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GROUPS WHOSE IRREDUCIBLE REPRESENTATIONS HAVE
FINITE DEGREE II

by B. A. F. WEHRFRITZ

(Received 8th January 1981)

If F is a (commutative) field let XF denote the class of all groups G such that every
irreducible FG-module has finite dimension over F. The introduction to [7] contains
motivation for considering these classes XF and surveys some of the results to date
concerning them. In [7] for every field F we determined the finitely generated soluble
groups in XF. Here, for fields F of characteristic zero, we determine, at least in principle,
the soluble groups in XF. Our main result is the following.

Theorem 1. Let G be a soluble Xp-group where F is any field of characteristic zero.
Then G is abelian-by-finite.

Farkas [1] (see top p. 587) claims that R. Snider has proved Theorem 1 in the special
case where F is the complex numbers. Paragraph 3 of [7] enables one to compute
9lg n XF for any field F. (See below for notation and definitions.) Thus by Theorem 1
we can determine S g n XP for any field F of characteristic zero. In particular we have
the following corollaries.

Corollary 1. Let F be a depleted field of characteristic zero (e.g. F = Q). Then

(PnLyi)% n XF = (91 n (E(5)g c 3E.

Corollary 2. Let F be afield of characteristic zero that is either algebraically closed or
real closed. Then S 3 ("»XF is the class of all groups G with an abelian normal subgroup of
finite index and torsion-free rank less than \F\.

Corollary 3. Let F be a meagre field of characteristic zero. Then

is contained in the class of all groups G with an abelian normal subgroup of finite index
and finite torsion-free rank.

The terms "depleted" and "meagre" are defined in [7]. The basic example of a
depleted field is the rationals. By a theorem of Artin and Schreier ([2], p. 316) the only
fields that are not meagre are the uncountable fields that are either algebraically closed
or real closed. Thus Corollaries 2 and 3 cover all fields of characteristic zero.
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238 B. A. F. WEHRFRITZ

PnL.yi is the class of radical groups in the sense of Plotkin. Also 91, S, g and ©
denote respectively the classes of abelian, soluble, finite and finitely generated groups
and G is the class of groups of finite exponent. X = f}FXF, the torsion-free rank of an
abelian group A is dimo(Q©z/l/). For any group G the maximum periodic normal
subgroup of G we denote by T(G).

Proof of the corollaries

In Corollary 3 the group T(G) is abelian-by-finite by a result of B. Hartley ([5],
12.4.16) and G/T(G) is abelian-by-finite by ([7], 5.3). Thus G is soluble-by-finite and
Corollary 3 follows from Theorem 1 and [7], 3.4b). Corollary 1 follows from Corollary
3 and [7], 3.3 and 2.3. Corollary 2 follows from Theorem 1 and [7], 3.1, 3.2 and 2.3.

Almost all of our proof of Theorem 1, with suitable modifications, works for any
characteristic and we present it in this generality. If G is any group and p a prime, then
OP(G) denotes the maximum normal p-subgroup of G, and we set 0O(G) = <1>. By
definition the trivial group is the only O-group. We prove the following.

Theorem 2. Let F be a field of characteristic u ̂  0 that is not locally finite and suppose
that for every periodic soluble XF-group H the group H/OU(H) is abelian-by-finite. If G is a
soluble XF-group then G/OU(G) is abelian-by-finite.

If u = 0 in Theorem 2 and if H is a periodic soluble 3£f-group, then H is abelian-by-
finite by Hartley's theorem [5], 12.4.16. Thus Theorem 1 is a consequence of Theorem 2.

Lemma 1. Let G be a group and u zero or a prime such that H/OU{H) is abelian-by-
finite for every countable subgroup H of G. Then G/OU(G) is abelian-by-finite.

Proof. Suppose that for r = 1,2,... there exists a finitely generated subgroup Xr of G
such that Xr/Ou(Xr) does not have an abelian normal subgroup of index at most r. By
hypothesis // = <Xr:r^l> has a normal subgroup A of finite index with A'^OU(H). If
(H:A) = r then (A n Xr)Ou(Xr)/Ou(Xr) is an abelian normal subgroup of Xr/oJ(Xr) of
index at most r. This contradiction shows that there exists r ^ l such that every finitely
generated subgroup X of G contains a normal subgroup Ax of index at most r such that
A'x is a u-group. The lemma follows by the usual inverse limit argument, see [3], l.K.2.

Lemma 2. Let A be an abelian group of infinite exponent. Then there exists a
subgroup B of A such that A/B is infinite but of rank 1.

(A group has finite rank at most r if each of its finitely generated subgroups can be
generated by r elements.)

Proof. If A is torsion-free let X be a basis of A and pick xeX. Now put B
= An (X\{x}}°; A/B is torsion-free of rank 1. Now we may assume that A is periodic.
If every primary component of A has finite exponent then A is a direct sum of cyclic
groups by Priifer's First Theorem ([4], p. 173) and involves infinitely many primes. Thus
A has a subgroup B such that A/B is the direct product of infinitely many cyclic groups
of distinct prime order. Hence we may assume that A is a p-group for some prime p.
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Suppose that A contains a finite subgroup X of exponent p" > 1 such that if a e A has
order p n + 1 then Xn <a> =/=<!>• Now

is a direct product of cyclic groups by Priifer's First Theorem, so QnA = Y x Z for some
subgroups Y and Z with AT £ 7 and 7 finite. Let a i-> a be the natural projection of 4̂
onto A/Z and consider aeA with a"eZ. Then | a | ^p" + 1 . If |a| =p" + 1 then
n i < a > £ A r £ 7 and |a| = |a |>p. Thus \a\^p", so aeYZ and aeY. Therefore fi^^^ and
in particular is finite. Hence any direct decomposition of A has only a finite number of
factors and so A is the direct product of a finite number of directly indecomposable
groups, each of which is cyclic or a Priifer p^-group ([4], p. 181). But A and so A has
infinite exponent. Therefore A, and consequently A, has a Priifer p°°-image.

Now assume that no such X exists. We choose xteA of order p. Suppose we have
found X = (x1} x ... x <xn>£/4 where |x ; |=p' for each i. By the above there exists
xn+leA of order p" + 1 with I n ( x B + 1 ) = ( l ) . Thus by induction we can construct D
= X?i! <x,-> c A with each |x,| = p'. Let

Then D/E is a Priifer p^-group. As such it is Z-injective, so A/E splits over D/E and
again A has a Priifer pTO-image.

Lemma 3. Let A be an abelian normal subgroup of the completely reducible, soluble
subgroup G of GUji, F); here F is any field. If n is any function satisfying Mal'cev's
Theorem ([6], 3.6), then there exists an abelian normal subgroup B of G containing A with

Proof. By [6], 1.22 we may assume that F is algebraically closed. By Clifford's
Theorem A is also completely reducible, so [6], 1.12 yields that (G:CG(A)) divides w!.
Now G has an abelian normal subgroup D of finite index at most fi(n) by Mal'cev's
Theorem. Now set B = A- CD(A).

We have no interest here in the bound of Lemma 2, merely in the finiteness of (G: B).
Now in Lemma 3 necessarily x(A) has finite rank. Thus the qualitive part of that lemma
is a special case of the following, whose proof we leave to the reader.

Lemma 3'. Let A be an abelian group. Then Ao G implies that A lies in an abelian
normal subgroup of G of finite index for ALL abelian-by-finite groups G if and only if for
every prime p either A has no subgroup of index p or A contains no infinite elementary
abelian p-subgroup.

Lemma 4. Let F be a field of characteristic u ̂  0 that is not locally finite and let G
= <x> [A {split extension) be a group where A is abelian normal of finite torsion-free rank
and <x> is infinite. If GeXF and if /1\<1> contains no elements of order u, then
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Proof. Assume we have a counter example to the lemma. We prove first that A
contains a subgroup X = XfL 1 <#f> such that [ahx']=^l for each i. Suppose al,...,ai_1

have been constructed and set Y=(af,...,af-l}. If ye A then <x, y> is abelian-by-finite
by the main theorem of [7] and <j><JC>> = <j>c> is finitely generated. Thus Y is finitely
generated. Pick a normal subgroup N^A of G maximal subject to ynAf = <l>.
If C<X>(N) = 1 there exists a,e/V such that [a^x']^! and clearly af^N. Thus the
construction of X can proceed inductively.

We have to eliminate the possibility that C<JC>(JV)^<1>, so assume that this is so.
Since F is not locally finite and since Y contains no non-trivial elements of order u there
exists a faithful, finite-dimensional, completely reducible representation of Y over F.
Hence by Hall's Lemma ([7], 2.1) and the hypothesis GeXF there exists a finite-
dimensional, completely reducible representation p of G over F such that Ngker p and
7nkerp = <l>. By the choice of N we have A f]kerp = N, By [6], 1.22, 1.12 and
Clifford's Theorem there exists r>0 with [Ap,xrp] = <l>; that is with [A,xr]£iV, and
we choose r large enough so that also [N, xr] = <l>.

Set B = [_A,xT\. Then B is a homomorphic image of A/N^Ap. The torsion subgroup
of Ap has finite rank (cf. [5], 2.2) and A and hence Ap has finite torsion-free rank.
Therefore B has finite rank. But then there exists a faithful direct sum of a finite number
of irreducible representations of B over F and hence there exists a finite-dimensional,
completely reducible representation a of G over F with .Bn ker <T=<1>. By [6], 1.22 and
1.12 again there exists s>0 with [A,xs~\<^kero. But then

{A, xrs] £ \_A, xr] n [/4, xs] £ B n ker cr = < 1>,

which contradicts our assumption that we are considering a counter example to the
lemma. Therefore C<;c>(iV) = <l> and this completes the construction of X.

We complete the proof of the lemma by constructing an infinite-dimensional,
irreducible FG-module. Let F be an algebraic closure of F. Since (af) is finitely
generated and abelian there exists a homomorphism $, of <af> into F* with
[a ; ,x

1]^,^ 1. Since F* is Z-injective there exists a homomorphism 4>:A->F* such that
[ a ^ x ' l ^ O i . x ' ] ^ for each i. Thus arf^afcl) for each i ^ l . Set K = F{A<j))^F and
K=©i6ZuI-/C. Make K into a /CG-module by defining

U;X = t;,- _ ! and i;,a = u,(ax'^>)

for each i e Z and a e /I.
In particular V becomes an FG-module of infinite dimension. Let U be a non-zero

KG-submodule of V. Pick v=Yj=rViZjeU\{0} where each a.-eJC and s — r is minimal.
Replacing v by i;xr we may choose v with r = 0. Suppose s > 0. Then [/ also contains

By construction as{af(j) — as4>) =£ 0. This contradicts the choice of u. Thus s=0 and so
DO6 [/. But clearly v0FG = V. Consequently U= V and V is irreducible as KG-module.
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Since V is FG-cyclic there exists a maximal FG-submodule W of V. Suppose
dimF(K/W0 is finite. Let a be the annihilator of V/W in FG. Then dimF(FG/o) is finite.
But Va is a KG-submodule of V and consequently by the above is {0}. Thus V is an
image of FG/o and as such is finite dimensional. This contradiction proves that V/W is
an infinite-dimensional, irreducible FG-module, and completes the proof of the lemma.

The argument of the previous paragraph can be used to prove the following, which
should be compared with [7], 2.3.

Proposition. Let F^K be fields with (K:F) finite. Then 3EF = 3EK.

If K is an arbitrary extension field of F then 3.1 (or alternatively 3.2) shows that
sometimes XK£XF and the work of P. Hall and Roseblade shows that sometimes

Proof of Theorem 2

This we break into a number of pieces. Let F and G be as in the theorem and assume
that G/OU(G) is not abelian-by-finite. Let F be an algebraic closure of F.

1. G contains a countable subgroup H^ such that H = HJOu(Hl) has an abelian normal
subgroup A containing H' with H' and H/A periodic, and such that H is not abelian-by-
finite.

Proof. By Lemma 1 we may assume that G is countable. By hypothesis T(G) contains
a normal subgroup T of finite index with T'<iOu(G). Hall's Lemma applied to
irreducible F(T(G)/Ou(G))-modules shows that there exists a finite-dimensional (from
G e 3EF), completely reducible representation p of G over F such that T(G) n ker p has its
derived group in OJfi). By [7], 5.1 the group G/T(G) is abelian-by-finite, and also Gp is
abelian-by-finite ([6], 3.5). Hence G contains a normal subgroup Ht of finite index with
H\<^x(G)rskzrp. Set H = HJOU(H1). Then H' is periodic and abelian and H is not
abelian-by-finite.

Since H is countable there exist elements xux2,••• of H such that / / / ( x ^ i ^ 1>W is
periodic. Suppose we have constructed r 1 , . . . , r i _ 1 >0 such that Ai = (x'/:j<i)>H' is
abelian. Since A{ is normal in H, there are no elements of order u in ^4,\O> a n d Lemma
4 yields that there exists an integer r ; > 0 with [/I,, Xi'1 = l (if |x,|<oo set r, = |xi|). Then
/41+1 = /4j<xJ'> is abelian. By induction we construct an abelian normal subgroup.
A = \Ji^1Ai^H' of H with H/A periodic.

Let L denote the Fitting subgroup of H.

2. We may choose H and A such that L/A is finite. We may also choose A maximal, that is
with A = CH(A).

Proof. Initially let H and A be as in 1. Necessarily A^L. Suppose L has infinite
exponent. Clearly £\<1> contains no elements of order u. By Lemma 2 there exists a
homomorphism of L into F* with infinite image. By Hall's Lemma there exists an
irreducible representation p of L with Lp infinite. But Lp is nilpotent ([6], 8.2ii), so Lp
is finite ([6], 3.13). Consequently L has finite exponent m say.

EMS C
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Let Q/L be a maximal torsion-free subgroup of A/L. Then Qm is normal in L and
L/Qm is periodic. Let P/Qm = Ou(L/Qm). By hypothesis L/Qm contains a normal subgroup
M/Qm of finite index with M'^P. But LnQm = <l>, so

and M is an abelian subgroup of L of finite index, n say.
H/E is periodic and so contains a normal subgroup N/Z7 of finite index such that

N'LI/L! is a w-group. But N'gfT and so has no proper u-images. Consequently
N'gL"gM. Since (H:Af) is finite L contains the Fitting subgroup of N and so MnJV
has finite index in this Fitting subgroup. Now replace H by N and ,4 by any maximal
abelian subgroup of N containing M nN.

3. H/A is reduced.

Proof. Let D/A be the divisible part of H/A. Let p be any irreducible representation
of D over F. Necessarily p is finite dimensional ([7], 2.2). Also Dp/Ap has no proper
subgroup of finite index. Therefore Dp is abelian by Lemma 3 and thus

by [7], 2.5. Thus D = A by the maximal choice of A.

Let K = {xeH:[A,x~] is finite}. It is easily seen that K is a subgroup of H containing
A.

4. [/I, /C] has finite exponent.

Proof. Suppose not. By Lemma 2 there exists a homomorphism of [A, K~] into F*
with its image infinite and of rank 1. In particular this image has infinite exponent. By
Hall's Lemma these exists an irreducible representation p of H over F such that [A, K~]p
has infinite exponent. Let r be the index in Ap of its Zariski connected component
containing 1. If keK then \[_A, k]p\ = \kAp\, and the latter, being finite, divides r ([6], 5.3,
5.4, cf. 5.5). Thus the abelian group [,4, K]p has exponent dividing r. This contradiction
confirms 4.

5. K/A is finite.

Proof. Let Q/[A, X] be a maximal torsion-free subgroup of A/\_A, K]. By 4, there
exists m>0 with [A, /C]m = <l>. Now Q is normal in K and K/Qm is periodic. Set P/Qm

= OU(K/Qm). By hypothesis there exists a normal subgroup M of K of finite index such
that M' g P. But [>4, K] n (T< 1 >, so

[/!,.£] n P g Ou[/1,/C] = <1> and [/ lnM,A(|

Also M ' g H ' n M g A n M and M is nilpotent. Consequently as K/M is finite we have
MgL, and so /1M//1 is finite by 2. But again K/M is finite, so 5 follows.
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6. The final contradiction; H/K is finite.

Proof. Suppose otherwise. By 3 and 5 there exists an infinite subgroup X/A of H/A
with KnX = A. Let {1} u Y={l,yl,y2,...} be a transversal of A to X (recall that H is
countable). Suppose we have constructed al,...,ai^leA and a homomorphism (pj'.Aj
= (ayj<i)^F* such that for each j < i , O/e[/4,.y,]\<l> and |a,</>,| = \as\- Now At is finite,
being a finitely generated subgroup of H', and [A, y,] is infinite since y{ $ K, so there
exists a,-6[y4, yJVl;. Let r be the order of a( modulo A{ and let a be a primitive r-th
root of a'cpi in F. There exists a homomorphism <f>i+l of /4,<a,> into F* such that a</»1 + 1

= a</), for all aeAt and a,$1 + 1=a.
Thus inductively we can construct a,-6[A,yj for i = 1,2,... and a homomorphism <j> of

<a,: i^l> into F* such that each a;$=/=l. By Hall's Lemma there exists an irreducible
representation p of H over F with atp =/= 1 for each i. Now by Lemma 3 there exists an
abelian subgroup of Xp of finite index containing Ap. Since X/A is infinite there exists i
with </l, yf>p abelian. But then a, e [A, y;] g ker p, which is false. This contradiction
yields 6 and completes the proof of the theorem.
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