subgroups � �G for which � � (X, μ) admits a fundamental domain.

The motivation for this ad hoc notion of simplicity is the following. WhenG� (X, μ)
is induced from G0 � X0, we have a canonical stable orbit equivalence between G� X

and G0 � X0. When � �G is a normal subgroup such that � � (X, μ) admits a
fundamental domain, we have a canonical stable orbit equivalence between G� X and
G/� � X/�. So whenG� (X, μ) is not simple, there always is a certain absence of OE
superrigidity and describing all stably orbit equivalent actions is necessarily cumbersome.
For this reason, we mainly restrict ourselves to simple actions in this paper.
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Recall that a non-singular action G� (X, μ) of a countable group G on a standard
probability space (X, μ) is called cocycle superrigid with countable target groups if
every 1-cocycle � : G×X → � with values in a countable group � is cohomologous
to a group homomorphism δ : G → �, viewed as a 1-cocycle that is independent of the
X-variable.

Recall from the introduction the two versions (v1) and (v2) of OE superrigidity. For
simple actions, version (v1) of OE superrigidity turns out to be equivalent to cocycle
superrigidity with countable targets.

PROPOSITION 4.2. Let G� (X, μ) be any free, ergodic, non-singular, simple action.
Then G� (X, μ) satisfies OE superrigidity (v1) if and only if G� (X, μ) is cocycle
superrigid with countable targets.

Proof. The implication from cocycle superrigidity to OE superrigidity was first proven, in
a probability measure-preserving setting, in [Zim84, Proposition 4.2.11]. The version that
we need is literally proven in [DV21, Lemma 2.4].

Conversely, assume that � : G×X → � is a 1-cocycle with values in a countable
group �. Consider the free, non-singular, ergodic action

G×�� X ×� : (g, a) · (x, b) = (g · x, �(g, x)ba−1).

By construction, this action is stably orbit equivalent toG� X. Assume that this action is
conjugate to an induction ofG� X. We have to prove that � is cohomologous to a group
homomorphism.

Take an injective group homomorphism δ : G → G×� : δ(g) = (δ1(g), δ2(g)) and a
measure space isomorphism� : X → Z ⊂ X ×� such thatG×�� X ×� is induced
from δ(G)� Z and � is a conjugacy with respect to δ.

Since the action of � on X ×� admits a fundamental domain, the same is true
for the action Ker δ1 � X. Since G� X is simple, we find that δ1 is faithful. Since
δ(G) ⊂ δ1(G)×� and since G×�� X ×� is induced from δ(G)� Z, we find a
fortiori that G×�� X ×� is induced from δ1(G)×�� Z1 with Z0 ⊂ Z1. Since
Z1 is �-invariant, we find that Z1 = X0 ×� and conclude that G� X is induced
from δ1(G)� X0. Since G� X is simple, we conclude that δ1(G) = G. So δ1 is an
automorphism of the group G.

Define the group homomorphism γ : G → � : γ = δ2 ◦ δ−1
1 . We have δ(g) =

(δ1(g), γ (δ1(g))) and the map

ψ : (G×�)/δ(G) → � : (g, k)δ(G) �→ γ (g)k−1

is a bijection satisfying ψ((g, a) · i) = γ (g)ψ(i)a−1 for all (g, a) ∈ G×� and
i ∈ (G×�)/δ(G).

Since G×�� X ×� is induced from δ(G)� Z, we find a (G×�)-equivariant
map from X ×� to (G×�)/δ(G). We denote by θ its composition with ψ . By
�-equivariance, we get that θ(x, a) = θ0(x)a, where θ0 : X → � is a Borel map.
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Expressing the G-equivariance gives us that

�(g, x) = θ0(g · x)−1 γ (g) θ0(x),

so that � is cohomologous to a group homomorphism.

As an essential ingredient to prove the first part of Theorem C, as well as to prove
Corollary B, we need to establish cocycle superrigidity for linear and for affine actions
on Rn. We first recall the notion of essential cocycle superrigidity introduced in [DV21,
Definition B]. We only formulate the version for connected Lie groups, which is the one
that we need in this paper.

Definition 4.3. [DV21, Definition B] A countable dense subgroup � < G of a connected
Lie group G, with universal cover π : G̃ → G and �̃ = π−1(�), is said to be essentially
cocycle superrigid with countable targets if for every 1-cocycle ω : � ×G → � of the
translation action � � G with values in a countable group �, the lifted 1-cocycle ω̃ :
�̃ × G̃ → � : ω̃ = ω ◦ (π × π) is cohomologous to a group homomorphism δ : �̃ → �.

In [DV21, Propositions 4.1 and 4.2], it was proven that for every integer n ≥ 3,
non-empty set of prime numbers S and real algebraic number field Q � K ⊂ R with
ring of integers OK , the dense subgroups SL(n, Z[S−1]) and SL(n, OK) of SL(n, R) are
essentially cocycle superrigid with countable targets. We prove the same result for a much
larger family of dense subgroups of SL(n, R) and also for their corresponding subgroups
of SL(n, R)�Rn.

For every integer n ≥ 2 and commutative ring A, we denote by SL(n, A) and GL(n, A)
the groups of n× n matrices with entries in A and determinant 1, belonging to A∗.
Whenever 1 ≤ i, j ≤ n with i �= j and a ∈ A, we denote by eij (a) ∈ SL(n, A) the
elementary matrix with 1s on the diagonal, a in position ij and 0s elsewhere. We denote
by E(n, A) ⊂ SL(n, A) the subgroup generated by the elementary matrices. By Suslin’s
theorem (see [HOM89, Theorem 1.2.13]), for all n ≥ 3, E(n, A) is a normal subgroup of
GL(n, A). For several rings A, it is known that E(n, A) = SL(n, A) (see Example 6.8 for
references).

THEOREM 4.4. Let A ⊂ R be any countable subring containing an algebraic number that
does not belong to Z. Let n ≥ 3 and let E(n, A) < � < SL(n, A) be any intermediate
subgroup.
(1) The dense subgroup � < SL(n, R) is essentially cocycle superrigid with countable

targets.
(2) The dense subgroup � �An < SL(n, R)�Rn is essentially cocycle superrigid with

countable targets.

Before proving Theorem 4.4, we need two elementary lemmas, which are essentially
contained in [Ioa14, Lemma 5.1].

LEMMA 4.5. Let G be a connected locally compact second countable group and let � < G

be a countable dense subgroup. Then the translation action � � G is ergodic and not
induced.
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Proof. Let �0 < � be a subgroup and π : G → �/�0 a Borel map such that
π(gh) = gπ(h) for all g ∈ � and a.e. h ∈ G. We have to prove that π is essentially
constant. Since �/�0 is countable, the set U = {(h, k) ∈ G×G | π(h) = π(k)} is
non-negligible.

Since π(gh) = gπ(h) when g ∈ �, the set U is essentially invariant under the diagonal
translation action � � G×G. By continuity, U is essentially invariant under the diagonal
translation action of G. We thus find a non-negligible Borel set V ⊂ G such that, up to
measure zero, U = {(h, hk) | h ∈ G, k ∈ V}.

Define G0 = {k ∈ G | π(h) = π(hk) for a.e. h ∈ G}. Since V is non-negligible, G0 is
also non-negligible. By definition,G0 is a subgroup of G. SoG0 must be an open subgroup
of G. Since G is connected, we conclude that G0 = G. This means that π is essentially
constant.

The following lemma is also essentially contained in [Ioa14, Lemma 5.1] and allows us
to extend cocycle superrigidity from a subgroup �0 < � to its normalizer N�(�0). Such a
result goes back to [Pop05, Proposition 3.6].

LEMMA 4.6. Let � � (X, μ) be a free, ergodic, non-singular action and let � : � ×
X → � be a 1-cocycle with values in a countable group �. Let �0 < � be a subgroup
and let (Xy , μy)y∈(Y ,η) be the ergodic decomposition of the action �0 � (X, μ), with
corresponding factor map π : (X, μ) → (Y , η). Assume that for η-a.e. y ∈ Y , the action
�0 � (Xy , μy) is not induced.

If for every h ∈ �0, the function x �→ �(h, x) factors through π , then x �→ �(g, x)
factors through π for every g ∈ N�(�0).

Proof. Fix g ∈ N�(�0) and denote by α : �0 → �0 the automorphism α(h) = ghg−1.
Since for every h ∈ �0, the function x �→ �(h, x) factors through π , we find a measurable
family (δy)y∈Y of group homomorphisms δy : �0 → � such that �(h, x) = δπ(x)(h) for
all h ∈ �0 and a.e. x ∈ X. Applying the 1-cocycle relation to gh = α(h)g gives us that
�(g, h · x) δπ(x)(h) = δπ(g·x)(α(h)) �(g, x) for a.e. x ∈ X.

For every g ∈ N�(�0), the map x �→ π(g · x) is �0-invariant. We can thus define the
non-singular action N�(�0)� (Y , η) such that π(g · x) = g · π(x) for all g ∈ N�(�0)

and a.e. x ∈ X. We conclude that for a.e. y ∈ Y , we have

�(g, h · x) = δg·y(α(h)) �(g, x) δy(h)−1 for μy-a.e. x ∈ Xy . (4.1)

The action �0 � (Xy , μy) is ergodic and not induced. Also (4.1) is saying that the
map Xy → � : x �→ �(g, x) is �0-equivariant, where �0 is acting on � by h · λ =
δg·y(α(h)) λ δy(h)−1. By Lemma 2.1, the map x �→ �(g, x) is essentially constant on
(Xy , μy). Since this holds for a.e. y ∈ Y , we have proven that x �→ �(g, x) factors
through π .

Note that Lemma 4.5 also implies the following result, which we will use in combination
with Lemma 4.6: if G is a locally compact second countable group and � < G is a
countable subgroup whose closure H = � is connected, then the map π : G → H\G :
π(g) = Hg realizes the ergodic decomposition of the translation action � � G and, for
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every Hg ∈ H\G, the action of � on π−1(Hg) is isomorphic to the translation action
� � H and thus not induced by Lemma 4.5.

Proof of Theorem 4.4. By our assumption, the ring A contains a rational number
q ∈ Q \ Z or an irrational algebraic number α. In the first case, by taking a multiple of q,
we find a prime p and a positive integerN ∈ N \ {0} with p � N such thatNp−1 ∈ A. Since
p � N , we can take integers a, b ∈ Z such that aN + bp = 1, so that p−1 = aNp−1 + b.
We conclude that p−1 ∈ A and denote A0 = Z[p−1]. In the second case, we define the
algebraic number field K = Q(α). Let d ≥ 2 be the degree of the minimal polynomial
of α. The ring OK of integers of K is a finitely generated Z-module that is contained in K,
which has {1, α, . . . , αd−1} as a Q-vector space basis. We can thus take a positive integer
N ∈ N \ {0} such that NOK ⊂ Z[α] ⊂ A. We denote A0 = Z+NOK .

We start by proving that E(n, A0) < SL(n, R) is essentially cocycle superrigid with
countable targets. When A0 = Z[p−1], we know by [HOM89, Theorem 4.3.9] that
E(n, A0) = SL(n, A0) and we know from [DV21, Proposition 4.1] that SL(n, A0) <

SL(n, R) is essentially cocycle superrigid with countable targets.
Next consider the case where A0 = Z+NOK . The ring A1 = OK/(NOK) is finite

and the kernel of the canonical homomorphism SL(n, OK) → SL(n, A1) is contained in
SL(n, A0). Thus, SL(n, A0) < SL(n, OK) has finite index. Using the real and complex
embeddings of K, the group SL(n, OK) is an irreducible lattice in a product of copies
of SL(n, R) and SL(n, C); see, for example, [PR94, Theorems 5.7 and 7.12]. The
groups SL(n, R) and SL(n, C) both have property (T); see, for example, [BHV08,
Theorem 1.4.15]. Then the finite-index subgroup SL(n, A0) of SL(n, OK) is also such an
irreducible lattice. In particular, SL(n, A0) satisfies Margulis’s normal subgroup theorem.
SinceE(n, A0) is an infinite normal subgroup of SL(n, A0), we conclude thatE(n, A0) <

SL(n, A0) has finite index. So E(n, A0) is also an irreducible lattice in a product of
copies of SL(n, R) and SL(n, C). By part 2 of [DV21, Theorem C] (and this is essentially
[Ioa14, Theorem B]), we get that E(n, A0) < SL(n, R) is essentially cocycle superrigid
with countable targets.

We also need the following observation: given a countable dense subgroup � of
a connected Lie group G with universal cover π : G̃ → G, the subgroup � < G is
essentially cocycle superrigid with countable targets if and only if the translation action
of the dense subgroup �̃ = π−1(�) on G̃ is cocycle superrigid with countable targets.
One implication is obvious. So assume that � < G is essentially cocycle superrigid with
countable targets and that ω : �̃ × G̃ → � is a 1-cocycle with values in a countable
group�. Since the action of Ker π on G̃ admits a fundamental domain,ω is cohomologous
with a 1-cocycle ω1 satisfying ω1(g, x) = e for all g ∈ Ker π and a.e. x ∈ G̃. This means
that ω1(g, x) = ω2(π(g), π(x)) for all g ∈ �̃ and a.e. x ∈ G̃, where ω2 : � ×G → � is
a 1-cocycle. By our assumption, ω1, and hence also ω, is cohomologous with a group
homomorphism from �̃ to �.

We then prove statement (1). Take E(n, A) < � < SL(n, A). We write G = SL(n, R)
and denote by π : G̃ → G its universal cover. Since n ≥ 3, Ker π is a central subgroup
of order 2 in G̃. Define �̃ = π−1(�). Let ω : � ×G → � be a 1-cocycle, with lift ω̃ :
�̃ × G̃ → �. We have to prove that ω̃ is cohomologous to a group homomorphism.
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Since we have proven that E(n, A0) < G is essentially cocycle superrigid, it follows
from the observation above that ω̃ is cohomologous with a 1-cocycle γ : �̃ × G̃ → � that
has the property that x �→ γ (g, x) is essentially constant for every g ∈ π−1(E(n, A0)).

Write [n] = {1, . . . , n}. For every k ∈ [n] and for every subring B ⊂ R, we define
the following subgroups of E(n, B): the group Ck(B) ∼= Bn−1 generated by {eik(b) | i ∈
[n] \ {k}, b ∈ B}; the group Rk(B) ∼= Bn−1 generated by {ekj (b) | j ∈ [n] \ {k}, b ∈ B};
and the groupHk(B) ∼= E(n− 1, B) generated by {eij (b) | i, j ∈ [n] \ {k}, i �= j , b ∈ B}.
Note that Hk(B) normalizes both Ck(B) and Rk(B). If B ⊂ R is dense, Hk(B), Ck(B) and
Rk(B) are also dense in Hk(R), Ck(R) and Rk(R) respectively, and the latter are closed
subgroups of G.

Since R is simply connected, there is for all i �= j a unique continuous group homo-
morphism ẽij : R → G̃ such that π(̃eij (t)) = eij (t) for all t ∈ R. When i, j ∈ [n] \ {k}
and s, t ∈ R, the image π([̃eik(t), ẽjk(s)]) of the commutator equals the identity element.
Thus, [̃eik(t), ẽjk(s)] ∈ Ker π for all s, t ∈ R. By connectedness of R2, we find that
ẽik(t) commutes with ẽjk(s). There thus is a unique continuous group homomorphism
Ck(R) → G̃ : eik(t) �→ ẽik(t).

For every k ∈ [n] and subring B ⊂ R, we denote by C̃k(B) the subgroup of G̃ generated
by {̃eik(b) | i ∈ [n] \ {k}, b ∈ B}. Note that C̃k(R) is a connected closed subgroup of G̃
and that π : C̃k(R) → Ck(R) is an isomorphism. We also have that C̃k(R) is the connected
component of the identity in π−1(Ck(R)) and that C̃k(B) = C̃k(R) ∩ π−1(Ck(B)).

Define ck : G̃ → C̃k(R)\G̃ : ck(x) = C̃k(R)x. Since C̃k(A) commutes with C̃k(A0)

and since C̃k(A0) is dense in C̃k(R), it follows from Lemmas 4.5 and 4.6 that for every
g ∈ C̃k(A), the map x �→ γ (g, x) factors through ck .

Take g ∈ π−1(Hk(A)Ck(A)). Since g normalizes π−1(Ck(R)), the element g also nor-
malizes its connected component of the identity C̃k(R). Since g normalizes π−1(Ck(A))
as well, it follows that g normalizes C̃k(A). Another application of Lemmas 4.5 and 4.6
then says that the map x �→ γ (g, x) factors through ck .

Fix i �= j and fix g ∈ π−1(eij (A)). In the following paragraphs, we prove that
x �→ γ (g, x) is essentially constant.

We have proven that the map x �→ γ (g, x) factors through ck for all k �= i. This means
that for all b �= i, a �= b and t ∈ R, we have γ (g, ẽab(t)x) = γ (g, x) for a.e. x ∈ G̃. Since
we can reason analogously using the subgroups Rk , we also get for all a �= j , b �= a and
t ∈ R that γ (g, ẽab(t)x) = γ (g, x) for a.e. x ∈ G̃.

Define T̃ = {h ∈ G̃ | γ (g, hx) = γ (g, x) for a.e. x ∈ G̃ }. Then T̃ is a closed sub-
group of G̃. Define T = π(T̃ ). By the previous paragraph, eab(R) ⊂ T when a �= b, a �= j

or b �= i. When a = j and b = i, we choose c ∈ [n] \ {i, j} and note that for all t ∈ R,

eac(t) ecb(1) eac(−t) ecb(−1) = eab(t),

so that again eab(R) ⊂ T . It follows that T = G. The closed subgroup T̃ ⊂ G̃ thus has
index at most 2, so that T̃ ⊂ G̃ is open. Since G̃ is connected, it follows that T̃ = G̃. This
means that x �→ γ (g, x) is essentially constant.

We have thus proven that x �→ γ (g, x) is essentially constant for every g ∈
π−1(E(n, A)). Since π−1(E(n, A)) is a normal subgroup of �̃, a final application of
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Lemmas 4.5 and 4.6 implies that x �→ γ (g, x) is essentially constant for every g ∈ �̃.
This concludes the proof of statement (1).

To prove statement (2), we still write G = SL(n, R) with universal cover π : G̃ → G.
Note that G̃�Rn is the universal cover of G�Rn. Let ω : (� �An)× (G�Rn) → �

be a 1-cocycle, with lift ω̃ : (�̃ �An)× (G̃�Rn) → �.
By the same argument as at the beginning of this proof,E(n, A0)�An

0 is an irreducible
lattice in a product of copies of SL(n, R)�Rn and SL(n, C)�Cn. By [BHV08, Corollary
1.4.16], these groups have property (T). By part 2 of [DV21, Theorem C], it follows that the
dense subgroup E(n, A0)�An

0 of SL(n, R)�Rn is essentially cocycle superrigid with
countable targets.

By the observation at the beginning of the proof, we thus find that ω̃ is cohomol-
ogous with a 1-cocycle γ such that x �→ γ (g, x) is essentially constant for every g ∈
π−1(E(n, A0))�An

0. Denote by θ : G̃�Rn → G̃ the natural quotient map. Since An
0 is

dense in Rn and since An commutes with An
0, it follows from Lemmas 4.5 and 4.6 that

x �→ γ (a, x) factors through θ for all a ∈ An. Since An is a normal subgroup of �̃ �An,
another application of Lemmas 4.5 and 4.6 implies that x �→ γ (g, x) factors through θ for
all g ∈ �̃ �An.

We thus find a Borel map γ1 : (�̃ �An)× G̃ → � such that for all g ∈ �̃ �An

and a.e. x ∈ G̃�Rn, we have γ (g, x) = γ1(g, θ(x)). From now on, we denote by g
the elements of �̃ and we denote by a the elements of An. The restriction of γ1 to
�̃ × G̃ is a 1-cocycle for the translation action �̃ � G̃. Above, we have proven that
this action is cocycle superrigid with countable target groups. Choose a Borel map ϕ :
G̃ → � and a group homomorphism δ : �̃ → � such that γ1(g, y) = ϕ(gy)−1 δ(g) ϕ(y)

for all g ∈ �̃ and a.e. y ∈ G̃. Replacing γ with the cohomologous 1-cocycle (g, x) �→
ϕ(θ(gx)) γ (g, x) ϕ(θ(x))−1, we may thus assume that γ1(g, y) = δ(g) for all g ∈ �̃ and
a.e. y ∈ G̃. We denote δy(a) = γ1(a, y) and note that δy : An → � is a measurable family
of group homomorphisms. To conclude the proof of the theorem, we have to show that for
all a ∈ An, the map y �→ δy(a) is essentially constant.

When g ∈ �̃, we have that π(g) ∈ SL(n, An) so that π(g)(a) ∈ An. The group law in
�̃ �An can then be expressed by g a = π(g)(a) g for all g ∈ �̃, a ∈ An. Applying the
1-cocycle relation for γ , we conclude that

δgy(π(g)a) = δ(g) δy(a) δ(g)
−1 for all g ∈ �̃, a ∈ An and a.e. y ∈ G̃. (4.2)

Fix i ∈ [n]. Using the notation introduced above, denote by Li(A) the subgroup of �
generated by Hi(A) and Ri(A). Similarly define Li(R). Then Li(A) is dense in Li(R)
and Li(R) consists of the matrices A ∈ SL(n, R) satisfying A(ei) = ei , where ei is the
ith standard basis vector. Since the inclusion SL(n− 1, R) ∼= Hi(R) < SL(n, R) induces
a surjective homomorphism between the fundamental groups, we get that π−1(Li(R)) is a
connected subgroup of G̃.

For every a ∈ A, denote ei(a) = aei ∈ An. It follows from (4.2) that for all g ∈
π−1(Li(A)), we have δgy(ei(a)) = δ(g) δy(ei(a)) δ(g)

−1. By Lemma 4.5, for every
fixed i ∈ [n] and a ∈ A, the map y �→ δy(ei(a)) is invariant under left translation by
the connected group π−1(Li(R)), and thus of the form y �→ ζ(π(y)−1(ei)) for some
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Borel map ζ : Rn → �. This means that we find measurable families (ρi,z)z∈Rn of group
homomorphisms ρi,z : A → � such that δy(ei(a)) = ρi,π(y)−1(ei )

(a) for all i ∈ [n], a ∈ A
and a.e. y ∈ G̃.

Take i �= j . We now apply (4.2) for g ∈ �̃ with π(g) = eij (−1) and ej (a) ∈ An. We
conclude that

δgy(ej (a)) δgy(ei(a))
−1 = δgy(ej (a)− ei(a)) = δgy(π(g)ej (a))

= δ(g) δy(ej (a)) δ(g)
−1.

Since π(g)−1(ei) = ei and π(g)−1(ej ) = ei + ej , we find that

ρj ,π(y)−1(ei )+π(y)−1(ej )
(a) ρi,π(y)−1(ei )

(a)−1 = δ(g) ρj ,π(y)−1(ej )
(a) δ(g)−1

for all a ∈ A and a.e. y ∈ G̃. Since n ≥ 3, the map G̃ → Rn × Rn : y �→ (π(y)−1(ei),
π(y)−1(ej )) is a non-singular factor map. We thus conclude that

ρj ,u+v(a) ρi,u(a)−1 = δ(g) ρj ,v(a) δ(g)
−1 for all a ∈ A and a.e. (u, v) ∈ Rn × Rn.

(4.3)

Denote by P the Polish group of Borel maps from Rn to �, where two such maps are
identified if they are equal almost everywhere, where the topology is given by convergence
in measure and where the group law is defined pointwise. For every v ∈ Rn and F ∈ P ,
define Fv ∈ P by Fv(u) = F(u+ v). Then the map Rn → P : v �→ Fv is continuous.
Fix a ∈ A and define F , G ∈ P by F(u) = ρj ,u(a) and G(u) = ρi,u(a)

−1. Then the
map Rn → P : v �→ Fv G is continuous. By (4.3), this map takes values in the discrete
subgroup � < P of constant functions. Since Rn is connected, it follows that v �→ Fv is
essentially constant. That means that we find group homomorphisms ρj : A → � such
that ρj ,u(a) = ρj (a) for a.e. y ∈ Rn.

We conclude that for all j ∈ [n] and every a ∈ A, the map y �→ δy(ej (a)) is essentially
constant. So y �→ δy(a) is also essentially constant for every a ∈ An. This concludes the
proof of the theorem.

The first part of Theorem C can now be immediately deduced from Theorem 4.4.
We state and prove the following more general version.

COROLLARY 4.7. Let A ⊂ R be any countable subring containing an algebraic num-
ber that does not belong to Z. Let F ⊂ A∗ be a subgroup and n ≥ 3 an integer.
Define � < GL(n, A) as the group of matrices with det A ∈ F . Consider the action of
G = � �An on X = Rn by (A, a) · x = A(a + x).

The action G� X is essentially free, ergodic, non-singular, simple and cocycle
superrigid with countable targets. So the action is also OE superrigid (v1).

Denote by T the closure of {|a| | a ∈ F} in R∗+. If T = R∗+, the action is of type III1.
If T = λZ, the action is of type IIIλ. If T = {1}, the action is of type II∞.

Proof. Since An is dense in Rn, by Lemma 4.5, the action An � Rn is ergodic and
not induced. A fortiori, G� Rn is ergodic and not induced. Assume that � �G is a
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normal subgroup whose action on Rn admits a fundamental domain. Write�0 = � ∩ An.
Let (A, a) ∈ �. If A �= 1, then for all b ∈ An,

(1, (1 − A)b) = (1, b)(A, a)(1, b)−1(A, a)−1 ∈ �

so that �0 �= {0}. Since �0 is globally invariant under SL(n, A), the closure of �0 in Rn

is a non-trivial closed subgroup of Rn that is globally invariant under SL(n, R). So �0

is dense in Rn. It follows that �0 � Rn is ergodic, contradicting the assumption that
�0 � Rn admits a fundamental domain. So A = 1, and we have proven that � ⊂ An.
If � �= {0}, we again find that � is dense in Rn. So � is trivial, and we have proven that
G� Rn is a simple action.

Write G0 = SL(n, A)�An. By Theorem 4.4, the dense subgroup G0 of SL(n, R)�
Rn is essentially cocycle superrigid with countable targets. By [DV21, Proposition 3.3],
the action G0 � Rn is cocycle superrigid with countable targets. As mentioned above,
this action is ergodic and not induced. Since G0 is a normal subgroup of G, it follows
from Lemma 4.6 that G� Rn is also cocycle superrigid with countable targets. By
Proposition 4.2, the action is also OE superrigid (v1).

The Maharam extension of G� Rn can be identified with the action G� Rn × R
given by

(A, a) · (x, s) = (A(a + x), log | det A| + s).

Since the translation action An � Rn is ergodic, it follows that the G-invariant functions
on Rn × R are precisely the functions on R that are invariant under translation by all
log | det A|, A ∈ GL(n, A), det A ∈ F . So these are the functions on R that are invariant
under translation by {log |a| | a ∈ F}, so that the type of G� Rn is as described in the
corollary.

PROPOSITION 4.8. Let G� (X, μ) be a free, ergodic, non-singular action of type III0.
If G� X is not induced, then G� X is not cocycle superrigid with countable targets.
If G� X is simple, then G� (X, μ) is not OE superrigid (v1).

Proof. Let G� (X, μ) be a free, ergodic, non-singular action of type III0. Assume that
every 1-cocycle � : G×X → Z is cohomologous to a group homomorphism. We prove
that G� X must be an induced action. By Proposition 4.2, this suffices to prove the
proposition.

Combining [Sch79, Theorem 2.7 and Remark 2.9] and [JS85, Theorem 2.1], we
find a free, ergodic, probability measure-preserving action Z � (Y , η) and a Borel map
π : X → Y such that π∗(μ) ∼ η and π(G · x) ⊂ Z · π(x) for a.e. x ∈ X. Since all free,
ergodic, probability measure-preserving actions of Z are orbit equivalent, we may assume
that the action Z � (Y , η) is the profinite Z � Z2, viewed as the inverse limit of
Z � Z/2kZ, k ∈ N.

Define the 1-cocycle � : G×X → Z such that π(g · x) = �(g, x) · π(x) for all
g ∈ G and a.e. x ∈ X. By our assumption, we find a Borel map ϕ : X → Z and a
group homomorphism δ : G → Z such that �(g, x) = −ϕ(g · x)+ δ(g)+ ϕ(x) for all
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g ∈ G and a.e. x ∈ X. Define the Borel map π1 : X → Y : π1(x) = ϕ(x) · π(x). By
construction, π1(g · x) = δ(g) · π1(x).

Note that π1 is not essentially constant, since otherwise π(x) takes values in a countable
set for a.e. x ∈ X, contradicting π∗(μ) ∼ η. We can then choose k ∈ N large enough
such that, denoting by ψ : Z2 → Z/2kZ the canonical quotient map, θ = ψ ◦ π is not
essentially constant. Since θ(g · x) = δ(g)+ θ(x) for all g ∈ G and a.e. x ∈ X, it follows
that the action G� (X, μ) is induced in a non-trivial way.

Proof of Theorem C. This now follows immediately from Corollary 4.7 and
Proposition 4.8.

5. Cocycle and OE superrigidity for actions of type III0

Let G� (X, μ) be a non-singular action, with logarithm of the Radon–Nikodym
1-cocycle ω : G×X → R. Consider the Maharam extension G� X × R, together with
the commuting measure-scaling action R � X × R (see (2.1) and (2.2)). Denote by
R � (Y , η) the associated flow. As explained at the start of §2, we have a strictly
G-invariant and R-equivariant Borel map π : X × R → Y and we define ψ : X → Y

by (2.3).
Given a subgroup�0 < �, we denote by C�(�0) = {g ∈ � | gh = hg for all h ∈ �0}

the centralizer of �0 inside �.

THEOREM 5.1. Let G� (X, μ) be a non-singular action of a countable group G
on a standard probability space (X, μ). Let ω : G×X → R be the logarithm of the
Radon–Nikodym cocycle and let G� (X̃, μ̃) be the Maharam extension, with ergodic
decomposition (X̃y , μ̃y)y∈Y , associated flow R � (Y , η) and Borel map ψ : X → Y as
in (2.3).

Let � be a countable group. Assume that G is finitely generated and that for η-a.e.
y ∈ Y , the ergodic action G� (X̃y , μ̃y) is not induced and cocycle superrigid with
target �. Then for any 1-cocycle � : G×X → �, there exist a group homomorphism
δ : G → � and a strict 1-cocycle γ : R× Y → C�(δ(G)) such that � is cohomologous
with the 1-cocycle

G×X → � : (g, x) �→ δ(g) γ (−ω(g, x), ψ(x)).

Proof. Define the 1-cocycle �̃ : (G× R)× X̃ → � : �̃((g, t), (x, s)) = �(g, x).
First restrict �̃ to a 1-cocycle for the action G� X̃ with ergodic decomposition
given by π : X̃ → Y . As explained in detail in [FMW04], we may consider �̃ as
a measurable family (�̃y)y∈Y of 1-cocycles for the measurable family of actions
G� (X̃y , μ̃y). By assumption, η-a.e. �̃y is cohomologous to a group homomorphism
δy : G → �.

By [FMW04, Corollary 3.11], we find a Borel family of group homomorphisms δy :
G → �, indexed by y ∈ Y , and a Borel map ϕ : X̃ → � such that for all g ∈ G, we have
that

�̃((g, 0), (x, s)) = ϕ((g, 0) · (x, s))−1 δπ(x,s)(g) ϕ(x, s) for μ̃-a.e. (x, s) ∈ X̃.
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Define the 1-cocycle � : (G× R)× X̃ → � by

�((g, t), (x, s)) = ϕ((g, t) · (x, s)) �̃((g, t), (x, s)) ϕ(x, s)−1.

By construction, � ∼ �̃ as 1-cocycles for G× R � X̃ and for all g ∈ G, �((g, 0),
(x, s)) = δπ(x,s)(g) for μ̃-a.e. (x, s) ∈ X̃. Define ζt (x, s) = �((e, t), (x, s)). From the
1-cocycle relation for � applied to (g, 0)(e, t) = (g, t) = (e, t)(g, 0), it follows that for
all t ∈ R, g ∈ G, we have

ζt (g · (x, s)) = δt ·π(x,s)(g) ζt (x, s) δπ(x,s)(g)
−1 for μ̃-a.e. (x, s) ∈ X̃. (5.1)

Fix t ∈ R. Then (5.1) is saying that for η-a.e. y ∈ Y , ζt is a G-equivariant Borel map from
(X̃y , μ̃y) to the countable set � on which G is acting by g · λ = δt ·y(g)λδy(g)−1. Since
we assumed that for η-a.e. y ∈ Y , the action G� (X̃y , μ̃y) is not induced, it follows that
for η-a.e. y ∈ Y , the map ζt is μ̃y-almost everywhere constant on X̃y .

We thus find a Borel map γ0 : R× Y → � such that for all t ∈ R, we have that
ζt (x, s) = γ0(t , π(x, s)) for μ̃-a.e. (x, s) ∈ X̃. Since �̃((e, t), (x, s)) = e, we have
ζt (x, s) = ϕ(x, t + s) ϕ(x, s)−1 for μ̃-a.e. (x, s) ∈ X̃. Therefore, for every t ∈ R,

γ0(t , π(x, s)) = ϕ(x, t + s) ϕ(x, s)−1 for μ̃-a.e. (x, s) ∈ X̃. (5.2)

So γ0 : R× Y → � is a 1-cocycle. Then (5.1) is saying that for all t ∈ R, g ∈ G, we have

δt ·y(g) = γ0(t , y) δy(g) γ0(t , y)−1 for η-a.e. y ∈ Y . (5.3)

Since G is finitely generated, the set of group homomorphisms from G to � is
countable. We thus find a group homomorphism δ : G → � such that δy = δ for all y in
a non-negligible Borel subset U ⊂ Y . Combining (5.3) with the ergodicity of R � (Y , η),
it follows that δy is conjugate to δ for η-a.e. y ∈ Y . We then find a Borel map ρ : Y → �

so that δy(g) = ρ(y)−1 δ(g) ρ(y) for η-a.e. y ∈ Y and all g ∈ G. Replacing ϕ(x, s) by
ρ(π(x, s))ϕ(x, s), we may assume that δy = δ for η-a.e. y ∈ Y .

The 1-cocycle � : (G× R)× X̃ → � thus has the property that for all g ∈ G and
t ∈ R,

�((g, 0), (x, s)) = δ(g) and �((e, t), (x, s)) = γ0(t , π(x, s))

for μ̃-a.e. (x, s) ∈ X̃. The cocycle identity for � then forces γ0 to take values almost
everywhere in the centralizer C�(δ(G)).

Choose a strict 1-cocycle γ : R× Y → C�(δ(G)) such that for every t ∈ R, we have
that γ (t , y) = γ0(t , y) for η-a.e. y ∈ Y . Define the Borel map θ : X̃ → C�(δ(G)) :
θ(x, s) = γ (s, ψ(x)). Consider the cohomologous 1-cocycle �1 ∼ � defined by

�1((g, t), (x, s)) = θ((g, t) · (x, s))−1 �((g, t), (x, s)) θ(x, s).

Since γ is a strict 1-cocycle, we find for every t ∈ R and g ∈ G that �1((e, t), (x, s)) = e

and �1((g, 0), (x, s)) = δ(g) γ (−ω(g, x), ψ(x)) for μ̃-a.e. (x, s) ∈ X̃. So, defining the
1-cocycle

�0 : G×X → � : �0(g, x) = δ(g) γ (−ω(g, x), ψ(x)),
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we have proven that the 1-cocycles � and �0 are cohomologous when viewed as
1-cocycles forG× R � X̃. TheR-invariance of both 1-cocycles forces the Borel function
implementing the cohomology� ∼ �0 to be essentially R-invariant as well. We have thus
proven that � ∼ �0.

Remark 5.2. The conclusion of Theorem 5.1 can also be formulated in the following way.
Consider the Maharam extension, together with its measure-scaling action,G× R � X̃ =
X × R. The conclusion of Theorem 5.1 says that the 1-cocycles for G× R � X × R
given by

((g, r), (x, t)) �→ �(g, x) and ((g, r), (x, t)) �→ δ(g) γ (−ω(g, x), ψ(x)),

and which are both trivial on R, are cohomologous. But using the map (x, t) �→
γ (t , ψ(x)), this second 1-cocycle is also cohomologous to ((g, r), (x, t)) �→ δ(g)

γ (r , π(x, t)), where π : X × R → Y is the ergodic decomposition of G� X × R.

Theorem 5.1 applies in particular to the type III actions of the form (1.1). This then leads
to the following cocycle superrigidity result.

THEOREM 5.3. Let G� (X, μ) be a free, ergodic, non-singular action of type III1.
Denote by ω : G×X → R the logarithm of the Radon–Nikodym cocycle. Let R � (Y , η)
be an ergodic flow and consider

G� X × Y : g · (x, y) = (g · x, ω(g, x) · y) (5.4)

as in (1.1).
If G is finitely generated and if the Maharam extension of G� (X, μ) is not induced

and cocycle superrigid with countable targets, then every 1-cocycle � : G×X × Y → �

for the action (5.4) with values in a countable group � is cohomologous with a 1-cocycle
of the form

G×X × Y → � : (g, x, y) �→ δ(g) γ (ω(g, x), y),

where δ : G → � is a group homomorphism and γ : R× Y → C�(δ(G)) is a 1-cocycle.

Proof. As in the proof of Proposition 3.4, we take the unique actionR2 � (Z, ζ ) given by
Proposition 3.1, associated with the ergodic flow R � (Y , η). Identify Y = Z/({0} × R)
and denote by π1 : Z → Y the corresponding factor map. Also write Ŷ = Z/(R× {0})
and denote by π2 : Z → Ŷ the corresponding factor map. The Maharam extension ofG�
X × Y together with its measure-scaling action of R is then given by

G× R � X × Z : (g, t) · (x, z) = (g · x, (ω(g, x), t) · z).
The map (x, z) �→ π2(z) identifies the associated flow of the action G� X × Y with
R � Ŷ . Identifying Z = R× Ŷ , the ergodic decomposition of G� X × Z is almost
everywhere given by the Maharam extension G� X × R of the initial type III1 action
G� X. So G� X × Y satisfies the assumptions of Theorem 5.1.

Let� be a countable group and� : G×X × Y → � a 1-cocycle. Define the 1-cocycle

�̃ : (G× R)× (X × Z) → � : �̃((g, t), (x, z)) = �(g, (x, π1(z))).
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It follows from Theorem 5.1 and Remark 5.2 that �̃ is cohomologous with �1, where

�1((g, t), (x, z)) = δ(g) γ1(t , π2(z)),

with δ : G → � a group homomorphism and γ1 : R× Ŷ → C�(δ(G)) a 1-cocycle.
Define the 1-cocycle

γ̃1 : R2 × Z → C�(δ(G)) : γ̃1((r , t), z) = γ1(t , π2(z)).

Since the action of {0} × R on Z is measure-scaling, γ̃1 is cohomologous to a 1-cocycle
γ2 of the form γ2((r , t), z) = γ (r , π1(z)), where γ : R× Y → C�(δ(G)) is a 1-cocycle.
Choose a Borel map ϕ : Z → C�(δ(G)) implementing this cohomology, so that for all
(r , t) ∈ R2, we have

γ (r , π1(z)) = ϕ((r , t) · z) γ1(t , π2(z)) ϕ(z)
−1 for a.e. z ∈ Z.

Define the 1-cocycle �2 : (G× R)× (X × Z) → � by

�2((g, t), (x, z)) = ϕ((ω(g, x), t) · z) �1((g, t), (x, z)) ϕ(z)−1.

By construction, �̃ ∼ �2 and

�2((g, t), (x, z)) = δ(g) γ (ω(g, x), π1(z)).

Since both �̃ and �2 are trivial on {0} × R, this means that � is cohomologous with the
1-cocycle

G×X × Y : (g, x, y) �→ δ(g) γ (ω(g, x), y).

Remark 5.4. When G� (X, μ) is a free, ergodic, non-singular action of type III,
with Maharam extension G� (X̃, μ̃) whose ergodic decomposition is denoted by
(X̃y , μ̃y)y∈Y , it follows from [Tak03, Theorem XII.1.1] that for a.e. y ∈ Y , the action
G� (X̃y , μ̃y) is of type II∞. To give examples where Theorem 5.1 applies, we thus need
cocycle superrigidity for concrete actions of type II∞. For the specific actions appearing in
Theorem 5.3, by construction, the actionsG� (X̃y , μ̃y) are almost everywhere the same.

Both Theorems 5.1 and 5.3 immediately lead to OE-superrigidity results. We start with
the following result.

COROLLARY 5.5. Let G be a finitely generated group with trivial center and let
G� (X, μ) be an essentially free, non-singular, ergodic action. Let ω : G×X → R

be the logarithm of the Radon–Nikodym cocycle and let G� (X̃, μ̃) be the Maharam
extension, with associated flowR � (Y , η) and Borel mapψ : X → Y as in (2.3). Assume
that for η-a.e. y ∈ Y , the action G� (X̃y , μ̃y) is simple and cocycle superrigid with
countable target groups.

Then G� (X, μ) satisfies the OE-superrigidity property (v2) defined in the
introduction.

More precisely, any free non-singular ergodic action that is stably orbit equivalent to
G� (X, μ) is conjugate to an induction of an action of the form

G×�� X ×� : (g, a) · (x, b) = (g · x, γ (−ω(g, x), ψ(x))ba−1), (5.5)

where � is a countable group and γ : R× Y → � is a strict 1-cocycle.
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Proof. Let � � (Z, ζ ) be a free, ergodic, non-singular action and let � : U ⊂ X → Z

be a stable orbit equivalence between G� X and � � Z. By ergodicity of G� (X, μ),
we can choose a Borel map θ : X → G such that θ(x) = e for all x ∈ U and θ(x) · x ∈ U
for a.e. x ∈ X. Define �0 : X → Z : �0(x) = �(θ(x) · x). We then define the Zimmer
1-cocycle � : G×X → � such that �0(g · x) = �(g, x) ·�0(x) for all g ∈ G and a.e.
x ∈ X.

To translate the cocycle superrigidity Theorem 5.1 to an OE-superrigidity theorem, we
use the connection with measure equivalence as developed in [Fur98, §3] (see also [DV21,
Lemma 2.2] for a result that exactly suits our purposes). Define the action

G� X × � : g · (x, b) = (g · x, �(g, x)b), (5.6)

which commutes with the right translation action by � in the second variable. By the
results cited above, the action G� X × � admits a fundamental domain and there is
a natural isomorphism of �-actions α : G\(X × �) → Z with the property that �(x) ∈
� · α(x, e) for a.e. x ∈ U .

By Theorem 5.1, we find a group homomorphism δ : G → � and a 1-cocycle γ : R×
Y → C�(δ(G)) such that � is cohomologous with the 1-cocycle

�1 : G×X → � : �1(g, x) = δ(g) γ (−ω(g, x), ψ(x)).

Let ϕ : X → � be a Borel map such that �1(g, x) = ϕ(g · x) �(g, x) ϕ(x)−1. The map
(x, b) �→ (x, ϕ(x)b) implements an isomorphism between the actionG� X × � in (5.6)
and the action

G� X × � : g · (x, b) = (g · x, �1(g, x)b). (5.7)

Moreover, the action and the isomorphism commute with the �-action. We thus still
find an isomorphism of �-actions α1 : G\(X × �) → Z with the property that �(x) ∈
� · α1(x, e) for a.e. x ∈ U .

The 1-cocycle �̃1 : G× X̃ : �̃1(g, (x, s)) = �1(g, x) for the Maharam extension
G� X̃ is, by construction, cohomologous with the 1-cocycle (g, (x, s)) �→ δ(g). Since
the action G� X × � admits a fundamental domain, a fortiori, the same holds for the
actionG� X̃ × � : g · (x, s, b) = (g · (x, s), δ(g)b), and thus for the action Ker δ � X̃.
Since we assumed that a.e. action G� X̃y is simple, the normal subgroup Ker δ must be
trivial. So δ : G → � is faithful. Define� = C�(δ(G)). Since G has trivial center, δ(G) ∩
� = {e}. We have thus found a subgroup δ(G)×� < �.

Since �1 takes values in δ(G)×�, the action � � G\(X × �) is induced from
δ(G)×�� G\(X × δ(G)×�). Under the natural identificationG\(X × δ(G)×�) =
X ×� and the isomorphism δ × id : G×� → δ(G)×�, this last action is precisely the
action given by (5.5).

In exactly the same way as Theorem 5.3 is deduced from Theorem 5.1, we can deduce
the following result from Corollary 5.5. We thus omit the proof. Note that Theorem A is
contained in the following corollary.

COROLLARY 5.6. Let G� (X, μ) be a free, ergodic, non-singular action of type III1.
Assume that G is finitely generated and has trivial center. Assume that the Maharam
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extension of G� (X, μ) is simple and cocycle superrigid with countable targets. Denote
by ω : G×X → R the logarithm of the Radon–Nikodym cocycle. Let R � (Y , η) be an
ergodic flow and consider

G� X × Y : g · (x, y) = (g · x, ω(g, x) · y) (5.8)

as in (1.1).
Then G� (X × Y , μ× η) satisfies the OE-superrigidity property (v2) defined in the

introduction.
More precisely, any free non-singular ergodic action that is stably orbit equivalent to

the action (5.8) is conjugate to an induction of an action of the form

G×�� X × Y ×� : (g, a) · (x, y, b) = (g · x, ω(g, x) · y, γ (ω(g, x), y)ba−1),
(5.9)

where � is a countable group and γ : R× Y → � is a 1-cocycle.

There are several concrete group actions that satisfy the assumptions of Corollary 5.6.
We start with the following example of [PV08].

Example 5.7. Whenever n ≥ 5 is an odd integer and G < SL(n, R) is a lattice, the action
G� Rn/R∗+ satisfies the hypotheses of Corollary 5.6. Indeed, by [PV08, Theorem 1.3],
the Maharam extension G� Rn is cocycle superrigid. Moreover, these groups G have
property (T), so that they are finitely generated. Since n is odd, G has trivial center. By
[PV08, Lemmas 5.6 and 6.1], the action G� Rn is doubly ergodic and not induced.
By Margulis’s normal subgroup theorem, a normal subgroup of G is either trivial (because
n is odd) or of finite index, and thus acting ergodically on Rn. So the action G� Rn is
simple.

In the following theorem, we prove that all the assumptions of Corollary 5.6 are satisfied
for the action G� Rn/R∗+ when G ranges over a broad family of dense subgroups
SL(n, R) and n ≥ 3 is an odd integer. This then leads to the proof of point (1) in
Corollary B (see Corollary 6.7 below).

THEOREM 5.8. Let A ⊂ R be any countable subring containing an algebraic number that
does not belong to Z. Let n ≥ 3 be an integer and E(n, A) < G < SL(n, A). Then the
linear action G� Rn is essentially free, ergodic, non-singular, not induced and cocycle
superrigid with countable targets. If n is odd, then G has trivial center and the action is
simple. If A is finitely generated as a ring, then E(n, A) is a finitely generated group.

Proof. Since G < SL(n, R) is dense, it follows from Lemma 4.5 that the action G� Rn

is ergodic and not induced. By density of G < SL(n, R), the center of G belongs to the
center of SL(n, R), which is trivial if n is odd. If n is odd and� �G is a normal subgroup
whose action on Rn admits a fundamental domain, then the closure � of � in SL(n, R)
is, by density of G, a normal subgroup of SL(n, R). Since n is odd, it follows that either
� = {1} or � = SL(n, R). In the second case, � is a dense subgroup of SL(n, R), so that
� � Rn is ergodic. It thus follows that � = {1}.
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By Theorem 4.4,G < SL(n, R) is essentially cocycle superrigid with countable targets.
By [DV21, Proposition 3.3], the action G� Rn is cocycle superrigid with countable
targets.

By [HOM89, Proposition 4.3.11], the group E(n, A) is finitely generated when n ≥ 3
and A is finitely generated as a ring.

6. Conjugacy and classification results
In Corollary 5.5, we proved that free, non-singular, ergodic actions G� (X, μ) with a
sufficiently rigid Maharam extension G� (X̃, μ̃) satisfy the OE-superrigidity property
(v2) and we described all stably orbit equivalent actions. We now prove the following
complete classification up to conjugacy of this class of stably orbit equivalent actions.

For the formulation of the following proposition, note that every conjugacy of actions
(and actually every stable orbit equivalence) gives rise to a canonical associated isomor-
phism between the associated flows.

PROPOSITION 6.1. Let G� (X, μ) be an essentially free, non-singular, ergodic action.
Make the same assumptions as in Corollary 5.5. Whenever γ : R× Y → � is a strict
1-cocycle with values in a countable group � and whenever σ : G×� → � is a faithful
group homomorphism to a countable group �, we denote by β(γ , σ) the �-action defined
as the induction of the action

β(γ ) : G×�� X ×� : (g, a) · (x, b) = (g · x, γ (−ω(g, x), ψ(x))ba−1) (6.1)

along the embedding σ : G×� → �.
(1) An essentially free, non-singular, ergodic action is stably orbit equivalent to

G� (X, μ) if and only if it is conjugate to β(γ , σ) for some γ , σ as above.
(2) The actions β(γ , σ) and β(γ ′, σ ′) are conjugate if and only if there exist subgroups

�0 < �, �′
0 < �′, an automorphism δ ∈ Aut(G), group isomorphisms ρ : �0 →

�′
0 and α : � → �′, and a δ-conjugacy � : X → X′ with associated isomorphism

�0 : Y → Y ′ of flows such that:
• γ , γ ′ are cohomologous to strict 1-cocycles γ0, γ ′

0 that take values in �0, �′
0;

• α(σ(g, a)) = σ ′(δ(g), ρ(a)) for all g ∈ G and a ∈ �0;
• the 1-cocycles ρ ◦ γ0 and γ ′

0 ◦ (id ×�0) are cohomologous as 1-cocycles
R× Y → �′

0.

Point (1) of Proposition 6.1 is just a repetition of Corollary 5.5. We deduce point (2) of
Proposition 6.1 from the following two results. First, in Proposition 6.2, we describe when
and how an action of the form β(γ ) in (6.1) is induced. Second, in Proposition 6.3, we
prove when two actions of the form β(γ ) are conjugate.

For our main family of group actions G� X × Y defined in (1.1), it then remains to
analyze when two such actions are conjugate. Under the appropriate assumption, we prove
in Proposition 6.4 that this happens if and only if the G-actions G� X are conjugate and
the flows R � Y are isomorphic. In particular, we find the outer automorphism groups of
these type III0 orbit equivalence relations.

Before proving Proposition 6.1, we clarify the following subtle point. When γ and
γ ′ are strict 1-cocycles that are cohomologous, expressed by the almost everywhere
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equality γ ′(t , y) = ϕ(t · y) γ (t , y) ϕ(y)−1, there is a natural isomorphism �γ ′,γ between
the actions β(γ ) and β(γ ′). This follows immediately by observing that the Maharam
extension of β(γ ), together with its commuting R-action, is isomorphic to

G×�× R � X × R×� : (g, a, t) · (x, s, b) = (g · x, ω(g, x)+ t + s, γ (t , π(x, s))ba−1).
(6.2)

Moreover, the map

� : X × R×� → X ×� : �(x, s, b) = (x, γ (s, ψ(x))−1b) (6.3)

is R-invariant and (G×�)-equivariant.
Then the map (x, s, b) �→ (x, s, ϕ(π(x, s))b) is a well-defined isomorphism between

the Maharam extensions. Taking the quotient by the action of R, we find �γ ′,γ .

PROPOSITION 6.2. Let G� (X, μ) be an essentially free, non-singular, ergodic action
with Maharam extension G� (X̃, μ̃) and associated flow R � (Y , η). Assume that for
η-a.e. y ∈ Y , the action G� (X̃y , μ̃y) is not induced. Let γ : R× Y → � be a strict
1-cocycle with values in a countable group �.

The action β(γ ) in (6.1) is induced from a subgroup � < G×� acting on
Z ⊂ X ×� if and only if � = G×�0 for a subgroup �0 < �, γ is cohomologous
with a strict 1-cocycle γ0 taking values in �0 and �γ0,γ (Z) = X ×�0.

Proof. If γ takes values in�0, we have by construction that β(γ ) is induced fromG×�0

acting on X ×�0. So we only prove the converse and assume that β(γ ) is induced from
� � Z. Write I = (G×�)/�. Consider the Maharam extension of β(γ ) given by (6.2).
Since β(γ ) is induced from � � Z, we find a Borel map θ : X × R×� → I that is
R-invariant and (G×�)-equivariant.

Since for a.e. y ∈ Y , we have that G� X̃y is not induced, the G-equivariance of
θ implies that θ(x, s, b) = θ1(π(x, s), b), where θ1 : Y ×� → I . In particular, θ is a
G-invariant map. It follows that G× {e} ⊂ �, so that � = G×�0 for some subgroup
�0 < �. From now on, we identify I = �/�0, on which G acts trivially.

The �-equivariance of θ implies that θ1 is also �-equivariant and thus of the form
θ1(y, b) = b−1θ2(y)�0 for some Borel map θ2 : Y → �. Expressing the R-invariance of
θ and thus the invariance of θ1 under the action t · (y, s) = (t · y, γ (t , y)s), we find that

b−1θ2(y)�0 = θ1(y, b) = θ1(t · y, γ (t , y)b) = b−1γ (t , y)−1θ2(t · y)�0.

This means precisely that the cohomologous 1-cocycle γ0(t , y) = θ2(t · y)−1γ (t , y)θ2(y)

takes values in �0. Using the notation introduced before the proposition, this also means
that �γ0,γ (Z) = X ×�0.

PROPOSITION 6.3. For i ∈ {1, 2}, let Gi � (Xi , μi) be essentially free, non-singular,
ergodic actions with Maharam extension Gi � (X̃i , μ̃i) and associated flow R �

(Yi , ηi). Assume that for ηi-a.e. y ∈ Yi , the action Gi � (X̃i,y , μ̃i,y) is simple. Assume
that the groups Gi have trivial center. Let γi : R× Yi → �i be strict 1-cocycles.

The actions β(γi) given by (6.1) are conjugate if and only if there exist group
isomorphisms δ : G1 → G2, ρ : �1 → �2 and a δ-conjugacy � : X1 → X2 such
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that, denoting by �0 : Y1 → Y2 the associated isomorphism of flows, the 1-cocycles
γ2 ◦ (id ×�0) and ρ ◦ γ1 are cohomologous.

Proof. We start by proving the following claim. Under the assumptions of Proposition 6.2,
if the group G has trivial center and if � �G×� is a normal subgroup whose action on
X ×� admits a fundamental domain, then � ⊂ {e} ×�.

Since � � X ×� admits a fundamental domain, a fortiori, the same holds for the
action of � on X × R×� given in (6.2). Since G� X̃y is simple for a.e. y ∈ Y , there is
no non-trivial normal subgroup of G whose action on X × R×� admits a fundamental
domain. Hence,� ∩ (G× {e}) = {(e, e)}. Now let (g, a) ∈ � be an arbitrary element. We
have to prove that g = e. By normality of �, also (hgh−1, a) = (h, e)(g, a)(h, e)−1 ∈ �.
Since (g, a) ∈ �, also (hgh−1g−1, e) ∈ �. Since we have proven that � intersects
G× {e} trivially, it follows that hgh−1g−1 = e for all h ∈ G. This means that g belongs
to the center of G, which is assumed to be trivial. This proves the claim.

Now assume that �1 : X1 ×�1 → X2 ×�2 is a conjugacy with respect to the group
isomorphism δ1 = G1 ×�1 → G2 ×�2. Since the action of {e} ×�i on Xi ×�i has
Xi × {e} as a fundamental domain, the claim above implies that δ1({e} ×�1) = {e} ×�2.
We define the group isomorphism ρ : �1 → �2 such that δ1(e, a) = (e, ρ(a)) for all
a ∈ �1.

For every i ∈ {1, 2}, we consider the Maharam extension Gi ×�i × R � Xi ×
R×�i given by (6.2), together with the factor map �i : Xi × R×�i → Xi ×�i

defined by (6.3). Therefore, �1 canonically lifts to a non-singular isomorphism
�2 : X1 × R×�1 → X2 × R×�2 that is R-equivariant and a δ1-conjugacy. Since
�2 is a ρ-conjugacy for the actions of �i , the map �2 must be of the form �2(x, s, b) =
(�3(x, s), ζ(x, s)ρ(b)).

Since δ1(e, a) = (e, ρ(a)) where ρ : �1 → �2 is an isomorphism, the isomorphism δ1

must be of the form δ1(g, a) = (δ(g), α(g)ρ(a)), where δ : G1 → G2 is an isomorphism
and α : G1 → �2 is a group homomorphism. Expressing that �2((g, e) · (x, s, e)) =
(δ(g), α(g)) ·�2(x, s, e), we find that ζ(g · (x, s))−1 = α(g)ζ(x, s)−1. By our assump-
tions, for a.e. y ∈ Y1, the action G1 � X̃1,y is not induced. Therefore, α(g) = e for all
g ∈ G1 and ζ(x, s) = ζ1(π1(x, s)) where ζ1 : Y1 → �2.

By construction, �3 : X1 × R → X2 × R is R-equivariant and a δ-conjugacy. After
replacing μ2 by an equivalent probability measure, we find that �3(x, s) = (�(x), s),
where � : X1 → X2 is a measure-preserving δ-conjugacy, so that ω2(δ(g), �(x)) =
ω1(g, x). The δ-conjugacy � : X1 → X2 induces an isomorphism �0 : Y1 → Y2 of
associated flows. By construction, �0 ◦ π1 = π2 ◦�3.

Since �2 is R-equivariant, we also find that

ζ1(t · π1(x, s)) ρ(γ1(t , π(x, s))) = γ2(t , π2(�(x), s)) ζ1(π(x, s)).

This means precisely that the 1-cocycles γ2 ◦ (id ×�0) and ρ ◦ γ1 are cohomologous.

Proposition 6.1 is now an immediate consequence of Corollary 5.5 and Propositions 6.2
and 6.3. For completeness, we include a detailed argument.
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Proof of Proposition 6.1. Point (1) was already proven in Corollary 5.5. To prove point (2),
we start with the easy implication. If we are given all the data mentioned in point (2), we
replaceμ′ by the equivalent measure�∗(μ), so thatω′(δ(g), �(x)) = ω(g, x). We replace
γ , γ ′ by the cohomologous 1-cocycles γ0, γ ′

0. Further replacing γ ′
0 by a cohomologous,

�′
0-valued 1-cocycle, we may assume that ρ ◦ γ0 = γ ′

0 ◦ (id ×�0). By construction,
�× ρ defines a (δ × ρ)-conjugacy of the actions β(γ0) and β(γ ′

0).
Denote by σ0, σ ′

0 the restriction of σ , σ ′ to G×�0, G×�′
0. Since α ◦ σ0 =

σ ′
0 ◦ (δ × ρ), it follows from the previous paragraph that the actions β(γ0, σ0) and
β(γ ′

0, σ ′
0) are α-conjugate. By construction, the first action is isomorphic to β(γ , σ)

and the second action is isomorphic to β(γ ′, σ ′). We have thus proven that β(γ , σ) and
β(γ ′, σ ′) are conjugate.

Conversely, assume that there is an α-conjugacy between β(γ , σ) and β(γ ′, σ ′). When
an ergodic group action � � Z is induced from both �0 � Z0 and �1 � Z1, there exists
a g ∈ � such that � � Z is induced from the action of �0 ∩ g�1g

−1 on Z0 ∩ g · Z1. After
composing α with an inner automorphism and using Proposition 6.2, we find subgroups
�0 < � and �′

0 < �′ such that α(σ(G×�0)) = σ ′(G×�′
0) and such that γ , γ ′ are

cohomologous with γ0, γ ′
0 taking values in �0, �′

0. We also find the group isomorphism
δ1 : G×�0 → G×�′

0, with α ◦ σ = σ ′ ◦ δ1, such that the actions β(γ0) and β(γ ′
0) are

δ1-conjugate. The conclusion then follows from Proposition 6.3.

We finally turn to our main family of group actions, given by (1.1). For i ∈ {1, 2}, let
Gi � (Xi , μi) be non-singular actions and denote by ωi : Gi ×Xi → R the logarithm
of the Radon–Nikodym cocycle. Let R � (Yi , ηi) be non-singular flows. Consider the
actions

σi : Gi � Xi × Yi : g · (x, y) = (g · x, ωi(g, x) · y). (6.4)

If �1 : X1 → X2 is a conjugacy between the actions G1 � X1 and G2 � X2 and if �2 :
Y1 → Y2 is an isomorphism of the flows, writing ρ(x) = log(d((�1)∗μ1)/dμ2), the map

X1 × Y1 → X2 × Y2 : (x, y) �→ (�1(x), −ρ(�1(x)) ·�2(y)) (6.5)

is a conjugacy between σ1 and σ2.
We now prove in Proposition 6.4 that under the appropriate assumption, the converse

also holds. In Lemma 6.6, we explain that this assumption indeed holds for actions of the
form G� Rn/R∗+ when G < SL(n, R) is a countable dense subgroup. This then leads to
a proof of Corollary B.

PROPOSITION 6.4. For i ∈ {1, 2}, let Gi � (Xi , μi) be essentially free, ergodic,
non-singular actions of type III1. Assume that the Maharam extensions Gi � (X̃i , μ̃i)
admit a unique measure-scaling action commuting with the Gi-action. Let R � (Yi , ηi)
be ergodic flows.

Every conjugacy between the actions σi in (6.4) is of the form (6.5) for a conjugacy �1

between G1 � X1 and G2 � X2 and an isomorphism of flows �2 : Y1 → Y2.

Proof. Denote byR2 � (Zi , ζi) the unique actions associated with the flowsR � (Yi , ηi)
given by Proposition 3.1, together with the factor maps πi : Zi → Yi satisfying
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πi((t , r) · z) = t · πi(z). We realize the Maharam extension of σi together with its
measure-scaling action as

σ̃i : Gi × R � (Xi × Zi , μi × ζi) : (g, r) · (x, z) = (g · x, (ω(g, x), r) · z). (6.6)

We have the canonical factor map �i : Xi × Zi → Xi × Yi : �i(x, z) = (x, πi(z)) satis-
fying �i((g, r) · (x, z)) = g ·�i(x, z).

Assume that δ : G1 → G2 is a group isomorphism and � : X1 × Y1 → X2 × Y2 is
a δ-conjugacy between σ1 and σ2. Denote by �̃ : X1 × Z1 → X2 × Z2 the canonical
measure-preserving lift, which is a (δ × id)-conjugacy for the actions σ̃i in (6.6) and which
satisfies �2 ◦ �̃ = � ◦�1.

Define the action γ : R � Xi × Zi : γt (x, z) = (x, (t , 0) · z). Note that γ commutes
with σ̃i . We claim that �̃ is automatically γ -equivariant.

To prove this claim, we temporarily identify Zi = R× Ŷi with the action R2 � Zi

given by (t , r) · (s, ŷ) = (t + r + β̂(r , ŷ)+ s, r · ŷ). Under this identification, �̃ : X1 ×
R× Ŷ1 → X2 × R× Ŷ2 is a δ-conjugacy for the actions

Gi � Xi × R× Ŷi : g · (x, s, ŷ) = (g · x, ωi(g, x)+ s, ŷ). (6.7)

Since Gi � Xi is of type III1, the Maharam extension Gi � Xi × R is ergodic. There-
fore, �̃ must be of the form �̃(x, s, ŷ ) = (θŷ(x, s), �(ŷ)), where � : Ŷ1 → Ŷ2 is a
non-singular isomorphism and, for a.e. ŷ ∈ Ŷ1, the map θŷ : X1 × R → X2 × R is a
δ-conjugacy of the Maharam extensions Gi � Xi × R. Since �̃ is measure-preserving,
a.e. θŷ is measure-scaling. We assumed that these Maharam extensions admit a unique
commuting measure-scaling action. It follows that θŷ is equivariant with respect to
translation in the second variable. This means that �̃ is equivariant with respect to
translation in the second variable. Thus, the claim is proven.

We thus consider the actions Gi × R2 � Xi × Zi : (g, t , r) · (x, z) = (g · x,
(ω(g, x)+ t , r) · z) and we have proven that �̃ is a (δ × id)-conjugacy between these
actions. Since the action of R2 on Zi is ergodic, this forces �̃ to be of the form
�̃(x, z) = (�1(x), �x(z)), where �1 : X1 → X2 is a δ-conjugacy and, for a.e. x ∈ X1,
�x : Z1 → Z2 is an isomorphism between the actions R2 � Zi .

Define ρ(x) = log(d((�1)∗μ1)/dμ2) and denote �′
x(z) = (ρ(�1(x)), 0) ·�x(z). We

still have that �′
x is an isomorphism between the actions R2 � Zi . With respect to the

measures μi × ζi on Xi × Zi , the isomorphism �̃ is measure-preserving. It then follows
that a.e. �′

x is measure-preserving with respect to the measures ζi on Zi .
Expressing that �̃ is a δ-conjugacy for the actions of Gi and using that �x is

an isomorphism between the actions of R2, we find that (ω1(g, x), 0) ·�g·x(z) =
(ω2(δ(g), �1(x)), 0) ·�x(z). Since ωi are the logarithms of the Radon–Nikodym
cocycles for Gi � (Xi , μi) and since �1 is a δ-conjugacy, we have by definition
of ρ that ω2(δ(g), �1(x)) = ρ(�1(x))− ρ(�1(g · x))+ ω1(g, x). We conclude that
�′
g·x(z) = �′

x(z). Since the action G1 � X1 is ergodic, we find a measure-preserving
isomorphism � : Z1 → Z2 between the actions R2 � Zi such that �′

x = � for a.e.
x ∈ X1.

For such an isomorphism �, there is a unique isomorphism �2 : Y1 → Y2 for the
actions R � Yi such that π2 ◦� = �2 ◦ π1. Define the δ-conjugacy �0 : X1 × Y1 →
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X2 × Y2 by (6.5), that is, �0(x, y) = (�1(x), −ρ(�1(x)) ·�2(y)). By construction,
�2 ◦ �̃ = �0 ◦�1. It follows that � = �0.

Recall that a unitary representation π : G → U(H) of a locally compact group G is said
to be a C0-representation if for every ε > 0 and ξ , η ∈ H , there exists a compact subset
K ⊂ G such that |〈π(g)ξ , η〉| < ε for all g ∈ G \K .

LEMMA 6.5. Let n ≥ 1 be an integer. Write G = GL(n, R)�Rn. Then the unitary
representation π : G → U(L2(Rn)) : (π(A, a)ξ)(x) = | det A|−1/2ξ(A−1(x)− a) is a
C0-representation.

In particular, the action G � Rn : (A, a) · x = A(a + x) induces a homeomorphism of
G onto a closed subgroup of the Polish group of non-singular automorphisms of Rn with
the Lebesgue measure.

Proof. Assume the contrary. We then find ξ , η ∈ L2(Rn), ε > 0 and a sequence
(Ak , ak) ∈ G that tends to infinity in G such that |〈π(Ak , ak)ξ , η〉| > ε for all k.

We view GL(n, R) as a subgroup of G and we denote by Dn < GL(n, R) the subgroup
of diagonal matrices with positive real numbers on the diagonal. Since GL(n, R) =
O(n, R)DnO(n, R), we can write (Ak , ak) = gk(dk , bk)hk with gk , hk ∈ O(n, R),
dk ∈ Dn and bk ∈ Rn. After passing to a subsequence, we may assume that gk and hk
converge to g and h, respectively. Replacing ξ by π(h)ξ and replacing η by π(g)∗η, we
may then further assume that |〈π(dk , bk)ξ , η〉| > ε for all k.

To reach a contradiction, it thus suffices to prove that the representation θ : R∗+ �R →
U(L2(R)) : (θ(d, b)ξ)(x) = d−1/2ξ(d−1x − b) is a C0-representation. Denote by λ the
Lebesgue measure onR. WhenN ∈ R+ and U , V ⊂ [−N , N] are Borel sets with indicator
functions 1U , 1V ∈ L2(R), we have θ(d, b)1U = d−1/21d(U+b), so that 〈θ(d, b)1U , 1V 〉 =
d−1/2 λ(d(U + b) ∩ V). We conclude that

{(d, b) ∈ R∗+ × R ∣∣ |〈θ(d , b)1U , 1V 〉| ≥ ε}
⊂ {(d, b) ∈ R∗+ × R ∣∣ ε/2N ≤ d1/2 ≤ 2N/ε, |b| ≤ (d−1 + 1)N},

which is compact.

LEMMA 6.6. For i = 1, 2 and integers ni ≥ 2, let Gi < SL(ni , R) be dense subgroups
and consider the actions Gi � Rni .

If� : Rn1 → Rn2 is a δ-conjugacy between these actions, we have n1 = n2 and there is
a unique A ∈ GL(n1, R) such that �(x) = A(x) for a.e. x ∈ Rn1 and δ(g) = AgA−1 for
all g ∈ G1.

In particular, if n ≥ 2 and G < SL(n, R) is a dense subgroup, then the action
R � Rn : t · x = e−t/nx is the unique measure-scaling action that commutes with
G� Rn.

Proof. Denote by Aut(Rni ) the Polish group of non-singular automorphisms of Rni .
By Lemma 6.5, we may view SL(ni , R) as a closed subgroup of Aut(Rni ). By
our assumption, �G1�

−1 = G2. Taking the closure in Aut(Rni ), we find that
� SL(n1, R)�−1 = SL(n2, R). This means in particular that δ extends to a group
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isomorphism and homeomorphism δ : SL(n1, R) → SL(n2, R). It follows that n1 = n2

and we write n = n1 = n2.
Write G = SL(n, R) and denote by H < G the closed subgroup fixing the first basis

vector e1. We view � as a δ-conjugacy for the transitive action G � G/H. This means
that δ(H) = g0Hg−1

0 for some g0 ∈ G and �(gH) = δ(g)g0H for a.e. g ∈ G. Since δ
is an automorphism of SL(n, R), we find B ∈ GL(n, R) such that either δ(g) = BgB−1

for all g ∈ G, or δ(g) = B(g−1)T B−1 for all g ∈ G. In the second case, δ(H) and H are
not conjugate. So we are in the first case. We get that g0 = BC where C ∈ GL(n, R)
normalizes H. That means that Ce1 = ae1 for some a ∈ R∗. Translating the formula
�(gH) = δ(g)g0H to Rn, we have proven that �(x) = aB(x) for a.e. x ∈ Rn. Writing
A = aB, the first part of the lemma is proven.

In particular, if G < SL(n, R) is a dense subgroup, then the only non-singular
automorphisms of Rn that commute withG� Rn are given by x �→ ax for some a ∈ R∗.
This transformation scales the measure by |a|n. The only measure-scaling action R � Rn

commuting with G� Rn is thus given by t · x = e−t/nx.

We have now gathered enough material to prove Corollary B. We also add the
computation of the outer automorphism group of these type III0 orbit equivalence
relations. For every ergodic flow R �α (Y , η), we denote by AutR(α) the Polish group
of all non-singular automorphisms of (Y , η) that commute with the flow α. Note that
R ⊂ AutR(α) by definition.

COROLLARY 6.7. Corollary B holds.
Moreover, writing K = {a/b | a, b ∈ A, b �= 0}, the outer automorphism group

Out(R(n, A, α)) of the orbit equivalence relation R(n, A, α) of the action β(n, A, α)
is given by

Out(R(n, A, α)) ∼= NGL(n,K)(E(n, A))
K∗ · E(n, A) × {±1} × AutR(α). (6.8)

In particular, when A = Z[S−1] for some finite non-empty set of prime numbers S, we
have E(n, A) = SL(n, Z[S−1]) and

Out(R(n, Z[S−1], α)) ∼= (Z/nZ)|S| × {±1} × AutR(α). (6.9)

When A = OK , whereK ⊂ R is an algebraic number field with [K : Q] ≥ 2, we denote by
Cl(K) its ideal class group and consider the subgroup Cln(K) = {J ∈ Cl(K) | J n = 1}.
Then E(n, A) = SL(n, OK) and

Out(R(n, OK , α)) ∼= O∗
K

(O∗
K)

n
× Cln(K)× {±1} × AutR(α). (6.10)

Proof. By Theorem 5.8, under the hypotheses of Corollary B, the actions E(n, A)�
Rn/R∗+ satisfy all the assumptions of Corollary 5.6. So by Corollary 5.6, the actions
β(n, A, α) are essentially free, ergodic, simple and OE superrigid (v2), with associated
flow α̂.

In particular, if β(n, A, α) and β(n′, A′, α′) are stably orbit equivalent, the actions must
be conjugate. By Proposition 6.4 and Lemma 6.6, the flows α and α′ are isomorphic and the
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actions E(n, A)� Rn/R∗+ and E(n′, A′)� Rn
′
/R∗+ are conjugate. Then their Maharam

extensionsE(n, A)� Rn andE(n′, A′)� Rn
′
are also conjugate. By Lemma 6.6, n = n′

and there is an A ∈ GL(n, R) such that AE(n, A)A−1 = E(n, A′).
For every subring A1 ⊂ R, we denote by M(n, A1) the ring of n× n matrices with

entries in A1. We claim that the subring N(n, A1) ⊂ M(n, A1) generated by E(n, A1) is
equal to M(n, A1). For all i, j ∈ {1, . . . , n} and a ∈ A1, we denote by Eij (a) the matrix
that has the entry a in position ij and 0s elsewhere. When i �= j and a ∈ A1, we have that
1 + Eij (a) ∈ E(n, A1) and 1 ∈ E(n, A1). Thus, Eij (a) ∈ N(n, A1). Since SL(n, Z) =
E(n, Z) ⊂ E(n, A1), given i �= j , the matrix σij with entry 1 in position ij , entry −1
in position ji, and 0s elsewhere belongs to E(n, A1). Thus, also Eii(a) = σijEji(a) ∈
N(n, A1). This proves the claim.

Since AE(n, A)A−1 = E(n, A′), the claim above implies that AM(n, A)A−1 =
M(n, A′). So for every i ∈ {1, . . . , n} and a ∈ A, we have that AEii(a)A−1 ∈ M(n, A′).
Taking the jj -entry, it follows that Aji(A−1)ij a ∈ A′. Summing over i, it follows that
a ∈ A′. So A ⊂ A′. By symmetry, also the converse inclusion holds, so that A = A′.

The arguments above apply in particular to the self orbit equivalences of β(n, A, α) and
give us that

Out(R(n, A, α)) ∼= NGL(n,R)(E(n, A))
R∗+ E(n, A) × AutR(α).

Write G+ = {A ∈ GL(n, R) | det A > 0}. Since n is odd, we have that GL(n, R) =
{±1} × G+. It follows that

Out(R(n, A, α)) ∼= NG+(E(n, A))
R∗+ E(n, A) × {±1} × AutR(α). (6.11)

We have also proven above that every A ∈ NGL(n,R)(E(n, A)) satisfies AM(n, A)A−1 =
M(n, A), meaning that Aij (A−1)kl ∈ A for all i, j , k, l. Denoting by K = {a/b | a, b ∈
A, b �= 0} the field of fractions of A, it follows in particular that A must be a multiple of a
matrix with entries in K. It follows that

NG+(E(n, A))
R∗+ E(n, A) = NG+∩GL(n,K)(E(n, A))

(R∗+ ∩K) E(n, A) = NGL(n,K)(E(n, A))
K∗ E(n, A) . (6.12)

Combining this with (6.11), we have proven (6.8).
By [OM65, Theorem B], a matrix A ∈ GL(n, K) normalizes E(n, A) if and only if

A(An) = aAn for an invertible fractional ideal a ⊂ K .
When A = Z[S−1], every fractional ideal of A is principal, so that NGL(n,K)

(E(n, A)) = K∗ GL(n, A). By [HOM89, Theorem 4.3.9], we also have that E(n, A) =
SL(n, A). So the natural map

GL(n, A) → NGL(n,K)(E(n, A))
K∗ E(n, A)

is surjective and has kernel {A ∈ GL(n, A) | det A ∈ (A∗)n}. The group of units of
A = Z[S−1] is the free abelian group generated by p ∈ S, so that combining (6.11) en
(6.12), we have proven (6.9).
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When K is an algebraic number field with [K : Q] ≥ 2 and A = OK , again by
[HOM89, Theorem 4.3.9], we have that E(n, A) = SL(n, A). Denote by I (K) the group
of fractional ideals in K. As mentioned in [OM65, Example 6.5], the following two
statements hold. If A ∈ GL(n, K), a ∈ I (K) and A(An) = aAn, we have an = det(A) A.
Conversely, if a ∈ I (K), α ∈ K∗ and an = α A, there exists an A ∈ GL(n, K) such that
A(An) = aAn and det A = α. For completeness, we provide a more detailed argument.
The first implication is contained in [OM73, 81:7]. For the second implication, take
a ∈ I (K) and α ∈ K∗ with an = α A. Denote by e1, . . . , en the standard basis of Kn.
By [OM73, 81:5], we find b ∈ I (K) and B ∈ GL(n, K) such that aAn = B(be1 + Ae2 +
· · · + Aen). By our assumption and [OM73, 81:7], we have α A = an = det(B) b. Denote
by D ∈ GL(n, K) the diagonal matrix with D11 = α det(B)−1 and Dii = 1 for i �= 1.
Since b = D11 A, writing A = BD, we conclude that A(An) = aAn. By construction,
det(A) = α.

Define the subgroup Xn(K) of the abelian group I (K)×K∗ by Xn(K) = {(a, α) ∈
I (K)×K∗ | an = αA}. Define the subgroup Yn(K) ⊂ Xn(K) by Yn(K) = {(βA, βn) |
β ∈ K∗}. Define Vn(K) = Xn(K)/Yn(K). To conclude the proof of the corollary, we
prove the following two statements:

Vn(K) ∼= A∗

(A∗)n
× Cln(K) and Vn(K) ∼= NGL(n,K)(SL(n, A))

K∗ SL(n, A) .

The projection on the first coordinate gives a surjective group homomorphism Vn(K) →
Cln(K) with kernel A∗/(A∗)n. We prove that this homomorphism is split. Since Cln(K)
is a finite abelian group in which the order of every element divides n, it suffices to prove
that every element of order k | n in Cln(K) can be lifted to an element of order k in Vn(K).
When a ∈ I (K) and ak = βA with β ∈ K∗, write n = km and note that (a, βm) defines
such a lift of order k. So Vn(K) ∼= A∗/(A∗)n × Cln(K).

For every (a, α) ∈ Xn(K), by the discussion above, we can choose A ∈ GL(n, K)
such that A(An) = aAn and det A = α. This matrix A is uniquely determined up to right
multiplication by a matrix in SL(n, A). This realizes a surjective group homomorphism

Xn(K) → NGL(n,K)(SL(n, A))
K∗ SL(n, A)

and the kernel of this homomorphism is by construction equal to Yn(K). This concludes
the proof of the corollary.

Example 6.8. Let A = Z[S−1] where S is a finite non-empty set of prime numbers, or let
A = OK be the ring of integers of an algebraic number fieldK ⊂ R with [K : Q] ≥ 2. As
mentioned above, we haveE(n, A) = SL(n, A) for all n ≥ 3, and a proof can, for instance,
be found in [HOM89, Theorem 4.3.9].

By [Sus77, Corollaries 6.6 and 7.10], for the same rings A as in the previous paragraph
and for all integers 0 ≤ k ≤ s, we also have that E(n, A1) = SL(n, A1) when A1 is the
ring of (Laurent) polynomials over A, defined by A1 = A[X1, . . . , Xk , X±1

k+1, . . . , X±1
s ],
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and n ≥ 3. Therefore, whenever λ1, . . . , λs ∈ R are algebraically independent transcen-
dental numbers, we find that the rings

A2 = Z[S−1, λ1, . . . , λk , λ±1
k+1, . . . , λ±1

s ],

A3 = Z[OK , λ1, . . . , λk , λ±1
k+1, . . . , λ±1

s ]

also satisfy E(n, Ai ) = SL(n, Ai ) for all n ≥ 3 and i ∈ {2, 3}. The associated group
actions β(n, Ai , α) are OE superrigid (v2). Moreover, the outer automorphism groups
Out(β(n, Ai , α)) are still given by formulas similar to (6.9) and (6.10):

Out(R(n, A2, α)) ∼= (Z/nZ)|S|+s−k × {±1} × AutR(α),

Out(R(n, A3, α)) ∼= (Z/nZ)s−k × O∗
K

(O∗
K)

n
× Cln(K)× {±1} × AutR(α).

The reason for this is that by [AA81, Corollary 5.6], the invertible fractional ideals in the
(Laurent) polynomial rings A1 above are all the product of a principal ideal and a fractional
ideal in A. The only difference compared to (6.9) and (6.10) thus comes from the group of
units in Ai .

Remark 6.9. We remark that Corollary B provides a family of OE superrigid actions,
with a prescribed associated flow, that is large and complex in a descriptive set-theoretic
sense of the word. Fix a prime number p. For every finite subset F ∈ R, we consider
the ring Z[p−1, F], which satisfies the assumptions of Corollary B, so that the actions
β(n, Z[p−1, F], α) are OE superrigid (v2).

By Corollary B, to decide when two such actions are stably orbit equivalent, we have
to decide if Z[p−1, F] = Z[p−1, F ′]. This defines a complicated equivalence relation
R on the Borel space of finite subsets of R. When λ, λ′ ∈ R are transcendental, we get
that Z[p−1, λ] = Z[p−1, λ′] if and only if there exist a ∈ Z[p−1]∗ and b ∈ Z[p−1] with
λ = aλ′ + b. So at least the equivalence relation R is not smooth.

Remark 6.10. As mentioned in the introduction, we can combine the construction of
[Vae13, Proposition D] with Corollary 5.6 to give ad hoc examples of non-singular actions
G� (X, μ) that are W∗-superrigid (v2) and that have any prescribed associated flow.

As in [Vae13, Proposition D], denote by � < SL(5, Z) the subgroup of matri-
ces A satisfying A(ei) = ei for i = 1, 2. Define G as the amalgamated free product
G = SL(5, Z) ∗� (� × Z), with canonical homomorphism π : G → SL(5, Z). Consider
the probability measure-preserving Bernoulli action G� ([0, 1], λ)G. Given any ergodic
flow R �α (Y , η), consider the action

βα : G� (R5 × Y )/R× [0, 1]G : g · ((x, y), z) = ((π(g)x, y), g · z)
where R � R5 × Y : t · (x, y) = (et/5x, t · y).

Then βα is essentially free, non-singular, ergodic, simple and W∗-superrigid (v2), with
associated flow α̂.

To prove this result, one uses [Vae13, Theorem 8.1 and Proposition D] to show that
the crossed product factor associated with βα has a unique Cartan subalgebra, up to
unitary conjugacy. It then suffices to prove that βα is OE superrigid (v2). Since G is
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finitely generated and has trivial center, by Corollary 5.6, it suffices to prove that the
action G� R5 × [0, 1]G : g · (x, z) = (π(g)x, g · z) is simple and cocycle superrigid
with countable targets. Simplicity is easy to check and cocycle superrigidity was proven in
[Vae13, Proposition D].
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